]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/sched_rt.c
sched: wake-balance fixes
[mirror_ubuntu-zesty-kernel.git] / kernel / sched_rt.c
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
6 #ifdef CONFIG_SMP
7 static cpumask_t rt_overload_mask;
8 static atomic_t rto_count;
9 static inline int rt_overloaded(void)
10 {
11 return atomic_read(&rto_count);
12 }
13 static inline cpumask_t *rt_overload(void)
14 {
15 return &rt_overload_mask;
16 }
17 static inline void rt_set_overload(struct rq *rq)
18 {
19 rq->rt.overloaded = 1;
20 cpu_set(rq->cpu, rt_overload_mask);
21 /*
22 * Make sure the mask is visible before we set
23 * the overload count. That is checked to determine
24 * if we should look at the mask. It would be a shame
25 * if we looked at the mask, but the mask was not
26 * updated yet.
27 */
28 wmb();
29 atomic_inc(&rto_count);
30 }
31 static inline void rt_clear_overload(struct rq *rq)
32 {
33 /* the order here really doesn't matter */
34 atomic_dec(&rto_count);
35 cpu_clear(rq->cpu, rt_overload_mask);
36 rq->rt.overloaded = 0;
37 }
38
39 static void update_rt_migration(struct rq *rq)
40 {
41 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1))
42 rt_set_overload(rq);
43 else
44 rt_clear_overload(rq);
45 }
46 #endif /* CONFIG_SMP */
47
48 /*
49 * Update the current task's runtime statistics. Skip current tasks that
50 * are not in our scheduling class.
51 */
52 static void update_curr_rt(struct rq *rq)
53 {
54 struct task_struct *curr = rq->curr;
55 u64 delta_exec;
56
57 if (!task_has_rt_policy(curr))
58 return;
59
60 delta_exec = rq->clock - curr->se.exec_start;
61 if (unlikely((s64)delta_exec < 0))
62 delta_exec = 0;
63
64 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
65
66 curr->se.sum_exec_runtime += delta_exec;
67 curr->se.exec_start = rq->clock;
68 cpuacct_charge(curr, delta_exec);
69 }
70
71 static inline void inc_rt_tasks(struct task_struct *p, struct rq *rq)
72 {
73 WARN_ON(!rt_task(p));
74 rq->rt.rt_nr_running++;
75 #ifdef CONFIG_SMP
76 if (p->prio < rq->rt.highest_prio)
77 rq->rt.highest_prio = p->prio;
78 if (p->nr_cpus_allowed > 1)
79 rq->rt.rt_nr_migratory++;
80
81 update_rt_migration(rq);
82 #endif /* CONFIG_SMP */
83 }
84
85 static inline void dec_rt_tasks(struct task_struct *p, struct rq *rq)
86 {
87 WARN_ON(!rt_task(p));
88 WARN_ON(!rq->rt.rt_nr_running);
89 rq->rt.rt_nr_running--;
90 #ifdef CONFIG_SMP
91 if (rq->rt.rt_nr_running) {
92 struct rt_prio_array *array;
93
94 WARN_ON(p->prio < rq->rt.highest_prio);
95 if (p->prio == rq->rt.highest_prio) {
96 /* recalculate */
97 array = &rq->rt.active;
98 rq->rt.highest_prio =
99 sched_find_first_bit(array->bitmap);
100 } /* otherwise leave rq->highest prio alone */
101 } else
102 rq->rt.highest_prio = MAX_RT_PRIO;
103 if (p->nr_cpus_allowed > 1)
104 rq->rt.rt_nr_migratory--;
105
106 update_rt_migration(rq);
107 #endif /* CONFIG_SMP */
108 }
109
110 static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
111 {
112 struct rt_prio_array *array = &rq->rt.active;
113
114 list_add_tail(&p->run_list, array->queue + p->prio);
115 __set_bit(p->prio, array->bitmap);
116 inc_cpu_load(rq, p->se.load.weight);
117
118 inc_rt_tasks(p, rq);
119 }
120
121 /*
122 * Adding/removing a task to/from a priority array:
123 */
124 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
125 {
126 struct rt_prio_array *array = &rq->rt.active;
127
128 update_curr_rt(rq);
129
130 list_del(&p->run_list);
131 if (list_empty(array->queue + p->prio))
132 __clear_bit(p->prio, array->bitmap);
133 dec_cpu_load(rq, p->se.load.weight);
134
135 dec_rt_tasks(p, rq);
136 }
137
138 /*
139 * Put task to the end of the run list without the overhead of dequeue
140 * followed by enqueue.
141 */
142 static void requeue_task_rt(struct rq *rq, struct task_struct *p)
143 {
144 struct rt_prio_array *array = &rq->rt.active;
145
146 list_move_tail(&p->run_list, array->queue + p->prio);
147 }
148
149 static void
150 yield_task_rt(struct rq *rq)
151 {
152 requeue_task_rt(rq, rq->curr);
153 }
154
155 #ifdef CONFIG_SMP
156 static int find_lowest_rq(struct task_struct *task);
157
158 static int select_task_rq_rt(struct task_struct *p, int sync)
159 {
160 struct rq *rq = task_rq(p);
161
162 /*
163 * If the task will not preempt the RQ, try to find a better RQ
164 * before we even activate the task
165 */
166 if ((p->prio >= rq->rt.highest_prio)
167 && (p->nr_cpus_allowed > 1)) {
168 int cpu = find_lowest_rq(p);
169
170 return (cpu == -1) ? task_cpu(p) : cpu;
171 }
172
173 /*
174 * Otherwise, just let it ride on the affined RQ and the
175 * post-schedule router will push the preempted task away
176 */
177 return task_cpu(p);
178 }
179 #endif /* CONFIG_SMP */
180
181 /*
182 * Preempt the current task with a newly woken task if needed:
183 */
184 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
185 {
186 if (p->prio < rq->curr->prio)
187 resched_task(rq->curr);
188 }
189
190 static struct task_struct *pick_next_task_rt(struct rq *rq)
191 {
192 struct rt_prio_array *array = &rq->rt.active;
193 struct task_struct *next;
194 struct list_head *queue;
195 int idx;
196
197 idx = sched_find_first_bit(array->bitmap);
198 if (idx >= MAX_RT_PRIO)
199 return NULL;
200
201 queue = array->queue + idx;
202 next = list_entry(queue->next, struct task_struct, run_list);
203
204 next->se.exec_start = rq->clock;
205
206 return next;
207 }
208
209 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
210 {
211 update_curr_rt(rq);
212 p->se.exec_start = 0;
213 }
214
215 #ifdef CONFIG_SMP
216 /* Only try algorithms three times */
217 #define RT_MAX_TRIES 3
218
219 static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
220 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
221
222 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
223 {
224 if (!task_running(rq, p) &&
225 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
226 (p->nr_cpus_allowed > 1))
227 return 1;
228 return 0;
229 }
230
231 /* Return the second highest RT task, NULL otherwise */
232 static struct task_struct *pick_next_highest_task_rt(struct rq *rq,
233 int cpu)
234 {
235 struct rt_prio_array *array = &rq->rt.active;
236 struct task_struct *next;
237 struct list_head *queue;
238 int idx;
239
240 assert_spin_locked(&rq->lock);
241
242 if (likely(rq->rt.rt_nr_running < 2))
243 return NULL;
244
245 idx = sched_find_first_bit(array->bitmap);
246 if (unlikely(idx >= MAX_RT_PRIO)) {
247 WARN_ON(1); /* rt_nr_running is bad */
248 return NULL;
249 }
250
251 queue = array->queue + idx;
252 BUG_ON(list_empty(queue));
253
254 next = list_entry(queue->next, struct task_struct, run_list);
255 if (unlikely(pick_rt_task(rq, next, cpu)))
256 goto out;
257
258 if (queue->next->next != queue) {
259 /* same prio task */
260 next = list_entry(queue->next->next, struct task_struct, run_list);
261 if (pick_rt_task(rq, next, cpu))
262 goto out;
263 }
264
265 retry:
266 /* slower, but more flexible */
267 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
268 if (unlikely(idx >= MAX_RT_PRIO))
269 return NULL;
270
271 queue = array->queue + idx;
272 BUG_ON(list_empty(queue));
273
274 list_for_each_entry(next, queue, run_list) {
275 if (pick_rt_task(rq, next, cpu))
276 goto out;
277 }
278
279 goto retry;
280
281 out:
282 return next;
283 }
284
285 static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
286 static DEFINE_PER_CPU(cpumask_t, valid_cpu_mask);
287
288 static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask)
289 {
290 int cpu;
291 cpumask_t *valid_mask = &__get_cpu_var(valid_cpu_mask);
292 int lowest_prio = -1;
293 int ret = 0;
294
295 cpus_clear(*lowest_mask);
296 cpus_and(*valid_mask, cpu_online_map, task->cpus_allowed);
297
298 /*
299 * Scan each rq for the lowest prio.
300 */
301 for_each_cpu_mask(cpu, *valid_mask) {
302 struct rq *rq = cpu_rq(cpu);
303
304 /* We look for lowest RT prio or non-rt CPU */
305 if (rq->rt.highest_prio >= MAX_RT_PRIO) {
306 if (ret)
307 cpus_clear(*lowest_mask);
308 cpu_set(rq->cpu, *lowest_mask);
309 return 1;
310 }
311
312 /* no locking for now */
313 if ((rq->rt.highest_prio > task->prio)
314 && (rq->rt.highest_prio >= lowest_prio)) {
315 if (rq->rt.highest_prio > lowest_prio) {
316 /* new low - clear old data */
317 lowest_prio = rq->rt.highest_prio;
318 cpus_clear(*lowest_mask);
319 }
320 cpu_set(rq->cpu, *lowest_mask);
321 ret = 1;
322 }
323 }
324
325 return ret;
326 }
327
328 static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
329 {
330 int first;
331
332 /* "this_cpu" is cheaper to preempt than a remote processor */
333 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
334 return this_cpu;
335
336 first = first_cpu(*mask);
337 if (first != NR_CPUS)
338 return first;
339
340 return -1;
341 }
342
343 static int find_lowest_rq(struct task_struct *task)
344 {
345 struct sched_domain *sd;
346 cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
347 int this_cpu = smp_processor_id();
348 int cpu = task_cpu(task);
349
350 if (!find_lowest_cpus(task, lowest_mask))
351 return -1;
352
353 /*
354 * At this point we have built a mask of cpus representing the
355 * lowest priority tasks in the system. Now we want to elect
356 * the best one based on our affinity and topology.
357 *
358 * We prioritize the last cpu that the task executed on since
359 * it is most likely cache-hot in that location.
360 */
361 if (cpu_isset(cpu, *lowest_mask))
362 return cpu;
363
364 /*
365 * Otherwise, we consult the sched_domains span maps to figure
366 * out which cpu is logically closest to our hot cache data.
367 */
368 if (this_cpu == cpu)
369 this_cpu = -1; /* Skip this_cpu opt if the same */
370
371 for_each_domain(cpu, sd) {
372 if (sd->flags & SD_WAKE_AFFINE) {
373 cpumask_t domain_mask;
374 int best_cpu;
375
376 cpus_and(domain_mask, sd->span, *lowest_mask);
377
378 best_cpu = pick_optimal_cpu(this_cpu,
379 &domain_mask);
380 if (best_cpu != -1)
381 return best_cpu;
382 }
383 }
384
385 /*
386 * And finally, if there were no matches within the domains
387 * just give the caller *something* to work with from the compatible
388 * locations.
389 */
390 return pick_optimal_cpu(this_cpu, lowest_mask);
391 }
392
393 /* Will lock the rq it finds */
394 static struct rq *find_lock_lowest_rq(struct task_struct *task,
395 struct rq *rq)
396 {
397 struct rq *lowest_rq = NULL;
398 int cpu;
399 int tries;
400
401 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
402 cpu = find_lowest_rq(task);
403
404 if ((cpu == -1) || (cpu == rq->cpu))
405 break;
406
407 lowest_rq = cpu_rq(cpu);
408
409 /* if the prio of this runqueue changed, try again */
410 if (double_lock_balance(rq, lowest_rq)) {
411 /*
412 * We had to unlock the run queue. In
413 * the mean time, task could have
414 * migrated already or had its affinity changed.
415 * Also make sure that it wasn't scheduled on its rq.
416 */
417 if (unlikely(task_rq(task) != rq ||
418 !cpu_isset(lowest_rq->cpu, task->cpus_allowed) ||
419 task_running(rq, task) ||
420 !task->se.on_rq)) {
421 spin_unlock(&lowest_rq->lock);
422 lowest_rq = NULL;
423 break;
424 }
425 }
426
427 /* If this rq is still suitable use it. */
428 if (lowest_rq->rt.highest_prio > task->prio)
429 break;
430
431 /* try again */
432 spin_unlock(&lowest_rq->lock);
433 lowest_rq = NULL;
434 }
435
436 return lowest_rq;
437 }
438
439 /*
440 * If the current CPU has more than one RT task, see if the non
441 * running task can migrate over to a CPU that is running a task
442 * of lesser priority.
443 */
444 static int push_rt_task(struct rq *rq)
445 {
446 struct task_struct *next_task;
447 struct rq *lowest_rq;
448 int ret = 0;
449 int paranoid = RT_MAX_TRIES;
450
451 assert_spin_locked(&rq->lock);
452
453 if (!rq->rt.overloaded)
454 return 0;
455
456 next_task = pick_next_highest_task_rt(rq, -1);
457 if (!next_task)
458 return 0;
459
460 retry:
461 if (unlikely(next_task == rq->curr)) {
462 WARN_ON(1);
463 return 0;
464 }
465
466 /*
467 * It's possible that the next_task slipped in of
468 * higher priority than current. If that's the case
469 * just reschedule current.
470 */
471 if (unlikely(next_task->prio < rq->curr->prio)) {
472 resched_task(rq->curr);
473 return 0;
474 }
475
476 /* We might release rq lock */
477 get_task_struct(next_task);
478
479 /* find_lock_lowest_rq locks the rq if found */
480 lowest_rq = find_lock_lowest_rq(next_task, rq);
481 if (!lowest_rq) {
482 struct task_struct *task;
483 /*
484 * find lock_lowest_rq releases rq->lock
485 * so it is possible that next_task has changed.
486 * If it has, then try again.
487 */
488 task = pick_next_highest_task_rt(rq, -1);
489 if (unlikely(task != next_task) && task && paranoid--) {
490 put_task_struct(next_task);
491 next_task = task;
492 goto retry;
493 }
494 goto out;
495 }
496
497 assert_spin_locked(&lowest_rq->lock);
498
499 deactivate_task(rq, next_task, 0);
500 set_task_cpu(next_task, lowest_rq->cpu);
501 activate_task(lowest_rq, next_task, 0);
502
503 resched_task(lowest_rq->curr);
504
505 spin_unlock(&lowest_rq->lock);
506
507 ret = 1;
508 out:
509 put_task_struct(next_task);
510
511 return ret;
512 }
513
514 /*
515 * TODO: Currently we just use the second highest prio task on
516 * the queue, and stop when it can't migrate (or there's
517 * no more RT tasks). There may be a case where a lower
518 * priority RT task has a different affinity than the
519 * higher RT task. In this case the lower RT task could
520 * possibly be able to migrate where as the higher priority
521 * RT task could not. We currently ignore this issue.
522 * Enhancements are welcome!
523 */
524 static void push_rt_tasks(struct rq *rq)
525 {
526 /* push_rt_task will return true if it moved an RT */
527 while (push_rt_task(rq))
528 ;
529 }
530
531 static int pull_rt_task(struct rq *this_rq)
532 {
533 struct task_struct *next;
534 struct task_struct *p;
535 struct rq *src_rq;
536 cpumask_t *rto_cpumask;
537 int this_cpu = this_rq->cpu;
538 int cpu;
539 int ret = 0;
540
541 assert_spin_locked(&this_rq->lock);
542
543 /*
544 * If cpusets are used, and we have overlapping
545 * run queue cpusets, then this algorithm may not catch all.
546 * This is just the price you pay on trying to keep
547 * dirtying caches down on large SMP machines.
548 */
549 if (likely(!rt_overloaded()))
550 return 0;
551
552 next = pick_next_task_rt(this_rq);
553
554 rto_cpumask = rt_overload();
555
556 for_each_cpu_mask(cpu, *rto_cpumask) {
557 if (this_cpu == cpu)
558 continue;
559
560 src_rq = cpu_rq(cpu);
561 if (unlikely(src_rq->rt.rt_nr_running <= 1)) {
562 /*
563 * It is possible that overlapping cpusets
564 * will miss clearing a non overloaded runqueue.
565 * Clear it now.
566 */
567 if (double_lock_balance(this_rq, src_rq)) {
568 /* unlocked our runqueue lock */
569 struct task_struct *old_next = next;
570 next = pick_next_task_rt(this_rq);
571 if (next != old_next)
572 ret = 1;
573 }
574 if (likely(src_rq->rt.rt_nr_running <= 1))
575 /*
576 * Small chance that this_rq->curr changed
577 * but it's really harmless here.
578 */
579 rt_clear_overload(this_rq);
580 else
581 /*
582 * Heh, the src_rq is now overloaded, since
583 * we already have the src_rq lock, go straight
584 * to pulling tasks from it.
585 */
586 goto try_pulling;
587 spin_unlock(&src_rq->lock);
588 continue;
589 }
590
591 /*
592 * We can potentially drop this_rq's lock in
593 * double_lock_balance, and another CPU could
594 * steal our next task - hence we must cause
595 * the caller to recalculate the next task
596 * in that case:
597 */
598 if (double_lock_balance(this_rq, src_rq)) {
599 struct task_struct *old_next = next;
600 next = pick_next_task_rt(this_rq);
601 if (next != old_next)
602 ret = 1;
603 }
604
605 /*
606 * Are there still pullable RT tasks?
607 */
608 if (src_rq->rt.rt_nr_running <= 1) {
609 spin_unlock(&src_rq->lock);
610 continue;
611 }
612
613 try_pulling:
614 p = pick_next_highest_task_rt(src_rq, this_cpu);
615
616 /*
617 * Do we have an RT task that preempts
618 * the to-be-scheduled task?
619 */
620 if (p && (!next || (p->prio < next->prio))) {
621 WARN_ON(p == src_rq->curr);
622 WARN_ON(!p->se.on_rq);
623
624 /*
625 * There's a chance that p is higher in priority
626 * than what's currently running on its cpu.
627 * This is just that p is wakeing up and hasn't
628 * had a chance to schedule. We only pull
629 * p if it is lower in priority than the
630 * current task on the run queue or
631 * this_rq next task is lower in prio than
632 * the current task on that rq.
633 */
634 if (p->prio < src_rq->curr->prio ||
635 (next && next->prio < src_rq->curr->prio))
636 goto bail;
637
638 ret = 1;
639
640 deactivate_task(src_rq, p, 0);
641 set_task_cpu(p, this_cpu);
642 activate_task(this_rq, p, 0);
643 /*
644 * We continue with the search, just in
645 * case there's an even higher prio task
646 * in another runqueue. (low likelyhood
647 * but possible)
648 */
649
650 /*
651 * Update next so that we won't pick a task
652 * on another cpu with a priority lower (or equal)
653 * than the one we just picked.
654 */
655 next = p;
656
657 }
658 bail:
659 spin_unlock(&src_rq->lock);
660 }
661
662 return ret;
663 }
664
665 static void schedule_balance_rt(struct rq *rq,
666 struct task_struct *prev)
667 {
668 /* Try to pull RT tasks here if we lower this rq's prio */
669 if (unlikely(rt_task(prev)) &&
670 rq->rt.highest_prio > prev->prio)
671 pull_rt_task(rq);
672 }
673
674 static void schedule_tail_balance_rt(struct rq *rq)
675 {
676 /*
677 * If we have more than one rt_task queued, then
678 * see if we can push the other rt_tasks off to other CPUS.
679 * Note we may release the rq lock, and since
680 * the lock was owned by prev, we need to release it
681 * first via finish_lock_switch and then reaquire it here.
682 */
683 if (unlikely(rq->rt.overloaded)) {
684 spin_lock_irq(&rq->lock);
685 push_rt_tasks(rq);
686 spin_unlock_irq(&rq->lock);
687 }
688 }
689
690
691 static void wakeup_balance_rt(struct rq *rq, struct task_struct *p)
692 {
693 if (unlikely(rt_task(p)) &&
694 !task_running(rq, p) &&
695 (p->prio >= rq->rt.highest_prio) &&
696 rq->rt.overloaded)
697 push_rt_tasks(rq);
698 }
699
700 static unsigned long
701 load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
702 unsigned long max_load_move,
703 struct sched_domain *sd, enum cpu_idle_type idle,
704 int *all_pinned, int *this_best_prio)
705 {
706 /* don't touch RT tasks */
707 return 0;
708 }
709
710 static int
711 move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
712 struct sched_domain *sd, enum cpu_idle_type idle)
713 {
714 /* don't touch RT tasks */
715 return 0;
716 }
717 static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask)
718 {
719 int weight = cpus_weight(*new_mask);
720
721 BUG_ON(!rt_task(p));
722
723 /*
724 * Update the migration status of the RQ if we have an RT task
725 * which is running AND changing its weight value.
726 */
727 if (p->se.on_rq && (weight != p->nr_cpus_allowed)) {
728 struct rq *rq = task_rq(p);
729
730 if ((p->nr_cpus_allowed <= 1) && (weight > 1))
731 rq->rt.rt_nr_migratory++;
732 else if((p->nr_cpus_allowed > 1) && (weight <= 1)) {
733 BUG_ON(!rq->rt.rt_nr_migratory);
734 rq->rt.rt_nr_migratory--;
735 }
736
737 update_rt_migration(rq);
738 }
739
740 p->cpus_allowed = *new_mask;
741 p->nr_cpus_allowed = weight;
742 }
743 #else /* CONFIG_SMP */
744 # define schedule_tail_balance_rt(rq) do { } while (0)
745 # define schedule_balance_rt(rq, prev) do { } while (0)
746 # define wakeup_balance_rt(rq, p) do { } while (0)
747 #endif /* CONFIG_SMP */
748
749 static void task_tick_rt(struct rq *rq, struct task_struct *p)
750 {
751 update_curr_rt(rq);
752
753 /*
754 * RR tasks need a special form of timeslice management.
755 * FIFO tasks have no timeslices.
756 */
757 if (p->policy != SCHED_RR)
758 return;
759
760 if (--p->time_slice)
761 return;
762
763 p->time_slice = DEF_TIMESLICE;
764
765 /*
766 * Requeue to the end of queue if we are not the only element
767 * on the queue:
768 */
769 if (p->run_list.prev != p->run_list.next) {
770 requeue_task_rt(rq, p);
771 set_tsk_need_resched(p);
772 }
773 }
774
775 static void set_curr_task_rt(struct rq *rq)
776 {
777 struct task_struct *p = rq->curr;
778
779 p->se.exec_start = rq->clock;
780 }
781
782 const struct sched_class rt_sched_class = {
783 .next = &fair_sched_class,
784 .enqueue_task = enqueue_task_rt,
785 .dequeue_task = dequeue_task_rt,
786 .yield_task = yield_task_rt,
787 #ifdef CONFIG_SMP
788 .select_task_rq = select_task_rq_rt,
789 #endif /* CONFIG_SMP */
790
791 .check_preempt_curr = check_preempt_curr_rt,
792
793 .pick_next_task = pick_next_task_rt,
794 .put_prev_task = put_prev_task_rt,
795
796 #ifdef CONFIG_SMP
797 .load_balance = load_balance_rt,
798 .move_one_task = move_one_task_rt,
799 .set_cpus_allowed = set_cpus_allowed_rt,
800 #endif
801
802 .set_curr_task = set_curr_task_rt,
803 .task_tick = task_tick_rt,
804 };