]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/sched_rt.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux...
[mirror_ubuntu-artful-kernel.git] / kernel / sched_rt.c
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
6 #ifdef CONFIG_SMP
7
8 static inline int rt_overloaded(struct rq *rq)
9 {
10 return atomic_read(&rq->rd->rto_count);
11 }
12
13 static inline void rt_set_overload(struct rq *rq)
14 {
15 if (!rq->online)
16 return;
17
18 cpu_set(rq->cpu, rq->rd->rto_mask);
19 /*
20 * Make sure the mask is visible before we set
21 * the overload count. That is checked to determine
22 * if we should look at the mask. It would be a shame
23 * if we looked at the mask, but the mask was not
24 * updated yet.
25 */
26 wmb();
27 atomic_inc(&rq->rd->rto_count);
28 }
29
30 static inline void rt_clear_overload(struct rq *rq)
31 {
32 if (!rq->online)
33 return;
34
35 /* the order here really doesn't matter */
36 atomic_dec(&rq->rd->rto_count);
37 cpu_clear(rq->cpu, rq->rd->rto_mask);
38 }
39
40 static void update_rt_migration(struct rq *rq)
41 {
42 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
43 if (!rq->rt.overloaded) {
44 rt_set_overload(rq);
45 rq->rt.overloaded = 1;
46 }
47 } else if (rq->rt.overloaded) {
48 rt_clear_overload(rq);
49 rq->rt.overloaded = 0;
50 }
51 }
52 #endif /* CONFIG_SMP */
53
54 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
55 {
56 return container_of(rt_se, struct task_struct, rt);
57 }
58
59 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
60 {
61 return !list_empty(&rt_se->run_list);
62 }
63
64 #ifdef CONFIG_RT_GROUP_SCHED
65
66 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
67 {
68 if (!rt_rq->tg)
69 return RUNTIME_INF;
70
71 return rt_rq->rt_runtime;
72 }
73
74 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
75 {
76 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
77 }
78
79 #define for_each_leaf_rt_rq(rt_rq, rq) \
80 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
81
82 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
83 {
84 return rt_rq->rq;
85 }
86
87 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
88 {
89 return rt_se->rt_rq;
90 }
91
92 #define for_each_sched_rt_entity(rt_se) \
93 for (; rt_se; rt_se = rt_se->parent)
94
95 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
96 {
97 return rt_se->my_q;
98 }
99
100 static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
101 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
102
103 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
104 {
105 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
106 struct sched_rt_entity *rt_se = rt_rq->rt_se;
107
108 if (rt_rq->rt_nr_running) {
109 if (rt_se && !on_rt_rq(rt_se))
110 enqueue_rt_entity(rt_se);
111 if (rt_rq->highest_prio < curr->prio)
112 resched_task(curr);
113 }
114 }
115
116 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
117 {
118 struct sched_rt_entity *rt_se = rt_rq->rt_se;
119
120 if (rt_se && on_rt_rq(rt_se))
121 dequeue_rt_entity(rt_se);
122 }
123
124 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
125 {
126 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
127 }
128
129 static int rt_se_boosted(struct sched_rt_entity *rt_se)
130 {
131 struct rt_rq *rt_rq = group_rt_rq(rt_se);
132 struct task_struct *p;
133
134 if (rt_rq)
135 return !!rt_rq->rt_nr_boosted;
136
137 p = rt_task_of(rt_se);
138 return p->prio != p->normal_prio;
139 }
140
141 #ifdef CONFIG_SMP
142 static inline cpumask_t sched_rt_period_mask(void)
143 {
144 return cpu_rq(smp_processor_id())->rd->span;
145 }
146 #else
147 static inline cpumask_t sched_rt_period_mask(void)
148 {
149 return cpu_online_map;
150 }
151 #endif
152
153 static inline
154 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
155 {
156 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
157 }
158
159 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
160 {
161 return &rt_rq->tg->rt_bandwidth;
162 }
163
164 #else /* !CONFIG_RT_GROUP_SCHED */
165
166 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
167 {
168 return rt_rq->rt_runtime;
169 }
170
171 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
172 {
173 return ktime_to_ns(def_rt_bandwidth.rt_period);
174 }
175
176 #define for_each_leaf_rt_rq(rt_rq, rq) \
177 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
178
179 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
180 {
181 return container_of(rt_rq, struct rq, rt);
182 }
183
184 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
185 {
186 struct task_struct *p = rt_task_of(rt_se);
187 struct rq *rq = task_rq(p);
188
189 return &rq->rt;
190 }
191
192 #define for_each_sched_rt_entity(rt_se) \
193 for (; rt_se; rt_se = NULL)
194
195 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
196 {
197 return NULL;
198 }
199
200 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
201 {
202 if (rt_rq->rt_nr_running)
203 resched_task(rq_of_rt_rq(rt_rq)->curr);
204 }
205
206 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
207 {
208 }
209
210 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
211 {
212 return rt_rq->rt_throttled;
213 }
214
215 static inline cpumask_t sched_rt_period_mask(void)
216 {
217 return cpu_online_map;
218 }
219
220 static inline
221 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
222 {
223 return &cpu_rq(cpu)->rt;
224 }
225
226 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
227 {
228 return &def_rt_bandwidth;
229 }
230
231 #endif /* CONFIG_RT_GROUP_SCHED */
232
233 #ifdef CONFIG_SMP
234 /*
235 * We ran out of runtime, see if we can borrow some from our neighbours.
236 */
237 static int do_balance_runtime(struct rt_rq *rt_rq)
238 {
239 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
240 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
241 int i, weight, more = 0;
242 u64 rt_period;
243
244 weight = cpus_weight(rd->span);
245
246 spin_lock(&rt_b->rt_runtime_lock);
247 rt_period = ktime_to_ns(rt_b->rt_period);
248 for_each_cpu_mask_nr(i, rd->span) {
249 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
250 s64 diff;
251
252 if (iter == rt_rq)
253 continue;
254
255 spin_lock(&iter->rt_runtime_lock);
256 /*
257 * Either all rqs have inf runtime and there's nothing to steal
258 * or __disable_runtime() below sets a specific rq to inf to
259 * indicate its been disabled and disalow stealing.
260 */
261 if (iter->rt_runtime == RUNTIME_INF)
262 goto next;
263
264 /*
265 * From runqueues with spare time, take 1/n part of their
266 * spare time, but no more than our period.
267 */
268 diff = iter->rt_runtime - iter->rt_time;
269 if (diff > 0) {
270 diff = div_u64((u64)diff, weight);
271 if (rt_rq->rt_runtime + diff > rt_period)
272 diff = rt_period - rt_rq->rt_runtime;
273 iter->rt_runtime -= diff;
274 rt_rq->rt_runtime += diff;
275 more = 1;
276 if (rt_rq->rt_runtime == rt_period) {
277 spin_unlock(&iter->rt_runtime_lock);
278 break;
279 }
280 }
281 next:
282 spin_unlock(&iter->rt_runtime_lock);
283 }
284 spin_unlock(&rt_b->rt_runtime_lock);
285
286 return more;
287 }
288
289 /*
290 * Ensure this RQ takes back all the runtime it lend to its neighbours.
291 */
292 static void __disable_runtime(struct rq *rq)
293 {
294 struct root_domain *rd = rq->rd;
295 struct rt_rq *rt_rq;
296
297 if (unlikely(!scheduler_running))
298 return;
299
300 for_each_leaf_rt_rq(rt_rq, rq) {
301 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
302 s64 want;
303 int i;
304
305 spin_lock(&rt_b->rt_runtime_lock);
306 spin_lock(&rt_rq->rt_runtime_lock);
307 /*
308 * Either we're all inf and nobody needs to borrow, or we're
309 * already disabled and thus have nothing to do, or we have
310 * exactly the right amount of runtime to take out.
311 */
312 if (rt_rq->rt_runtime == RUNTIME_INF ||
313 rt_rq->rt_runtime == rt_b->rt_runtime)
314 goto balanced;
315 spin_unlock(&rt_rq->rt_runtime_lock);
316
317 /*
318 * Calculate the difference between what we started out with
319 * and what we current have, that's the amount of runtime
320 * we lend and now have to reclaim.
321 */
322 want = rt_b->rt_runtime - rt_rq->rt_runtime;
323
324 /*
325 * Greedy reclaim, take back as much as we can.
326 */
327 for_each_cpu_mask(i, rd->span) {
328 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
329 s64 diff;
330
331 /*
332 * Can't reclaim from ourselves or disabled runqueues.
333 */
334 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
335 continue;
336
337 spin_lock(&iter->rt_runtime_lock);
338 if (want > 0) {
339 diff = min_t(s64, iter->rt_runtime, want);
340 iter->rt_runtime -= diff;
341 want -= diff;
342 } else {
343 iter->rt_runtime -= want;
344 want -= want;
345 }
346 spin_unlock(&iter->rt_runtime_lock);
347
348 if (!want)
349 break;
350 }
351
352 spin_lock(&rt_rq->rt_runtime_lock);
353 /*
354 * We cannot be left wanting - that would mean some runtime
355 * leaked out of the system.
356 */
357 BUG_ON(want);
358 balanced:
359 /*
360 * Disable all the borrow logic by pretending we have inf
361 * runtime - in which case borrowing doesn't make sense.
362 */
363 rt_rq->rt_runtime = RUNTIME_INF;
364 spin_unlock(&rt_rq->rt_runtime_lock);
365 spin_unlock(&rt_b->rt_runtime_lock);
366 }
367 }
368
369 static void disable_runtime(struct rq *rq)
370 {
371 unsigned long flags;
372
373 spin_lock_irqsave(&rq->lock, flags);
374 __disable_runtime(rq);
375 spin_unlock_irqrestore(&rq->lock, flags);
376 }
377
378 static void __enable_runtime(struct rq *rq)
379 {
380 struct rt_rq *rt_rq;
381
382 if (unlikely(!scheduler_running))
383 return;
384
385 /*
386 * Reset each runqueue's bandwidth settings
387 */
388 for_each_leaf_rt_rq(rt_rq, rq) {
389 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
390
391 spin_lock(&rt_b->rt_runtime_lock);
392 spin_lock(&rt_rq->rt_runtime_lock);
393 rt_rq->rt_runtime = rt_b->rt_runtime;
394 rt_rq->rt_time = 0;
395 rt_rq->rt_throttled = 0;
396 spin_unlock(&rt_rq->rt_runtime_lock);
397 spin_unlock(&rt_b->rt_runtime_lock);
398 }
399 }
400
401 static void enable_runtime(struct rq *rq)
402 {
403 unsigned long flags;
404
405 spin_lock_irqsave(&rq->lock, flags);
406 __enable_runtime(rq);
407 spin_unlock_irqrestore(&rq->lock, flags);
408 }
409
410 static int balance_runtime(struct rt_rq *rt_rq)
411 {
412 int more = 0;
413
414 if (rt_rq->rt_time > rt_rq->rt_runtime) {
415 spin_unlock(&rt_rq->rt_runtime_lock);
416 more = do_balance_runtime(rt_rq);
417 spin_lock(&rt_rq->rt_runtime_lock);
418 }
419
420 return more;
421 }
422 #else /* !CONFIG_SMP */
423 static inline int balance_runtime(struct rt_rq *rt_rq)
424 {
425 return 0;
426 }
427 #endif /* CONFIG_SMP */
428
429 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
430 {
431 int i, idle = 1;
432 cpumask_t span;
433
434 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
435 return 1;
436
437 span = sched_rt_period_mask();
438 for_each_cpu_mask(i, span) {
439 int enqueue = 0;
440 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
441 struct rq *rq = rq_of_rt_rq(rt_rq);
442
443 spin_lock(&rq->lock);
444 if (rt_rq->rt_time) {
445 u64 runtime;
446
447 spin_lock(&rt_rq->rt_runtime_lock);
448 if (rt_rq->rt_throttled)
449 balance_runtime(rt_rq);
450 runtime = rt_rq->rt_runtime;
451 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
452 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
453 rt_rq->rt_throttled = 0;
454 enqueue = 1;
455 }
456 if (rt_rq->rt_time || rt_rq->rt_nr_running)
457 idle = 0;
458 spin_unlock(&rt_rq->rt_runtime_lock);
459 } else if (rt_rq->rt_nr_running)
460 idle = 0;
461
462 if (enqueue)
463 sched_rt_rq_enqueue(rt_rq);
464 spin_unlock(&rq->lock);
465 }
466
467 return idle;
468 }
469
470 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
471 {
472 #ifdef CONFIG_RT_GROUP_SCHED
473 struct rt_rq *rt_rq = group_rt_rq(rt_se);
474
475 if (rt_rq)
476 return rt_rq->highest_prio;
477 #endif
478
479 return rt_task_of(rt_se)->prio;
480 }
481
482 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
483 {
484 u64 runtime = sched_rt_runtime(rt_rq);
485
486 if (rt_rq->rt_throttled)
487 return rt_rq_throttled(rt_rq);
488
489 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
490 return 0;
491
492 balance_runtime(rt_rq);
493 runtime = sched_rt_runtime(rt_rq);
494 if (runtime == RUNTIME_INF)
495 return 0;
496
497 if (rt_rq->rt_time > runtime) {
498 rt_rq->rt_throttled = 1;
499 if (rt_rq_throttled(rt_rq)) {
500 sched_rt_rq_dequeue(rt_rq);
501 return 1;
502 }
503 }
504
505 return 0;
506 }
507
508 /*
509 * Update the current task's runtime statistics. Skip current tasks that
510 * are not in our scheduling class.
511 */
512 static void update_curr_rt(struct rq *rq)
513 {
514 struct task_struct *curr = rq->curr;
515 struct sched_rt_entity *rt_se = &curr->rt;
516 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
517 u64 delta_exec;
518
519 if (!task_has_rt_policy(curr))
520 return;
521
522 delta_exec = rq->clock - curr->se.exec_start;
523 if (unlikely((s64)delta_exec < 0))
524 delta_exec = 0;
525
526 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
527
528 curr->se.sum_exec_runtime += delta_exec;
529 account_group_exec_runtime(curr, delta_exec);
530
531 curr->se.exec_start = rq->clock;
532 cpuacct_charge(curr, delta_exec);
533
534 if (!rt_bandwidth_enabled())
535 return;
536
537 for_each_sched_rt_entity(rt_se) {
538 rt_rq = rt_rq_of_se(rt_se);
539
540 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
541 spin_lock(&rt_rq->rt_runtime_lock);
542 rt_rq->rt_time += delta_exec;
543 if (sched_rt_runtime_exceeded(rt_rq))
544 resched_task(curr);
545 spin_unlock(&rt_rq->rt_runtime_lock);
546 }
547 }
548 }
549
550 static inline
551 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
552 {
553 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
554 rt_rq->rt_nr_running++;
555 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
556 if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
557 #ifdef CONFIG_SMP
558 struct rq *rq = rq_of_rt_rq(rt_rq);
559 #endif
560
561 rt_rq->highest_prio = rt_se_prio(rt_se);
562 #ifdef CONFIG_SMP
563 if (rq->online)
564 cpupri_set(&rq->rd->cpupri, rq->cpu,
565 rt_se_prio(rt_se));
566 #endif
567 }
568 #endif
569 #ifdef CONFIG_SMP
570 if (rt_se->nr_cpus_allowed > 1) {
571 struct rq *rq = rq_of_rt_rq(rt_rq);
572
573 rq->rt.rt_nr_migratory++;
574 }
575
576 update_rt_migration(rq_of_rt_rq(rt_rq));
577 #endif
578 #ifdef CONFIG_RT_GROUP_SCHED
579 if (rt_se_boosted(rt_se))
580 rt_rq->rt_nr_boosted++;
581
582 if (rt_rq->tg)
583 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
584 #else
585 start_rt_bandwidth(&def_rt_bandwidth);
586 #endif
587 }
588
589 static inline
590 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
591 {
592 #ifdef CONFIG_SMP
593 int highest_prio = rt_rq->highest_prio;
594 #endif
595
596 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
597 WARN_ON(!rt_rq->rt_nr_running);
598 rt_rq->rt_nr_running--;
599 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
600 if (rt_rq->rt_nr_running) {
601 struct rt_prio_array *array;
602
603 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
604 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
605 /* recalculate */
606 array = &rt_rq->active;
607 rt_rq->highest_prio =
608 sched_find_first_bit(array->bitmap);
609 } /* otherwise leave rq->highest prio alone */
610 } else
611 rt_rq->highest_prio = MAX_RT_PRIO;
612 #endif
613 #ifdef CONFIG_SMP
614 if (rt_se->nr_cpus_allowed > 1) {
615 struct rq *rq = rq_of_rt_rq(rt_rq);
616 rq->rt.rt_nr_migratory--;
617 }
618
619 if (rt_rq->highest_prio != highest_prio) {
620 struct rq *rq = rq_of_rt_rq(rt_rq);
621
622 if (rq->online)
623 cpupri_set(&rq->rd->cpupri, rq->cpu,
624 rt_rq->highest_prio);
625 }
626
627 update_rt_migration(rq_of_rt_rq(rt_rq));
628 #endif /* CONFIG_SMP */
629 #ifdef CONFIG_RT_GROUP_SCHED
630 if (rt_se_boosted(rt_se))
631 rt_rq->rt_nr_boosted--;
632
633 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
634 #endif
635 }
636
637 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
638 {
639 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
640 struct rt_prio_array *array = &rt_rq->active;
641 struct rt_rq *group_rq = group_rt_rq(rt_se);
642 struct list_head *queue = array->queue + rt_se_prio(rt_se);
643
644 /*
645 * Don't enqueue the group if its throttled, or when empty.
646 * The latter is a consequence of the former when a child group
647 * get throttled and the current group doesn't have any other
648 * active members.
649 */
650 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
651 return;
652
653 list_add_tail(&rt_se->run_list, queue);
654 __set_bit(rt_se_prio(rt_se), array->bitmap);
655
656 inc_rt_tasks(rt_se, rt_rq);
657 }
658
659 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
660 {
661 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
662 struct rt_prio_array *array = &rt_rq->active;
663
664 list_del_init(&rt_se->run_list);
665 if (list_empty(array->queue + rt_se_prio(rt_se)))
666 __clear_bit(rt_se_prio(rt_se), array->bitmap);
667
668 dec_rt_tasks(rt_se, rt_rq);
669 }
670
671 /*
672 * Because the prio of an upper entry depends on the lower
673 * entries, we must remove entries top - down.
674 */
675 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
676 {
677 struct sched_rt_entity *back = NULL;
678
679 for_each_sched_rt_entity(rt_se) {
680 rt_se->back = back;
681 back = rt_se;
682 }
683
684 for (rt_se = back; rt_se; rt_se = rt_se->back) {
685 if (on_rt_rq(rt_se))
686 __dequeue_rt_entity(rt_se);
687 }
688 }
689
690 static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
691 {
692 dequeue_rt_stack(rt_se);
693 for_each_sched_rt_entity(rt_se)
694 __enqueue_rt_entity(rt_se);
695 }
696
697 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
698 {
699 dequeue_rt_stack(rt_se);
700
701 for_each_sched_rt_entity(rt_se) {
702 struct rt_rq *rt_rq = group_rt_rq(rt_se);
703
704 if (rt_rq && rt_rq->rt_nr_running)
705 __enqueue_rt_entity(rt_se);
706 }
707 }
708
709 /*
710 * Adding/removing a task to/from a priority array:
711 */
712 static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
713 {
714 struct sched_rt_entity *rt_se = &p->rt;
715
716 if (wakeup)
717 rt_se->timeout = 0;
718
719 enqueue_rt_entity(rt_se);
720
721 inc_cpu_load(rq, p->se.load.weight);
722 }
723
724 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
725 {
726 struct sched_rt_entity *rt_se = &p->rt;
727
728 update_curr_rt(rq);
729 dequeue_rt_entity(rt_se);
730
731 dec_cpu_load(rq, p->se.load.weight);
732 }
733
734 /*
735 * Put task to the end of the run list without the overhead of dequeue
736 * followed by enqueue.
737 */
738 static void
739 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
740 {
741 if (on_rt_rq(rt_se)) {
742 struct rt_prio_array *array = &rt_rq->active;
743 struct list_head *queue = array->queue + rt_se_prio(rt_se);
744
745 if (head)
746 list_move(&rt_se->run_list, queue);
747 else
748 list_move_tail(&rt_se->run_list, queue);
749 }
750 }
751
752 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
753 {
754 struct sched_rt_entity *rt_se = &p->rt;
755 struct rt_rq *rt_rq;
756
757 for_each_sched_rt_entity(rt_se) {
758 rt_rq = rt_rq_of_se(rt_se);
759 requeue_rt_entity(rt_rq, rt_se, head);
760 }
761 }
762
763 static void yield_task_rt(struct rq *rq)
764 {
765 requeue_task_rt(rq, rq->curr, 0);
766 }
767
768 #ifdef CONFIG_SMP
769 static int find_lowest_rq(struct task_struct *task);
770
771 static int select_task_rq_rt(struct task_struct *p, int sync)
772 {
773 struct rq *rq = task_rq(p);
774
775 /*
776 * If the current task is an RT task, then
777 * try to see if we can wake this RT task up on another
778 * runqueue. Otherwise simply start this RT task
779 * on its current runqueue.
780 *
781 * We want to avoid overloading runqueues. Even if
782 * the RT task is of higher priority than the current RT task.
783 * RT tasks behave differently than other tasks. If
784 * one gets preempted, we try to push it off to another queue.
785 * So trying to keep a preempting RT task on the same
786 * cache hot CPU will force the running RT task to
787 * a cold CPU. So we waste all the cache for the lower
788 * RT task in hopes of saving some of a RT task
789 * that is just being woken and probably will have
790 * cold cache anyway.
791 */
792 if (unlikely(rt_task(rq->curr)) &&
793 (p->rt.nr_cpus_allowed > 1)) {
794 int cpu = find_lowest_rq(p);
795
796 return (cpu == -1) ? task_cpu(p) : cpu;
797 }
798
799 /*
800 * Otherwise, just let it ride on the affined RQ and the
801 * post-schedule router will push the preempted task away
802 */
803 return task_cpu(p);
804 }
805
806 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
807 {
808 cpumask_t mask;
809
810 if (rq->curr->rt.nr_cpus_allowed == 1)
811 return;
812
813 if (p->rt.nr_cpus_allowed != 1
814 && cpupri_find(&rq->rd->cpupri, p, &mask))
815 return;
816
817 if (!cpupri_find(&rq->rd->cpupri, rq->curr, &mask))
818 return;
819
820 /*
821 * There appears to be other cpus that can accept
822 * current and none to run 'p', so lets reschedule
823 * to try and push current away:
824 */
825 requeue_task_rt(rq, p, 1);
826 resched_task(rq->curr);
827 }
828
829 #endif /* CONFIG_SMP */
830
831 /*
832 * Preempt the current task with a newly woken task if needed:
833 */
834 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync)
835 {
836 if (p->prio < rq->curr->prio) {
837 resched_task(rq->curr);
838 return;
839 }
840
841 #ifdef CONFIG_SMP
842 /*
843 * If:
844 *
845 * - the newly woken task is of equal priority to the current task
846 * - the newly woken task is non-migratable while current is migratable
847 * - current will be preempted on the next reschedule
848 *
849 * we should check to see if current can readily move to a different
850 * cpu. If so, we will reschedule to allow the push logic to try
851 * to move current somewhere else, making room for our non-migratable
852 * task.
853 */
854 if (p->prio == rq->curr->prio && !need_resched())
855 check_preempt_equal_prio(rq, p);
856 #endif
857 }
858
859 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
860 struct rt_rq *rt_rq)
861 {
862 struct rt_prio_array *array = &rt_rq->active;
863 struct sched_rt_entity *next = NULL;
864 struct list_head *queue;
865 int idx;
866
867 idx = sched_find_first_bit(array->bitmap);
868 BUG_ON(idx >= MAX_RT_PRIO);
869
870 queue = array->queue + idx;
871 next = list_entry(queue->next, struct sched_rt_entity, run_list);
872
873 return next;
874 }
875
876 static struct task_struct *pick_next_task_rt(struct rq *rq)
877 {
878 struct sched_rt_entity *rt_se;
879 struct task_struct *p;
880 struct rt_rq *rt_rq;
881
882 rt_rq = &rq->rt;
883
884 if (unlikely(!rt_rq->rt_nr_running))
885 return NULL;
886
887 if (rt_rq_throttled(rt_rq))
888 return NULL;
889
890 do {
891 rt_se = pick_next_rt_entity(rq, rt_rq);
892 BUG_ON(!rt_se);
893 rt_rq = group_rt_rq(rt_se);
894 } while (rt_rq);
895
896 p = rt_task_of(rt_se);
897 p->se.exec_start = rq->clock;
898 return p;
899 }
900
901 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
902 {
903 update_curr_rt(rq);
904 p->se.exec_start = 0;
905 }
906
907 #ifdef CONFIG_SMP
908
909 /* Only try algorithms three times */
910 #define RT_MAX_TRIES 3
911
912 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
913
914 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
915 {
916 if (!task_running(rq, p) &&
917 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
918 (p->rt.nr_cpus_allowed > 1))
919 return 1;
920 return 0;
921 }
922
923 /* Return the second highest RT task, NULL otherwise */
924 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
925 {
926 struct task_struct *next = NULL;
927 struct sched_rt_entity *rt_se;
928 struct rt_prio_array *array;
929 struct rt_rq *rt_rq;
930 int idx;
931
932 for_each_leaf_rt_rq(rt_rq, rq) {
933 array = &rt_rq->active;
934 idx = sched_find_first_bit(array->bitmap);
935 next_idx:
936 if (idx >= MAX_RT_PRIO)
937 continue;
938 if (next && next->prio < idx)
939 continue;
940 list_for_each_entry(rt_se, array->queue + idx, run_list) {
941 struct task_struct *p = rt_task_of(rt_se);
942 if (pick_rt_task(rq, p, cpu)) {
943 next = p;
944 break;
945 }
946 }
947 if (!next) {
948 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
949 goto next_idx;
950 }
951 }
952
953 return next;
954 }
955
956 static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
957
958 static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
959 {
960 int first;
961
962 /* "this_cpu" is cheaper to preempt than a remote processor */
963 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
964 return this_cpu;
965
966 first = first_cpu(*mask);
967 if (first != NR_CPUS)
968 return first;
969
970 return -1;
971 }
972
973 static int find_lowest_rq(struct task_struct *task)
974 {
975 struct sched_domain *sd;
976 cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
977 int this_cpu = smp_processor_id();
978 int cpu = task_cpu(task);
979
980 if (task->rt.nr_cpus_allowed == 1)
981 return -1; /* No other targets possible */
982
983 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
984 return -1; /* No targets found */
985
986 /*
987 * Only consider CPUs that are usable for migration.
988 * I guess we might want to change cpupri_find() to ignore those
989 * in the first place.
990 */
991 cpus_and(*lowest_mask, *lowest_mask, cpu_active_map);
992
993 /*
994 * At this point we have built a mask of cpus representing the
995 * lowest priority tasks in the system. Now we want to elect
996 * the best one based on our affinity and topology.
997 *
998 * We prioritize the last cpu that the task executed on since
999 * it is most likely cache-hot in that location.
1000 */
1001 if (cpu_isset(cpu, *lowest_mask))
1002 return cpu;
1003
1004 /*
1005 * Otherwise, we consult the sched_domains span maps to figure
1006 * out which cpu is logically closest to our hot cache data.
1007 */
1008 if (this_cpu == cpu)
1009 this_cpu = -1; /* Skip this_cpu opt if the same */
1010
1011 for_each_domain(cpu, sd) {
1012 if (sd->flags & SD_WAKE_AFFINE) {
1013 cpumask_t domain_mask;
1014 int best_cpu;
1015
1016 cpus_and(domain_mask, sd->span, *lowest_mask);
1017
1018 best_cpu = pick_optimal_cpu(this_cpu,
1019 &domain_mask);
1020 if (best_cpu != -1)
1021 return best_cpu;
1022 }
1023 }
1024
1025 /*
1026 * And finally, if there were no matches within the domains
1027 * just give the caller *something* to work with from the compatible
1028 * locations.
1029 */
1030 return pick_optimal_cpu(this_cpu, lowest_mask);
1031 }
1032
1033 /* Will lock the rq it finds */
1034 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1035 {
1036 struct rq *lowest_rq = NULL;
1037 int tries;
1038 int cpu;
1039
1040 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1041 cpu = find_lowest_rq(task);
1042
1043 if ((cpu == -1) || (cpu == rq->cpu))
1044 break;
1045
1046 lowest_rq = cpu_rq(cpu);
1047
1048 /* if the prio of this runqueue changed, try again */
1049 if (double_lock_balance(rq, lowest_rq)) {
1050 /*
1051 * We had to unlock the run queue. In
1052 * the mean time, task could have
1053 * migrated already or had its affinity changed.
1054 * Also make sure that it wasn't scheduled on its rq.
1055 */
1056 if (unlikely(task_rq(task) != rq ||
1057 !cpu_isset(lowest_rq->cpu,
1058 task->cpus_allowed) ||
1059 task_running(rq, task) ||
1060 !task->se.on_rq)) {
1061
1062 spin_unlock(&lowest_rq->lock);
1063 lowest_rq = NULL;
1064 break;
1065 }
1066 }
1067
1068 /* If this rq is still suitable use it. */
1069 if (lowest_rq->rt.highest_prio > task->prio)
1070 break;
1071
1072 /* try again */
1073 double_unlock_balance(rq, lowest_rq);
1074 lowest_rq = NULL;
1075 }
1076
1077 return lowest_rq;
1078 }
1079
1080 /*
1081 * If the current CPU has more than one RT task, see if the non
1082 * running task can migrate over to a CPU that is running a task
1083 * of lesser priority.
1084 */
1085 static int push_rt_task(struct rq *rq)
1086 {
1087 struct task_struct *next_task;
1088 struct rq *lowest_rq;
1089 int ret = 0;
1090 int paranoid = RT_MAX_TRIES;
1091
1092 if (!rq->rt.overloaded)
1093 return 0;
1094
1095 next_task = pick_next_highest_task_rt(rq, -1);
1096 if (!next_task)
1097 return 0;
1098
1099 retry:
1100 if (unlikely(next_task == rq->curr)) {
1101 WARN_ON(1);
1102 return 0;
1103 }
1104
1105 /*
1106 * It's possible that the next_task slipped in of
1107 * higher priority than current. If that's the case
1108 * just reschedule current.
1109 */
1110 if (unlikely(next_task->prio < rq->curr->prio)) {
1111 resched_task(rq->curr);
1112 return 0;
1113 }
1114
1115 /* We might release rq lock */
1116 get_task_struct(next_task);
1117
1118 /* find_lock_lowest_rq locks the rq if found */
1119 lowest_rq = find_lock_lowest_rq(next_task, rq);
1120 if (!lowest_rq) {
1121 struct task_struct *task;
1122 /*
1123 * find lock_lowest_rq releases rq->lock
1124 * so it is possible that next_task has changed.
1125 * If it has, then try again.
1126 */
1127 task = pick_next_highest_task_rt(rq, -1);
1128 if (unlikely(task != next_task) && task && paranoid--) {
1129 put_task_struct(next_task);
1130 next_task = task;
1131 goto retry;
1132 }
1133 goto out;
1134 }
1135
1136 deactivate_task(rq, next_task, 0);
1137 set_task_cpu(next_task, lowest_rq->cpu);
1138 activate_task(lowest_rq, next_task, 0);
1139
1140 resched_task(lowest_rq->curr);
1141
1142 double_unlock_balance(rq, lowest_rq);
1143
1144 ret = 1;
1145 out:
1146 put_task_struct(next_task);
1147
1148 return ret;
1149 }
1150
1151 /*
1152 * TODO: Currently we just use the second highest prio task on
1153 * the queue, and stop when it can't migrate (or there's
1154 * no more RT tasks). There may be a case where a lower
1155 * priority RT task has a different affinity than the
1156 * higher RT task. In this case the lower RT task could
1157 * possibly be able to migrate where as the higher priority
1158 * RT task could not. We currently ignore this issue.
1159 * Enhancements are welcome!
1160 */
1161 static void push_rt_tasks(struct rq *rq)
1162 {
1163 /* push_rt_task will return true if it moved an RT */
1164 while (push_rt_task(rq))
1165 ;
1166 }
1167
1168 static int pull_rt_task(struct rq *this_rq)
1169 {
1170 int this_cpu = this_rq->cpu, ret = 0, cpu;
1171 struct task_struct *p, *next;
1172 struct rq *src_rq;
1173
1174 if (likely(!rt_overloaded(this_rq)))
1175 return 0;
1176
1177 next = pick_next_task_rt(this_rq);
1178
1179 for_each_cpu_mask_nr(cpu, this_rq->rd->rto_mask) {
1180 if (this_cpu == cpu)
1181 continue;
1182
1183 src_rq = cpu_rq(cpu);
1184 /*
1185 * We can potentially drop this_rq's lock in
1186 * double_lock_balance, and another CPU could
1187 * steal our next task - hence we must cause
1188 * the caller to recalculate the next task
1189 * in that case:
1190 */
1191 if (double_lock_balance(this_rq, src_rq)) {
1192 struct task_struct *old_next = next;
1193
1194 next = pick_next_task_rt(this_rq);
1195 if (next != old_next)
1196 ret = 1;
1197 }
1198
1199 /*
1200 * Are there still pullable RT tasks?
1201 */
1202 if (src_rq->rt.rt_nr_running <= 1)
1203 goto skip;
1204
1205 p = pick_next_highest_task_rt(src_rq, this_cpu);
1206
1207 /*
1208 * Do we have an RT task that preempts
1209 * the to-be-scheduled task?
1210 */
1211 if (p && (!next || (p->prio < next->prio))) {
1212 WARN_ON(p == src_rq->curr);
1213 WARN_ON(!p->se.on_rq);
1214
1215 /*
1216 * There's a chance that p is higher in priority
1217 * than what's currently running on its cpu.
1218 * This is just that p is wakeing up and hasn't
1219 * had a chance to schedule. We only pull
1220 * p if it is lower in priority than the
1221 * current task on the run queue or
1222 * this_rq next task is lower in prio than
1223 * the current task on that rq.
1224 */
1225 if (p->prio < src_rq->curr->prio ||
1226 (next && next->prio < src_rq->curr->prio))
1227 goto skip;
1228
1229 ret = 1;
1230
1231 deactivate_task(src_rq, p, 0);
1232 set_task_cpu(p, this_cpu);
1233 activate_task(this_rq, p, 0);
1234 /*
1235 * We continue with the search, just in
1236 * case there's an even higher prio task
1237 * in another runqueue. (low likelyhood
1238 * but possible)
1239 *
1240 * Update next so that we won't pick a task
1241 * on another cpu with a priority lower (or equal)
1242 * than the one we just picked.
1243 */
1244 next = p;
1245
1246 }
1247 skip:
1248 double_unlock_balance(this_rq, src_rq);
1249 }
1250
1251 return ret;
1252 }
1253
1254 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1255 {
1256 /* Try to pull RT tasks here if we lower this rq's prio */
1257 if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
1258 pull_rt_task(rq);
1259 }
1260
1261 static void post_schedule_rt(struct rq *rq)
1262 {
1263 /*
1264 * If we have more than one rt_task queued, then
1265 * see if we can push the other rt_tasks off to other CPUS.
1266 * Note we may release the rq lock, and since
1267 * the lock was owned by prev, we need to release it
1268 * first via finish_lock_switch and then reaquire it here.
1269 */
1270 if (unlikely(rq->rt.overloaded)) {
1271 spin_lock_irq(&rq->lock);
1272 push_rt_tasks(rq);
1273 spin_unlock_irq(&rq->lock);
1274 }
1275 }
1276
1277 /*
1278 * If we are not running and we are not going to reschedule soon, we should
1279 * try to push tasks away now
1280 */
1281 static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
1282 {
1283 if (!task_running(rq, p) &&
1284 !test_tsk_need_resched(rq->curr) &&
1285 rq->rt.overloaded)
1286 push_rt_tasks(rq);
1287 }
1288
1289 static unsigned long
1290 load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1291 unsigned long max_load_move,
1292 struct sched_domain *sd, enum cpu_idle_type idle,
1293 int *all_pinned, int *this_best_prio)
1294 {
1295 /* don't touch RT tasks */
1296 return 0;
1297 }
1298
1299 static int
1300 move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1301 struct sched_domain *sd, enum cpu_idle_type idle)
1302 {
1303 /* don't touch RT tasks */
1304 return 0;
1305 }
1306
1307 static void set_cpus_allowed_rt(struct task_struct *p,
1308 const cpumask_t *new_mask)
1309 {
1310 int weight = cpus_weight(*new_mask);
1311
1312 BUG_ON(!rt_task(p));
1313
1314 /*
1315 * Update the migration status of the RQ if we have an RT task
1316 * which is running AND changing its weight value.
1317 */
1318 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1319 struct rq *rq = task_rq(p);
1320
1321 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1322 rq->rt.rt_nr_migratory++;
1323 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1324 BUG_ON(!rq->rt.rt_nr_migratory);
1325 rq->rt.rt_nr_migratory--;
1326 }
1327
1328 update_rt_migration(rq);
1329 }
1330
1331 p->cpus_allowed = *new_mask;
1332 p->rt.nr_cpus_allowed = weight;
1333 }
1334
1335 /* Assumes rq->lock is held */
1336 static void rq_online_rt(struct rq *rq)
1337 {
1338 if (rq->rt.overloaded)
1339 rt_set_overload(rq);
1340
1341 __enable_runtime(rq);
1342
1343 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
1344 }
1345
1346 /* Assumes rq->lock is held */
1347 static void rq_offline_rt(struct rq *rq)
1348 {
1349 if (rq->rt.overloaded)
1350 rt_clear_overload(rq);
1351
1352 __disable_runtime(rq);
1353
1354 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1355 }
1356
1357 /*
1358 * When switch from the rt queue, we bring ourselves to a position
1359 * that we might want to pull RT tasks from other runqueues.
1360 */
1361 static void switched_from_rt(struct rq *rq, struct task_struct *p,
1362 int running)
1363 {
1364 /*
1365 * If there are other RT tasks then we will reschedule
1366 * and the scheduling of the other RT tasks will handle
1367 * the balancing. But if we are the last RT task
1368 * we may need to handle the pulling of RT tasks
1369 * now.
1370 */
1371 if (!rq->rt.rt_nr_running)
1372 pull_rt_task(rq);
1373 }
1374 #endif /* CONFIG_SMP */
1375
1376 /*
1377 * When switching a task to RT, we may overload the runqueue
1378 * with RT tasks. In this case we try to push them off to
1379 * other runqueues.
1380 */
1381 static void switched_to_rt(struct rq *rq, struct task_struct *p,
1382 int running)
1383 {
1384 int check_resched = 1;
1385
1386 /*
1387 * If we are already running, then there's nothing
1388 * that needs to be done. But if we are not running
1389 * we may need to preempt the current running task.
1390 * If that current running task is also an RT task
1391 * then see if we can move to another run queue.
1392 */
1393 if (!running) {
1394 #ifdef CONFIG_SMP
1395 if (rq->rt.overloaded && push_rt_task(rq) &&
1396 /* Don't resched if we changed runqueues */
1397 rq != task_rq(p))
1398 check_resched = 0;
1399 #endif /* CONFIG_SMP */
1400 if (check_resched && p->prio < rq->curr->prio)
1401 resched_task(rq->curr);
1402 }
1403 }
1404
1405 /*
1406 * Priority of the task has changed. This may cause
1407 * us to initiate a push or pull.
1408 */
1409 static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1410 int oldprio, int running)
1411 {
1412 if (running) {
1413 #ifdef CONFIG_SMP
1414 /*
1415 * If our priority decreases while running, we
1416 * may need to pull tasks to this runqueue.
1417 */
1418 if (oldprio < p->prio)
1419 pull_rt_task(rq);
1420 /*
1421 * If there's a higher priority task waiting to run
1422 * then reschedule. Note, the above pull_rt_task
1423 * can release the rq lock and p could migrate.
1424 * Only reschedule if p is still on the same runqueue.
1425 */
1426 if (p->prio > rq->rt.highest_prio && rq->curr == p)
1427 resched_task(p);
1428 #else
1429 /* For UP simply resched on drop of prio */
1430 if (oldprio < p->prio)
1431 resched_task(p);
1432 #endif /* CONFIG_SMP */
1433 } else {
1434 /*
1435 * This task is not running, but if it is
1436 * greater than the current running task
1437 * then reschedule.
1438 */
1439 if (p->prio < rq->curr->prio)
1440 resched_task(rq->curr);
1441 }
1442 }
1443
1444 static void watchdog(struct rq *rq, struct task_struct *p)
1445 {
1446 unsigned long soft, hard;
1447
1448 if (!p->signal)
1449 return;
1450
1451 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1452 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1453
1454 if (soft != RLIM_INFINITY) {
1455 unsigned long next;
1456
1457 p->rt.timeout++;
1458 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1459 if (p->rt.timeout > next)
1460 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1461 }
1462 }
1463
1464 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1465 {
1466 update_curr_rt(rq);
1467
1468 watchdog(rq, p);
1469
1470 /*
1471 * RR tasks need a special form of timeslice management.
1472 * FIFO tasks have no timeslices.
1473 */
1474 if (p->policy != SCHED_RR)
1475 return;
1476
1477 if (--p->rt.time_slice)
1478 return;
1479
1480 p->rt.time_slice = DEF_TIMESLICE;
1481
1482 /*
1483 * Requeue to the end of queue if we are not the only element
1484 * on the queue:
1485 */
1486 if (p->rt.run_list.prev != p->rt.run_list.next) {
1487 requeue_task_rt(rq, p, 0);
1488 set_tsk_need_resched(p);
1489 }
1490 }
1491
1492 static void set_curr_task_rt(struct rq *rq)
1493 {
1494 struct task_struct *p = rq->curr;
1495
1496 p->se.exec_start = rq->clock;
1497 }
1498
1499 static const struct sched_class rt_sched_class = {
1500 .next = &fair_sched_class,
1501 .enqueue_task = enqueue_task_rt,
1502 .dequeue_task = dequeue_task_rt,
1503 .yield_task = yield_task_rt,
1504
1505 .check_preempt_curr = check_preempt_curr_rt,
1506
1507 .pick_next_task = pick_next_task_rt,
1508 .put_prev_task = put_prev_task_rt,
1509
1510 #ifdef CONFIG_SMP
1511 .select_task_rq = select_task_rq_rt,
1512
1513 .load_balance = load_balance_rt,
1514 .move_one_task = move_one_task_rt,
1515 .set_cpus_allowed = set_cpus_allowed_rt,
1516 .rq_online = rq_online_rt,
1517 .rq_offline = rq_offline_rt,
1518 .pre_schedule = pre_schedule_rt,
1519 .post_schedule = post_schedule_rt,
1520 .task_wake_up = task_wake_up_rt,
1521 .switched_from = switched_from_rt,
1522 #endif
1523
1524 .set_curr_task = set_curr_task_rt,
1525 .task_tick = task_tick_rt,
1526
1527 .prio_changed = prio_changed_rt,
1528 .switched_to = switched_to_rt,
1529 };
1530
1531 #ifdef CONFIG_SCHED_DEBUG
1532 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1533
1534 static void print_rt_stats(struct seq_file *m, int cpu)
1535 {
1536 struct rt_rq *rt_rq;
1537
1538 rcu_read_lock();
1539 for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1540 print_rt_rq(m, cpu, rt_rq);
1541 rcu_read_unlock();
1542 }
1543 #endif /* CONFIG_SCHED_DEBUG */