]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/seccomp.c
UBUNTU: Ubuntu-5.11.0-19.20
[mirror_ubuntu-hirsute-kernel.git] / kernel / seccomp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/kernel/seccomp.c
4 *
5 * Copyright 2004-2005 Andrea Arcangeli <andrea@cpushare.com>
6 *
7 * Copyright (C) 2012 Google, Inc.
8 * Will Drewry <wad@chromium.org>
9 *
10 * This defines a simple but solid secure-computing facility.
11 *
12 * Mode 1 uses a fixed list of allowed system calls.
13 * Mode 2 allows user-defined system call filters in the form
14 * of Berkeley Packet Filters/Linux Socket Filters.
15 */
16 #define pr_fmt(fmt) "seccomp: " fmt
17
18 #include <linux/refcount.h>
19 #include <linux/audit.h>
20 #include <linux/compat.h>
21 #include <linux/coredump.h>
22 #include <linux/kmemleak.h>
23 #include <linux/nospec.h>
24 #include <linux/prctl.h>
25 #include <linux/sched.h>
26 #include <linux/sched/task_stack.h>
27 #include <linux/seccomp.h>
28 #include <linux/slab.h>
29 #include <linux/syscalls.h>
30 #include <linux/sysctl.h>
31
32 #ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER
33 #include <asm/syscall.h>
34 #endif
35
36 #ifdef CONFIG_SECCOMP_FILTER
37 #include <linux/file.h>
38 #include <linux/filter.h>
39 #include <linux/pid.h>
40 #include <linux/ptrace.h>
41 #include <linux/capability.h>
42 #include <linux/tracehook.h>
43 #include <linux/uaccess.h>
44 #include <linux/anon_inodes.h>
45 #include <linux/lockdep.h>
46
47 /*
48 * When SECCOMP_IOCTL_NOTIF_ID_VALID was first introduced, it had the
49 * wrong direction flag in the ioctl number. This is the broken one,
50 * which the kernel needs to keep supporting until all userspaces stop
51 * using the wrong command number.
52 */
53 #define SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR SECCOMP_IOR(2, __u64)
54
55 enum notify_state {
56 SECCOMP_NOTIFY_INIT,
57 SECCOMP_NOTIFY_SENT,
58 SECCOMP_NOTIFY_REPLIED,
59 };
60
61 struct seccomp_knotif {
62 /* The struct pid of the task whose filter triggered the notification */
63 struct task_struct *task;
64
65 /* The "cookie" for this request; this is unique for this filter. */
66 u64 id;
67
68 /*
69 * The seccomp data. This pointer is valid the entire time this
70 * notification is active, since it comes from __seccomp_filter which
71 * eclipses the entire lifecycle here.
72 */
73 const struct seccomp_data *data;
74
75 /*
76 * Notification states. When SECCOMP_RET_USER_NOTIF is returned, a
77 * struct seccomp_knotif is created and starts out in INIT. Once the
78 * handler reads the notification off of an FD, it transitions to SENT.
79 * If a signal is received the state transitions back to INIT and
80 * another message is sent. When the userspace handler replies, state
81 * transitions to REPLIED.
82 */
83 enum notify_state state;
84
85 /* The return values, only valid when in SECCOMP_NOTIFY_REPLIED */
86 int error;
87 long val;
88 u32 flags;
89
90 /*
91 * Signals when this has changed states, such as the listener
92 * dying, a new seccomp addfd message, or changing to REPLIED
93 */
94 struct completion ready;
95
96 struct list_head list;
97
98 /* outstanding addfd requests */
99 struct list_head addfd;
100 };
101
102 /**
103 * struct seccomp_kaddfd - container for seccomp_addfd ioctl messages
104 *
105 * @file: A reference to the file to install in the other task
106 * @fd: The fd number to install it at. If the fd number is -1, it means the
107 * installing process should allocate the fd as normal.
108 * @flags: The flags for the new file descriptor. At the moment, only O_CLOEXEC
109 * is allowed.
110 * @ret: The return value of the installing process. It is set to the fd num
111 * upon success (>= 0).
112 * @completion: Indicates that the installing process has completed fd
113 * installation, or gone away (either due to successful
114 * reply, or signal)
115 *
116 */
117 struct seccomp_kaddfd {
118 struct file *file;
119 int fd;
120 unsigned int flags;
121
122 /* To only be set on reply */
123 int ret;
124 struct completion completion;
125 struct list_head list;
126 };
127
128 /**
129 * struct notification - container for seccomp userspace notifications. Since
130 * most seccomp filters will not have notification listeners attached and this
131 * structure is fairly large, we store the notification-specific stuff in a
132 * separate structure.
133 *
134 * @request: A semaphore that users of this notification can wait on for
135 * changes. Actual reads and writes are still controlled with
136 * filter->notify_lock.
137 * @next_id: The id of the next request.
138 * @notifications: A list of struct seccomp_knotif elements.
139 */
140 struct notification {
141 struct semaphore request;
142 u64 next_id;
143 struct list_head notifications;
144 };
145
146 #ifdef SECCOMP_ARCH_NATIVE
147 /**
148 * struct action_cache - per-filter cache of seccomp actions per
149 * arch/syscall pair
150 *
151 * @allow_native: A bitmap where each bit represents whether the
152 * filter will always allow the syscall, for the
153 * native architecture.
154 * @allow_compat: A bitmap where each bit represents whether the
155 * filter will always allow the syscall, for the
156 * compat architecture.
157 */
158 struct action_cache {
159 DECLARE_BITMAP(allow_native, SECCOMP_ARCH_NATIVE_NR);
160 #ifdef SECCOMP_ARCH_COMPAT
161 DECLARE_BITMAP(allow_compat, SECCOMP_ARCH_COMPAT_NR);
162 #endif
163 };
164 #else
165 struct action_cache { };
166
167 static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter,
168 const struct seccomp_data *sd)
169 {
170 return false;
171 }
172
173 static inline void seccomp_cache_prepare(struct seccomp_filter *sfilter)
174 {
175 }
176 #endif /* SECCOMP_ARCH_NATIVE */
177
178 /**
179 * struct seccomp_filter - container for seccomp BPF programs
180 *
181 * @refs: Reference count to manage the object lifetime.
182 * A filter's reference count is incremented for each directly
183 * attached task, once for the dependent filter, and if
184 * requested for the user notifier. When @refs reaches zero,
185 * the filter can be freed.
186 * @users: A filter's @users count is incremented for each directly
187 * attached task (filter installation, fork(), thread_sync),
188 * and once for the dependent filter (tracked in filter->prev).
189 * When it reaches zero it indicates that no direct or indirect
190 * users of that filter exist. No new tasks can get associated with
191 * this filter after reaching 0. The @users count is always smaller
192 * or equal to @refs. Hence, reaching 0 for @users does not mean
193 * the filter can be freed.
194 * @cache: cache of arch/syscall mappings to actions
195 * @log: true if all actions except for SECCOMP_RET_ALLOW should be logged
196 * @prev: points to a previously installed, or inherited, filter
197 * @prog: the BPF program to evaluate
198 * @notif: the struct that holds all notification related information
199 * @notify_lock: A lock for all notification-related accesses.
200 * @wqh: A wait queue for poll if a notifier is in use.
201 *
202 * seccomp_filter objects are organized in a tree linked via the @prev
203 * pointer. For any task, it appears to be a singly-linked list starting
204 * with current->seccomp.filter, the most recently attached or inherited filter.
205 * However, multiple filters may share a @prev node, by way of fork(), which
206 * results in a unidirectional tree existing in memory. This is similar to
207 * how namespaces work.
208 *
209 * seccomp_filter objects should never be modified after being attached
210 * to a task_struct (other than @refs).
211 */
212 struct seccomp_filter {
213 refcount_t refs;
214 refcount_t users;
215 bool log;
216 struct action_cache cache;
217 struct seccomp_filter *prev;
218 struct bpf_prog *prog;
219 struct notification *notif;
220 struct mutex notify_lock;
221 wait_queue_head_t wqh;
222 };
223
224 /* Limit any path through the tree to 256KB worth of instructions. */
225 #define MAX_INSNS_PER_PATH ((1 << 18) / sizeof(struct sock_filter))
226
227 /*
228 * Endianness is explicitly ignored and left for BPF program authors to manage
229 * as per the specific architecture.
230 */
231 static void populate_seccomp_data(struct seccomp_data *sd)
232 {
233 /*
234 * Instead of using current_pt_reg(), we're already doing the work
235 * to safely fetch "current", so just use "task" everywhere below.
236 */
237 struct task_struct *task = current;
238 struct pt_regs *regs = task_pt_regs(task);
239 unsigned long args[6];
240
241 sd->nr = syscall_get_nr(task, regs);
242 sd->arch = syscall_get_arch(task);
243 syscall_get_arguments(task, regs, args);
244 sd->args[0] = args[0];
245 sd->args[1] = args[1];
246 sd->args[2] = args[2];
247 sd->args[3] = args[3];
248 sd->args[4] = args[4];
249 sd->args[5] = args[5];
250 sd->instruction_pointer = KSTK_EIP(task);
251 }
252
253 /**
254 * seccomp_check_filter - verify seccomp filter code
255 * @filter: filter to verify
256 * @flen: length of filter
257 *
258 * Takes a previously checked filter (by bpf_check_classic) and
259 * redirects all filter code that loads struct sk_buff data
260 * and related data through seccomp_bpf_load. It also
261 * enforces length and alignment checking of those loads.
262 *
263 * Returns 0 if the rule set is legal or -EINVAL if not.
264 */
265 static int seccomp_check_filter(struct sock_filter *filter, unsigned int flen)
266 {
267 int pc;
268 for (pc = 0; pc < flen; pc++) {
269 struct sock_filter *ftest = &filter[pc];
270 u16 code = ftest->code;
271 u32 k = ftest->k;
272
273 switch (code) {
274 case BPF_LD | BPF_W | BPF_ABS:
275 ftest->code = BPF_LDX | BPF_W | BPF_ABS;
276 /* 32-bit aligned and not out of bounds. */
277 if (k >= sizeof(struct seccomp_data) || k & 3)
278 return -EINVAL;
279 continue;
280 case BPF_LD | BPF_W | BPF_LEN:
281 ftest->code = BPF_LD | BPF_IMM;
282 ftest->k = sizeof(struct seccomp_data);
283 continue;
284 case BPF_LDX | BPF_W | BPF_LEN:
285 ftest->code = BPF_LDX | BPF_IMM;
286 ftest->k = sizeof(struct seccomp_data);
287 continue;
288 /* Explicitly include allowed calls. */
289 case BPF_RET | BPF_K:
290 case BPF_RET | BPF_A:
291 case BPF_ALU | BPF_ADD | BPF_K:
292 case BPF_ALU | BPF_ADD | BPF_X:
293 case BPF_ALU | BPF_SUB | BPF_K:
294 case BPF_ALU | BPF_SUB | BPF_X:
295 case BPF_ALU | BPF_MUL | BPF_K:
296 case BPF_ALU | BPF_MUL | BPF_X:
297 case BPF_ALU | BPF_DIV | BPF_K:
298 case BPF_ALU | BPF_DIV | BPF_X:
299 case BPF_ALU | BPF_AND | BPF_K:
300 case BPF_ALU | BPF_AND | BPF_X:
301 case BPF_ALU | BPF_OR | BPF_K:
302 case BPF_ALU | BPF_OR | BPF_X:
303 case BPF_ALU | BPF_XOR | BPF_K:
304 case BPF_ALU | BPF_XOR | BPF_X:
305 case BPF_ALU | BPF_LSH | BPF_K:
306 case BPF_ALU | BPF_LSH | BPF_X:
307 case BPF_ALU | BPF_RSH | BPF_K:
308 case BPF_ALU | BPF_RSH | BPF_X:
309 case BPF_ALU | BPF_NEG:
310 case BPF_LD | BPF_IMM:
311 case BPF_LDX | BPF_IMM:
312 case BPF_MISC | BPF_TAX:
313 case BPF_MISC | BPF_TXA:
314 case BPF_LD | BPF_MEM:
315 case BPF_LDX | BPF_MEM:
316 case BPF_ST:
317 case BPF_STX:
318 case BPF_JMP | BPF_JA:
319 case BPF_JMP | BPF_JEQ | BPF_K:
320 case BPF_JMP | BPF_JEQ | BPF_X:
321 case BPF_JMP | BPF_JGE | BPF_K:
322 case BPF_JMP | BPF_JGE | BPF_X:
323 case BPF_JMP | BPF_JGT | BPF_K:
324 case BPF_JMP | BPF_JGT | BPF_X:
325 case BPF_JMP | BPF_JSET | BPF_K:
326 case BPF_JMP | BPF_JSET | BPF_X:
327 continue;
328 default:
329 return -EINVAL;
330 }
331 }
332 return 0;
333 }
334
335 #ifdef SECCOMP_ARCH_NATIVE
336 static inline bool seccomp_cache_check_allow_bitmap(const void *bitmap,
337 size_t bitmap_size,
338 int syscall_nr)
339 {
340 if (unlikely(syscall_nr < 0 || syscall_nr >= bitmap_size))
341 return false;
342 syscall_nr = array_index_nospec(syscall_nr, bitmap_size);
343
344 return test_bit(syscall_nr, bitmap);
345 }
346
347 /**
348 * seccomp_cache_check_allow - lookup seccomp cache
349 * @sfilter: The seccomp filter
350 * @sd: The seccomp data to lookup the cache with
351 *
352 * Returns true if the seccomp_data is cached and allowed.
353 */
354 static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter,
355 const struct seccomp_data *sd)
356 {
357 int syscall_nr = sd->nr;
358 const struct action_cache *cache = &sfilter->cache;
359
360 #ifndef SECCOMP_ARCH_COMPAT
361 /* A native-only architecture doesn't need to check sd->arch. */
362 return seccomp_cache_check_allow_bitmap(cache->allow_native,
363 SECCOMP_ARCH_NATIVE_NR,
364 syscall_nr);
365 #else
366 if (likely(sd->arch == SECCOMP_ARCH_NATIVE))
367 return seccomp_cache_check_allow_bitmap(cache->allow_native,
368 SECCOMP_ARCH_NATIVE_NR,
369 syscall_nr);
370 if (likely(sd->arch == SECCOMP_ARCH_COMPAT))
371 return seccomp_cache_check_allow_bitmap(cache->allow_compat,
372 SECCOMP_ARCH_COMPAT_NR,
373 syscall_nr);
374 #endif /* SECCOMP_ARCH_COMPAT */
375
376 WARN_ON_ONCE(true);
377 return false;
378 }
379 #endif /* SECCOMP_ARCH_NATIVE */
380
381 /**
382 * seccomp_run_filters - evaluates all seccomp filters against @sd
383 * @sd: optional seccomp data to be passed to filters
384 * @match: stores struct seccomp_filter that resulted in the return value,
385 * unless filter returned SECCOMP_RET_ALLOW, in which case it will
386 * be unchanged.
387 *
388 * Returns valid seccomp BPF response codes.
389 */
390 #define ACTION_ONLY(ret) ((s32)((ret) & (SECCOMP_RET_ACTION_FULL)))
391 static u32 seccomp_run_filters(const struct seccomp_data *sd,
392 struct seccomp_filter **match)
393 {
394 u32 ret = SECCOMP_RET_ALLOW;
395 /* Make sure cross-thread synced filter points somewhere sane. */
396 struct seccomp_filter *f =
397 READ_ONCE(current->seccomp.filter);
398
399 /* Ensure unexpected behavior doesn't result in failing open. */
400 if (WARN_ON(f == NULL))
401 return SECCOMP_RET_KILL_PROCESS;
402
403 if (seccomp_cache_check_allow(f, sd))
404 return SECCOMP_RET_ALLOW;
405
406 /*
407 * All filters in the list are evaluated and the lowest BPF return
408 * value always takes priority (ignoring the DATA).
409 */
410 for (; f; f = f->prev) {
411 u32 cur_ret = bpf_prog_run_pin_on_cpu(f->prog, sd);
412
413 if (ACTION_ONLY(cur_ret) < ACTION_ONLY(ret)) {
414 ret = cur_ret;
415 *match = f;
416 }
417 }
418 return ret;
419 }
420 #endif /* CONFIG_SECCOMP_FILTER */
421
422 static inline bool seccomp_may_assign_mode(unsigned long seccomp_mode)
423 {
424 assert_spin_locked(&current->sighand->siglock);
425
426 if (current->seccomp.mode && current->seccomp.mode != seccomp_mode)
427 return false;
428
429 return true;
430 }
431
432 void __weak arch_seccomp_spec_mitigate(struct task_struct *task) { }
433
434 static inline void seccomp_assign_mode(struct task_struct *task,
435 unsigned long seccomp_mode,
436 unsigned long flags)
437 {
438 assert_spin_locked(&task->sighand->siglock);
439
440 task->seccomp.mode = seccomp_mode;
441 /*
442 * Make sure SYSCALL_WORK_SECCOMP cannot be set before the mode (and
443 * filter) is set.
444 */
445 smp_mb__before_atomic();
446 /* Assume default seccomp processes want spec flaw mitigation. */
447 if ((flags & SECCOMP_FILTER_FLAG_SPEC_ALLOW) == 0)
448 arch_seccomp_spec_mitigate(task);
449 set_task_syscall_work(task, SECCOMP);
450 }
451
452 #ifdef CONFIG_SECCOMP_FILTER
453 /* Returns 1 if the parent is an ancestor of the child. */
454 static int is_ancestor(struct seccomp_filter *parent,
455 struct seccomp_filter *child)
456 {
457 /* NULL is the root ancestor. */
458 if (parent == NULL)
459 return 1;
460 for (; child; child = child->prev)
461 if (child == parent)
462 return 1;
463 return 0;
464 }
465
466 /**
467 * seccomp_can_sync_threads: checks if all threads can be synchronized
468 *
469 * Expects sighand and cred_guard_mutex locks to be held.
470 *
471 * Returns 0 on success, -ve on error, or the pid of a thread which was
472 * either not in the correct seccomp mode or did not have an ancestral
473 * seccomp filter.
474 */
475 static inline pid_t seccomp_can_sync_threads(void)
476 {
477 struct task_struct *thread, *caller;
478
479 BUG_ON(!mutex_is_locked(&current->signal->cred_guard_mutex));
480 assert_spin_locked(&current->sighand->siglock);
481
482 /* Validate all threads being eligible for synchronization. */
483 caller = current;
484 for_each_thread(caller, thread) {
485 pid_t failed;
486
487 /* Skip current, since it is initiating the sync. */
488 if (thread == caller)
489 continue;
490
491 if (thread->seccomp.mode == SECCOMP_MODE_DISABLED ||
492 (thread->seccomp.mode == SECCOMP_MODE_FILTER &&
493 is_ancestor(thread->seccomp.filter,
494 caller->seccomp.filter)))
495 continue;
496
497 /* Return the first thread that cannot be synchronized. */
498 failed = task_pid_vnr(thread);
499 /* If the pid cannot be resolved, then return -ESRCH */
500 if (WARN_ON(failed == 0))
501 failed = -ESRCH;
502 return failed;
503 }
504
505 return 0;
506 }
507
508 static inline void seccomp_filter_free(struct seccomp_filter *filter)
509 {
510 if (filter) {
511 bpf_prog_destroy(filter->prog);
512 kfree(filter);
513 }
514 }
515
516 static void __seccomp_filter_orphan(struct seccomp_filter *orig)
517 {
518 while (orig && refcount_dec_and_test(&orig->users)) {
519 if (waitqueue_active(&orig->wqh))
520 wake_up_poll(&orig->wqh, EPOLLHUP);
521 orig = orig->prev;
522 }
523 }
524
525 static void __put_seccomp_filter(struct seccomp_filter *orig)
526 {
527 /* Clean up single-reference branches iteratively. */
528 while (orig && refcount_dec_and_test(&orig->refs)) {
529 struct seccomp_filter *freeme = orig;
530 orig = orig->prev;
531 seccomp_filter_free(freeme);
532 }
533 }
534
535 static void __seccomp_filter_release(struct seccomp_filter *orig)
536 {
537 /* Notify about any unused filters in the task's former filter tree. */
538 __seccomp_filter_orphan(orig);
539 /* Finally drop all references to the task's former tree. */
540 __put_seccomp_filter(orig);
541 }
542
543 /**
544 * seccomp_filter_release - Detach the task from its filter tree,
545 * drop its reference count, and notify
546 * about unused filters
547 *
548 * This function should only be called when the task is exiting as
549 * it detaches it from its filter tree. As such, READ_ONCE() and
550 * barriers are not needed here, as would normally be needed.
551 */
552 void seccomp_filter_release(struct task_struct *tsk)
553 {
554 struct seccomp_filter *orig = tsk->seccomp.filter;
555
556 /* We are effectively holding the siglock by not having any sighand. */
557 WARN_ON(tsk->sighand != NULL);
558
559 /* Detach task from its filter tree. */
560 tsk->seccomp.filter = NULL;
561 __seccomp_filter_release(orig);
562 }
563
564 /**
565 * seccomp_sync_threads: sets all threads to use current's filter
566 *
567 * Expects sighand and cred_guard_mutex locks to be held, and for
568 * seccomp_can_sync_threads() to have returned success already
569 * without dropping the locks.
570 *
571 */
572 static inline void seccomp_sync_threads(unsigned long flags)
573 {
574 struct task_struct *thread, *caller;
575
576 BUG_ON(!mutex_is_locked(&current->signal->cred_guard_mutex));
577 assert_spin_locked(&current->sighand->siglock);
578
579 /* Synchronize all threads. */
580 caller = current;
581 for_each_thread(caller, thread) {
582 /* Skip current, since it needs no changes. */
583 if (thread == caller)
584 continue;
585
586 /* Get a task reference for the new leaf node. */
587 get_seccomp_filter(caller);
588
589 /*
590 * Drop the task reference to the shared ancestor since
591 * current's path will hold a reference. (This also
592 * allows a put before the assignment.)
593 */
594 __seccomp_filter_release(thread->seccomp.filter);
595
596 /* Make our new filter tree visible. */
597 smp_store_release(&thread->seccomp.filter,
598 caller->seccomp.filter);
599 atomic_set(&thread->seccomp.filter_count,
600 atomic_read(&thread->seccomp.filter_count));
601
602 /*
603 * Don't let an unprivileged task work around
604 * the no_new_privs restriction by creating
605 * a thread that sets it up, enters seccomp,
606 * then dies.
607 */
608 if (task_no_new_privs(caller))
609 task_set_no_new_privs(thread);
610
611 /*
612 * Opt the other thread into seccomp if needed.
613 * As threads are considered to be trust-realm
614 * equivalent (see ptrace_may_access), it is safe to
615 * allow one thread to transition the other.
616 */
617 if (thread->seccomp.mode == SECCOMP_MODE_DISABLED)
618 seccomp_assign_mode(thread, SECCOMP_MODE_FILTER,
619 flags);
620 }
621 }
622
623 /**
624 * seccomp_prepare_filter: Prepares a seccomp filter for use.
625 * @fprog: BPF program to install
626 *
627 * Returns filter on success or an ERR_PTR on failure.
628 */
629 static struct seccomp_filter *seccomp_prepare_filter(struct sock_fprog *fprog)
630 {
631 struct seccomp_filter *sfilter;
632 int ret;
633 const bool save_orig =
634 #if defined(CONFIG_CHECKPOINT_RESTORE) || defined(SECCOMP_ARCH_NATIVE)
635 true;
636 #else
637 false;
638 #endif
639
640 if (fprog->len == 0 || fprog->len > BPF_MAXINSNS)
641 return ERR_PTR(-EINVAL);
642
643 BUG_ON(INT_MAX / fprog->len < sizeof(struct sock_filter));
644
645 /*
646 * Installing a seccomp filter requires that the task has
647 * CAP_SYS_ADMIN in its namespace or be running with no_new_privs.
648 * This avoids scenarios where unprivileged tasks can affect the
649 * behavior of privileged children.
650 */
651 if (!task_no_new_privs(current) &&
652 !ns_capable_noaudit(current_user_ns(), CAP_SYS_ADMIN))
653 return ERR_PTR(-EACCES);
654
655 /* Allocate a new seccomp_filter */
656 sfilter = kzalloc(sizeof(*sfilter), GFP_KERNEL | __GFP_NOWARN);
657 if (!sfilter)
658 return ERR_PTR(-ENOMEM);
659
660 mutex_init(&sfilter->notify_lock);
661 ret = bpf_prog_create_from_user(&sfilter->prog, fprog,
662 seccomp_check_filter, save_orig);
663 if (ret < 0) {
664 kfree(sfilter);
665 return ERR_PTR(ret);
666 }
667
668 refcount_set(&sfilter->refs, 1);
669 refcount_set(&sfilter->users, 1);
670 init_waitqueue_head(&sfilter->wqh);
671
672 return sfilter;
673 }
674
675 /**
676 * seccomp_prepare_user_filter - prepares a user-supplied sock_fprog
677 * @user_filter: pointer to the user data containing a sock_fprog.
678 *
679 * Returns 0 on success and non-zero otherwise.
680 */
681 static struct seccomp_filter *
682 seccomp_prepare_user_filter(const char __user *user_filter)
683 {
684 struct sock_fprog fprog;
685 struct seccomp_filter *filter = ERR_PTR(-EFAULT);
686
687 #ifdef CONFIG_COMPAT
688 if (in_compat_syscall()) {
689 struct compat_sock_fprog fprog32;
690 if (copy_from_user(&fprog32, user_filter, sizeof(fprog32)))
691 goto out;
692 fprog.len = fprog32.len;
693 fprog.filter = compat_ptr(fprog32.filter);
694 } else /* falls through to the if below. */
695 #endif
696 if (copy_from_user(&fprog, user_filter, sizeof(fprog)))
697 goto out;
698 filter = seccomp_prepare_filter(&fprog);
699 out:
700 return filter;
701 }
702
703 #ifdef SECCOMP_ARCH_NATIVE
704 /**
705 * seccomp_is_const_allow - check if filter is constant allow with given data
706 * @fprog: The BPF programs
707 * @sd: The seccomp data to check against, only syscall number and arch
708 * number are considered constant.
709 */
710 static bool seccomp_is_const_allow(struct sock_fprog_kern *fprog,
711 struct seccomp_data *sd)
712 {
713 unsigned int reg_value = 0;
714 unsigned int pc;
715 bool op_res;
716
717 if (WARN_ON_ONCE(!fprog))
718 return false;
719
720 for (pc = 0; pc < fprog->len; pc++) {
721 struct sock_filter *insn = &fprog->filter[pc];
722 u16 code = insn->code;
723 u32 k = insn->k;
724
725 switch (code) {
726 case BPF_LD | BPF_W | BPF_ABS:
727 switch (k) {
728 case offsetof(struct seccomp_data, nr):
729 reg_value = sd->nr;
730 break;
731 case offsetof(struct seccomp_data, arch):
732 reg_value = sd->arch;
733 break;
734 default:
735 /* can't optimize (non-constant value load) */
736 return false;
737 }
738 break;
739 case BPF_RET | BPF_K:
740 /* reached return with constant values only, check allow */
741 return k == SECCOMP_RET_ALLOW;
742 case BPF_JMP | BPF_JA:
743 pc += insn->k;
744 break;
745 case BPF_JMP | BPF_JEQ | BPF_K:
746 case BPF_JMP | BPF_JGE | BPF_K:
747 case BPF_JMP | BPF_JGT | BPF_K:
748 case BPF_JMP | BPF_JSET | BPF_K:
749 switch (BPF_OP(code)) {
750 case BPF_JEQ:
751 op_res = reg_value == k;
752 break;
753 case BPF_JGE:
754 op_res = reg_value >= k;
755 break;
756 case BPF_JGT:
757 op_res = reg_value > k;
758 break;
759 case BPF_JSET:
760 op_res = !!(reg_value & k);
761 break;
762 default:
763 /* can't optimize (unknown jump) */
764 return false;
765 }
766
767 pc += op_res ? insn->jt : insn->jf;
768 break;
769 case BPF_ALU | BPF_AND | BPF_K:
770 reg_value &= k;
771 break;
772 default:
773 /* can't optimize (unknown insn) */
774 return false;
775 }
776 }
777
778 /* ran off the end of the filter?! */
779 WARN_ON(1);
780 return false;
781 }
782
783 static void seccomp_cache_prepare_bitmap(struct seccomp_filter *sfilter,
784 void *bitmap, const void *bitmap_prev,
785 size_t bitmap_size, int arch)
786 {
787 struct sock_fprog_kern *fprog = sfilter->prog->orig_prog;
788 struct seccomp_data sd;
789 int nr;
790
791 if (bitmap_prev) {
792 /* The new filter must be as restrictive as the last. */
793 bitmap_copy(bitmap, bitmap_prev, bitmap_size);
794 } else {
795 /* Before any filters, all syscalls are always allowed. */
796 bitmap_fill(bitmap, bitmap_size);
797 }
798
799 for (nr = 0; nr < bitmap_size; nr++) {
800 /* No bitmap change: not a cacheable action. */
801 if (!test_bit(nr, bitmap))
802 continue;
803
804 sd.nr = nr;
805 sd.arch = arch;
806
807 /* No bitmap change: continue to always allow. */
808 if (seccomp_is_const_allow(fprog, &sd))
809 continue;
810
811 /*
812 * Not a cacheable action: always run filters.
813 * atomic clear_bit() not needed, filter not visible yet.
814 */
815 __clear_bit(nr, bitmap);
816 }
817 }
818
819 /**
820 * seccomp_cache_prepare - emulate the filter to find cachable syscalls
821 * @sfilter: The seccomp filter
822 *
823 * Returns 0 if successful or -errno if error occurred.
824 */
825 static void seccomp_cache_prepare(struct seccomp_filter *sfilter)
826 {
827 struct action_cache *cache = &sfilter->cache;
828 const struct action_cache *cache_prev =
829 sfilter->prev ? &sfilter->prev->cache : NULL;
830
831 seccomp_cache_prepare_bitmap(sfilter, cache->allow_native,
832 cache_prev ? cache_prev->allow_native : NULL,
833 SECCOMP_ARCH_NATIVE_NR,
834 SECCOMP_ARCH_NATIVE);
835
836 #ifdef SECCOMP_ARCH_COMPAT
837 seccomp_cache_prepare_bitmap(sfilter, cache->allow_compat,
838 cache_prev ? cache_prev->allow_compat : NULL,
839 SECCOMP_ARCH_COMPAT_NR,
840 SECCOMP_ARCH_COMPAT);
841 #endif /* SECCOMP_ARCH_COMPAT */
842 }
843 #endif /* SECCOMP_ARCH_NATIVE */
844
845 /**
846 * seccomp_attach_filter: validate and attach filter
847 * @flags: flags to change filter behavior
848 * @filter: seccomp filter to add to the current process
849 *
850 * Caller must be holding current->sighand->siglock lock.
851 *
852 * Returns 0 on success, -ve on error, or
853 * - in TSYNC mode: the pid of a thread which was either not in the correct
854 * seccomp mode or did not have an ancestral seccomp filter
855 * - in NEW_LISTENER mode: the fd of the new listener
856 */
857 static long seccomp_attach_filter(unsigned int flags,
858 struct seccomp_filter *filter)
859 {
860 unsigned long total_insns;
861 struct seccomp_filter *walker;
862
863 assert_spin_locked(&current->sighand->siglock);
864
865 /* Validate resulting filter length. */
866 total_insns = filter->prog->len;
867 for (walker = current->seccomp.filter; walker; walker = walker->prev)
868 total_insns += walker->prog->len + 4; /* 4 instr penalty */
869 if (total_insns > MAX_INSNS_PER_PATH)
870 return -ENOMEM;
871
872 /* If thread sync has been requested, check that it is possible. */
873 if (flags & SECCOMP_FILTER_FLAG_TSYNC) {
874 int ret;
875
876 ret = seccomp_can_sync_threads();
877 if (ret) {
878 if (flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH)
879 return -ESRCH;
880 else
881 return ret;
882 }
883 }
884
885 /* Set log flag, if present. */
886 if (flags & SECCOMP_FILTER_FLAG_LOG)
887 filter->log = true;
888
889 /*
890 * If there is an existing filter, make it the prev and don't drop its
891 * task reference.
892 */
893 filter->prev = current->seccomp.filter;
894 seccomp_cache_prepare(filter);
895 current->seccomp.filter = filter;
896 atomic_inc(&current->seccomp.filter_count);
897
898 /* Now that the new filter is in place, synchronize to all threads. */
899 if (flags & SECCOMP_FILTER_FLAG_TSYNC)
900 seccomp_sync_threads(flags);
901
902 return 0;
903 }
904
905 static void __get_seccomp_filter(struct seccomp_filter *filter)
906 {
907 refcount_inc(&filter->refs);
908 }
909
910 /* get_seccomp_filter - increments the reference count of the filter on @tsk */
911 void get_seccomp_filter(struct task_struct *tsk)
912 {
913 struct seccomp_filter *orig = tsk->seccomp.filter;
914 if (!orig)
915 return;
916 __get_seccomp_filter(orig);
917 refcount_inc(&orig->users);
918 }
919
920 static void seccomp_init_siginfo(kernel_siginfo_t *info, int syscall, int reason)
921 {
922 clear_siginfo(info);
923 info->si_signo = SIGSYS;
924 info->si_code = SYS_SECCOMP;
925 info->si_call_addr = (void __user *)KSTK_EIP(current);
926 info->si_errno = reason;
927 info->si_arch = syscall_get_arch(current);
928 info->si_syscall = syscall;
929 }
930
931 /**
932 * seccomp_send_sigsys - signals the task to allow in-process syscall emulation
933 * @syscall: syscall number to send to userland
934 * @reason: filter-supplied reason code to send to userland (via si_errno)
935 *
936 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
937 */
938 static void seccomp_send_sigsys(int syscall, int reason)
939 {
940 struct kernel_siginfo info;
941 seccomp_init_siginfo(&info, syscall, reason);
942 force_sig_info(&info);
943 }
944 #endif /* CONFIG_SECCOMP_FILTER */
945
946 /* For use with seccomp_actions_logged */
947 #define SECCOMP_LOG_KILL_PROCESS (1 << 0)
948 #define SECCOMP_LOG_KILL_THREAD (1 << 1)
949 #define SECCOMP_LOG_TRAP (1 << 2)
950 #define SECCOMP_LOG_ERRNO (1 << 3)
951 #define SECCOMP_LOG_TRACE (1 << 4)
952 #define SECCOMP_LOG_LOG (1 << 5)
953 #define SECCOMP_LOG_ALLOW (1 << 6)
954 #define SECCOMP_LOG_USER_NOTIF (1 << 7)
955
956 static u32 seccomp_actions_logged = SECCOMP_LOG_KILL_PROCESS |
957 SECCOMP_LOG_KILL_THREAD |
958 SECCOMP_LOG_TRAP |
959 SECCOMP_LOG_ERRNO |
960 SECCOMP_LOG_USER_NOTIF |
961 SECCOMP_LOG_TRACE |
962 SECCOMP_LOG_LOG;
963
964 static inline void seccomp_log(unsigned long syscall, long signr, u32 action,
965 bool requested)
966 {
967 bool log = false;
968
969 switch (action) {
970 case SECCOMP_RET_ALLOW:
971 break;
972 case SECCOMP_RET_TRAP:
973 log = requested && seccomp_actions_logged & SECCOMP_LOG_TRAP;
974 break;
975 case SECCOMP_RET_ERRNO:
976 log = requested && seccomp_actions_logged & SECCOMP_LOG_ERRNO;
977 break;
978 case SECCOMP_RET_TRACE:
979 log = requested && seccomp_actions_logged & SECCOMP_LOG_TRACE;
980 break;
981 case SECCOMP_RET_USER_NOTIF:
982 log = requested && seccomp_actions_logged & SECCOMP_LOG_USER_NOTIF;
983 break;
984 case SECCOMP_RET_LOG:
985 log = seccomp_actions_logged & SECCOMP_LOG_LOG;
986 break;
987 case SECCOMP_RET_KILL_THREAD:
988 log = seccomp_actions_logged & SECCOMP_LOG_KILL_THREAD;
989 break;
990 case SECCOMP_RET_KILL_PROCESS:
991 default:
992 log = seccomp_actions_logged & SECCOMP_LOG_KILL_PROCESS;
993 }
994
995 /*
996 * Emit an audit message when the action is RET_KILL_*, RET_LOG, or the
997 * FILTER_FLAG_LOG bit was set. The admin has the ability to silence
998 * any action from being logged by removing the action name from the
999 * seccomp_actions_logged sysctl.
1000 */
1001 if (!log)
1002 return;
1003
1004 audit_seccomp(syscall, signr, action);
1005 }
1006
1007 /*
1008 * Secure computing mode 1 allows only read/write/exit/sigreturn.
1009 * To be fully secure this must be combined with rlimit
1010 * to limit the stack allocations too.
1011 */
1012 static const int mode1_syscalls[] = {
1013 __NR_seccomp_read, __NR_seccomp_write, __NR_seccomp_exit, __NR_seccomp_sigreturn,
1014 -1, /* negative terminated */
1015 };
1016
1017 static void __secure_computing_strict(int this_syscall)
1018 {
1019 const int *allowed_syscalls = mode1_syscalls;
1020 #ifdef CONFIG_COMPAT
1021 if (in_compat_syscall())
1022 allowed_syscalls = get_compat_mode1_syscalls();
1023 #endif
1024 do {
1025 if (*allowed_syscalls == this_syscall)
1026 return;
1027 } while (*++allowed_syscalls != -1);
1028
1029 #ifdef SECCOMP_DEBUG
1030 dump_stack();
1031 #endif
1032 seccomp_log(this_syscall, SIGKILL, SECCOMP_RET_KILL_THREAD, true);
1033 do_exit(SIGKILL);
1034 }
1035
1036 #ifndef CONFIG_HAVE_ARCH_SECCOMP_FILTER
1037 void secure_computing_strict(int this_syscall)
1038 {
1039 int mode = current->seccomp.mode;
1040
1041 if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) &&
1042 unlikely(current->ptrace & PT_SUSPEND_SECCOMP))
1043 return;
1044
1045 if (mode == SECCOMP_MODE_DISABLED)
1046 return;
1047 else if (mode == SECCOMP_MODE_STRICT)
1048 __secure_computing_strict(this_syscall);
1049 else
1050 BUG();
1051 }
1052 #else
1053
1054 #ifdef CONFIG_SECCOMP_FILTER
1055 static u64 seccomp_next_notify_id(struct seccomp_filter *filter)
1056 {
1057 /*
1058 * Note: overflow is ok here, the id just needs to be unique per
1059 * filter.
1060 */
1061 lockdep_assert_held(&filter->notify_lock);
1062 return filter->notif->next_id++;
1063 }
1064
1065 static void seccomp_handle_addfd(struct seccomp_kaddfd *addfd)
1066 {
1067 /*
1068 * Remove the notification, and reset the list pointers, indicating
1069 * that it has been handled.
1070 */
1071 list_del_init(&addfd->list);
1072 addfd->ret = receive_fd_replace(addfd->fd, addfd->file, addfd->flags);
1073 complete(&addfd->completion);
1074 }
1075
1076 static int seccomp_do_user_notification(int this_syscall,
1077 struct seccomp_filter *match,
1078 const struct seccomp_data *sd)
1079 {
1080 int err;
1081 u32 flags = 0;
1082 long ret = 0;
1083 struct seccomp_knotif n = {};
1084 struct seccomp_kaddfd *addfd, *tmp;
1085
1086 mutex_lock(&match->notify_lock);
1087 err = -ENOSYS;
1088 if (!match->notif)
1089 goto out;
1090
1091 n.task = current;
1092 n.state = SECCOMP_NOTIFY_INIT;
1093 n.data = sd;
1094 n.id = seccomp_next_notify_id(match);
1095 init_completion(&n.ready);
1096 list_add(&n.list, &match->notif->notifications);
1097 INIT_LIST_HEAD(&n.addfd);
1098
1099 up(&match->notif->request);
1100 wake_up_poll(&match->wqh, EPOLLIN | EPOLLRDNORM);
1101 mutex_unlock(&match->notify_lock);
1102
1103 /*
1104 * This is where we wait for a reply from userspace.
1105 */
1106 wait:
1107 err = wait_for_completion_interruptible(&n.ready);
1108 mutex_lock(&match->notify_lock);
1109 if (err == 0) {
1110 /* Check if we were woken up by a addfd message */
1111 addfd = list_first_entry_or_null(&n.addfd,
1112 struct seccomp_kaddfd, list);
1113 if (addfd && n.state != SECCOMP_NOTIFY_REPLIED) {
1114 seccomp_handle_addfd(addfd);
1115 mutex_unlock(&match->notify_lock);
1116 goto wait;
1117 }
1118 ret = n.val;
1119 err = n.error;
1120 flags = n.flags;
1121 }
1122
1123 /* If there were any pending addfd calls, clear them out */
1124 list_for_each_entry_safe(addfd, tmp, &n.addfd, list) {
1125 /* The process went away before we got a chance to handle it */
1126 addfd->ret = -ESRCH;
1127 list_del_init(&addfd->list);
1128 complete(&addfd->completion);
1129 }
1130
1131 /*
1132 * Note that it's possible the listener died in between the time when
1133 * we were notified of a response (or a signal) and when we were able to
1134 * re-acquire the lock, so only delete from the list if the
1135 * notification actually exists.
1136 *
1137 * Also note that this test is only valid because there's no way to
1138 * *reattach* to a notifier right now. If one is added, we'll need to
1139 * keep track of the notif itself and make sure they match here.
1140 */
1141 if (match->notif)
1142 list_del(&n.list);
1143 out:
1144 mutex_unlock(&match->notify_lock);
1145
1146 /* Userspace requests to continue the syscall. */
1147 if (flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE)
1148 return 0;
1149
1150 syscall_set_return_value(current, current_pt_regs(),
1151 err, ret);
1152 return -1;
1153 }
1154
1155 static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd,
1156 const bool recheck_after_trace)
1157 {
1158 u32 filter_ret, action;
1159 struct seccomp_filter *match = NULL;
1160 int data;
1161 struct seccomp_data sd_local;
1162
1163 /*
1164 * Make sure that any changes to mode from another thread have
1165 * been seen after SYSCALL_WORK_SECCOMP was seen.
1166 */
1167 rmb();
1168
1169 if (!sd) {
1170 populate_seccomp_data(&sd_local);
1171 sd = &sd_local;
1172 }
1173
1174 filter_ret = seccomp_run_filters(sd, &match);
1175 data = filter_ret & SECCOMP_RET_DATA;
1176 action = filter_ret & SECCOMP_RET_ACTION_FULL;
1177
1178 switch (action) {
1179 case SECCOMP_RET_ERRNO:
1180 /* Set low-order bits as an errno, capped at MAX_ERRNO. */
1181 if (data > MAX_ERRNO)
1182 data = MAX_ERRNO;
1183 syscall_set_return_value(current, current_pt_regs(),
1184 -data, 0);
1185 goto skip;
1186
1187 case SECCOMP_RET_TRAP:
1188 /* Show the handler the original registers. */
1189 syscall_rollback(current, current_pt_regs());
1190 /* Let the filter pass back 16 bits of data. */
1191 seccomp_send_sigsys(this_syscall, data);
1192 goto skip;
1193
1194 case SECCOMP_RET_TRACE:
1195 /* We've been put in this state by the ptracer already. */
1196 if (recheck_after_trace)
1197 return 0;
1198
1199 /* ENOSYS these calls if there is no tracer attached. */
1200 if (!ptrace_event_enabled(current, PTRACE_EVENT_SECCOMP)) {
1201 syscall_set_return_value(current,
1202 current_pt_regs(),
1203 -ENOSYS, 0);
1204 goto skip;
1205 }
1206
1207 /* Allow the BPF to provide the event message */
1208 ptrace_event(PTRACE_EVENT_SECCOMP, data);
1209 /*
1210 * The delivery of a fatal signal during event
1211 * notification may silently skip tracer notification,
1212 * which could leave us with a potentially unmodified
1213 * syscall that the tracer would have liked to have
1214 * changed. Since the process is about to die, we just
1215 * force the syscall to be skipped and let the signal
1216 * kill the process and correctly handle any tracer exit
1217 * notifications.
1218 */
1219 if (fatal_signal_pending(current))
1220 goto skip;
1221 /* Check if the tracer forced the syscall to be skipped. */
1222 this_syscall = syscall_get_nr(current, current_pt_regs());
1223 if (this_syscall < 0)
1224 goto skip;
1225
1226 /*
1227 * Recheck the syscall, since it may have changed. This
1228 * intentionally uses a NULL struct seccomp_data to force
1229 * a reload of all registers. This does not goto skip since
1230 * a skip would have already been reported.
1231 */
1232 if (__seccomp_filter(this_syscall, NULL, true))
1233 return -1;
1234
1235 return 0;
1236
1237 case SECCOMP_RET_USER_NOTIF:
1238 if (seccomp_do_user_notification(this_syscall, match, sd))
1239 goto skip;
1240
1241 return 0;
1242
1243 case SECCOMP_RET_LOG:
1244 seccomp_log(this_syscall, 0, action, true);
1245 return 0;
1246
1247 case SECCOMP_RET_ALLOW:
1248 /*
1249 * Note that the "match" filter will always be NULL for
1250 * this action since SECCOMP_RET_ALLOW is the starting
1251 * state in seccomp_run_filters().
1252 */
1253 return 0;
1254
1255 case SECCOMP_RET_KILL_THREAD:
1256 case SECCOMP_RET_KILL_PROCESS:
1257 default:
1258 seccomp_log(this_syscall, SIGSYS, action, true);
1259 /* Dump core only if this is the last remaining thread. */
1260 if (action != SECCOMP_RET_KILL_THREAD ||
1261 get_nr_threads(current) == 1) {
1262 kernel_siginfo_t info;
1263
1264 /* Show the original registers in the dump. */
1265 syscall_rollback(current, current_pt_regs());
1266 /* Trigger a manual coredump since do_exit skips it. */
1267 seccomp_init_siginfo(&info, this_syscall, data);
1268 do_coredump(&info);
1269 }
1270 if (action == SECCOMP_RET_KILL_THREAD)
1271 do_exit(SIGSYS);
1272 else
1273 do_group_exit(SIGSYS);
1274 }
1275
1276 unreachable();
1277
1278 skip:
1279 seccomp_log(this_syscall, 0, action, match ? match->log : false);
1280 return -1;
1281 }
1282 #else
1283 static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd,
1284 const bool recheck_after_trace)
1285 {
1286 BUG();
1287
1288 return -1;
1289 }
1290 #endif
1291
1292 int __secure_computing(const struct seccomp_data *sd)
1293 {
1294 int mode = current->seccomp.mode;
1295 int this_syscall;
1296
1297 if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) &&
1298 unlikely(current->ptrace & PT_SUSPEND_SECCOMP))
1299 return 0;
1300
1301 this_syscall = sd ? sd->nr :
1302 syscall_get_nr(current, current_pt_regs());
1303
1304 switch (mode) {
1305 case SECCOMP_MODE_STRICT:
1306 __secure_computing_strict(this_syscall); /* may call do_exit */
1307 return 0;
1308 case SECCOMP_MODE_FILTER:
1309 return __seccomp_filter(this_syscall, sd, false);
1310 default:
1311 BUG();
1312 }
1313 }
1314 #endif /* CONFIG_HAVE_ARCH_SECCOMP_FILTER */
1315
1316 long prctl_get_seccomp(void)
1317 {
1318 return current->seccomp.mode;
1319 }
1320
1321 /**
1322 * seccomp_set_mode_strict: internal function for setting strict seccomp
1323 *
1324 * Once current->seccomp.mode is non-zero, it may not be changed.
1325 *
1326 * Returns 0 on success or -EINVAL on failure.
1327 */
1328 static long seccomp_set_mode_strict(void)
1329 {
1330 const unsigned long seccomp_mode = SECCOMP_MODE_STRICT;
1331 long ret = -EINVAL;
1332
1333 spin_lock_irq(&current->sighand->siglock);
1334
1335 if (!seccomp_may_assign_mode(seccomp_mode))
1336 goto out;
1337
1338 #ifdef TIF_NOTSC
1339 disable_TSC();
1340 #endif
1341 seccomp_assign_mode(current, seccomp_mode, 0);
1342 ret = 0;
1343
1344 out:
1345 spin_unlock_irq(&current->sighand->siglock);
1346
1347 return ret;
1348 }
1349
1350 #ifdef CONFIG_SECCOMP_FILTER
1351 static void seccomp_notify_free(struct seccomp_filter *filter)
1352 {
1353 kfree(filter->notif);
1354 filter->notif = NULL;
1355 }
1356
1357 static void seccomp_notify_detach(struct seccomp_filter *filter)
1358 {
1359 struct seccomp_knotif *knotif;
1360
1361 if (!filter)
1362 return;
1363
1364 mutex_lock(&filter->notify_lock);
1365
1366 /*
1367 * If this file is being closed because e.g. the task who owned it
1368 * died, let's wake everyone up who was waiting on us.
1369 */
1370 list_for_each_entry(knotif, &filter->notif->notifications, list) {
1371 if (knotif->state == SECCOMP_NOTIFY_REPLIED)
1372 continue;
1373
1374 knotif->state = SECCOMP_NOTIFY_REPLIED;
1375 knotif->error = -ENOSYS;
1376 knotif->val = 0;
1377
1378 /*
1379 * We do not need to wake up any pending addfd messages, as
1380 * the notifier will do that for us, as this just looks
1381 * like a standard reply.
1382 */
1383 complete(&knotif->ready);
1384 }
1385
1386 seccomp_notify_free(filter);
1387 mutex_unlock(&filter->notify_lock);
1388 }
1389
1390 static int seccomp_notify_release(struct inode *inode, struct file *file)
1391 {
1392 struct seccomp_filter *filter = file->private_data;
1393
1394 seccomp_notify_detach(filter);
1395 __put_seccomp_filter(filter);
1396 return 0;
1397 }
1398
1399 /* must be called with notif_lock held */
1400 static inline struct seccomp_knotif *
1401 find_notification(struct seccomp_filter *filter, u64 id)
1402 {
1403 struct seccomp_knotif *cur;
1404
1405 lockdep_assert_held(&filter->notify_lock);
1406
1407 list_for_each_entry(cur, &filter->notif->notifications, list) {
1408 if (cur->id == id)
1409 return cur;
1410 }
1411
1412 return NULL;
1413 }
1414
1415
1416 static long seccomp_notify_recv(struct seccomp_filter *filter,
1417 void __user *buf)
1418 {
1419 struct seccomp_knotif *knotif = NULL, *cur;
1420 struct seccomp_notif unotif;
1421 ssize_t ret;
1422
1423 /* Verify that we're not given garbage to keep struct extensible. */
1424 ret = check_zeroed_user(buf, sizeof(unotif));
1425 if (ret < 0)
1426 return ret;
1427 if (!ret)
1428 return -EINVAL;
1429
1430 memset(&unotif, 0, sizeof(unotif));
1431
1432 ret = down_interruptible(&filter->notif->request);
1433 if (ret < 0)
1434 return ret;
1435
1436 mutex_lock(&filter->notify_lock);
1437 list_for_each_entry(cur, &filter->notif->notifications, list) {
1438 if (cur->state == SECCOMP_NOTIFY_INIT) {
1439 knotif = cur;
1440 break;
1441 }
1442 }
1443
1444 /*
1445 * If we didn't find a notification, it could be that the task was
1446 * interrupted by a fatal signal between the time we were woken and
1447 * when we were able to acquire the rw lock.
1448 */
1449 if (!knotif) {
1450 ret = -ENOENT;
1451 goto out;
1452 }
1453
1454 unotif.id = knotif->id;
1455 unotif.pid = task_pid_vnr(knotif->task);
1456 unotif.data = *(knotif->data);
1457
1458 knotif->state = SECCOMP_NOTIFY_SENT;
1459 wake_up_poll(&filter->wqh, EPOLLOUT | EPOLLWRNORM);
1460 ret = 0;
1461 out:
1462 mutex_unlock(&filter->notify_lock);
1463
1464 if (ret == 0 && copy_to_user(buf, &unotif, sizeof(unotif))) {
1465 ret = -EFAULT;
1466
1467 /*
1468 * Userspace screwed up. To make sure that we keep this
1469 * notification alive, let's reset it back to INIT. It
1470 * may have died when we released the lock, so we need to make
1471 * sure it's still around.
1472 */
1473 mutex_lock(&filter->notify_lock);
1474 knotif = find_notification(filter, unotif.id);
1475 if (knotif) {
1476 knotif->state = SECCOMP_NOTIFY_INIT;
1477 up(&filter->notif->request);
1478 }
1479 mutex_unlock(&filter->notify_lock);
1480 }
1481
1482 return ret;
1483 }
1484
1485 static long seccomp_notify_send(struct seccomp_filter *filter,
1486 void __user *buf)
1487 {
1488 struct seccomp_notif_resp resp = {};
1489 struct seccomp_knotif *knotif;
1490 long ret;
1491
1492 if (copy_from_user(&resp, buf, sizeof(resp)))
1493 return -EFAULT;
1494
1495 if (resp.flags & ~SECCOMP_USER_NOTIF_FLAG_CONTINUE)
1496 return -EINVAL;
1497
1498 if ((resp.flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE) &&
1499 (resp.error || resp.val))
1500 return -EINVAL;
1501
1502 ret = mutex_lock_interruptible(&filter->notify_lock);
1503 if (ret < 0)
1504 return ret;
1505
1506 knotif = find_notification(filter, resp.id);
1507 if (!knotif) {
1508 ret = -ENOENT;
1509 goto out;
1510 }
1511
1512 /* Allow exactly one reply. */
1513 if (knotif->state != SECCOMP_NOTIFY_SENT) {
1514 ret = -EINPROGRESS;
1515 goto out;
1516 }
1517
1518 ret = 0;
1519 knotif->state = SECCOMP_NOTIFY_REPLIED;
1520 knotif->error = resp.error;
1521 knotif->val = resp.val;
1522 knotif->flags = resp.flags;
1523 complete(&knotif->ready);
1524 out:
1525 mutex_unlock(&filter->notify_lock);
1526 return ret;
1527 }
1528
1529 static long seccomp_notify_id_valid(struct seccomp_filter *filter,
1530 void __user *buf)
1531 {
1532 struct seccomp_knotif *knotif;
1533 u64 id;
1534 long ret;
1535
1536 if (copy_from_user(&id, buf, sizeof(id)))
1537 return -EFAULT;
1538
1539 ret = mutex_lock_interruptible(&filter->notify_lock);
1540 if (ret < 0)
1541 return ret;
1542
1543 knotif = find_notification(filter, id);
1544 if (knotif && knotif->state == SECCOMP_NOTIFY_SENT)
1545 ret = 0;
1546 else
1547 ret = -ENOENT;
1548
1549 mutex_unlock(&filter->notify_lock);
1550 return ret;
1551 }
1552
1553 static long seccomp_notify_addfd(struct seccomp_filter *filter,
1554 struct seccomp_notif_addfd __user *uaddfd,
1555 unsigned int size)
1556 {
1557 struct seccomp_notif_addfd addfd;
1558 struct seccomp_knotif *knotif;
1559 struct seccomp_kaddfd kaddfd;
1560 int ret;
1561
1562 BUILD_BUG_ON(sizeof(addfd) < SECCOMP_NOTIFY_ADDFD_SIZE_VER0);
1563 BUILD_BUG_ON(sizeof(addfd) != SECCOMP_NOTIFY_ADDFD_SIZE_LATEST);
1564
1565 if (size < SECCOMP_NOTIFY_ADDFD_SIZE_VER0 || size >= PAGE_SIZE)
1566 return -EINVAL;
1567
1568 ret = copy_struct_from_user(&addfd, sizeof(addfd), uaddfd, size);
1569 if (ret)
1570 return ret;
1571
1572 if (addfd.newfd_flags & ~O_CLOEXEC)
1573 return -EINVAL;
1574
1575 if (addfd.flags & ~SECCOMP_ADDFD_FLAG_SETFD)
1576 return -EINVAL;
1577
1578 if (addfd.newfd && !(addfd.flags & SECCOMP_ADDFD_FLAG_SETFD))
1579 return -EINVAL;
1580
1581 kaddfd.file = fget(addfd.srcfd);
1582 if (!kaddfd.file)
1583 return -EBADF;
1584
1585 kaddfd.flags = addfd.newfd_flags;
1586 kaddfd.fd = (addfd.flags & SECCOMP_ADDFD_FLAG_SETFD) ?
1587 addfd.newfd : -1;
1588 init_completion(&kaddfd.completion);
1589
1590 ret = mutex_lock_interruptible(&filter->notify_lock);
1591 if (ret < 0)
1592 goto out;
1593
1594 knotif = find_notification(filter, addfd.id);
1595 if (!knotif) {
1596 ret = -ENOENT;
1597 goto out_unlock;
1598 }
1599
1600 /*
1601 * We do not want to allow for FD injection to occur before the
1602 * notification has been picked up by a userspace handler, or after
1603 * the notification has been replied to.
1604 */
1605 if (knotif->state != SECCOMP_NOTIFY_SENT) {
1606 ret = -EINPROGRESS;
1607 goto out_unlock;
1608 }
1609
1610 list_add(&kaddfd.list, &knotif->addfd);
1611 complete(&knotif->ready);
1612 mutex_unlock(&filter->notify_lock);
1613
1614 /* Now we wait for it to be processed or be interrupted */
1615 ret = wait_for_completion_interruptible(&kaddfd.completion);
1616 if (ret == 0) {
1617 /*
1618 * We had a successful completion. The other side has already
1619 * removed us from the addfd queue, and
1620 * wait_for_completion_interruptible has a memory barrier upon
1621 * success that lets us read this value directly without
1622 * locking.
1623 */
1624 ret = kaddfd.ret;
1625 goto out;
1626 }
1627
1628 mutex_lock(&filter->notify_lock);
1629 /*
1630 * Even though we were woken up by a signal and not a successful
1631 * completion, a completion may have happened in the mean time.
1632 *
1633 * We need to check again if the addfd request has been handled,
1634 * and if not, we will remove it from the queue.
1635 */
1636 if (list_empty(&kaddfd.list))
1637 ret = kaddfd.ret;
1638 else
1639 list_del(&kaddfd.list);
1640
1641 out_unlock:
1642 mutex_unlock(&filter->notify_lock);
1643 out:
1644 fput(kaddfd.file);
1645
1646 return ret;
1647 }
1648
1649 static long seccomp_notify_ioctl(struct file *file, unsigned int cmd,
1650 unsigned long arg)
1651 {
1652 struct seccomp_filter *filter = file->private_data;
1653 void __user *buf = (void __user *)arg;
1654
1655 /* Fixed-size ioctls */
1656 switch (cmd) {
1657 case SECCOMP_IOCTL_NOTIF_RECV:
1658 return seccomp_notify_recv(filter, buf);
1659 case SECCOMP_IOCTL_NOTIF_SEND:
1660 return seccomp_notify_send(filter, buf);
1661 case SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR:
1662 case SECCOMP_IOCTL_NOTIF_ID_VALID:
1663 return seccomp_notify_id_valid(filter, buf);
1664 }
1665
1666 /* Extensible Argument ioctls */
1667 #define EA_IOCTL(cmd) ((cmd) & ~(IOC_INOUT | IOCSIZE_MASK))
1668 switch (EA_IOCTL(cmd)) {
1669 case EA_IOCTL(SECCOMP_IOCTL_NOTIF_ADDFD):
1670 return seccomp_notify_addfd(filter, buf, _IOC_SIZE(cmd));
1671 default:
1672 return -EINVAL;
1673 }
1674 }
1675
1676 static __poll_t seccomp_notify_poll(struct file *file,
1677 struct poll_table_struct *poll_tab)
1678 {
1679 struct seccomp_filter *filter = file->private_data;
1680 __poll_t ret = 0;
1681 struct seccomp_knotif *cur;
1682
1683 poll_wait(file, &filter->wqh, poll_tab);
1684
1685 if (mutex_lock_interruptible(&filter->notify_lock) < 0)
1686 return EPOLLERR;
1687
1688 list_for_each_entry(cur, &filter->notif->notifications, list) {
1689 if (cur->state == SECCOMP_NOTIFY_INIT)
1690 ret |= EPOLLIN | EPOLLRDNORM;
1691 if (cur->state == SECCOMP_NOTIFY_SENT)
1692 ret |= EPOLLOUT | EPOLLWRNORM;
1693 if ((ret & EPOLLIN) && (ret & EPOLLOUT))
1694 break;
1695 }
1696
1697 mutex_unlock(&filter->notify_lock);
1698
1699 if (refcount_read(&filter->users) == 0)
1700 ret |= EPOLLHUP;
1701
1702 return ret;
1703 }
1704
1705 static const struct file_operations seccomp_notify_ops = {
1706 .poll = seccomp_notify_poll,
1707 .release = seccomp_notify_release,
1708 .unlocked_ioctl = seccomp_notify_ioctl,
1709 .compat_ioctl = seccomp_notify_ioctl,
1710 };
1711
1712 static struct file *init_listener(struct seccomp_filter *filter)
1713 {
1714 struct file *ret;
1715
1716 ret = ERR_PTR(-ENOMEM);
1717 filter->notif = kzalloc(sizeof(*(filter->notif)), GFP_KERNEL);
1718 if (!filter->notif)
1719 goto out;
1720
1721 sema_init(&filter->notif->request, 0);
1722 filter->notif->next_id = get_random_u64();
1723 INIT_LIST_HEAD(&filter->notif->notifications);
1724
1725 ret = anon_inode_getfile("seccomp notify", &seccomp_notify_ops,
1726 filter, O_RDWR);
1727 if (IS_ERR(ret))
1728 goto out_notif;
1729
1730 /* The file has a reference to it now */
1731 __get_seccomp_filter(filter);
1732
1733 out_notif:
1734 if (IS_ERR(ret))
1735 seccomp_notify_free(filter);
1736 out:
1737 return ret;
1738 }
1739
1740 /*
1741 * Does @new_child have a listener while an ancestor also has a listener?
1742 * If so, we'll want to reject this filter.
1743 * This only has to be tested for the current process, even in the TSYNC case,
1744 * because TSYNC installs @child with the same parent on all threads.
1745 * Note that @new_child is not hooked up to its parent at this point yet, so
1746 * we use current->seccomp.filter.
1747 */
1748 static bool has_duplicate_listener(struct seccomp_filter *new_child)
1749 {
1750 struct seccomp_filter *cur;
1751
1752 /* must be protected against concurrent TSYNC */
1753 lockdep_assert_held(&current->sighand->siglock);
1754
1755 if (!new_child->notif)
1756 return false;
1757 for (cur = current->seccomp.filter; cur; cur = cur->prev) {
1758 if (cur->notif)
1759 return true;
1760 }
1761
1762 return false;
1763 }
1764
1765 /**
1766 * seccomp_set_mode_filter: internal function for setting seccomp filter
1767 * @flags: flags to change filter behavior
1768 * @filter: struct sock_fprog containing filter
1769 *
1770 * This function may be called repeatedly to install additional filters.
1771 * Every filter successfully installed will be evaluated (in reverse order)
1772 * for each system call the task makes.
1773 *
1774 * Once current->seccomp.mode is non-zero, it may not be changed.
1775 *
1776 * Returns 0 on success or -EINVAL on failure.
1777 */
1778 static long seccomp_set_mode_filter(unsigned int flags,
1779 const char __user *filter)
1780 {
1781 const unsigned long seccomp_mode = SECCOMP_MODE_FILTER;
1782 struct seccomp_filter *prepared = NULL;
1783 long ret = -EINVAL;
1784 int listener = -1;
1785 struct file *listener_f = NULL;
1786
1787 /* Validate flags. */
1788 if (flags & ~SECCOMP_FILTER_FLAG_MASK)
1789 return -EINVAL;
1790
1791 /*
1792 * In the successful case, NEW_LISTENER returns the new listener fd.
1793 * But in the failure case, TSYNC returns the thread that died. If you
1794 * combine these two flags, there's no way to tell whether something
1795 * succeeded or failed. So, let's disallow this combination if the user
1796 * has not explicitly requested no errors from TSYNC.
1797 */
1798 if ((flags & SECCOMP_FILTER_FLAG_TSYNC) &&
1799 (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) &&
1800 ((flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH) == 0))
1801 return -EINVAL;
1802
1803 /* Prepare the new filter before holding any locks. */
1804 prepared = seccomp_prepare_user_filter(filter);
1805 if (IS_ERR(prepared))
1806 return PTR_ERR(prepared);
1807
1808 if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) {
1809 listener = get_unused_fd_flags(O_CLOEXEC);
1810 if (listener < 0) {
1811 ret = listener;
1812 goto out_free;
1813 }
1814
1815 listener_f = init_listener(prepared);
1816 if (IS_ERR(listener_f)) {
1817 put_unused_fd(listener);
1818 ret = PTR_ERR(listener_f);
1819 goto out_free;
1820 }
1821 }
1822
1823 /*
1824 * Make sure we cannot change seccomp or nnp state via TSYNC
1825 * while another thread is in the middle of calling exec.
1826 */
1827 if (flags & SECCOMP_FILTER_FLAG_TSYNC &&
1828 mutex_lock_killable(&current->signal->cred_guard_mutex))
1829 goto out_put_fd;
1830
1831 spin_lock_irq(&current->sighand->siglock);
1832
1833 if (!seccomp_may_assign_mode(seccomp_mode))
1834 goto out;
1835
1836 if (has_duplicate_listener(prepared)) {
1837 ret = -EBUSY;
1838 goto out;
1839 }
1840
1841 ret = seccomp_attach_filter(flags, prepared);
1842 if (ret)
1843 goto out;
1844 /* Do not free the successfully attached filter. */
1845 prepared = NULL;
1846
1847 seccomp_assign_mode(current, seccomp_mode, flags);
1848 out:
1849 spin_unlock_irq(&current->sighand->siglock);
1850 if (flags & SECCOMP_FILTER_FLAG_TSYNC)
1851 mutex_unlock(&current->signal->cred_guard_mutex);
1852 out_put_fd:
1853 if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) {
1854 if (ret) {
1855 listener_f->private_data = NULL;
1856 fput(listener_f);
1857 put_unused_fd(listener);
1858 seccomp_notify_detach(prepared);
1859 } else {
1860 fd_install(listener, listener_f);
1861 ret = listener;
1862 }
1863 }
1864 out_free:
1865 seccomp_filter_free(prepared);
1866 return ret;
1867 }
1868 #else
1869 static inline long seccomp_set_mode_filter(unsigned int flags,
1870 const char __user *filter)
1871 {
1872 return -EINVAL;
1873 }
1874 #endif
1875
1876 static long seccomp_get_action_avail(const char __user *uaction)
1877 {
1878 u32 action;
1879
1880 if (copy_from_user(&action, uaction, sizeof(action)))
1881 return -EFAULT;
1882
1883 switch (action) {
1884 case SECCOMP_RET_KILL_PROCESS:
1885 case SECCOMP_RET_KILL_THREAD:
1886 case SECCOMP_RET_TRAP:
1887 case SECCOMP_RET_ERRNO:
1888 case SECCOMP_RET_USER_NOTIF:
1889 case SECCOMP_RET_TRACE:
1890 case SECCOMP_RET_LOG:
1891 case SECCOMP_RET_ALLOW:
1892 break;
1893 default:
1894 return -EOPNOTSUPP;
1895 }
1896
1897 return 0;
1898 }
1899
1900 static long seccomp_get_notif_sizes(void __user *usizes)
1901 {
1902 struct seccomp_notif_sizes sizes = {
1903 .seccomp_notif = sizeof(struct seccomp_notif),
1904 .seccomp_notif_resp = sizeof(struct seccomp_notif_resp),
1905 .seccomp_data = sizeof(struct seccomp_data),
1906 };
1907
1908 if (copy_to_user(usizes, &sizes, sizeof(sizes)))
1909 return -EFAULT;
1910
1911 return 0;
1912 }
1913
1914 /* Common entry point for both prctl and syscall. */
1915 static long do_seccomp(unsigned int op, unsigned int flags,
1916 void __user *uargs)
1917 {
1918 switch (op) {
1919 case SECCOMP_SET_MODE_STRICT:
1920 if (flags != 0 || uargs != NULL)
1921 return -EINVAL;
1922 return seccomp_set_mode_strict();
1923 case SECCOMP_SET_MODE_FILTER:
1924 return seccomp_set_mode_filter(flags, uargs);
1925 case SECCOMP_GET_ACTION_AVAIL:
1926 if (flags != 0)
1927 return -EINVAL;
1928
1929 return seccomp_get_action_avail(uargs);
1930 case SECCOMP_GET_NOTIF_SIZES:
1931 if (flags != 0)
1932 return -EINVAL;
1933
1934 return seccomp_get_notif_sizes(uargs);
1935 default:
1936 return -EINVAL;
1937 }
1938 }
1939
1940 SYSCALL_DEFINE3(seccomp, unsigned int, op, unsigned int, flags,
1941 void __user *, uargs)
1942 {
1943 return do_seccomp(op, flags, uargs);
1944 }
1945
1946 /**
1947 * prctl_set_seccomp: configures current->seccomp.mode
1948 * @seccomp_mode: requested mode to use
1949 * @filter: optional struct sock_fprog for use with SECCOMP_MODE_FILTER
1950 *
1951 * Returns 0 on success or -EINVAL on failure.
1952 */
1953 long prctl_set_seccomp(unsigned long seccomp_mode, void __user *filter)
1954 {
1955 unsigned int op;
1956 void __user *uargs;
1957
1958 switch (seccomp_mode) {
1959 case SECCOMP_MODE_STRICT:
1960 op = SECCOMP_SET_MODE_STRICT;
1961 /*
1962 * Setting strict mode through prctl always ignored filter,
1963 * so make sure it is always NULL here to pass the internal
1964 * check in do_seccomp().
1965 */
1966 uargs = NULL;
1967 break;
1968 case SECCOMP_MODE_FILTER:
1969 op = SECCOMP_SET_MODE_FILTER;
1970 uargs = filter;
1971 break;
1972 default:
1973 return -EINVAL;
1974 }
1975
1976 /* prctl interface doesn't have flags, so they are always zero. */
1977 return do_seccomp(op, 0, uargs);
1978 }
1979
1980 #if defined(CONFIG_SECCOMP_FILTER) && defined(CONFIG_CHECKPOINT_RESTORE)
1981 static struct seccomp_filter *get_nth_filter(struct task_struct *task,
1982 unsigned long filter_off)
1983 {
1984 struct seccomp_filter *orig, *filter;
1985 unsigned long count;
1986
1987 /*
1988 * Note: this is only correct because the caller should be the (ptrace)
1989 * tracer of the task, otherwise lock_task_sighand is needed.
1990 */
1991 spin_lock_irq(&task->sighand->siglock);
1992
1993 if (task->seccomp.mode != SECCOMP_MODE_FILTER) {
1994 spin_unlock_irq(&task->sighand->siglock);
1995 return ERR_PTR(-EINVAL);
1996 }
1997
1998 orig = task->seccomp.filter;
1999 __get_seccomp_filter(orig);
2000 spin_unlock_irq(&task->sighand->siglock);
2001
2002 count = 0;
2003 for (filter = orig; filter; filter = filter->prev)
2004 count++;
2005
2006 if (filter_off >= count) {
2007 filter = ERR_PTR(-ENOENT);
2008 goto out;
2009 }
2010
2011 count -= filter_off;
2012 for (filter = orig; filter && count > 1; filter = filter->prev)
2013 count--;
2014
2015 if (WARN_ON(count != 1 || !filter)) {
2016 filter = ERR_PTR(-ENOENT);
2017 goto out;
2018 }
2019
2020 __get_seccomp_filter(filter);
2021
2022 out:
2023 __put_seccomp_filter(orig);
2024 return filter;
2025 }
2026
2027 long seccomp_get_filter(struct task_struct *task, unsigned long filter_off,
2028 void __user *data)
2029 {
2030 struct seccomp_filter *filter;
2031 struct sock_fprog_kern *fprog;
2032 long ret;
2033
2034 if (!capable(CAP_SYS_ADMIN) ||
2035 current->seccomp.mode != SECCOMP_MODE_DISABLED) {
2036 return -EACCES;
2037 }
2038
2039 filter = get_nth_filter(task, filter_off);
2040 if (IS_ERR(filter))
2041 return PTR_ERR(filter);
2042
2043 fprog = filter->prog->orig_prog;
2044 if (!fprog) {
2045 /* This must be a new non-cBPF filter, since we save
2046 * every cBPF filter's orig_prog above when
2047 * CONFIG_CHECKPOINT_RESTORE is enabled.
2048 */
2049 ret = -EMEDIUMTYPE;
2050 goto out;
2051 }
2052
2053 ret = fprog->len;
2054 if (!data)
2055 goto out;
2056
2057 if (copy_to_user(data, fprog->filter, bpf_classic_proglen(fprog)))
2058 ret = -EFAULT;
2059
2060 out:
2061 __put_seccomp_filter(filter);
2062 return ret;
2063 }
2064
2065 long seccomp_get_metadata(struct task_struct *task,
2066 unsigned long size, void __user *data)
2067 {
2068 long ret;
2069 struct seccomp_filter *filter;
2070 struct seccomp_metadata kmd = {};
2071
2072 if (!capable(CAP_SYS_ADMIN) ||
2073 current->seccomp.mode != SECCOMP_MODE_DISABLED) {
2074 return -EACCES;
2075 }
2076
2077 size = min_t(unsigned long, size, sizeof(kmd));
2078
2079 if (size < sizeof(kmd.filter_off))
2080 return -EINVAL;
2081
2082 if (copy_from_user(&kmd.filter_off, data, sizeof(kmd.filter_off)))
2083 return -EFAULT;
2084
2085 filter = get_nth_filter(task, kmd.filter_off);
2086 if (IS_ERR(filter))
2087 return PTR_ERR(filter);
2088
2089 if (filter->log)
2090 kmd.flags |= SECCOMP_FILTER_FLAG_LOG;
2091
2092 ret = size;
2093 if (copy_to_user(data, &kmd, size))
2094 ret = -EFAULT;
2095
2096 __put_seccomp_filter(filter);
2097 return ret;
2098 }
2099 #endif
2100
2101 #ifdef CONFIG_SYSCTL
2102
2103 /* Human readable action names for friendly sysctl interaction */
2104 #define SECCOMP_RET_KILL_PROCESS_NAME "kill_process"
2105 #define SECCOMP_RET_KILL_THREAD_NAME "kill_thread"
2106 #define SECCOMP_RET_TRAP_NAME "trap"
2107 #define SECCOMP_RET_ERRNO_NAME "errno"
2108 #define SECCOMP_RET_USER_NOTIF_NAME "user_notif"
2109 #define SECCOMP_RET_TRACE_NAME "trace"
2110 #define SECCOMP_RET_LOG_NAME "log"
2111 #define SECCOMP_RET_ALLOW_NAME "allow"
2112
2113 static const char seccomp_actions_avail[] =
2114 SECCOMP_RET_KILL_PROCESS_NAME " "
2115 SECCOMP_RET_KILL_THREAD_NAME " "
2116 SECCOMP_RET_TRAP_NAME " "
2117 SECCOMP_RET_ERRNO_NAME " "
2118 SECCOMP_RET_USER_NOTIF_NAME " "
2119 SECCOMP_RET_TRACE_NAME " "
2120 SECCOMP_RET_LOG_NAME " "
2121 SECCOMP_RET_ALLOW_NAME;
2122
2123 struct seccomp_log_name {
2124 u32 log;
2125 const char *name;
2126 };
2127
2128 static const struct seccomp_log_name seccomp_log_names[] = {
2129 { SECCOMP_LOG_KILL_PROCESS, SECCOMP_RET_KILL_PROCESS_NAME },
2130 { SECCOMP_LOG_KILL_THREAD, SECCOMP_RET_KILL_THREAD_NAME },
2131 { SECCOMP_LOG_TRAP, SECCOMP_RET_TRAP_NAME },
2132 { SECCOMP_LOG_ERRNO, SECCOMP_RET_ERRNO_NAME },
2133 { SECCOMP_LOG_USER_NOTIF, SECCOMP_RET_USER_NOTIF_NAME },
2134 { SECCOMP_LOG_TRACE, SECCOMP_RET_TRACE_NAME },
2135 { SECCOMP_LOG_LOG, SECCOMP_RET_LOG_NAME },
2136 { SECCOMP_LOG_ALLOW, SECCOMP_RET_ALLOW_NAME },
2137 { }
2138 };
2139
2140 static bool seccomp_names_from_actions_logged(char *names, size_t size,
2141 u32 actions_logged,
2142 const char *sep)
2143 {
2144 const struct seccomp_log_name *cur;
2145 bool append_sep = false;
2146
2147 for (cur = seccomp_log_names; cur->name && size; cur++) {
2148 ssize_t ret;
2149
2150 if (!(actions_logged & cur->log))
2151 continue;
2152
2153 if (append_sep) {
2154 ret = strscpy(names, sep, size);
2155 if (ret < 0)
2156 return false;
2157
2158 names += ret;
2159 size -= ret;
2160 } else
2161 append_sep = true;
2162
2163 ret = strscpy(names, cur->name, size);
2164 if (ret < 0)
2165 return false;
2166
2167 names += ret;
2168 size -= ret;
2169 }
2170
2171 return true;
2172 }
2173
2174 static bool seccomp_action_logged_from_name(u32 *action_logged,
2175 const char *name)
2176 {
2177 const struct seccomp_log_name *cur;
2178
2179 for (cur = seccomp_log_names; cur->name; cur++) {
2180 if (!strcmp(cur->name, name)) {
2181 *action_logged = cur->log;
2182 return true;
2183 }
2184 }
2185
2186 return false;
2187 }
2188
2189 static bool seccomp_actions_logged_from_names(u32 *actions_logged, char *names)
2190 {
2191 char *name;
2192
2193 *actions_logged = 0;
2194 while ((name = strsep(&names, " ")) && *name) {
2195 u32 action_logged = 0;
2196
2197 if (!seccomp_action_logged_from_name(&action_logged, name))
2198 return false;
2199
2200 *actions_logged |= action_logged;
2201 }
2202
2203 return true;
2204 }
2205
2206 static int read_actions_logged(struct ctl_table *ro_table, void *buffer,
2207 size_t *lenp, loff_t *ppos)
2208 {
2209 char names[sizeof(seccomp_actions_avail)];
2210 struct ctl_table table;
2211
2212 memset(names, 0, sizeof(names));
2213
2214 if (!seccomp_names_from_actions_logged(names, sizeof(names),
2215 seccomp_actions_logged, " "))
2216 return -EINVAL;
2217
2218 table = *ro_table;
2219 table.data = names;
2220 table.maxlen = sizeof(names);
2221 return proc_dostring(&table, 0, buffer, lenp, ppos);
2222 }
2223
2224 static int write_actions_logged(struct ctl_table *ro_table, void *buffer,
2225 size_t *lenp, loff_t *ppos, u32 *actions_logged)
2226 {
2227 char names[sizeof(seccomp_actions_avail)];
2228 struct ctl_table table;
2229 int ret;
2230
2231 if (!capable(CAP_SYS_ADMIN))
2232 return -EPERM;
2233
2234 memset(names, 0, sizeof(names));
2235
2236 table = *ro_table;
2237 table.data = names;
2238 table.maxlen = sizeof(names);
2239 ret = proc_dostring(&table, 1, buffer, lenp, ppos);
2240 if (ret)
2241 return ret;
2242
2243 if (!seccomp_actions_logged_from_names(actions_logged, table.data))
2244 return -EINVAL;
2245
2246 if (*actions_logged & SECCOMP_LOG_ALLOW)
2247 return -EINVAL;
2248
2249 seccomp_actions_logged = *actions_logged;
2250 return 0;
2251 }
2252
2253 static void audit_actions_logged(u32 actions_logged, u32 old_actions_logged,
2254 int ret)
2255 {
2256 char names[sizeof(seccomp_actions_avail)];
2257 char old_names[sizeof(seccomp_actions_avail)];
2258 const char *new = names;
2259 const char *old = old_names;
2260
2261 if (!audit_enabled)
2262 return;
2263
2264 memset(names, 0, sizeof(names));
2265 memset(old_names, 0, sizeof(old_names));
2266
2267 if (ret)
2268 new = "?";
2269 else if (!actions_logged)
2270 new = "(none)";
2271 else if (!seccomp_names_from_actions_logged(names, sizeof(names),
2272 actions_logged, ","))
2273 new = "?";
2274
2275 if (!old_actions_logged)
2276 old = "(none)";
2277 else if (!seccomp_names_from_actions_logged(old_names,
2278 sizeof(old_names),
2279 old_actions_logged, ","))
2280 old = "?";
2281
2282 return audit_seccomp_actions_logged(new, old, !ret);
2283 }
2284
2285 static int seccomp_actions_logged_handler(struct ctl_table *ro_table, int write,
2286 void *buffer, size_t *lenp,
2287 loff_t *ppos)
2288 {
2289 int ret;
2290
2291 if (write) {
2292 u32 actions_logged = 0;
2293 u32 old_actions_logged = seccomp_actions_logged;
2294
2295 ret = write_actions_logged(ro_table, buffer, lenp, ppos,
2296 &actions_logged);
2297 audit_actions_logged(actions_logged, old_actions_logged, ret);
2298 } else
2299 ret = read_actions_logged(ro_table, buffer, lenp, ppos);
2300
2301 return ret;
2302 }
2303
2304 static struct ctl_path seccomp_sysctl_path[] = {
2305 { .procname = "kernel", },
2306 { .procname = "seccomp", },
2307 { }
2308 };
2309
2310 static struct ctl_table seccomp_sysctl_table[] = {
2311 {
2312 .procname = "actions_avail",
2313 .data = (void *) &seccomp_actions_avail,
2314 .maxlen = sizeof(seccomp_actions_avail),
2315 .mode = 0444,
2316 .proc_handler = proc_dostring,
2317 },
2318 {
2319 .procname = "actions_logged",
2320 .mode = 0644,
2321 .proc_handler = seccomp_actions_logged_handler,
2322 },
2323 { }
2324 };
2325
2326 static int __init seccomp_sysctl_init(void)
2327 {
2328 struct ctl_table_header *hdr;
2329
2330 hdr = register_sysctl_paths(seccomp_sysctl_path, seccomp_sysctl_table);
2331 if (!hdr)
2332 pr_warn("sysctl registration failed\n");
2333 else
2334 kmemleak_not_leak(hdr);
2335
2336 return 0;
2337 }
2338
2339 device_initcall(seccomp_sysctl_init)
2340
2341 #endif /* CONFIG_SYSCTL */
2342
2343 #ifdef CONFIG_SECCOMP_CACHE_DEBUG
2344 /* Currently CONFIG_SECCOMP_CACHE_DEBUG implies SECCOMP_ARCH_NATIVE */
2345 static void proc_pid_seccomp_cache_arch(struct seq_file *m, const char *name,
2346 const void *bitmap, size_t bitmap_size)
2347 {
2348 int nr;
2349
2350 for (nr = 0; nr < bitmap_size; nr++) {
2351 bool cached = test_bit(nr, bitmap);
2352 char *status = cached ? "ALLOW" : "FILTER";
2353
2354 seq_printf(m, "%s %d %s\n", name, nr, status);
2355 }
2356 }
2357
2358 int proc_pid_seccomp_cache(struct seq_file *m, struct pid_namespace *ns,
2359 struct pid *pid, struct task_struct *task)
2360 {
2361 struct seccomp_filter *f;
2362 unsigned long flags;
2363
2364 /*
2365 * We don't want some sandboxed process to know what their seccomp
2366 * filters consist of.
2367 */
2368 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
2369 return -EACCES;
2370
2371 if (!lock_task_sighand(task, &flags))
2372 return -ESRCH;
2373
2374 f = READ_ONCE(task->seccomp.filter);
2375 if (!f) {
2376 unlock_task_sighand(task, &flags);
2377 return 0;
2378 }
2379
2380 /* prevent filter from being freed while we are printing it */
2381 __get_seccomp_filter(f);
2382 unlock_task_sighand(task, &flags);
2383
2384 proc_pid_seccomp_cache_arch(m, SECCOMP_ARCH_NATIVE_NAME,
2385 f->cache.allow_native,
2386 SECCOMP_ARCH_NATIVE_NR);
2387
2388 #ifdef SECCOMP_ARCH_COMPAT
2389 proc_pid_seccomp_cache_arch(m, SECCOMP_ARCH_COMPAT_NAME,
2390 f->cache.allow_compat,
2391 SECCOMP_ARCH_COMPAT_NR);
2392 #endif /* SECCOMP_ARCH_COMPAT */
2393
2394 __put_seccomp_filter(f);
2395 return 0;
2396 }
2397 #endif /* CONFIG_SECCOMP_CACHE_DEBUG */