]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/seccomp.c
Merge tag 'powerpc-5.10-3' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[mirror_ubuntu-jammy-kernel.git] / kernel / seccomp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/kernel/seccomp.c
4 *
5 * Copyright 2004-2005 Andrea Arcangeli <andrea@cpushare.com>
6 *
7 * Copyright (C) 2012 Google, Inc.
8 * Will Drewry <wad@chromium.org>
9 *
10 * This defines a simple but solid secure-computing facility.
11 *
12 * Mode 1 uses a fixed list of allowed system calls.
13 * Mode 2 allows user-defined system call filters in the form
14 * of Berkeley Packet Filters/Linux Socket Filters.
15 */
16 #define pr_fmt(fmt) "seccomp: " fmt
17
18 #include <linux/refcount.h>
19 #include <linux/audit.h>
20 #include <linux/compat.h>
21 #include <linux/coredump.h>
22 #include <linux/kmemleak.h>
23 #include <linux/nospec.h>
24 #include <linux/prctl.h>
25 #include <linux/sched.h>
26 #include <linux/sched/task_stack.h>
27 #include <linux/seccomp.h>
28 #include <linux/slab.h>
29 #include <linux/syscalls.h>
30 #include <linux/sysctl.h>
31
32 #ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER
33 #include <asm/syscall.h>
34 #endif
35
36 #ifdef CONFIG_SECCOMP_FILTER
37 #include <linux/file.h>
38 #include <linux/filter.h>
39 #include <linux/pid.h>
40 #include <linux/ptrace.h>
41 #include <linux/security.h>
42 #include <linux/tracehook.h>
43 #include <linux/uaccess.h>
44 #include <linux/anon_inodes.h>
45 #include <linux/lockdep.h>
46
47 /*
48 * When SECCOMP_IOCTL_NOTIF_ID_VALID was first introduced, it had the
49 * wrong direction flag in the ioctl number. This is the broken one,
50 * which the kernel needs to keep supporting until all userspaces stop
51 * using the wrong command number.
52 */
53 #define SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR SECCOMP_IOR(2, __u64)
54
55 enum notify_state {
56 SECCOMP_NOTIFY_INIT,
57 SECCOMP_NOTIFY_SENT,
58 SECCOMP_NOTIFY_REPLIED,
59 };
60
61 struct seccomp_knotif {
62 /* The struct pid of the task whose filter triggered the notification */
63 struct task_struct *task;
64
65 /* The "cookie" for this request; this is unique for this filter. */
66 u64 id;
67
68 /*
69 * The seccomp data. This pointer is valid the entire time this
70 * notification is active, since it comes from __seccomp_filter which
71 * eclipses the entire lifecycle here.
72 */
73 const struct seccomp_data *data;
74
75 /*
76 * Notification states. When SECCOMP_RET_USER_NOTIF is returned, a
77 * struct seccomp_knotif is created and starts out in INIT. Once the
78 * handler reads the notification off of an FD, it transitions to SENT.
79 * If a signal is received the state transitions back to INIT and
80 * another message is sent. When the userspace handler replies, state
81 * transitions to REPLIED.
82 */
83 enum notify_state state;
84
85 /* The return values, only valid when in SECCOMP_NOTIFY_REPLIED */
86 int error;
87 long val;
88 u32 flags;
89
90 /*
91 * Signals when this has changed states, such as the listener
92 * dying, a new seccomp addfd message, or changing to REPLIED
93 */
94 struct completion ready;
95
96 struct list_head list;
97
98 /* outstanding addfd requests */
99 struct list_head addfd;
100 };
101
102 /**
103 * struct seccomp_kaddfd - container for seccomp_addfd ioctl messages
104 *
105 * @file: A reference to the file to install in the other task
106 * @fd: The fd number to install it at. If the fd number is -1, it means the
107 * installing process should allocate the fd as normal.
108 * @flags: The flags for the new file descriptor. At the moment, only O_CLOEXEC
109 * is allowed.
110 * @ret: The return value of the installing process. It is set to the fd num
111 * upon success (>= 0).
112 * @completion: Indicates that the installing process has completed fd
113 * installation, or gone away (either due to successful
114 * reply, or signal)
115 *
116 */
117 struct seccomp_kaddfd {
118 struct file *file;
119 int fd;
120 unsigned int flags;
121
122 /* To only be set on reply */
123 int ret;
124 struct completion completion;
125 struct list_head list;
126 };
127
128 /**
129 * struct notification - container for seccomp userspace notifications. Since
130 * most seccomp filters will not have notification listeners attached and this
131 * structure is fairly large, we store the notification-specific stuff in a
132 * separate structure.
133 *
134 * @request: A semaphore that users of this notification can wait on for
135 * changes. Actual reads and writes are still controlled with
136 * filter->notify_lock.
137 * @next_id: The id of the next request.
138 * @notifications: A list of struct seccomp_knotif elements.
139 */
140 struct notification {
141 struct semaphore request;
142 u64 next_id;
143 struct list_head notifications;
144 };
145
146 /**
147 * struct seccomp_filter - container for seccomp BPF programs
148 *
149 * @refs: Reference count to manage the object lifetime.
150 * A filter's reference count is incremented for each directly
151 * attached task, once for the dependent filter, and if
152 * requested for the user notifier. When @refs reaches zero,
153 * the filter can be freed.
154 * @users: A filter's @users count is incremented for each directly
155 * attached task (filter installation, fork(), thread_sync),
156 * and once for the dependent filter (tracked in filter->prev).
157 * When it reaches zero it indicates that no direct or indirect
158 * users of that filter exist. No new tasks can get associated with
159 * this filter after reaching 0. The @users count is always smaller
160 * or equal to @refs. Hence, reaching 0 for @users does not mean
161 * the filter can be freed.
162 * @log: true if all actions except for SECCOMP_RET_ALLOW should be logged
163 * @prev: points to a previously installed, or inherited, filter
164 * @prog: the BPF program to evaluate
165 * @notif: the struct that holds all notification related information
166 * @notify_lock: A lock for all notification-related accesses.
167 * @wqh: A wait queue for poll if a notifier is in use.
168 *
169 * seccomp_filter objects are organized in a tree linked via the @prev
170 * pointer. For any task, it appears to be a singly-linked list starting
171 * with current->seccomp.filter, the most recently attached or inherited filter.
172 * However, multiple filters may share a @prev node, by way of fork(), which
173 * results in a unidirectional tree existing in memory. This is similar to
174 * how namespaces work.
175 *
176 * seccomp_filter objects should never be modified after being attached
177 * to a task_struct (other than @refs).
178 */
179 struct seccomp_filter {
180 refcount_t refs;
181 refcount_t users;
182 bool log;
183 struct seccomp_filter *prev;
184 struct bpf_prog *prog;
185 struct notification *notif;
186 struct mutex notify_lock;
187 wait_queue_head_t wqh;
188 };
189
190 /* Limit any path through the tree to 256KB worth of instructions. */
191 #define MAX_INSNS_PER_PATH ((1 << 18) / sizeof(struct sock_filter))
192
193 /*
194 * Endianness is explicitly ignored and left for BPF program authors to manage
195 * as per the specific architecture.
196 */
197 static void populate_seccomp_data(struct seccomp_data *sd)
198 {
199 /*
200 * Instead of using current_pt_reg(), we're already doing the work
201 * to safely fetch "current", so just use "task" everywhere below.
202 */
203 struct task_struct *task = current;
204 struct pt_regs *regs = task_pt_regs(task);
205 unsigned long args[6];
206
207 sd->nr = syscall_get_nr(task, regs);
208 sd->arch = syscall_get_arch(task);
209 syscall_get_arguments(task, regs, args);
210 sd->args[0] = args[0];
211 sd->args[1] = args[1];
212 sd->args[2] = args[2];
213 sd->args[3] = args[3];
214 sd->args[4] = args[4];
215 sd->args[5] = args[5];
216 sd->instruction_pointer = KSTK_EIP(task);
217 }
218
219 /**
220 * seccomp_check_filter - verify seccomp filter code
221 * @filter: filter to verify
222 * @flen: length of filter
223 *
224 * Takes a previously checked filter (by bpf_check_classic) and
225 * redirects all filter code that loads struct sk_buff data
226 * and related data through seccomp_bpf_load. It also
227 * enforces length and alignment checking of those loads.
228 *
229 * Returns 0 if the rule set is legal or -EINVAL if not.
230 */
231 static int seccomp_check_filter(struct sock_filter *filter, unsigned int flen)
232 {
233 int pc;
234 for (pc = 0; pc < flen; pc++) {
235 struct sock_filter *ftest = &filter[pc];
236 u16 code = ftest->code;
237 u32 k = ftest->k;
238
239 switch (code) {
240 case BPF_LD | BPF_W | BPF_ABS:
241 ftest->code = BPF_LDX | BPF_W | BPF_ABS;
242 /* 32-bit aligned and not out of bounds. */
243 if (k >= sizeof(struct seccomp_data) || k & 3)
244 return -EINVAL;
245 continue;
246 case BPF_LD | BPF_W | BPF_LEN:
247 ftest->code = BPF_LD | BPF_IMM;
248 ftest->k = sizeof(struct seccomp_data);
249 continue;
250 case BPF_LDX | BPF_W | BPF_LEN:
251 ftest->code = BPF_LDX | BPF_IMM;
252 ftest->k = sizeof(struct seccomp_data);
253 continue;
254 /* Explicitly include allowed calls. */
255 case BPF_RET | BPF_K:
256 case BPF_RET | BPF_A:
257 case BPF_ALU | BPF_ADD | BPF_K:
258 case BPF_ALU | BPF_ADD | BPF_X:
259 case BPF_ALU | BPF_SUB | BPF_K:
260 case BPF_ALU | BPF_SUB | BPF_X:
261 case BPF_ALU | BPF_MUL | BPF_K:
262 case BPF_ALU | BPF_MUL | BPF_X:
263 case BPF_ALU | BPF_DIV | BPF_K:
264 case BPF_ALU | BPF_DIV | BPF_X:
265 case BPF_ALU | BPF_AND | BPF_K:
266 case BPF_ALU | BPF_AND | BPF_X:
267 case BPF_ALU | BPF_OR | BPF_K:
268 case BPF_ALU | BPF_OR | BPF_X:
269 case BPF_ALU | BPF_XOR | BPF_K:
270 case BPF_ALU | BPF_XOR | BPF_X:
271 case BPF_ALU | BPF_LSH | BPF_K:
272 case BPF_ALU | BPF_LSH | BPF_X:
273 case BPF_ALU | BPF_RSH | BPF_K:
274 case BPF_ALU | BPF_RSH | BPF_X:
275 case BPF_ALU | BPF_NEG:
276 case BPF_LD | BPF_IMM:
277 case BPF_LDX | BPF_IMM:
278 case BPF_MISC | BPF_TAX:
279 case BPF_MISC | BPF_TXA:
280 case BPF_LD | BPF_MEM:
281 case BPF_LDX | BPF_MEM:
282 case BPF_ST:
283 case BPF_STX:
284 case BPF_JMP | BPF_JA:
285 case BPF_JMP | BPF_JEQ | BPF_K:
286 case BPF_JMP | BPF_JEQ | BPF_X:
287 case BPF_JMP | BPF_JGE | BPF_K:
288 case BPF_JMP | BPF_JGE | BPF_X:
289 case BPF_JMP | BPF_JGT | BPF_K:
290 case BPF_JMP | BPF_JGT | BPF_X:
291 case BPF_JMP | BPF_JSET | BPF_K:
292 case BPF_JMP | BPF_JSET | BPF_X:
293 continue;
294 default:
295 return -EINVAL;
296 }
297 }
298 return 0;
299 }
300
301 /**
302 * seccomp_run_filters - evaluates all seccomp filters against @sd
303 * @sd: optional seccomp data to be passed to filters
304 * @match: stores struct seccomp_filter that resulted in the return value,
305 * unless filter returned SECCOMP_RET_ALLOW, in which case it will
306 * be unchanged.
307 *
308 * Returns valid seccomp BPF response codes.
309 */
310 #define ACTION_ONLY(ret) ((s32)((ret) & (SECCOMP_RET_ACTION_FULL)))
311 static u32 seccomp_run_filters(const struct seccomp_data *sd,
312 struct seccomp_filter **match)
313 {
314 u32 ret = SECCOMP_RET_ALLOW;
315 /* Make sure cross-thread synced filter points somewhere sane. */
316 struct seccomp_filter *f =
317 READ_ONCE(current->seccomp.filter);
318
319 /* Ensure unexpected behavior doesn't result in failing open. */
320 if (WARN_ON(f == NULL))
321 return SECCOMP_RET_KILL_PROCESS;
322
323 /*
324 * All filters in the list are evaluated and the lowest BPF return
325 * value always takes priority (ignoring the DATA).
326 */
327 for (; f; f = f->prev) {
328 u32 cur_ret = bpf_prog_run_pin_on_cpu(f->prog, sd);
329
330 if (ACTION_ONLY(cur_ret) < ACTION_ONLY(ret)) {
331 ret = cur_ret;
332 *match = f;
333 }
334 }
335 return ret;
336 }
337 #endif /* CONFIG_SECCOMP_FILTER */
338
339 static inline bool seccomp_may_assign_mode(unsigned long seccomp_mode)
340 {
341 assert_spin_locked(&current->sighand->siglock);
342
343 if (current->seccomp.mode && current->seccomp.mode != seccomp_mode)
344 return false;
345
346 return true;
347 }
348
349 void __weak arch_seccomp_spec_mitigate(struct task_struct *task) { }
350
351 static inline void seccomp_assign_mode(struct task_struct *task,
352 unsigned long seccomp_mode,
353 unsigned long flags)
354 {
355 assert_spin_locked(&task->sighand->siglock);
356
357 task->seccomp.mode = seccomp_mode;
358 /*
359 * Make sure TIF_SECCOMP cannot be set before the mode (and
360 * filter) is set.
361 */
362 smp_mb__before_atomic();
363 /* Assume default seccomp processes want spec flaw mitigation. */
364 if ((flags & SECCOMP_FILTER_FLAG_SPEC_ALLOW) == 0)
365 arch_seccomp_spec_mitigate(task);
366 set_tsk_thread_flag(task, TIF_SECCOMP);
367 }
368
369 #ifdef CONFIG_SECCOMP_FILTER
370 /* Returns 1 if the parent is an ancestor of the child. */
371 static int is_ancestor(struct seccomp_filter *parent,
372 struct seccomp_filter *child)
373 {
374 /* NULL is the root ancestor. */
375 if (parent == NULL)
376 return 1;
377 for (; child; child = child->prev)
378 if (child == parent)
379 return 1;
380 return 0;
381 }
382
383 /**
384 * seccomp_can_sync_threads: checks if all threads can be synchronized
385 *
386 * Expects sighand and cred_guard_mutex locks to be held.
387 *
388 * Returns 0 on success, -ve on error, or the pid of a thread which was
389 * either not in the correct seccomp mode or did not have an ancestral
390 * seccomp filter.
391 */
392 static inline pid_t seccomp_can_sync_threads(void)
393 {
394 struct task_struct *thread, *caller;
395
396 BUG_ON(!mutex_is_locked(&current->signal->cred_guard_mutex));
397 assert_spin_locked(&current->sighand->siglock);
398
399 /* Validate all threads being eligible for synchronization. */
400 caller = current;
401 for_each_thread(caller, thread) {
402 pid_t failed;
403
404 /* Skip current, since it is initiating the sync. */
405 if (thread == caller)
406 continue;
407
408 if (thread->seccomp.mode == SECCOMP_MODE_DISABLED ||
409 (thread->seccomp.mode == SECCOMP_MODE_FILTER &&
410 is_ancestor(thread->seccomp.filter,
411 caller->seccomp.filter)))
412 continue;
413
414 /* Return the first thread that cannot be synchronized. */
415 failed = task_pid_vnr(thread);
416 /* If the pid cannot be resolved, then return -ESRCH */
417 if (WARN_ON(failed == 0))
418 failed = -ESRCH;
419 return failed;
420 }
421
422 return 0;
423 }
424
425 static inline void seccomp_filter_free(struct seccomp_filter *filter)
426 {
427 if (filter) {
428 bpf_prog_destroy(filter->prog);
429 kfree(filter);
430 }
431 }
432
433 static void __seccomp_filter_orphan(struct seccomp_filter *orig)
434 {
435 while (orig && refcount_dec_and_test(&orig->users)) {
436 if (waitqueue_active(&orig->wqh))
437 wake_up_poll(&orig->wqh, EPOLLHUP);
438 orig = orig->prev;
439 }
440 }
441
442 static void __put_seccomp_filter(struct seccomp_filter *orig)
443 {
444 /* Clean up single-reference branches iteratively. */
445 while (orig && refcount_dec_and_test(&orig->refs)) {
446 struct seccomp_filter *freeme = orig;
447 orig = orig->prev;
448 seccomp_filter_free(freeme);
449 }
450 }
451
452 static void __seccomp_filter_release(struct seccomp_filter *orig)
453 {
454 /* Notify about any unused filters in the task's former filter tree. */
455 __seccomp_filter_orphan(orig);
456 /* Finally drop all references to the task's former tree. */
457 __put_seccomp_filter(orig);
458 }
459
460 /**
461 * seccomp_filter_release - Detach the task from its filter tree,
462 * drop its reference count, and notify
463 * about unused filters
464 *
465 * This function should only be called when the task is exiting as
466 * it detaches it from its filter tree. As such, READ_ONCE() and
467 * barriers are not needed here, as would normally be needed.
468 */
469 void seccomp_filter_release(struct task_struct *tsk)
470 {
471 struct seccomp_filter *orig = tsk->seccomp.filter;
472
473 /* Detach task from its filter tree. */
474 tsk->seccomp.filter = NULL;
475 __seccomp_filter_release(orig);
476 }
477
478 /**
479 * seccomp_sync_threads: sets all threads to use current's filter
480 *
481 * Expects sighand and cred_guard_mutex locks to be held, and for
482 * seccomp_can_sync_threads() to have returned success already
483 * without dropping the locks.
484 *
485 */
486 static inline void seccomp_sync_threads(unsigned long flags)
487 {
488 struct task_struct *thread, *caller;
489
490 BUG_ON(!mutex_is_locked(&current->signal->cred_guard_mutex));
491 assert_spin_locked(&current->sighand->siglock);
492
493 /* Synchronize all threads. */
494 caller = current;
495 for_each_thread(caller, thread) {
496 /* Skip current, since it needs no changes. */
497 if (thread == caller)
498 continue;
499
500 /* Get a task reference for the new leaf node. */
501 get_seccomp_filter(caller);
502
503 /*
504 * Drop the task reference to the shared ancestor since
505 * current's path will hold a reference. (This also
506 * allows a put before the assignment.)
507 */
508 __seccomp_filter_release(thread->seccomp.filter);
509
510 /* Make our new filter tree visible. */
511 smp_store_release(&thread->seccomp.filter,
512 caller->seccomp.filter);
513 atomic_set(&thread->seccomp.filter_count,
514 atomic_read(&thread->seccomp.filter_count));
515
516 /*
517 * Don't let an unprivileged task work around
518 * the no_new_privs restriction by creating
519 * a thread that sets it up, enters seccomp,
520 * then dies.
521 */
522 if (task_no_new_privs(caller))
523 task_set_no_new_privs(thread);
524
525 /*
526 * Opt the other thread into seccomp if needed.
527 * As threads are considered to be trust-realm
528 * equivalent (see ptrace_may_access), it is safe to
529 * allow one thread to transition the other.
530 */
531 if (thread->seccomp.mode == SECCOMP_MODE_DISABLED)
532 seccomp_assign_mode(thread, SECCOMP_MODE_FILTER,
533 flags);
534 }
535 }
536
537 /**
538 * seccomp_prepare_filter: Prepares a seccomp filter for use.
539 * @fprog: BPF program to install
540 *
541 * Returns filter on success or an ERR_PTR on failure.
542 */
543 static struct seccomp_filter *seccomp_prepare_filter(struct sock_fprog *fprog)
544 {
545 struct seccomp_filter *sfilter;
546 int ret;
547 const bool save_orig = IS_ENABLED(CONFIG_CHECKPOINT_RESTORE);
548
549 if (fprog->len == 0 || fprog->len > BPF_MAXINSNS)
550 return ERR_PTR(-EINVAL);
551
552 BUG_ON(INT_MAX / fprog->len < sizeof(struct sock_filter));
553
554 /*
555 * Installing a seccomp filter requires that the task has
556 * CAP_SYS_ADMIN in its namespace or be running with no_new_privs.
557 * This avoids scenarios where unprivileged tasks can affect the
558 * behavior of privileged children.
559 */
560 if (!task_no_new_privs(current) &&
561 security_capable(current_cred(), current_user_ns(),
562 CAP_SYS_ADMIN, CAP_OPT_NOAUDIT) != 0)
563 return ERR_PTR(-EACCES);
564
565 /* Allocate a new seccomp_filter */
566 sfilter = kzalloc(sizeof(*sfilter), GFP_KERNEL | __GFP_NOWARN);
567 if (!sfilter)
568 return ERR_PTR(-ENOMEM);
569
570 mutex_init(&sfilter->notify_lock);
571 ret = bpf_prog_create_from_user(&sfilter->prog, fprog,
572 seccomp_check_filter, save_orig);
573 if (ret < 0) {
574 kfree(sfilter);
575 return ERR_PTR(ret);
576 }
577
578 refcount_set(&sfilter->refs, 1);
579 refcount_set(&sfilter->users, 1);
580 init_waitqueue_head(&sfilter->wqh);
581
582 return sfilter;
583 }
584
585 /**
586 * seccomp_prepare_user_filter - prepares a user-supplied sock_fprog
587 * @user_filter: pointer to the user data containing a sock_fprog.
588 *
589 * Returns 0 on success and non-zero otherwise.
590 */
591 static struct seccomp_filter *
592 seccomp_prepare_user_filter(const char __user *user_filter)
593 {
594 struct sock_fprog fprog;
595 struct seccomp_filter *filter = ERR_PTR(-EFAULT);
596
597 #ifdef CONFIG_COMPAT
598 if (in_compat_syscall()) {
599 struct compat_sock_fprog fprog32;
600 if (copy_from_user(&fprog32, user_filter, sizeof(fprog32)))
601 goto out;
602 fprog.len = fprog32.len;
603 fprog.filter = compat_ptr(fprog32.filter);
604 } else /* falls through to the if below. */
605 #endif
606 if (copy_from_user(&fprog, user_filter, sizeof(fprog)))
607 goto out;
608 filter = seccomp_prepare_filter(&fprog);
609 out:
610 return filter;
611 }
612
613 /**
614 * seccomp_attach_filter: validate and attach filter
615 * @flags: flags to change filter behavior
616 * @filter: seccomp filter to add to the current process
617 *
618 * Caller must be holding current->sighand->siglock lock.
619 *
620 * Returns 0 on success, -ve on error, or
621 * - in TSYNC mode: the pid of a thread which was either not in the correct
622 * seccomp mode or did not have an ancestral seccomp filter
623 * - in NEW_LISTENER mode: the fd of the new listener
624 */
625 static long seccomp_attach_filter(unsigned int flags,
626 struct seccomp_filter *filter)
627 {
628 unsigned long total_insns;
629 struct seccomp_filter *walker;
630
631 assert_spin_locked(&current->sighand->siglock);
632
633 /* Validate resulting filter length. */
634 total_insns = filter->prog->len;
635 for (walker = current->seccomp.filter; walker; walker = walker->prev)
636 total_insns += walker->prog->len + 4; /* 4 instr penalty */
637 if (total_insns > MAX_INSNS_PER_PATH)
638 return -ENOMEM;
639
640 /* If thread sync has been requested, check that it is possible. */
641 if (flags & SECCOMP_FILTER_FLAG_TSYNC) {
642 int ret;
643
644 ret = seccomp_can_sync_threads();
645 if (ret) {
646 if (flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH)
647 return -ESRCH;
648 else
649 return ret;
650 }
651 }
652
653 /* Set log flag, if present. */
654 if (flags & SECCOMP_FILTER_FLAG_LOG)
655 filter->log = true;
656
657 /*
658 * If there is an existing filter, make it the prev and don't drop its
659 * task reference.
660 */
661 filter->prev = current->seccomp.filter;
662 current->seccomp.filter = filter;
663 atomic_inc(&current->seccomp.filter_count);
664
665 /* Now that the new filter is in place, synchronize to all threads. */
666 if (flags & SECCOMP_FILTER_FLAG_TSYNC)
667 seccomp_sync_threads(flags);
668
669 return 0;
670 }
671
672 static void __get_seccomp_filter(struct seccomp_filter *filter)
673 {
674 refcount_inc(&filter->refs);
675 }
676
677 /* get_seccomp_filter - increments the reference count of the filter on @tsk */
678 void get_seccomp_filter(struct task_struct *tsk)
679 {
680 struct seccomp_filter *orig = tsk->seccomp.filter;
681 if (!orig)
682 return;
683 __get_seccomp_filter(orig);
684 refcount_inc(&orig->users);
685 }
686
687 static void seccomp_init_siginfo(kernel_siginfo_t *info, int syscall, int reason)
688 {
689 clear_siginfo(info);
690 info->si_signo = SIGSYS;
691 info->si_code = SYS_SECCOMP;
692 info->si_call_addr = (void __user *)KSTK_EIP(current);
693 info->si_errno = reason;
694 info->si_arch = syscall_get_arch(current);
695 info->si_syscall = syscall;
696 }
697
698 /**
699 * seccomp_send_sigsys - signals the task to allow in-process syscall emulation
700 * @syscall: syscall number to send to userland
701 * @reason: filter-supplied reason code to send to userland (via si_errno)
702 *
703 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
704 */
705 static void seccomp_send_sigsys(int syscall, int reason)
706 {
707 struct kernel_siginfo info;
708 seccomp_init_siginfo(&info, syscall, reason);
709 force_sig_info(&info);
710 }
711 #endif /* CONFIG_SECCOMP_FILTER */
712
713 /* For use with seccomp_actions_logged */
714 #define SECCOMP_LOG_KILL_PROCESS (1 << 0)
715 #define SECCOMP_LOG_KILL_THREAD (1 << 1)
716 #define SECCOMP_LOG_TRAP (1 << 2)
717 #define SECCOMP_LOG_ERRNO (1 << 3)
718 #define SECCOMP_LOG_TRACE (1 << 4)
719 #define SECCOMP_LOG_LOG (1 << 5)
720 #define SECCOMP_LOG_ALLOW (1 << 6)
721 #define SECCOMP_LOG_USER_NOTIF (1 << 7)
722
723 static u32 seccomp_actions_logged = SECCOMP_LOG_KILL_PROCESS |
724 SECCOMP_LOG_KILL_THREAD |
725 SECCOMP_LOG_TRAP |
726 SECCOMP_LOG_ERRNO |
727 SECCOMP_LOG_USER_NOTIF |
728 SECCOMP_LOG_TRACE |
729 SECCOMP_LOG_LOG;
730
731 static inline void seccomp_log(unsigned long syscall, long signr, u32 action,
732 bool requested)
733 {
734 bool log = false;
735
736 switch (action) {
737 case SECCOMP_RET_ALLOW:
738 break;
739 case SECCOMP_RET_TRAP:
740 log = requested && seccomp_actions_logged & SECCOMP_LOG_TRAP;
741 break;
742 case SECCOMP_RET_ERRNO:
743 log = requested && seccomp_actions_logged & SECCOMP_LOG_ERRNO;
744 break;
745 case SECCOMP_RET_TRACE:
746 log = requested && seccomp_actions_logged & SECCOMP_LOG_TRACE;
747 break;
748 case SECCOMP_RET_USER_NOTIF:
749 log = requested && seccomp_actions_logged & SECCOMP_LOG_USER_NOTIF;
750 break;
751 case SECCOMP_RET_LOG:
752 log = seccomp_actions_logged & SECCOMP_LOG_LOG;
753 break;
754 case SECCOMP_RET_KILL_THREAD:
755 log = seccomp_actions_logged & SECCOMP_LOG_KILL_THREAD;
756 break;
757 case SECCOMP_RET_KILL_PROCESS:
758 default:
759 log = seccomp_actions_logged & SECCOMP_LOG_KILL_PROCESS;
760 }
761
762 /*
763 * Emit an audit message when the action is RET_KILL_*, RET_LOG, or the
764 * FILTER_FLAG_LOG bit was set. The admin has the ability to silence
765 * any action from being logged by removing the action name from the
766 * seccomp_actions_logged sysctl.
767 */
768 if (!log)
769 return;
770
771 audit_seccomp(syscall, signr, action);
772 }
773
774 /*
775 * Secure computing mode 1 allows only read/write/exit/sigreturn.
776 * To be fully secure this must be combined with rlimit
777 * to limit the stack allocations too.
778 */
779 static const int mode1_syscalls[] = {
780 __NR_seccomp_read, __NR_seccomp_write, __NR_seccomp_exit, __NR_seccomp_sigreturn,
781 -1, /* negative terminated */
782 };
783
784 static void __secure_computing_strict(int this_syscall)
785 {
786 const int *allowed_syscalls = mode1_syscalls;
787 #ifdef CONFIG_COMPAT
788 if (in_compat_syscall())
789 allowed_syscalls = get_compat_mode1_syscalls();
790 #endif
791 do {
792 if (*allowed_syscalls == this_syscall)
793 return;
794 } while (*++allowed_syscalls != -1);
795
796 #ifdef SECCOMP_DEBUG
797 dump_stack();
798 #endif
799 seccomp_log(this_syscall, SIGKILL, SECCOMP_RET_KILL_THREAD, true);
800 do_exit(SIGKILL);
801 }
802
803 #ifndef CONFIG_HAVE_ARCH_SECCOMP_FILTER
804 void secure_computing_strict(int this_syscall)
805 {
806 int mode = current->seccomp.mode;
807
808 if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) &&
809 unlikely(current->ptrace & PT_SUSPEND_SECCOMP))
810 return;
811
812 if (mode == SECCOMP_MODE_DISABLED)
813 return;
814 else if (mode == SECCOMP_MODE_STRICT)
815 __secure_computing_strict(this_syscall);
816 else
817 BUG();
818 }
819 #else
820
821 #ifdef CONFIG_SECCOMP_FILTER
822 static u64 seccomp_next_notify_id(struct seccomp_filter *filter)
823 {
824 /*
825 * Note: overflow is ok here, the id just needs to be unique per
826 * filter.
827 */
828 lockdep_assert_held(&filter->notify_lock);
829 return filter->notif->next_id++;
830 }
831
832 static void seccomp_handle_addfd(struct seccomp_kaddfd *addfd)
833 {
834 /*
835 * Remove the notification, and reset the list pointers, indicating
836 * that it has been handled.
837 */
838 list_del_init(&addfd->list);
839 addfd->ret = receive_fd_replace(addfd->fd, addfd->file, addfd->flags);
840 complete(&addfd->completion);
841 }
842
843 static int seccomp_do_user_notification(int this_syscall,
844 struct seccomp_filter *match,
845 const struct seccomp_data *sd)
846 {
847 int err;
848 u32 flags = 0;
849 long ret = 0;
850 struct seccomp_knotif n = {};
851 struct seccomp_kaddfd *addfd, *tmp;
852
853 mutex_lock(&match->notify_lock);
854 err = -ENOSYS;
855 if (!match->notif)
856 goto out;
857
858 n.task = current;
859 n.state = SECCOMP_NOTIFY_INIT;
860 n.data = sd;
861 n.id = seccomp_next_notify_id(match);
862 init_completion(&n.ready);
863 list_add(&n.list, &match->notif->notifications);
864 INIT_LIST_HEAD(&n.addfd);
865
866 up(&match->notif->request);
867 wake_up_poll(&match->wqh, EPOLLIN | EPOLLRDNORM);
868 mutex_unlock(&match->notify_lock);
869
870 /*
871 * This is where we wait for a reply from userspace.
872 */
873 wait:
874 err = wait_for_completion_interruptible(&n.ready);
875 mutex_lock(&match->notify_lock);
876 if (err == 0) {
877 /* Check if we were woken up by a addfd message */
878 addfd = list_first_entry_or_null(&n.addfd,
879 struct seccomp_kaddfd, list);
880 if (addfd && n.state != SECCOMP_NOTIFY_REPLIED) {
881 seccomp_handle_addfd(addfd);
882 mutex_unlock(&match->notify_lock);
883 goto wait;
884 }
885 ret = n.val;
886 err = n.error;
887 flags = n.flags;
888 }
889
890 /* If there were any pending addfd calls, clear them out */
891 list_for_each_entry_safe(addfd, tmp, &n.addfd, list) {
892 /* The process went away before we got a chance to handle it */
893 addfd->ret = -ESRCH;
894 list_del_init(&addfd->list);
895 complete(&addfd->completion);
896 }
897
898 /*
899 * Note that it's possible the listener died in between the time when
900 * we were notified of a response (or a signal) and when we were able to
901 * re-acquire the lock, so only delete from the list if the
902 * notification actually exists.
903 *
904 * Also note that this test is only valid because there's no way to
905 * *reattach* to a notifier right now. If one is added, we'll need to
906 * keep track of the notif itself and make sure they match here.
907 */
908 if (match->notif)
909 list_del(&n.list);
910 out:
911 mutex_unlock(&match->notify_lock);
912
913 /* Userspace requests to continue the syscall. */
914 if (flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE)
915 return 0;
916
917 syscall_set_return_value(current, current_pt_regs(),
918 err, ret);
919 return -1;
920 }
921
922 static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd,
923 const bool recheck_after_trace)
924 {
925 u32 filter_ret, action;
926 struct seccomp_filter *match = NULL;
927 int data;
928 struct seccomp_data sd_local;
929
930 /*
931 * Make sure that any changes to mode from another thread have
932 * been seen after TIF_SECCOMP was seen.
933 */
934 rmb();
935
936 if (!sd) {
937 populate_seccomp_data(&sd_local);
938 sd = &sd_local;
939 }
940
941 filter_ret = seccomp_run_filters(sd, &match);
942 data = filter_ret & SECCOMP_RET_DATA;
943 action = filter_ret & SECCOMP_RET_ACTION_FULL;
944
945 switch (action) {
946 case SECCOMP_RET_ERRNO:
947 /* Set low-order bits as an errno, capped at MAX_ERRNO. */
948 if (data > MAX_ERRNO)
949 data = MAX_ERRNO;
950 syscall_set_return_value(current, current_pt_regs(),
951 -data, 0);
952 goto skip;
953
954 case SECCOMP_RET_TRAP:
955 /* Show the handler the original registers. */
956 syscall_rollback(current, current_pt_regs());
957 /* Let the filter pass back 16 bits of data. */
958 seccomp_send_sigsys(this_syscall, data);
959 goto skip;
960
961 case SECCOMP_RET_TRACE:
962 /* We've been put in this state by the ptracer already. */
963 if (recheck_after_trace)
964 return 0;
965
966 /* ENOSYS these calls if there is no tracer attached. */
967 if (!ptrace_event_enabled(current, PTRACE_EVENT_SECCOMP)) {
968 syscall_set_return_value(current,
969 current_pt_regs(),
970 -ENOSYS, 0);
971 goto skip;
972 }
973
974 /* Allow the BPF to provide the event message */
975 ptrace_event(PTRACE_EVENT_SECCOMP, data);
976 /*
977 * The delivery of a fatal signal during event
978 * notification may silently skip tracer notification,
979 * which could leave us with a potentially unmodified
980 * syscall that the tracer would have liked to have
981 * changed. Since the process is about to die, we just
982 * force the syscall to be skipped and let the signal
983 * kill the process and correctly handle any tracer exit
984 * notifications.
985 */
986 if (fatal_signal_pending(current))
987 goto skip;
988 /* Check if the tracer forced the syscall to be skipped. */
989 this_syscall = syscall_get_nr(current, current_pt_regs());
990 if (this_syscall < 0)
991 goto skip;
992
993 /*
994 * Recheck the syscall, since it may have changed. This
995 * intentionally uses a NULL struct seccomp_data to force
996 * a reload of all registers. This does not goto skip since
997 * a skip would have already been reported.
998 */
999 if (__seccomp_filter(this_syscall, NULL, true))
1000 return -1;
1001
1002 return 0;
1003
1004 case SECCOMP_RET_USER_NOTIF:
1005 if (seccomp_do_user_notification(this_syscall, match, sd))
1006 goto skip;
1007
1008 return 0;
1009
1010 case SECCOMP_RET_LOG:
1011 seccomp_log(this_syscall, 0, action, true);
1012 return 0;
1013
1014 case SECCOMP_RET_ALLOW:
1015 /*
1016 * Note that the "match" filter will always be NULL for
1017 * this action since SECCOMP_RET_ALLOW is the starting
1018 * state in seccomp_run_filters().
1019 */
1020 return 0;
1021
1022 case SECCOMP_RET_KILL_THREAD:
1023 case SECCOMP_RET_KILL_PROCESS:
1024 default:
1025 seccomp_log(this_syscall, SIGSYS, action, true);
1026 /* Dump core only if this is the last remaining thread. */
1027 if (action != SECCOMP_RET_KILL_THREAD ||
1028 get_nr_threads(current) == 1) {
1029 kernel_siginfo_t info;
1030
1031 /* Show the original registers in the dump. */
1032 syscall_rollback(current, current_pt_regs());
1033 /* Trigger a manual coredump since do_exit skips it. */
1034 seccomp_init_siginfo(&info, this_syscall, data);
1035 do_coredump(&info);
1036 }
1037 if (action == SECCOMP_RET_KILL_THREAD)
1038 do_exit(SIGSYS);
1039 else
1040 do_group_exit(SIGSYS);
1041 }
1042
1043 unreachable();
1044
1045 skip:
1046 seccomp_log(this_syscall, 0, action, match ? match->log : false);
1047 return -1;
1048 }
1049 #else
1050 static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd,
1051 const bool recheck_after_trace)
1052 {
1053 BUG();
1054 }
1055 #endif
1056
1057 int __secure_computing(const struct seccomp_data *sd)
1058 {
1059 int mode = current->seccomp.mode;
1060 int this_syscall;
1061
1062 if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) &&
1063 unlikely(current->ptrace & PT_SUSPEND_SECCOMP))
1064 return 0;
1065
1066 this_syscall = sd ? sd->nr :
1067 syscall_get_nr(current, current_pt_regs());
1068
1069 switch (mode) {
1070 case SECCOMP_MODE_STRICT:
1071 __secure_computing_strict(this_syscall); /* may call do_exit */
1072 return 0;
1073 case SECCOMP_MODE_FILTER:
1074 return __seccomp_filter(this_syscall, sd, false);
1075 default:
1076 BUG();
1077 }
1078 }
1079 #endif /* CONFIG_HAVE_ARCH_SECCOMP_FILTER */
1080
1081 long prctl_get_seccomp(void)
1082 {
1083 return current->seccomp.mode;
1084 }
1085
1086 /**
1087 * seccomp_set_mode_strict: internal function for setting strict seccomp
1088 *
1089 * Once current->seccomp.mode is non-zero, it may not be changed.
1090 *
1091 * Returns 0 on success or -EINVAL on failure.
1092 */
1093 static long seccomp_set_mode_strict(void)
1094 {
1095 const unsigned long seccomp_mode = SECCOMP_MODE_STRICT;
1096 long ret = -EINVAL;
1097
1098 spin_lock_irq(&current->sighand->siglock);
1099
1100 if (!seccomp_may_assign_mode(seccomp_mode))
1101 goto out;
1102
1103 #ifdef TIF_NOTSC
1104 disable_TSC();
1105 #endif
1106 seccomp_assign_mode(current, seccomp_mode, 0);
1107 ret = 0;
1108
1109 out:
1110 spin_unlock_irq(&current->sighand->siglock);
1111
1112 return ret;
1113 }
1114
1115 #ifdef CONFIG_SECCOMP_FILTER
1116 static void seccomp_notify_free(struct seccomp_filter *filter)
1117 {
1118 kfree(filter->notif);
1119 filter->notif = NULL;
1120 }
1121
1122 static void seccomp_notify_detach(struct seccomp_filter *filter)
1123 {
1124 struct seccomp_knotif *knotif;
1125
1126 if (!filter)
1127 return;
1128
1129 mutex_lock(&filter->notify_lock);
1130
1131 /*
1132 * If this file is being closed because e.g. the task who owned it
1133 * died, let's wake everyone up who was waiting on us.
1134 */
1135 list_for_each_entry(knotif, &filter->notif->notifications, list) {
1136 if (knotif->state == SECCOMP_NOTIFY_REPLIED)
1137 continue;
1138
1139 knotif->state = SECCOMP_NOTIFY_REPLIED;
1140 knotif->error = -ENOSYS;
1141 knotif->val = 0;
1142
1143 /*
1144 * We do not need to wake up any pending addfd messages, as
1145 * the notifier will do that for us, as this just looks
1146 * like a standard reply.
1147 */
1148 complete(&knotif->ready);
1149 }
1150
1151 seccomp_notify_free(filter);
1152 mutex_unlock(&filter->notify_lock);
1153 }
1154
1155 static int seccomp_notify_release(struct inode *inode, struct file *file)
1156 {
1157 struct seccomp_filter *filter = file->private_data;
1158
1159 seccomp_notify_detach(filter);
1160 __put_seccomp_filter(filter);
1161 return 0;
1162 }
1163
1164 /* must be called with notif_lock held */
1165 static inline struct seccomp_knotif *
1166 find_notification(struct seccomp_filter *filter, u64 id)
1167 {
1168 struct seccomp_knotif *cur;
1169
1170 lockdep_assert_held(&filter->notify_lock);
1171
1172 list_for_each_entry(cur, &filter->notif->notifications, list) {
1173 if (cur->id == id)
1174 return cur;
1175 }
1176
1177 return NULL;
1178 }
1179
1180
1181 static long seccomp_notify_recv(struct seccomp_filter *filter,
1182 void __user *buf)
1183 {
1184 struct seccomp_knotif *knotif = NULL, *cur;
1185 struct seccomp_notif unotif;
1186 ssize_t ret;
1187
1188 /* Verify that we're not given garbage to keep struct extensible. */
1189 ret = check_zeroed_user(buf, sizeof(unotif));
1190 if (ret < 0)
1191 return ret;
1192 if (!ret)
1193 return -EINVAL;
1194
1195 memset(&unotif, 0, sizeof(unotif));
1196
1197 ret = down_interruptible(&filter->notif->request);
1198 if (ret < 0)
1199 return ret;
1200
1201 mutex_lock(&filter->notify_lock);
1202 list_for_each_entry(cur, &filter->notif->notifications, list) {
1203 if (cur->state == SECCOMP_NOTIFY_INIT) {
1204 knotif = cur;
1205 break;
1206 }
1207 }
1208
1209 /*
1210 * If we didn't find a notification, it could be that the task was
1211 * interrupted by a fatal signal between the time we were woken and
1212 * when we were able to acquire the rw lock.
1213 */
1214 if (!knotif) {
1215 ret = -ENOENT;
1216 goto out;
1217 }
1218
1219 unotif.id = knotif->id;
1220 unotif.pid = task_pid_vnr(knotif->task);
1221 unotif.data = *(knotif->data);
1222
1223 knotif->state = SECCOMP_NOTIFY_SENT;
1224 wake_up_poll(&filter->wqh, EPOLLOUT | EPOLLWRNORM);
1225 ret = 0;
1226 out:
1227 mutex_unlock(&filter->notify_lock);
1228
1229 if (ret == 0 && copy_to_user(buf, &unotif, sizeof(unotif))) {
1230 ret = -EFAULT;
1231
1232 /*
1233 * Userspace screwed up. To make sure that we keep this
1234 * notification alive, let's reset it back to INIT. It
1235 * may have died when we released the lock, so we need to make
1236 * sure it's still around.
1237 */
1238 mutex_lock(&filter->notify_lock);
1239 knotif = find_notification(filter, unotif.id);
1240 if (knotif) {
1241 knotif->state = SECCOMP_NOTIFY_INIT;
1242 up(&filter->notif->request);
1243 }
1244 mutex_unlock(&filter->notify_lock);
1245 }
1246
1247 return ret;
1248 }
1249
1250 static long seccomp_notify_send(struct seccomp_filter *filter,
1251 void __user *buf)
1252 {
1253 struct seccomp_notif_resp resp = {};
1254 struct seccomp_knotif *knotif;
1255 long ret;
1256
1257 if (copy_from_user(&resp, buf, sizeof(resp)))
1258 return -EFAULT;
1259
1260 if (resp.flags & ~SECCOMP_USER_NOTIF_FLAG_CONTINUE)
1261 return -EINVAL;
1262
1263 if ((resp.flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE) &&
1264 (resp.error || resp.val))
1265 return -EINVAL;
1266
1267 ret = mutex_lock_interruptible(&filter->notify_lock);
1268 if (ret < 0)
1269 return ret;
1270
1271 knotif = find_notification(filter, resp.id);
1272 if (!knotif) {
1273 ret = -ENOENT;
1274 goto out;
1275 }
1276
1277 /* Allow exactly one reply. */
1278 if (knotif->state != SECCOMP_NOTIFY_SENT) {
1279 ret = -EINPROGRESS;
1280 goto out;
1281 }
1282
1283 ret = 0;
1284 knotif->state = SECCOMP_NOTIFY_REPLIED;
1285 knotif->error = resp.error;
1286 knotif->val = resp.val;
1287 knotif->flags = resp.flags;
1288 complete(&knotif->ready);
1289 out:
1290 mutex_unlock(&filter->notify_lock);
1291 return ret;
1292 }
1293
1294 static long seccomp_notify_id_valid(struct seccomp_filter *filter,
1295 void __user *buf)
1296 {
1297 struct seccomp_knotif *knotif;
1298 u64 id;
1299 long ret;
1300
1301 if (copy_from_user(&id, buf, sizeof(id)))
1302 return -EFAULT;
1303
1304 ret = mutex_lock_interruptible(&filter->notify_lock);
1305 if (ret < 0)
1306 return ret;
1307
1308 knotif = find_notification(filter, id);
1309 if (knotif && knotif->state == SECCOMP_NOTIFY_SENT)
1310 ret = 0;
1311 else
1312 ret = -ENOENT;
1313
1314 mutex_unlock(&filter->notify_lock);
1315 return ret;
1316 }
1317
1318 static long seccomp_notify_addfd(struct seccomp_filter *filter,
1319 struct seccomp_notif_addfd __user *uaddfd,
1320 unsigned int size)
1321 {
1322 struct seccomp_notif_addfd addfd;
1323 struct seccomp_knotif *knotif;
1324 struct seccomp_kaddfd kaddfd;
1325 int ret;
1326
1327 BUILD_BUG_ON(sizeof(addfd) < SECCOMP_NOTIFY_ADDFD_SIZE_VER0);
1328 BUILD_BUG_ON(sizeof(addfd) != SECCOMP_NOTIFY_ADDFD_SIZE_LATEST);
1329
1330 if (size < SECCOMP_NOTIFY_ADDFD_SIZE_VER0 || size >= PAGE_SIZE)
1331 return -EINVAL;
1332
1333 ret = copy_struct_from_user(&addfd, sizeof(addfd), uaddfd, size);
1334 if (ret)
1335 return ret;
1336
1337 if (addfd.newfd_flags & ~O_CLOEXEC)
1338 return -EINVAL;
1339
1340 if (addfd.flags & ~SECCOMP_ADDFD_FLAG_SETFD)
1341 return -EINVAL;
1342
1343 if (addfd.newfd && !(addfd.flags & SECCOMP_ADDFD_FLAG_SETFD))
1344 return -EINVAL;
1345
1346 kaddfd.file = fget(addfd.srcfd);
1347 if (!kaddfd.file)
1348 return -EBADF;
1349
1350 kaddfd.flags = addfd.newfd_flags;
1351 kaddfd.fd = (addfd.flags & SECCOMP_ADDFD_FLAG_SETFD) ?
1352 addfd.newfd : -1;
1353 init_completion(&kaddfd.completion);
1354
1355 ret = mutex_lock_interruptible(&filter->notify_lock);
1356 if (ret < 0)
1357 goto out;
1358
1359 knotif = find_notification(filter, addfd.id);
1360 if (!knotif) {
1361 ret = -ENOENT;
1362 goto out_unlock;
1363 }
1364
1365 /*
1366 * We do not want to allow for FD injection to occur before the
1367 * notification has been picked up by a userspace handler, or after
1368 * the notification has been replied to.
1369 */
1370 if (knotif->state != SECCOMP_NOTIFY_SENT) {
1371 ret = -EINPROGRESS;
1372 goto out_unlock;
1373 }
1374
1375 list_add(&kaddfd.list, &knotif->addfd);
1376 complete(&knotif->ready);
1377 mutex_unlock(&filter->notify_lock);
1378
1379 /* Now we wait for it to be processed or be interrupted */
1380 ret = wait_for_completion_interruptible(&kaddfd.completion);
1381 if (ret == 0) {
1382 /*
1383 * We had a successful completion. The other side has already
1384 * removed us from the addfd queue, and
1385 * wait_for_completion_interruptible has a memory barrier upon
1386 * success that lets us read this value directly without
1387 * locking.
1388 */
1389 ret = kaddfd.ret;
1390 goto out;
1391 }
1392
1393 mutex_lock(&filter->notify_lock);
1394 /*
1395 * Even though we were woken up by a signal and not a successful
1396 * completion, a completion may have happened in the mean time.
1397 *
1398 * We need to check again if the addfd request has been handled,
1399 * and if not, we will remove it from the queue.
1400 */
1401 if (list_empty(&kaddfd.list))
1402 ret = kaddfd.ret;
1403 else
1404 list_del(&kaddfd.list);
1405
1406 out_unlock:
1407 mutex_unlock(&filter->notify_lock);
1408 out:
1409 fput(kaddfd.file);
1410
1411 return ret;
1412 }
1413
1414 static long seccomp_notify_ioctl(struct file *file, unsigned int cmd,
1415 unsigned long arg)
1416 {
1417 struct seccomp_filter *filter = file->private_data;
1418 void __user *buf = (void __user *)arg;
1419
1420 /* Fixed-size ioctls */
1421 switch (cmd) {
1422 case SECCOMP_IOCTL_NOTIF_RECV:
1423 return seccomp_notify_recv(filter, buf);
1424 case SECCOMP_IOCTL_NOTIF_SEND:
1425 return seccomp_notify_send(filter, buf);
1426 case SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR:
1427 case SECCOMP_IOCTL_NOTIF_ID_VALID:
1428 return seccomp_notify_id_valid(filter, buf);
1429 }
1430
1431 /* Extensible Argument ioctls */
1432 #define EA_IOCTL(cmd) ((cmd) & ~(IOC_INOUT | IOCSIZE_MASK))
1433 switch (EA_IOCTL(cmd)) {
1434 case EA_IOCTL(SECCOMP_IOCTL_NOTIF_ADDFD):
1435 return seccomp_notify_addfd(filter, buf, _IOC_SIZE(cmd));
1436 default:
1437 return -EINVAL;
1438 }
1439 }
1440
1441 static __poll_t seccomp_notify_poll(struct file *file,
1442 struct poll_table_struct *poll_tab)
1443 {
1444 struct seccomp_filter *filter = file->private_data;
1445 __poll_t ret = 0;
1446 struct seccomp_knotif *cur;
1447
1448 poll_wait(file, &filter->wqh, poll_tab);
1449
1450 if (mutex_lock_interruptible(&filter->notify_lock) < 0)
1451 return EPOLLERR;
1452
1453 list_for_each_entry(cur, &filter->notif->notifications, list) {
1454 if (cur->state == SECCOMP_NOTIFY_INIT)
1455 ret |= EPOLLIN | EPOLLRDNORM;
1456 if (cur->state == SECCOMP_NOTIFY_SENT)
1457 ret |= EPOLLOUT | EPOLLWRNORM;
1458 if ((ret & EPOLLIN) && (ret & EPOLLOUT))
1459 break;
1460 }
1461
1462 mutex_unlock(&filter->notify_lock);
1463
1464 if (refcount_read(&filter->users) == 0)
1465 ret |= EPOLLHUP;
1466
1467 return ret;
1468 }
1469
1470 static const struct file_operations seccomp_notify_ops = {
1471 .poll = seccomp_notify_poll,
1472 .release = seccomp_notify_release,
1473 .unlocked_ioctl = seccomp_notify_ioctl,
1474 .compat_ioctl = seccomp_notify_ioctl,
1475 };
1476
1477 static struct file *init_listener(struct seccomp_filter *filter)
1478 {
1479 struct file *ret;
1480
1481 ret = ERR_PTR(-ENOMEM);
1482 filter->notif = kzalloc(sizeof(*(filter->notif)), GFP_KERNEL);
1483 if (!filter->notif)
1484 goto out;
1485
1486 sema_init(&filter->notif->request, 0);
1487 filter->notif->next_id = get_random_u64();
1488 INIT_LIST_HEAD(&filter->notif->notifications);
1489
1490 ret = anon_inode_getfile("seccomp notify", &seccomp_notify_ops,
1491 filter, O_RDWR);
1492 if (IS_ERR(ret))
1493 goto out_notif;
1494
1495 /* The file has a reference to it now */
1496 __get_seccomp_filter(filter);
1497
1498 out_notif:
1499 if (IS_ERR(ret))
1500 seccomp_notify_free(filter);
1501 out:
1502 return ret;
1503 }
1504
1505 /*
1506 * Does @new_child have a listener while an ancestor also has a listener?
1507 * If so, we'll want to reject this filter.
1508 * This only has to be tested for the current process, even in the TSYNC case,
1509 * because TSYNC installs @child with the same parent on all threads.
1510 * Note that @new_child is not hooked up to its parent at this point yet, so
1511 * we use current->seccomp.filter.
1512 */
1513 static bool has_duplicate_listener(struct seccomp_filter *new_child)
1514 {
1515 struct seccomp_filter *cur;
1516
1517 /* must be protected against concurrent TSYNC */
1518 lockdep_assert_held(&current->sighand->siglock);
1519
1520 if (!new_child->notif)
1521 return false;
1522 for (cur = current->seccomp.filter; cur; cur = cur->prev) {
1523 if (cur->notif)
1524 return true;
1525 }
1526
1527 return false;
1528 }
1529
1530 /**
1531 * seccomp_set_mode_filter: internal function for setting seccomp filter
1532 * @flags: flags to change filter behavior
1533 * @filter: struct sock_fprog containing filter
1534 *
1535 * This function may be called repeatedly to install additional filters.
1536 * Every filter successfully installed will be evaluated (in reverse order)
1537 * for each system call the task makes.
1538 *
1539 * Once current->seccomp.mode is non-zero, it may not be changed.
1540 *
1541 * Returns 0 on success or -EINVAL on failure.
1542 */
1543 static long seccomp_set_mode_filter(unsigned int flags,
1544 const char __user *filter)
1545 {
1546 const unsigned long seccomp_mode = SECCOMP_MODE_FILTER;
1547 struct seccomp_filter *prepared = NULL;
1548 long ret = -EINVAL;
1549 int listener = -1;
1550 struct file *listener_f = NULL;
1551
1552 /* Validate flags. */
1553 if (flags & ~SECCOMP_FILTER_FLAG_MASK)
1554 return -EINVAL;
1555
1556 /*
1557 * In the successful case, NEW_LISTENER returns the new listener fd.
1558 * But in the failure case, TSYNC returns the thread that died. If you
1559 * combine these two flags, there's no way to tell whether something
1560 * succeeded or failed. So, let's disallow this combination if the user
1561 * has not explicitly requested no errors from TSYNC.
1562 */
1563 if ((flags & SECCOMP_FILTER_FLAG_TSYNC) &&
1564 (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) &&
1565 ((flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH) == 0))
1566 return -EINVAL;
1567
1568 /* Prepare the new filter before holding any locks. */
1569 prepared = seccomp_prepare_user_filter(filter);
1570 if (IS_ERR(prepared))
1571 return PTR_ERR(prepared);
1572
1573 if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) {
1574 listener = get_unused_fd_flags(O_CLOEXEC);
1575 if (listener < 0) {
1576 ret = listener;
1577 goto out_free;
1578 }
1579
1580 listener_f = init_listener(prepared);
1581 if (IS_ERR(listener_f)) {
1582 put_unused_fd(listener);
1583 ret = PTR_ERR(listener_f);
1584 goto out_free;
1585 }
1586 }
1587
1588 /*
1589 * Make sure we cannot change seccomp or nnp state via TSYNC
1590 * while another thread is in the middle of calling exec.
1591 */
1592 if (flags & SECCOMP_FILTER_FLAG_TSYNC &&
1593 mutex_lock_killable(&current->signal->cred_guard_mutex))
1594 goto out_put_fd;
1595
1596 spin_lock_irq(&current->sighand->siglock);
1597
1598 if (!seccomp_may_assign_mode(seccomp_mode))
1599 goto out;
1600
1601 if (has_duplicate_listener(prepared)) {
1602 ret = -EBUSY;
1603 goto out;
1604 }
1605
1606 ret = seccomp_attach_filter(flags, prepared);
1607 if (ret)
1608 goto out;
1609 /* Do not free the successfully attached filter. */
1610 prepared = NULL;
1611
1612 seccomp_assign_mode(current, seccomp_mode, flags);
1613 out:
1614 spin_unlock_irq(&current->sighand->siglock);
1615 if (flags & SECCOMP_FILTER_FLAG_TSYNC)
1616 mutex_unlock(&current->signal->cred_guard_mutex);
1617 out_put_fd:
1618 if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) {
1619 if (ret) {
1620 listener_f->private_data = NULL;
1621 fput(listener_f);
1622 put_unused_fd(listener);
1623 seccomp_notify_detach(prepared);
1624 } else {
1625 fd_install(listener, listener_f);
1626 ret = listener;
1627 }
1628 }
1629 out_free:
1630 seccomp_filter_free(prepared);
1631 return ret;
1632 }
1633 #else
1634 static inline long seccomp_set_mode_filter(unsigned int flags,
1635 const char __user *filter)
1636 {
1637 return -EINVAL;
1638 }
1639 #endif
1640
1641 static long seccomp_get_action_avail(const char __user *uaction)
1642 {
1643 u32 action;
1644
1645 if (copy_from_user(&action, uaction, sizeof(action)))
1646 return -EFAULT;
1647
1648 switch (action) {
1649 case SECCOMP_RET_KILL_PROCESS:
1650 case SECCOMP_RET_KILL_THREAD:
1651 case SECCOMP_RET_TRAP:
1652 case SECCOMP_RET_ERRNO:
1653 case SECCOMP_RET_USER_NOTIF:
1654 case SECCOMP_RET_TRACE:
1655 case SECCOMP_RET_LOG:
1656 case SECCOMP_RET_ALLOW:
1657 break;
1658 default:
1659 return -EOPNOTSUPP;
1660 }
1661
1662 return 0;
1663 }
1664
1665 static long seccomp_get_notif_sizes(void __user *usizes)
1666 {
1667 struct seccomp_notif_sizes sizes = {
1668 .seccomp_notif = sizeof(struct seccomp_notif),
1669 .seccomp_notif_resp = sizeof(struct seccomp_notif_resp),
1670 .seccomp_data = sizeof(struct seccomp_data),
1671 };
1672
1673 if (copy_to_user(usizes, &sizes, sizeof(sizes)))
1674 return -EFAULT;
1675
1676 return 0;
1677 }
1678
1679 /* Common entry point for both prctl and syscall. */
1680 static long do_seccomp(unsigned int op, unsigned int flags,
1681 void __user *uargs)
1682 {
1683 switch (op) {
1684 case SECCOMP_SET_MODE_STRICT:
1685 if (flags != 0 || uargs != NULL)
1686 return -EINVAL;
1687 return seccomp_set_mode_strict();
1688 case SECCOMP_SET_MODE_FILTER:
1689 return seccomp_set_mode_filter(flags, uargs);
1690 case SECCOMP_GET_ACTION_AVAIL:
1691 if (flags != 0)
1692 return -EINVAL;
1693
1694 return seccomp_get_action_avail(uargs);
1695 case SECCOMP_GET_NOTIF_SIZES:
1696 if (flags != 0)
1697 return -EINVAL;
1698
1699 return seccomp_get_notif_sizes(uargs);
1700 default:
1701 return -EINVAL;
1702 }
1703 }
1704
1705 SYSCALL_DEFINE3(seccomp, unsigned int, op, unsigned int, flags,
1706 void __user *, uargs)
1707 {
1708 return do_seccomp(op, flags, uargs);
1709 }
1710
1711 /**
1712 * prctl_set_seccomp: configures current->seccomp.mode
1713 * @seccomp_mode: requested mode to use
1714 * @filter: optional struct sock_fprog for use with SECCOMP_MODE_FILTER
1715 *
1716 * Returns 0 on success or -EINVAL on failure.
1717 */
1718 long prctl_set_seccomp(unsigned long seccomp_mode, void __user *filter)
1719 {
1720 unsigned int op;
1721 void __user *uargs;
1722
1723 switch (seccomp_mode) {
1724 case SECCOMP_MODE_STRICT:
1725 op = SECCOMP_SET_MODE_STRICT;
1726 /*
1727 * Setting strict mode through prctl always ignored filter,
1728 * so make sure it is always NULL here to pass the internal
1729 * check in do_seccomp().
1730 */
1731 uargs = NULL;
1732 break;
1733 case SECCOMP_MODE_FILTER:
1734 op = SECCOMP_SET_MODE_FILTER;
1735 uargs = filter;
1736 break;
1737 default:
1738 return -EINVAL;
1739 }
1740
1741 /* prctl interface doesn't have flags, so they are always zero. */
1742 return do_seccomp(op, 0, uargs);
1743 }
1744
1745 #if defined(CONFIG_SECCOMP_FILTER) && defined(CONFIG_CHECKPOINT_RESTORE)
1746 static struct seccomp_filter *get_nth_filter(struct task_struct *task,
1747 unsigned long filter_off)
1748 {
1749 struct seccomp_filter *orig, *filter;
1750 unsigned long count;
1751
1752 /*
1753 * Note: this is only correct because the caller should be the (ptrace)
1754 * tracer of the task, otherwise lock_task_sighand is needed.
1755 */
1756 spin_lock_irq(&task->sighand->siglock);
1757
1758 if (task->seccomp.mode != SECCOMP_MODE_FILTER) {
1759 spin_unlock_irq(&task->sighand->siglock);
1760 return ERR_PTR(-EINVAL);
1761 }
1762
1763 orig = task->seccomp.filter;
1764 __get_seccomp_filter(orig);
1765 spin_unlock_irq(&task->sighand->siglock);
1766
1767 count = 0;
1768 for (filter = orig; filter; filter = filter->prev)
1769 count++;
1770
1771 if (filter_off >= count) {
1772 filter = ERR_PTR(-ENOENT);
1773 goto out;
1774 }
1775
1776 count -= filter_off;
1777 for (filter = orig; filter && count > 1; filter = filter->prev)
1778 count--;
1779
1780 if (WARN_ON(count != 1 || !filter)) {
1781 filter = ERR_PTR(-ENOENT);
1782 goto out;
1783 }
1784
1785 __get_seccomp_filter(filter);
1786
1787 out:
1788 __put_seccomp_filter(orig);
1789 return filter;
1790 }
1791
1792 long seccomp_get_filter(struct task_struct *task, unsigned long filter_off,
1793 void __user *data)
1794 {
1795 struct seccomp_filter *filter;
1796 struct sock_fprog_kern *fprog;
1797 long ret;
1798
1799 if (!capable(CAP_SYS_ADMIN) ||
1800 current->seccomp.mode != SECCOMP_MODE_DISABLED) {
1801 return -EACCES;
1802 }
1803
1804 filter = get_nth_filter(task, filter_off);
1805 if (IS_ERR(filter))
1806 return PTR_ERR(filter);
1807
1808 fprog = filter->prog->orig_prog;
1809 if (!fprog) {
1810 /* This must be a new non-cBPF filter, since we save
1811 * every cBPF filter's orig_prog above when
1812 * CONFIG_CHECKPOINT_RESTORE is enabled.
1813 */
1814 ret = -EMEDIUMTYPE;
1815 goto out;
1816 }
1817
1818 ret = fprog->len;
1819 if (!data)
1820 goto out;
1821
1822 if (copy_to_user(data, fprog->filter, bpf_classic_proglen(fprog)))
1823 ret = -EFAULT;
1824
1825 out:
1826 __put_seccomp_filter(filter);
1827 return ret;
1828 }
1829
1830 long seccomp_get_metadata(struct task_struct *task,
1831 unsigned long size, void __user *data)
1832 {
1833 long ret;
1834 struct seccomp_filter *filter;
1835 struct seccomp_metadata kmd = {};
1836
1837 if (!capable(CAP_SYS_ADMIN) ||
1838 current->seccomp.mode != SECCOMP_MODE_DISABLED) {
1839 return -EACCES;
1840 }
1841
1842 size = min_t(unsigned long, size, sizeof(kmd));
1843
1844 if (size < sizeof(kmd.filter_off))
1845 return -EINVAL;
1846
1847 if (copy_from_user(&kmd.filter_off, data, sizeof(kmd.filter_off)))
1848 return -EFAULT;
1849
1850 filter = get_nth_filter(task, kmd.filter_off);
1851 if (IS_ERR(filter))
1852 return PTR_ERR(filter);
1853
1854 if (filter->log)
1855 kmd.flags |= SECCOMP_FILTER_FLAG_LOG;
1856
1857 ret = size;
1858 if (copy_to_user(data, &kmd, size))
1859 ret = -EFAULT;
1860
1861 __put_seccomp_filter(filter);
1862 return ret;
1863 }
1864 #endif
1865
1866 #ifdef CONFIG_SYSCTL
1867
1868 /* Human readable action names for friendly sysctl interaction */
1869 #define SECCOMP_RET_KILL_PROCESS_NAME "kill_process"
1870 #define SECCOMP_RET_KILL_THREAD_NAME "kill_thread"
1871 #define SECCOMP_RET_TRAP_NAME "trap"
1872 #define SECCOMP_RET_ERRNO_NAME "errno"
1873 #define SECCOMP_RET_USER_NOTIF_NAME "user_notif"
1874 #define SECCOMP_RET_TRACE_NAME "trace"
1875 #define SECCOMP_RET_LOG_NAME "log"
1876 #define SECCOMP_RET_ALLOW_NAME "allow"
1877
1878 static const char seccomp_actions_avail[] =
1879 SECCOMP_RET_KILL_PROCESS_NAME " "
1880 SECCOMP_RET_KILL_THREAD_NAME " "
1881 SECCOMP_RET_TRAP_NAME " "
1882 SECCOMP_RET_ERRNO_NAME " "
1883 SECCOMP_RET_USER_NOTIF_NAME " "
1884 SECCOMP_RET_TRACE_NAME " "
1885 SECCOMP_RET_LOG_NAME " "
1886 SECCOMP_RET_ALLOW_NAME;
1887
1888 struct seccomp_log_name {
1889 u32 log;
1890 const char *name;
1891 };
1892
1893 static const struct seccomp_log_name seccomp_log_names[] = {
1894 { SECCOMP_LOG_KILL_PROCESS, SECCOMP_RET_KILL_PROCESS_NAME },
1895 { SECCOMP_LOG_KILL_THREAD, SECCOMP_RET_KILL_THREAD_NAME },
1896 { SECCOMP_LOG_TRAP, SECCOMP_RET_TRAP_NAME },
1897 { SECCOMP_LOG_ERRNO, SECCOMP_RET_ERRNO_NAME },
1898 { SECCOMP_LOG_USER_NOTIF, SECCOMP_RET_USER_NOTIF_NAME },
1899 { SECCOMP_LOG_TRACE, SECCOMP_RET_TRACE_NAME },
1900 { SECCOMP_LOG_LOG, SECCOMP_RET_LOG_NAME },
1901 { SECCOMP_LOG_ALLOW, SECCOMP_RET_ALLOW_NAME },
1902 { }
1903 };
1904
1905 static bool seccomp_names_from_actions_logged(char *names, size_t size,
1906 u32 actions_logged,
1907 const char *sep)
1908 {
1909 const struct seccomp_log_name *cur;
1910 bool append_sep = false;
1911
1912 for (cur = seccomp_log_names; cur->name && size; cur++) {
1913 ssize_t ret;
1914
1915 if (!(actions_logged & cur->log))
1916 continue;
1917
1918 if (append_sep) {
1919 ret = strscpy(names, sep, size);
1920 if (ret < 0)
1921 return false;
1922
1923 names += ret;
1924 size -= ret;
1925 } else
1926 append_sep = true;
1927
1928 ret = strscpy(names, cur->name, size);
1929 if (ret < 0)
1930 return false;
1931
1932 names += ret;
1933 size -= ret;
1934 }
1935
1936 return true;
1937 }
1938
1939 static bool seccomp_action_logged_from_name(u32 *action_logged,
1940 const char *name)
1941 {
1942 const struct seccomp_log_name *cur;
1943
1944 for (cur = seccomp_log_names; cur->name; cur++) {
1945 if (!strcmp(cur->name, name)) {
1946 *action_logged = cur->log;
1947 return true;
1948 }
1949 }
1950
1951 return false;
1952 }
1953
1954 static bool seccomp_actions_logged_from_names(u32 *actions_logged, char *names)
1955 {
1956 char *name;
1957
1958 *actions_logged = 0;
1959 while ((name = strsep(&names, " ")) && *name) {
1960 u32 action_logged = 0;
1961
1962 if (!seccomp_action_logged_from_name(&action_logged, name))
1963 return false;
1964
1965 *actions_logged |= action_logged;
1966 }
1967
1968 return true;
1969 }
1970
1971 static int read_actions_logged(struct ctl_table *ro_table, void __user *buffer,
1972 size_t *lenp, loff_t *ppos)
1973 {
1974 char names[sizeof(seccomp_actions_avail)];
1975 struct ctl_table table;
1976
1977 memset(names, 0, sizeof(names));
1978
1979 if (!seccomp_names_from_actions_logged(names, sizeof(names),
1980 seccomp_actions_logged, " "))
1981 return -EINVAL;
1982
1983 table = *ro_table;
1984 table.data = names;
1985 table.maxlen = sizeof(names);
1986 return proc_dostring(&table, 0, buffer, lenp, ppos);
1987 }
1988
1989 static int write_actions_logged(struct ctl_table *ro_table, void __user *buffer,
1990 size_t *lenp, loff_t *ppos, u32 *actions_logged)
1991 {
1992 char names[sizeof(seccomp_actions_avail)];
1993 struct ctl_table table;
1994 int ret;
1995
1996 if (!capable(CAP_SYS_ADMIN))
1997 return -EPERM;
1998
1999 memset(names, 0, sizeof(names));
2000
2001 table = *ro_table;
2002 table.data = names;
2003 table.maxlen = sizeof(names);
2004 ret = proc_dostring(&table, 1, buffer, lenp, ppos);
2005 if (ret)
2006 return ret;
2007
2008 if (!seccomp_actions_logged_from_names(actions_logged, table.data))
2009 return -EINVAL;
2010
2011 if (*actions_logged & SECCOMP_LOG_ALLOW)
2012 return -EINVAL;
2013
2014 seccomp_actions_logged = *actions_logged;
2015 return 0;
2016 }
2017
2018 static void audit_actions_logged(u32 actions_logged, u32 old_actions_logged,
2019 int ret)
2020 {
2021 char names[sizeof(seccomp_actions_avail)];
2022 char old_names[sizeof(seccomp_actions_avail)];
2023 const char *new = names;
2024 const char *old = old_names;
2025
2026 if (!audit_enabled)
2027 return;
2028
2029 memset(names, 0, sizeof(names));
2030 memset(old_names, 0, sizeof(old_names));
2031
2032 if (ret)
2033 new = "?";
2034 else if (!actions_logged)
2035 new = "(none)";
2036 else if (!seccomp_names_from_actions_logged(names, sizeof(names),
2037 actions_logged, ","))
2038 new = "?";
2039
2040 if (!old_actions_logged)
2041 old = "(none)";
2042 else if (!seccomp_names_from_actions_logged(old_names,
2043 sizeof(old_names),
2044 old_actions_logged, ","))
2045 old = "?";
2046
2047 return audit_seccomp_actions_logged(new, old, !ret);
2048 }
2049
2050 static int seccomp_actions_logged_handler(struct ctl_table *ro_table, int write,
2051 void *buffer, size_t *lenp,
2052 loff_t *ppos)
2053 {
2054 int ret;
2055
2056 if (write) {
2057 u32 actions_logged = 0;
2058 u32 old_actions_logged = seccomp_actions_logged;
2059
2060 ret = write_actions_logged(ro_table, buffer, lenp, ppos,
2061 &actions_logged);
2062 audit_actions_logged(actions_logged, old_actions_logged, ret);
2063 } else
2064 ret = read_actions_logged(ro_table, buffer, lenp, ppos);
2065
2066 return ret;
2067 }
2068
2069 static struct ctl_path seccomp_sysctl_path[] = {
2070 { .procname = "kernel", },
2071 { .procname = "seccomp", },
2072 { }
2073 };
2074
2075 static struct ctl_table seccomp_sysctl_table[] = {
2076 {
2077 .procname = "actions_avail",
2078 .data = (void *) &seccomp_actions_avail,
2079 .maxlen = sizeof(seccomp_actions_avail),
2080 .mode = 0444,
2081 .proc_handler = proc_dostring,
2082 },
2083 {
2084 .procname = "actions_logged",
2085 .mode = 0644,
2086 .proc_handler = seccomp_actions_logged_handler,
2087 },
2088 { }
2089 };
2090
2091 static int __init seccomp_sysctl_init(void)
2092 {
2093 struct ctl_table_header *hdr;
2094
2095 hdr = register_sysctl_paths(seccomp_sysctl_path, seccomp_sysctl_table);
2096 if (!hdr)
2097 pr_warn("sysctl registration failed\n");
2098 else
2099 kmemleak_not_leak(hdr);
2100
2101 return 0;
2102 }
2103
2104 device_initcall(seccomp_sysctl_init)
2105
2106 #endif /* CONFIG_SYSCTL */