]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/seccomp.c
x86/speculation/mmio: Reuse SRBDS mitigation for SBDS
[mirror_ubuntu-jammy-kernel.git] / kernel / seccomp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/kernel/seccomp.c
4 *
5 * Copyright 2004-2005 Andrea Arcangeli <andrea@cpushare.com>
6 *
7 * Copyright (C) 2012 Google, Inc.
8 * Will Drewry <wad@chromium.org>
9 *
10 * This defines a simple but solid secure-computing facility.
11 *
12 * Mode 1 uses a fixed list of allowed system calls.
13 * Mode 2 allows user-defined system call filters in the form
14 * of Berkeley Packet Filters/Linux Socket Filters.
15 */
16 #define pr_fmt(fmt) "seccomp: " fmt
17
18 #include <linux/refcount.h>
19 #include <linux/audit.h>
20 #include <linux/compat.h>
21 #include <linux/coredump.h>
22 #include <linux/kmemleak.h>
23 #include <linux/nospec.h>
24 #include <linux/prctl.h>
25 #include <linux/sched.h>
26 #include <linux/sched/task_stack.h>
27 #include <linux/seccomp.h>
28 #include <linux/slab.h>
29 #include <linux/syscalls.h>
30 #include <linux/sysctl.h>
31
32 /* Not exposed in headers: strictly internal use only. */
33 #define SECCOMP_MODE_DEAD (SECCOMP_MODE_FILTER + 1)
34
35 #ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER
36 #include <asm/syscall.h>
37 #endif
38
39 #ifdef CONFIG_SECCOMP_FILTER
40 #include <linux/file.h>
41 #include <linux/filter.h>
42 #include <linux/pid.h>
43 #include <linux/ptrace.h>
44 #include <linux/capability.h>
45 #include <linux/tracehook.h>
46 #include <linux/uaccess.h>
47 #include <linux/anon_inodes.h>
48 #include <linux/lockdep.h>
49
50 /*
51 * When SECCOMP_IOCTL_NOTIF_ID_VALID was first introduced, it had the
52 * wrong direction flag in the ioctl number. This is the broken one,
53 * which the kernel needs to keep supporting until all userspaces stop
54 * using the wrong command number.
55 */
56 #define SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR SECCOMP_IOR(2, __u64)
57
58 enum notify_state {
59 SECCOMP_NOTIFY_INIT,
60 SECCOMP_NOTIFY_SENT,
61 SECCOMP_NOTIFY_REPLIED,
62 };
63
64 struct seccomp_knotif {
65 /* The struct pid of the task whose filter triggered the notification */
66 struct task_struct *task;
67
68 /* The "cookie" for this request; this is unique for this filter. */
69 u64 id;
70
71 /*
72 * The seccomp data. This pointer is valid the entire time this
73 * notification is active, since it comes from __seccomp_filter which
74 * eclipses the entire lifecycle here.
75 */
76 const struct seccomp_data *data;
77
78 /*
79 * Notification states. When SECCOMP_RET_USER_NOTIF is returned, a
80 * struct seccomp_knotif is created and starts out in INIT. Once the
81 * handler reads the notification off of an FD, it transitions to SENT.
82 * If a signal is received the state transitions back to INIT and
83 * another message is sent. When the userspace handler replies, state
84 * transitions to REPLIED.
85 */
86 enum notify_state state;
87
88 /* The return values, only valid when in SECCOMP_NOTIFY_REPLIED */
89 int error;
90 long val;
91 u32 flags;
92
93 /*
94 * Signals when this has changed states, such as the listener
95 * dying, a new seccomp addfd message, or changing to REPLIED
96 */
97 struct completion ready;
98
99 struct list_head list;
100
101 /* outstanding addfd requests */
102 struct list_head addfd;
103 };
104
105 /**
106 * struct seccomp_kaddfd - container for seccomp_addfd ioctl messages
107 *
108 * @file: A reference to the file to install in the other task
109 * @fd: The fd number to install it at. If the fd number is -1, it means the
110 * installing process should allocate the fd as normal.
111 * @flags: The flags for the new file descriptor. At the moment, only O_CLOEXEC
112 * is allowed.
113 * @ioctl_flags: The flags used for the seccomp_addfd ioctl.
114 * @ret: The return value of the installing process. It is set to the fd num
115 * upon success (>= 0).
116 * @completion: Indicates that the installing process has completed fd
117 * installation, or gone away (either due to successful
118 * reply, or signal)
119 *
120 */
121 struct seccomp_kaddfd {
122 struct file *file;
123 int fd;
124 unsigned int flags;
125 __u32 ioctl_flags;
126
127 union {
128 bool setfd;
129 /* To only be set on reply */
130 int ret;
131 };
132 struct completion completion;
133 struct list_head list;
134 };
135
136 /**
137 * struct notification - container for seccomp userspace notifications. Since
138 * most seccomp filters will not have notification listeners attached and this
139 * structure is fairly large, we store the notification-specific stuff in a
140 * separate structure.
141 *
142 * @request: A semaphore that users of this notification can wait on for
143 * changes. Actual reads and writes are still controlled with
144 * filter->notify_lock.
145 * @next_id: The id of the next request.
146 * @notifications: A list of struct seccomp_knotif elements.
147 */
148 struct notification {
149 struct semaphore request;
150 u64 next_id;
151 struct list_head notifications;
152 };
153
154 #ifdef SECCOMP_ARCH_NATIVE
155 /**
156 * struct action_cache - per-filter cache of seccomp actions per
157 * arch/syscall pair
158 *
159 * @allow_native: A bitmap where each bit represents whether the
160 * filter will always allow the syscall, for the
161 * native architecture.
162 * @allow_compat: A bitmap where each bit represents whether the
163 * filter will always allow the syscall, for the
164 * compat architecture.
165 */
166 struct action_cache {
167 DECLARE_BITMAP(allow_native, SECCOMP_ARCH_NATIVE_NR);
168 #ifdef SECCOMP_ARCH_COMPAT
169 DECLARE_BITMAP(allow_compat, SECCOMP_ARCH_COMPAT_NR);
170 #endif
171 };
172 #else
173 struct action_cache { };
174
175 static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter,
176 const struct seccomp_data *sd)
177 {
178 return false;
179 }
180
181 static inline void seccomp_cache_prepare(struct seccomp_filter *sfilter)
182 {
183 }
184 #endif /* SECCOMP_ARCH_NATIVE */
185
186 /**
187 * struct seccomp_filter - container for seccomp BPF programs
188 *
189 * @refs: Reference count to manage the object lifetime.
190 * A filter's reference count is incremented for each directly
191 * attached task, once for the dependent filter, and if
192 * requested for the user notifier. When @refs reaches zero,
193 * the filter can be freed.
194 * @users: A filter's @users count is incremented for each directly
195 * attached task (filter installation, fork(), thread_sync),
196 * and once for the dependent filter (tracked in filter->prev).
197 * When it reaches zero it indicates that no direct or indirect
198 * users of that filter exist. No new tasks can get associated with
199 * this filter after reaching 0. The @users count is always smaller
200 * or equal to @refs. Hence, reaching 0 for @users does not mean
201 * the filter can be freed.
202 * @cache: cache of arch/syscall mappings to actions
203 * @log: true if all actions except for SECCOMP_RET_ALLOW should be logged
204 * @prev: points to a previously installed, or inherited, filter
205 * @prog: the BPF program to evaluate
206 * @notif: the struct that holds all notification related information
207 * @notify_lock: A lock for all notification-related accesses.
208 * @wqh: A wait queue for poll if a notifier is in use.
209 *
210 * seccomp_filter objects are organized in a tree linked via the @prev
211 * pointer. For any task, it appears to be a singly-linked list starting
212 * with current->seccomp.filter, the most recently attached or inherited filter.
213 * However, multiple filters may share a @prev node, by way of fork(), which
214 * results in a unidirectional tree existing in memory. This is similar to
215 * how namespaces work.
216 *
217 * seccomp_filter objects should never be modified after being attached
218 * to a task_struct (other than @refs).
219 */
220 struct seccomp_filter {
221 refcount_t refs;
222 refcount_t users;
223 bool log;
224 struct action_cache cache;
225 struct seccomp_filter *prev;
226 struct bpf_prog *prog;
227 struct notification *notif;
228 struct mutex notify_lock;
229 wait_queue_head_t wqh;
230 };
231
232 /* Limit any path through the tree to 256KB worth of instructions. */
233 #define MAX_INSNS_PER_PATH ((1 << 18) / sizeof(struct sock_filter))
234
235 /*
236 * Endianness is explicitly ignored and left for BPF program authors to manage
237 * as per the specific architecture.
238 */
239 static void populate_seccomp_data(struct seccomp_data *sd)
240 {
241 /*
242 * Instead of using current_pt_reg(), we're already doing the work
243 * to safely fetch "current", so just use "task" everywhere below.
244 */
245 struct task_struct *task = current;
246 struct pt_regs *regs = task_pt_regs(task);
247 unsigned long args[6];
248
249 sd->nr = syscall_get_nr(task, regs);
250 sd->arch = syscall_get_arch(task);
251 syscall_get_arguments(task, regs, args);
252 sd->args[0] = args[0];
253 sd->args[1] = args[1];
254 sd->args[2] = args[2];
255 sd->args[3] = args[3];
256 sd->args[4] = args[4];
257 sd->args[5] = args[5];
258 sd->instruction_pointer = KSTK_EIP(task);
259 }
260
261 /**
262 * seccomp_check_filter - verify seccomp filter code
263 * @filter: filter to verify
264 * @flen: length of filter
265 *
266 * Takes a previously checked filter (by bpf_check_classic) and
267 * redirects all filter code that loads struct sk_buff data
268 * and related data through seccomp_bpf_load. It also
269 * enforces length and alignment checking of those loads.
270 *
271 * Returns 0 if the rule set is legal or -EINVAL if not.
272 */
273 static int seccomp_check_filter(struct sock_filter *filter, unsigned int flen)
274 {
275 int pc;
276 for (pc = 0; pc < flen; pc++) {
277 struct sock_filter *ftest = &filter[pc];
278 u16 code = ftest->code;
279 u32 k = ftest->k;
280
281 switch (code) {
282 case BPF_LD | BPF_W | BPF_ABS:
283 ftest->code = BPF_LDX | BPF_W | BPF_ABS;
284 /* 32-bit aligned and not out of bounds. */
285 if (k >= sizeof(struct seccomp_data) || k & 3)
286 return -EINVAL;
287 continue;
288 case BPF_LD | BPF_W | BPF_LEN:
289 ftest->code = BPF_LD | BPF_IMM;
290 ftest->k = sizeof(struct seccomp_data);
291 continue;
292 case BPF_LDX | BPF_W | BPF_LEN:
293 ftest->code = BPF_LDX | BPF_IMM;
294 ftest->k = sizeof(struct seccomp_data);
295 continue;
296 /* Explicitly include allowed calls. */
297 case BPF_RET | BPF_K:
298 case BPF_RET | BPF_A:
299 case BPF_ALU | BPF_ADD | BPF_K:
300 case BPF_ALU | BPF_ADD | BPF_X:
301 case BPF_ALU | BPF_SUB | BPF_K:
302 case BPF_ALU | BPF_SUB | BPF_X:
303 case BPF_ALU | BPF_MUL | BPF_K:
304 case BPF_ALU | BPF_MUL | BPF_X:
305 case BPF_ALU | BPF_DIV | BPF_K:
306 case BPF_ALU | BPF_DIV | BPF_X:
307 case BPF_ALU | BPF_AND | BPF_K:
308 case BPF_ALU | BPF_AND | BPF_X:
309 case BPF_ALU | BPF_OR | BPF_K:
310 case BPF_ALU | BPF_OR | BPF_X:
311 case BPF_ALU | BPF_XOR | BPF_K:
312 case BPF_ALU | BPF_XOR | BPF_X:
313 case BPF_ALU | BPF_LSH | BPF_K:
314 case BPF_ALU | BPF_LSH | BPF_X:
315 case BPF_ALU | BPF_RSH | BPF_K:
316 case BPF_ALU | BPF_RSH | BPF_X:
317 case BPF_ALU | BPF_NEG:
318 case BPF_LD | BPF_IMM:
319 case BPF_LDX | BPF_IMM:
320 case BPF_MISC | BPF_TAX:
321 case BPF_MISC | BPF_TXA:
322 case BPF_LD | BPF_MEM:
323 case BPF_LDX | BPF_MEM:
324 case BPF_ST:
325 case BPF_STX:
326 case BPF_JMP | BPF_JA:
327 case BPF_JMP | BPF_JEQ | BPF_K:
328 case BPF_JMP | BPF_JEQ | BPF_X:
329 case BPF_JMP | BPF_JGE | BPF_K:
330 case BPF_JMP | BPF_JGE | BPF_X:
331 case BPF_JMP | BPF_JGT | BPF_K:
332 case BPF_JMP | BPF_JGT | BPF_X:
333 case BPF_JMP | BPF_JSET | BPF_K:
334 case BPF_JMP | BPF_JSET | BPF_X:
335 continue;
336 default:
337 return -EINVAL;
338 }
339 }
340 return 0;
341 }
342
343 #ifdef SECCOMP_ARCH_NATIVE
344 static inline bool seccomp_cache_check_allow_bitmap(const void *bitmap,
345 size_t bitmap_size,
346 int syscall_nr)
347 {
348 if (unlikely(syscall_nr < 0 || syscall_nr >= bitmap_size))
349 return false;
350 syscall_nr = array_index_nospec(syscall_nr, bitmap_size);
351
352 return test_bit(syscall_nr, bitmap);
353 }
354
355 /**
356 * seccomp_cache_check_allow - lookup seccomp cache
357 * @sfilter: The seccomp filter
358 * @sd: The seccomp data to lookup the cache with
359 *
360 * Returns true if the seccomp_data is cached and allowed.
361 */
362 static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter,
363 const struct seccomp_data *sd)
364 {
365 int syscall_nr = sd->nr;
366 const struct action_cache *cache = &sfilter->cache;
367
368 #ifndef SECCOMP_ARCH_COMPAT
369 /* A native-only architecture doesn't need to check sd->arch. */
370 return seccomp_cache_check_allow_bitmap(cache->allow_native,
371 SECCOMP_ARCH_NATIVE_NR,
372 syscall_nr);
373 #else
374 if (likely(sd->arch == SECCOMP_ARCH_NATIVE))
375 return seccomp_cache_check_allow_bitmap(cache->allow_native,
376 SECCOMP_ARCH_NATIVE_NR,
377 syscall_nr);
378 if (likely(sd->arch == SECCOMP_ARCH_COMPAT))
379 return seccomp_cache_check_allow_bitmap(cache->allow_compat,
380 SECCOMP_ARCH_COMPAT_NR,
381 syscall_nr);
382 #endif /* SECCOMP_ARCH_COMPAT */
383
384 WARN_ON_ONCE(true);
385 return false;
386 }
387 #endif /* SECCOMP_ARCH_NATIVE */
388
389 /**
390 * seccomp_run_filters - evaluates all seccomp filters against @sd
391 * @sd: optional seccomp data to be passed to filters
392 * @match: stores struct seccomp_filter that resulted in the return value,
393 * unless filter returned SECCOMP_RET_ALLOW, in which case it will
394 * be unchanged.
395 *
396 * Returns valid seccomp BPF response codes.
397 */
398 #define ACTION_ONLY(ret) ((s32)((ret) & (SECCOMP_RET_ACTION_FULL)))
399 static u32 seccomp_run_filters(const struct seccomp_data *sd,
400 struct seccomp_filter **match)
401 {
402 u32 ret = SECCOMP_RET_ALLOW;
403 /* Make sure cross-thread synced filter points somewhere sane. */
404 struct seccomp_filter *f =
405 READ_ONCE(current->seccomp.filter);
406
407 /* Ensure unexpected behavior doesn't result in failing open. */
408 if (WARN_ON(f == NULL))
409 return SECCOMP_RET_KILL_PROCESS;
410
411 if (seccomp_cache_check_allow(f, sd))
412 return SECCOMP_RET_ALLOW;
413
414 /*
415 * All filters in the list are evaluated and the lowest BPF return
416 * value always takes priority (ignoring the DATA).
417 */
418 for (; f; f = f->prev) {
419 u32 cur_ret = bpf_prog_run_pin_on_cpu(f->prog, sd);
420
421 if (ACTION_ONLY(cur_ret) < ACTION_ONLY(ret)) {
422 ret = cur_ret;
423 *match = f;
424 }
425 }
426 return ret;
427 }
428 #endif /* CONFIG_SECCOMP_FILTER */
429
430 static inline bool seccomp_may_assign_mode(unsigned long seccomp_mode)
431 {
432 assert_spin_locked(&current->sighand->siglock);
433
434 if (current->seccomp.mode && current->seccomp.mode != seccomp_mode)
435 return false;
436
437 return true;
438 }
439
440 void __weak arch_seccomp_spec_mitigate(struct task_struct *task) { }
441
442 static inline void seccomp_assign_mode(struct task_struct *task,
443 unsigned long seccomp_mode,
444 unsigned long flags)
445 {
446 assert_spin_locked(&task->sighand->siglock);
447
448 task->seccomp.mode = seccomp_mode;
449 /*
450 * Make sure SYSCALL_WORK_SECCOMP cannot be set before the mode (and
451 * filter) is set.
452 */
453 smp_mb__before_atomic();
454 /* Assume default seccomp processes want spec flaw mitigation. */
455 if ((flags & SECCOMP_FILTER_FLAG_SPEC_ALLOW) == 0)
456 arch_seccomp_spec_mitigate(task);
457 set_task_syscall_work(task, SECCOMP);
458 }
459
460 #ifdef CONFIG_SECCOMP_FILTER
461 /* Returns 1 if the parent is an ancestor of the child. */
462 static int is_ancestor(struct seccomp_filter *parent,
463 struct seccomp_filter *child)
464 {
465 /* NULL is the root ancestor. */
466 if (parent == NULL)
467 return 1;
468 for (; child; child = child->prev)
469 if (child == parent)
470 return 1;
471 return 0;
472 }
473
474 /**
475 * seccomp_can_sync_threads: checks if all threads can be synchronized
476 *
477 * Expects sighand and cred_guard_mutex locks to be held.
478 *
479 * Returns 0 on success, -ve on error, or the pid of a thread which was
480 * either not in the correct seccomp mode or did not have an ancestral
481 * seccomp filter.
482 */
483 static inline pid_t seccomp_can_sync_threads(void)
484 {
485 struct task_struct *thread, *caller;
486
487 BUG_ON(!mutex_is_locked(&current->signal->cred_guard_mutex));
488 assert_spin_locked(&current->sighand->siglock);
489
490 /* Validate all threads being eligible for synchronization. */
491 caller = current;
492 for_each_thread(caller, thread) {
493 pid_t failed;
494
495 /* Skip current, since it is initiating the sync. */
496 if (thread == caller)
497 continue;
498
499 if (thread->seccomp.mode == SECCOMP_MODE_DISABLED ||
500 (thread->seccomp.mode == SECCOMP_MODE_FILTER &&
501 is_ancestor(thread->seccomp.filter,
502 caller->seccomp.filter)))
503 continue;
504
505 /* Return the first thread that cannot be synchronized. */
506 failed = task_pid_vnr(thread);
507 /* If the pid cannot be resolved, then return -ESRCH */
508 if (WARN_ON(failed == 0))
509 failed = -ESRCH;
510 return failed;
511 }
512
513 return 0;
514 }
515
516 static inline void seccomp_filter_free(struct seccomp_filter *filter)
517 {
518 if (filter) {
519 bpf_prog_destroy(filter->prog);
520 kfree(filter);
521 }
522 }
523
524 static void __seccomp_filter_orphan(struct seccomp_filter *orig)
525 {
526 while (orig && refcount_dec_and_test(&orig->users)) {
527 if (waitqueue_active(&orig->wqh))
528 wake_up_poll(&orig->wqh, EPOLLHUP);
529 orig = orig->prev;
530 }
531 }
532
533 static void __put_seccomp_filter(struct seccomp_filter *orig)
534 {
535 /* Clean up single-reference branches iteratively. */
536 while (orig && refcount_dec_and_test(&orig->refs)) {
537 struct seccomp_filter *freeme = orig;
538 orig = orig->prev;
539 seccomp_filter_free(freeme);
540 }
541 }
542
543 static void __seccomp_filter_release(struct seccomp_filter *orig)
544 {
545 /* Notify about any unused filters in the task's former filter tree. */
546 __seccomp_filter_orphan(orig);
547 /* Finally drop all references to the task's former tree. */
548 __put_seccomp_filter(orig);
549 }
550
551 /**
552 * seccomp_filter_release - Detach the task from its filter tree,
553 * drop its reference count, and notify
554 * about unused filters
555 *
556 * This function should only be called when the task is exiting as
557 * it detaches it from its filter tree. As such, READ_ONCE() and
558 * barriers are not needed here, as would normally be needed.
559 */
560 void seccomp_filter_release(struct task_struct *tsk)
561 {
562 struct seccomp_filter *orig = tsk->seccomp.filter;
563
564 /* We are effectively holding the siglock by not having any sighand. */
565 WARN_ON(tsk->sighand != NULL);
566
567 /* Detach task from its filter tree. */
568 tsk->seccomp.filter = NULL;
569 __seccomp_filter_release(orig);
570 }
571
572 /**
573 * seccomp_sync_threads: sets all threads to use current's filter
574 *
575 * Expects sighand and cred_guard_mutex locks to be held, and for
576 * seccomp_can_sync_threads() to have returned success already
577 * without dropping the locks.
578 *
579 */
580 static inline void seccomp_sync_threads(unsigned long flags)
581 {
582 struct task_struct *thread, *caller;
583
584 BUG_ON(!mutex_is_locked(&current->signal->cred_guard_mutex));
585 assert_spin_locked(&current->sighand->siglock);
586
587 /* Synchronize all threads. */
588 caller = current;
589 for_each_thread(caller, thread) {
590 /* Skip current, since it needs no changes. */
591 if (thread == caller)
592 continue;
593
594 /* Get a task reference for the new leaf node. */
595 get_seccomp_filter(caller);
596
597 /*
598 * Drop the task reference to the shared ancestor since
599 * current's path will hold a reference. (This also
600 * allows a put before the assignment.)
601 */
602 __seccomp_filter_release(thread->seccomp.filter);
603
604 /* Make our new filter tree visible. */
605 smp_store_release(&thread->seccomp.filter,
606 caller->seccomp.filter);
607 atomic_set(&thread->seccomp.filter_count,
608 atomic_read(&caller->seccomp.filter_count));
609
610 /*
611 * Don't let an unprivileged task work around
612 * the no_new_privs restriction by creating
613 * a thread that sets it up, enters seccomp,
614 * then dies.
615 */
616 if (task_no_new_privs(caller))
617 task_set_no_new_privs(thread);
618
619 /*
620 * Opt the other thread into seccomp if needed.
621 * As threads are considered to be trust-realm
622 * equivalent (see ptrace_may_access), it is safe to
623 * allow one thread to transition the other.
624 */
625 if (thread->seccomp.mode == SECCOMP_MODE_DISABLED)
626 seccomp_assign_mode(thread, SECCOMP_MODE_FILTER,
627 flags);
628 }
629 }
630
631 /**
632 * seccomp_prepare_filter: Prepares a seccomp filter for use.
633 * @fprog: BPF program to install
634 *
635 * Returns filter on success or an ERR_PTR on failure.
636 */
637 static struct seccomp_filter *seccomp_prepare_filter(struct sock_fprog *fprog)
638 {
639 struct seccomp_filter *sfilter;
640 int ret;
641 const bool save_orig =
642 #if defined(CONFIG_CHECKPOINT_RESTORE) || defined(SECCOMP_ARCH_NATIVE)
643 true;
644 #else
645 false;
646 #endif
647
648 if (fprog->len == 0 || fprog->len > BPF_MAXINSNS)
649 return ERR_PTR(-EINVAL);
650
651 BUG_ON(INT_MAX / fprog->len < sizeof(struct sock_filter));
652
653 /*
654 * Installing a seccomp filter requires that the task has
655 * CAP_SYS_ADMIN in its namespace or be running with no_new_privs.
656 * This avoids scenarios where unprivileged tasks can affect the
657 * behavior of privileged children.
658 */
659 if (!task_no_new_privs(current) &&
660 !ns_capable_noaudit(current_user_ns(), CAP_SYS_ADMIN))
661 return ERR_PTR(-EACCES);
662
663 /* Allocate a new seccomp_filter */
664 sfilter = kzalloc(sizeof(*sfilter), GFP_KERNEL | __GFP_NOWARN);
665 if (!sfilter)
666 return ERR_PTR(-ENOMEM);
667
668 mutex_init(&sfilter->notify_lock);
669 ret = bpf_prog_create_from_user(&sfilter->prog, fprog,
670 seccomp_check_filter, save_orig);
671 if (ret < 0) {
672 kfree(sfilter);
673 return ERR_PTR(ret);
674 }
675
676 refcount_set(&sfilter->refs, 1);
677 refcount_set(&sfilter->users, 1);
678 init_waitqueue_head(&sfilter->wqh);
679
680 return sfilter;
681 }
682
683 /**
684 * seccomp_prepare_user_filter - prepares a user-supplied sock_fprog
685 * @user_filter: pointer to the user data containing a sock_fprog.
686 *
687 * Returns 0 on success and non-zero otherwise.
688 */
689 static struct seccomp_filter *
690 seccomp_prepare_user_filter(const char __user *user_filter)
691 {
692 struct sock_fprog fprog;
693 struct seccomp_filter *filter = ERR_PTR(-EFAULT);
694
695 #ifdef CONFIG_COMPAT
696 if (in_compat_syscall()) {
697 struct compat_sock_fprog fprog32;
698 if (copy_from_user(&fprog32, user_filter, sizeof(fprog32)))
699 goto out;
700 fprog.len = fprog32.len;
701 fprog.filter = compat_ptr(fprog32.filter);
702 } else /* falls through to the if below. */
703 #endif
704 if (copy_from_user(&fprog, user_filter, sizeof(fprog)))
705 goto out;
706 filter = seccomp_prepare_filter(&fprog);
707 out:
708 return filter;
709 }
710
711 #ifdef SECCOMP_ARCH_NATIVE
712 /**
713 * seccomp_is_const_allow - check if filter is constant allow with given data
714 * @fprog: The BPF programs
715 * @sd: The seccomp data to check against, only syscall number and arch
716 * number are considered constant.
717 */
718 static bool seccomp_is_const_allow(struct sock_fprog_kern *fprog,
719 struct seccomp_data *sd)
720 {
721 unsigned int reg_value = 0;
722 unsigned int pc;
723 bool op_res;
724
725 if (WARN_ON_ONCE(!fprog))
726 return false;
727
728 for (pc = 0; pc < fprog->len; pc++) {
729 struct sock_filter *insn = &fprog->filter[pc];
730 u16 code = insn->code;
731 u32 k = insn->k;
732
733 switch (code) {
734 case BPF_LD | BPF_W | BPF_ABS:
735 switch (k) {
736 case offsetof(struct seccomp_data, nr):
737 reg_value = sd->nr;
738 break;
739 case offsetof(struct seccomp_data, arch):
740 reg_value = sd->arch;
741 break;
742 default:
743 /* can't optimize (non-constant value load) */
744 return false;
745 }
746 break;
747 case BPF_RET | BPF_K:
748 /* reached return with constant values only, check allow */
749 return k == SECCOMP_RET_ALLOW;
750 case BPF_JMP | BPF_JA:
751 pc += insn->k;
752 break;
753 case BPF_JMP | BPF_JEQ | BPF_K:
754 case BPF_JMP | BPF_JGE | BPF_K:
755 case BPF_JMP | BPF_JGT | BPF_K:
756 case BPF_JMP | BPF_JSET | BPF_K:
757 switch (BPF_OP(code)) {
758 case BPF_JEQ:
759 op_res = reg_value == k;
760 break;
761 case BPF_JGE:
762 op_res = reg_value >= k;
763 break;
764 case BPF_JGT:
765 op_res = reg_value > k;
766 break;
767 case BPF_JSET:
768 op_res = !!(reg_value & k);
769 break;
770 default:
771 /* can't optimize (unknown jump) */
772 return false;
773 }
774
775 pc += op_res ? insn->jt : insn->jf;
776 break;
777 case BPF_ALU | BPF_AND | BPF_K:
778 reg_value &= k;
779 break;
780 default:
781 /* can't optimize (unknown insn) */
782 return false;
783 }
784 }
785
786 /* ran off the end of the filter?! */
787 WARN_ON(1);
788 return false;
789 }
790
791 static void seccomp_cache_prepare_bitmap(struct seccomp_filter *sfilter,
792 void *bitmap, const void *bitmap_prev,
793 size_t bitmap_size, int arch)
794 {
795 struct sock_fprog_kern *fprog = sfilter->prog->orig_prog;
796 struct seccomp_data sd;
797 int nr;
798
799 if (bitmap_prev) {
800 /* The new filter must be as restrictive as the last. */
801 bitmap_copy(bitmap, bitmap_prev, bitmap_size);
802 } else {
803 /* Before any filters, all syscalls are always allowed. */
804 bitmap_fill(bitmap, bitmap_size);
805 }
806
807 for (nr = 0; nr < bitmap_size; nr++) {
808 /* No bitmap change: not a cacheable action. */
809 if (!test_bit(nr, bitmap))
810 continue;
811
812 sd.nr = nr;
813 sd.arch = arch;
814
815 /* No bitmap change: continue to always allow. */
816 if (seccomp_is_const_allow(fprog, &sd))
817 continue;
818
819 /*
820 * Not a cacheable action: always run filters.
821 * atomic clear_bit() not needed, filter not visible yet.
822 */
823 __clear_bit(nr, bitmap);
824 }
825 }
826
827 /**
828 * seccomp_cache_prepare - emulate the filter to find cacheable syscalls
829 * @sfilter: The seccomp filter
830 *
831 * Returns 0 if successful or -errno if error occurred.
832 */
833 static void seccomp_cache_prepare(struct seccomp_filter *sfilter)
834 {
835 struct action_cache *cache = &sfilter->cache;
836 const struct action_cache *cache_prev =
837 sfilter->prev ? &sfilter->prev->cache : NULL;
838
839 seccomp_cache_prepare_bitmap(sfilter, cache->allow_native,
840 cache_prev ? cache_prev->allow_native : NULL,
841 SECCOMP_ARCH_NATIVE_NR,
842 SECCOMP_ARCH_NATIVE);
843
844 #ifdef SECCOMP_ARCH_COMPAT
845 seccomp_cache_prepare_bitmap(sfilter, cache->allow_compat,
846 cache_prev ? cache_prev->allow_compat : NULL,
847 SECCOMP_ARCH_COMPAT_NR,
848 SECCOMP_ARCH_COMPAT);
849 #endif /* SECCOMP_ARCH_COMPAT */
850 }
851 #endif /* SECCOMP_ARCH_NATIVE */
852
853 /**
854 * seccomp_attach_filter: validate and attach filter
855 * @flags: flags to change filter behavior
856 * @filter: seccomp filter to add to the current process
857 *
858 * Caller must be holding current->sighand->siglock lock.
859 *
860 * Returns 0 on success, -ve on error, or
861 * - in TSYNC mode: the pid of a thread which was either not in the correct
862 * seccomp mode or did not have an ancestral seccomp filter
863 * - in NEW_LISTENER mode: the fd of the new listener
864 */
865 static long seccomp_attach_filter(unsigned int flags,
866 struct seccomp_filter *filter)
867 {
868 unsigned long total_insns;
869 struct seccomp_filter *walker;
870
871 assert_spin_locked(&current->sighand->siglock);
872
873 /* Validate resulting filter length. */
874 total_insns = filter->prog->len;
875 for (walker = current->seccomp.filter; walker; walker = walker->prev)
876 total_insns += walker->prog->len + 4; /* 4 instr penalty */
877 if (total_insns > MAX_INSNS_PER_PATH)
878 return -ENOMEM;
879
880 /* If thread sync has been requested, check that it is possible. */
881 if (flags & SECCOMP_FILTER_FLAG_TSYNC) {
882 int ret;
883
884 ret = seccomp_can_sync_threads();
885 if (ret) {
886 if (flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH)
887 return -ESRCH;
888 else
889 return ret;
890 }
891 }
892
893 /* Set log flag, if present. */
894 if (flags & SECCOMP_FILTER_FLAG_LOG)
895 filter->log = true;
896
897 /*
898 * If there is an existing filter, make it the prev and don't drop its
899 * task reference.
900 */
901 filter->prev = current->seccomp.filter;
902 seccomp_cache_prepare(filter);
903 current->seccomp.filter = filter;
904 atomic_inc(&current->seccomp.filter_count);
905
906 /* Now that the new filter is in place, synchronize to all threads. */
907 if (flags & SECCOMP_FILTER_FLAG_TSYNC)
908 seccomp_sync_threads(flags);
909
910 return 0;
911 }
912
913 static void __get_seccomp_filter(struct seccomp_filter *filter)
914 {
915 refcount_inc(&filter->refs);
916 }
917
918 /* get_seccomp_filter - increments the reference count of the filter on @tsk */
919 void get_seccomp_filter(struct task_struct *tsk)
920 {
921 struct seccomp_filter *orig = tsk->seccomp.filter;
922 if (!orig)
923 return;
924 __get_seccomp_filter(orig);
925 refcount_inc(&orig->users);
926 }
927
928 #endif /* CONFIG_SECCOMP_FILTER */
929
930 /* For use with seccomp_actions_logged */
931 #define SECCOMP_LOG_KILL_PROCESS (1 << 0)
932 #define SECCOMP_LOG_KILL_THREAD (1 << 1)
933 #define SECCOMP_LOG_TRAP (1 << 2)
934 #define SECCOMP_LOG_ERRNO (1 << 3)
935 #define SECCOMP_LOG_TRACE (1 << 4)
936 #define SECCOMP_LOG_LOG (1 << 5)
937 #define SECCOMP_LOG_ALLOW (1 << 6)
938 #define SECCOMP_LOG_USER_NOTIF (1 << 7)
939
940 static u32 seccomp_actions_logged = SECCOMP_LOG_KILL_PROCESS |
941 SECCOMP_LOG_KILL_THREAD |
942 SECCOMP_LOG_TRAP |
943 SECCOMP_LOG_ERRNO |
944 SECCOMP_LOG_USER_NOTIF |
945 SECCOMP_LOG_TRACE |
946 SECCOMP_LOG_LOG;
947
948 static inline void seccomp_log(unsigned long syscall, long signr, u32 action,
949 bool requested)
950 {
951 bool log = false;
952
953 switch (action) {
954 case SECCOMP_RET_ALLOW:
955 break;
956 case SECCOMP_RET_TRAP:
957 log = requested && seccomp_actions_logged & SECCOMP_LOG_TRAP;
958 break;
959 case SECCOMP_RET_ERRNO:
960 log = requested && seccomp_actions_logged & SECCOMP_LOG_ERRNO;
961 break;
962 case SECCOMP_RET_TRACE:
963 log = requested && seccomp_actions_logged & SECCOMP_LOG_TRACE;
964 break;
965 case SECCOMP_RET_USER_NOTIF:
966 log = requested && seccomp_actions_logged & SECCOMP_LOG_USER_NOTIF;
967 break;
968 case SECCOMP_RET_LOG:
969 log = seccomp_actions_logged & SECCOMP_LOG_LOG;
970 break;
971 case SECCOMP_RET_KILL_THREAD:
972 log = seccomp_actions_logged & SECCOMP_LOG_KILL_THREAD;
973 break;
974 case SECCOMP_RET_KILL_PROCESS:
975 default:
976 log = seccomp_actions_logged & SECCOMP_LOG_KILL_PROCESS;
977 }
978
979 /*
980 * Emit an audit message when the action is RET_KILL_*, RET_LOG, or the
981 * FILTER_FLAG_LOG bit was set. The admin has the ability to silence
982 * any action from being logged by removing the action name from the
983 * seccomp_actions_logged sysctl.
984 */
985 if (!log)
986 return;
987
988 audit_seccomp(syscall, signr, action);
989 }
990
991 /*
992 * Secure computing mode 1 allows only read/write/exit/sigreturn.
993 * To be fully secure this must be combined with rlimit
994 * to limit the stack allocations too.
995 */
996 static const int mode1_syscalls[] = {
997 __NR_seccomp_read, __NR_seccomp_write, __NR_seccomp_exit, __NR_seccomp_sigreturn,
998 -1, /* negative terminated */
999 };
1000
1001 static void __secure_computing_strict(int this_syscall)
1002 {
1003 const int *allowed_syscalls = mode1_syscalls;
1004 #ifdef CONFIG_COMPAT
1005 if (in_compat_syscall())
1006 allowed_syscalls = get_compat_mode1_syscalls();
1007 #endif
1008 do {
1009 if (*allowed_syscalls == this_syscall)
1010 return;
1011 } while (*++allowed_syscalls != -1);
1012
1013 #ifdef SECCOMP_DEBUG
1014 dump_stack();
1015 #endif
1016 current->seccomp.mode = SECCOMP_MODE_DEAD;
1017 seccomp_log(this_syscall, SIGKILL, SECCOMP_RET_KILL_THREAD, true);
1018 do_exit(SIGKILL);
1019 }
1020
1021 #ifndef CONFIG_HAVE_ARCH_SECCOMP_FILTER
1022 void secure_computing_strict(int this_syscall)
1023 {
1024 int mode = current->seccomp.mode;
1025
1026 if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) &&
1027 unlikely(current->ptrace & PT_SUSPEND_SECCOMP))
1028 return;
1029
1030 if (mode == SECCOMP_MODE_DISABLED)
1031 return;
1032 else if (mode == SECCOMP_MODE_STRICT)
1033 __secure_computing_strict(this_syscall);
1034 else
1035 BUG();
1036 }
1037 #else
1038
1039 #ifdef CONFIG_SECCOMP_FILTER
1040 static u64 seccomp_next_notify_id(struct seccomp_filter *filter)
1041 {
1042 /*
1043 * Note: overflow is ok here, the id just needs to be unique per
1044 * filter.
1045 */
1046 lockdep_assert_held(&filter->notify_lock);
1047 return filter->notif->next_id++;
1048 }
1049
1050 static void seccomp_handle_addfd(struct seccomp_kaddfd *addfd, struct seccomp_knotif *n)
1051 {
1052 int fd;
1053
1054 /*
1055 * Remove the notification, and reset the list pointers, indicating
1056 * that it has been handled.
1057 */
1058 list_del_init(&addfd->list);
1059 if (!addfd->setfd)
1060 fd = receive_fd(addfd->file, addfd->flags);
1061 else
1062 fd = receive_fd_replace(addfd->fd, addfd->file, addfd->flags);
1063 addfd->ret = fd;
1064
1065 if (addfd->ioctl_flags & SECCOMP_ADDFD_FLAG_SEND) {
1066 /* If we fail reset and return an error to the notifier */
1067 if (fd < 0) {
1068 n->state = SECCOMP_NOTIFY_SENT;
1069 } else {
1070 /* Return the FD we just added */
1071 n->flags = 0;
1072 n->error = 0;
1073 n->val = fd;
1074 }
1075 }
1076
1077 /*
1078 * Mark the notification as completed. From this point, addfd mem
1079 * might be invalidated and we can't safely read it anymore.
1080 */
1081 complete(&addfd->completion);
1082 }
1083
1084 static int seccomp_do_user_notification(int this_syscall,
1085 struct seccomp_filter *match,
1086 const struct seccomp_data *sd)
1087 {
1088 int err;
1089 u32 flags = 0;
1090 long ret = 0;
1091 struct seccomp_knotif n = {};
1092 struct seccomp_kaddfd *addfd, *tmp;
1093
1094 mutex_lock(&match->notify_lock);
1095 err = -ENOSYS;
1096 if (!match->notif)
1097 goto out;
1098
1099 n.task = current;
1100 n.state = SECCOMP_NOTIFY_INIT;
1101 n.data = sd;
1102 n.id = seccomp_next_notify_id(match);
1103 init_completion(&n.ready);
1104 list_add(&n.list, &match->notif->notifications);
1105 INIT_LIST_HEAD(&n.addfd);
1106
1107 up(&match->notif->request);
1108 wake_up_poll(&match->wqh, EPOLLIN | EPOLLRDNORM);
1109
1110 /*
1111 * This is where we wait for a reply from userspace.
1112 */
1113 do {
1114 mutex_unlock(&match->notify_lock);
1115 err = wait_for_completion_interruptible(&n.ready);
1116 mutex_lock(&match->notify_lock);
1117 if (err != 0)
1118 goto interrupted;
1119
1120 addfd = list_first_entry_or_null(&n.addfd,
1121 struct seccomp_kaddfd, list);
1122 /* Check if we were woken up by a addfd message */
1123 if (addfd)
1124 seccomp_handle_addfd(addfd, &n);
1125
1126 } while (n.state != SECCOMP_NOTIFY_REPLIED);
1127
1128 ret = n.val;
1129 err = n.error;
1130 flags = n.flags;
1131
1132 interrupted:
1133 /* If there were any pending addfd calls, clear them out */
1134 list_for_each_entry_safe(addfd, tmp, &n.addfd, list) {
1135 /* The process went away before we got a chance to handle it */
1136 addfd->ret = -ESRCH;
1137 list_del_init(&addfd->list);
1138 complete(&addfd->completion);
1139 }
1140
1141 /*
1142 * Note that it's possible the listener died in between the time when
1143 * we were notified of a response (or a signal) and when we were able to
1144 * re-acquire the lock, so only delete from the list if the
1145 * notification actually exists.
1146 *
1147 * Also note that this test is only valid because there's no way to
1148 * *reattach* to a notifier right now. If one is added, we'll need to
1149 * keep track of the notif itself and make sure they match here.
1150 */
1151 if (match->notif)
1152 list_del(&n.list);
1153 out:
1154 mutex_unlock(&match->notify_lock);
1155
1156 /* Userspace requests to continue the syscall. */
1157 if (flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE)
1158 return 0;
1159
1160 syscall_set_return_value(current, current_pt_regs(),
1161 err, ret);
1162 return -1;
1163 }
1164
1165 static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd,
1166 const bool recheck_after_trace)
1167 {
1168 u32 filter_ret, action;
1169 struct seccomp_filter *match = NULL;
1170 int data;
1171 struct seccomp_data sd_local;
1172
1173 /*
1174 * Make sure that any changes to mode from another thread have
1175 * been seen after SYSCALL_WORK_SECCOMP was seen.
1176 */
1177 smp_rmb();
1178
1179 if (!sd) {
1180 populate_seccomp_data(&sd_local);
1181 sd = &sd_local;
1182 }
1183
1184 filter_ret = seccomp_run_filters(sd, &match);
1185 data = filter_ret & SECCOMP_RET_DATA;
1186 action = filter_ret & SECCOMP_RET_ACTION_FULL;
1187
1188 switch (action) {
1189 case SECCOMP_RET_ERRNO:
1190 /* Set low-order bits as an errno, capped at MAX_ERRNO. */
1191 if (data > MAX_ERRNO)
1192 data = MAX_ERRNO;
1193 syscall_set_return_value(current, current_pt_regs(),
1194 -data, 0);
1195 goto skip;
1196
1197 case SECCOMP_RET_TRAP:
1198 /* Show the handler the original registers. */
1199 syscall_rollback(current, current_pt_regs());
1200 /* Let the filter pass back 16 bits of data. */
1201 force_sig_seccomp(this_syscall, data, false);
1202 goto skip;
1203
1204 case SECCOMP_RET_TRACE:
1205 /* We've been put in this state by the ptracer already. */
1206 if (recheck_after_trace)
1207 return 0;
1208
1209 /* ENOSYS these calls if there is no tracer attached. */
1210 if (!ptrace_event_enabled(current, PTRACE_EVENT_SECCOMP)) {
1211 syscall_set_return_value(current,
1212 current_pt_regs(),
1213 -ENOSYS, 0);
1214 goto skip;
1215 }
1216
1217 /* Allow the BPF to provide the event message */
1218 ptrace_event(PTRACE_EVENT_SECCOMP, data);
1219 /*
1220 * The delivery of a fatal signal during event
1221 * notification may silently skip tracer notification,
1222 * which could leave us with a potentially unmodified
1223 * syscall that the tracer would have liked to have
1224 * changed. Since the process is about to die, we just
1225 * force the syscall to be skipped and let the signal
1226 * kill the process and correctly handle any tracer exit
1227 * notifications.
1228 */
1229 if (fatal_signal_pending(current))
1230 goto skip;
1231 /* Check if the tracer forced the syscall to be skipped. */
1232 this_syscall = syscall_get_nr(current, current_pt_regs());
1233 if (this_syscall < 0)
1234 goto skip;
1235
1236 /*
1237 * Recheck the syscall, since it may have changed. This
1238 * intentionally uses a NULL struct seccomp_data to force
1239 * a reload of all registers. This does not goto skip since
1240 * a skip would have already been reported.
1241 */
1242 if (__seccomp_filter(this_syscall, NULL, true))
1243 return -1;
1244
1245 return 0;
1246
1247 case SECCOMP_RET_USER_NOTIF:
1248 if (seccomp_do_user_notification(this_syscall, match, sd))
1249 goto skip;
1250
1251 return 0;
1252
1253 case SECCOMP_RET_LOG:
1254 seccomp_log(this_syscall, 0, action, true);
1255 return 0;
1256
1257 case SECCOMP_RET_ALLOW:
1258 /*
1259 * Note that the "match" filter will always be NULL for
1260 * this action since SECCOMP_RET_ALLOW is the starting
1261 * state in seccomp_run_filters().
1262 */
1263 return 0;
1264
1265 case SECCOMP_RET_KILL_THREAD:
1266 case SECCOMP_RET_KILL_PROCESS:
1267 default:
1268 current->seccomp.mode = SECCOMP_MODE_DEAD;
1269 seccomp_log(this_syscall, SIGSYS, action, true);
1270 /* Dump core only if this is the last remaining thread. */
1271 if (action != SECCOMP_RET_KILL_THREAD ||
1272 (atomic_read(&current->signal->live) == 1)) {
1273 /* Show the original registers in the dump. */
1274 syscall_rollback(current, current_pt_regs());
1275 /* Trigger a coredump with SIGSYS */
1276 force_sig_seccomp(this_syscall, data, true);
1277 } else {
1278 do_exit(SIGSYS);
1279 }
1280 return -1; /* skip the syscall go directly to signal handling */
1281 }
1282
1283 unreachable();
1284
1285 skip:
1286 seccomp_log(this_syscall, 0, action, match ? match->log : false);
1287 return -1;
1288 }
1289 #else
1290 static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd,
1291 const bool recheck_after_trace)
1292 {
1293 BUG();
1294
1295 return -1;
1296 }
1297 #endif
1298
1299 int __secure_computing(const struct seccomp_data *sd)
1300 {
1301 int mode = current->seccomp.mode;
1302 int this_syscall;
1303
1304 if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) &&
1305 unlikely(current->ptrace & PT_SUSPEND_SECCOMP))
1306 return 0;
1307
1308 this_syscall = sd ? sd->nr :
1309 syscall_get_nr(current, current_pt_regs());
1310
1311 switch (mode) {
1312 case SECCOMP_MODE_STRICT:
1313 __secure_computing_strict(this_syscall); /* may call do_exit */
1314 return 0;
1315 case SECCOMP_MODE_FILTER:
1316 return __seccomp_filter(this_syscall, sd, false);
1317 /* Surviving SECCOMP_RET_KILL_* must be proactively impossible. */
1318 case SECCOMP_MODE_DEAD:
1319 WARN_ON_ONCE(1);
1320 do_exit(SIGKILL);
1321 return -1;
1322 default:
1323 BUG();
1324 }
1325 }
1326 #endif /* CONFIG_HAVE_ARCH_SECCOMP_FILTER */
1327
1328 long prctl_get_seccomp(void)
1329 {
1330 return current->seccomp.mode;
1331 }
1332
1333 /**
1334 * seccomp_set_mode_strict: internal function for setting strict seccomp
1335 *
1336 * Once current->seccomp.mode is non-zero, it may not be changed.
1337 *
1338 * Returns 0 on success or -EINVAL on failure.
1339 */
1340 static long seccomp_set_mode_strict(void)
1341 {
1342 const unsigned long seccomp_mode = SECCOMP_MODE_STRICT;
1343 long ret = -EINVAL;
1344
1345 spin_lock_irq(&current->sighand->siglock);
1346
1347 if (!seccomp_may_assign_mode(seccomp_mode))
1348 goto out;
1349
1350 #ifdef TIF_NOTSC
1351 disable_TSC();
1352 #endif
1353 seccomp_assign_mode(current, seccomp_mode, 0);
1354 ret = 0;
1355
1356 out:
1357 spin_unlock_irq(&current->sighand->siglock);
1358
1359 return ret;
1360 }
1361
1362 #ifdef CONFIG_SECCOMP_FILTER
1363 static void seccomp_notify_free(struct seccomp_filter *filter)
1364 {
1365 kfree(filter->notif);
1366 filter->notif = NULL;
1367 }
1368
1369 static void seccomp_notify_detach(struct seccomp_filter *filter)
1370 {
1371 struct seccomp_knotif *knotif;
1372
1373 if (!filter)
1374 return;
1375
1376 mutex_lock(&filter->notify_lock);
1377
1378 /*
1379 * If this file is being closed because e.g. the task who owned it
1380 * died, let's wake everyone up who was waiting on us.
1381 */
1382 list_for_each_entry(knotif, &filter->notif->notifications, list) {
1383 if (knotif->state == SECCOMP_NOTIFY_REPLIED)
1384 continue;
1385
1386 knotif->state = SECCOMP_NOTIFY_REPLIED;
1387 knotif->error = -ENOSYS;
1388 knotif->val = 0;
1389
1390 /*
1391 * We do not need to wake up any pending addfd messages, as
1392 * the notifier will do that for us, as this just looks
1393 * like a standard reply.
1394 */
1395 complete(&knotif->ready);
1396 }
1397
1398 seccomp_notify_free(filter);
1399 mutex_unlock(&filter->notify_lock);
1400 }
1401
1402 static int seccomp_notify_release(struct inode *inode, struct file *file)
1403 {
1404 struct seccomp_filter *filter = file->private_data;
1405
1406 seccomp_notify_detach(filter);
1407 __put_seccomp_filter(filter);
1408 return 0;
1409 }
1410
1411 /* must be called with notif_lock held */
1412 static inline struct seccomp_knotif *
1413 find_notification(struct seccomp_filter *filter, u64 id)
1414 {
1415 struct seccomp_knotif *cur;
1416
1417 lockdep_assert_held(&filter->notify_lock);
1418
1419 list_for_each_entry(cur, &filter->notif->notifications, list) {
1420 if (cur->id == id)
1421 return cur;
1422 }
1423
1424 return NULL;
1425 }
1426
1427
1428 static long seccomp_notify_recv(struct seccomp_filter *filter,
1429 void __user *buf)
1430 {
1431 struct seccomp_knotif *knotif = NULL, *cur;
1432 struct seccomp_notif unotif;
1433 ssize_t ret;
1434
1435 /* Verify that we're not given garbage to keep struct extensible. */
1436 ret = check_zeroed_user(buf, sizeof(unotif));
1437 if (ret < 0)
1438 return ret;
1439 if (!ret)
1440 return -EINVAL;
1441
1442 memset(&unotif, 0, sizeof(unotif));
1443
1444 ret = down_interruptible(&filter->notif->request);
1445 if (ret < 0)
1446 return ret;
1447
1448 mutex_lock(&filter->notify_lock);
1449 list_for_each_entry(cur, &filter->notif->notifications, list) {
1450 if (cur->state == SECCOMP_NOTIFY_INIT) {
1451 knotif = cur;
1452 break;
1453 }
1454 }
1455
1456 /*
1457 * If we didn't find a notification, it could be that the task was
1458 * interrupted by a fatal signal between the time we were woken and
1459 * when we were able to acquire the rw lock.
1460 */
1461 if (!knotif) {
1462 ret = -ENOENT;
1463 goto out;
1464 }
1465
1466 unotif.id = knotif->id;
1467 unotif.pid = task_pid_vnr(knotif->task);
1468 unotif.data = *(knotif->data);
1469
1470 knotif->state = SECCOMP_NOTIFY_SENT;
1471 wake_up_poll(&filter->wqh, EPOLLOUT | EPOLLWRNORM);
1472 ret = 0;
1473 out:
1474 mutex_unlock(&filter->notify_lock);
1475
1476 if (ret == 0 && copy_to_user(buf, &unotif, sizeof(unotif))) {
1477 ret = -EFAULT;
1478
1479 /*
1480 * Userspace screwed up. To make sure that we keep this
1481 * notification alive, let's reset it back to INIT. It
1482 * may have died when we released the lock, so we need to make
1483 * sure it's still around.
1484 */
1485 mutex_lock(&filter->notify_lock);
1486 knotif = find_notification(filter, unotif.id);
1487 if (knotif) {
1488 knotif->state = SECCOMP_NOTIFY_INIT;
1489 up(&filter->notif->request);
1490 }
1491 mutex_unlock(&filter->notify_lock);
1492 }
1493
1494 return ret;
1495 }
1496
1497 static long seccomp_notify_send(struct seccomp_filter *filter,
1498 void __user *buf)
1499 {
1500 struct seccomp_notif_resp resp = {};
1501 struct seccomp_knotif *knotif;
1502 long ret;
1503
1504 if (copy_from_user(&resp, buf, sizeof(resp)))
1505 return -EFAULT;
1506
1507 if (resp.flags & ~SECCOMP_USER_NOTIF_FLAG_CONTINUE)
1508 return -EINVAL;
1509
1510 if ((resp.flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE) &&
1511 (resp.error || resp.val))
1512 return -EINVAL;
1513
1514 ret = mutex_lock_interruptible(&filter->notify_lock);
1515 if (ret < 0)
1516 return ret;
1517
1518 knotif = find_notification(filter, resp.id);
1519 if (!knotif) {
1520 ret = -ENOENT;
1521 goto out;
1522 }
1523
1524 /* Allow exactly one reply. */
1525 if (knotif->state != SECCOMP_NOTIFY_SENT) {
1526 ret = -EINPROGRESS;
1527 goto out;
1528 }
1529
1530 ret = 0;
1531 knotif->state = SECCOMP_NOTIFY_REPLIED;
1532 knotif->error = resp.error;
1533 knotif->val = resp.val;
1534 knotif->flags = resp.flags;
1535 complete(&knotif->ready);
1536 out:
1537 mutex_unlock(&filter->notify_lock);
1538 return ret;
1539 }
1540
1541 static long seccomp_notify_id_valid(struct seccomp_filter *filter,
1542 void __user *buf)
1543 {
1544 struct seccomp_knotif *knotif;
1545 u64 id;
1546 long ret;
1547
1548 if (copy_from_user(&id, buf, sizeof(id)))
1549 return -EFAULT;
1550
1551 ret = mutex_lock_interruptible(&filter->notify_lock);
1552 if (ret < 0)
1553 return ret;
1554
1555 knotif = find_notification(filter, id);
1556 if (knotif && knotif->state == SECCOMP_NOTIFY_SENT)
1557 ret = 0;
1558 else
1559 ret = -ENOENT;
1560
1561 mutex_unlock(&filter->notify_lock);
1562 return ret;
1563 }
1564
1565 static long seccomp_notify_addfd(struct seccomp_filter *filter,
1566 struct seccomp_notif_addfd __user *uaddfd,
1567 unsigned int size)
1568 {
1569 struct seccomp_notif_addfd addfd;
1570 struct seccomp_knotif *knotif;
1571 struct seccomp_kaddfd kaddfd;
1572 int ret;
1573
1574 BUILD_BUG_ON(sizeof(addfd) < SECCOMP_NOTIFY_ADDFD_SIZE_VER0);
1575 BUILD_BUG_ON(sizeof(addfd) != SECCOMP_NOTIFY_ADDFD_SIZE_LATEST);
1576
1577 if (size < SECCOMP_NOTIFY_ADDFD_SIZE_VER0 || size >= PAGE_SIZE)
1578 return -EINVAL;
1579
1580 ret = copy_struct_from_user(&addfd, sizeof(addfd), uaddfd, size);
1581 if (ret)
1582 return ret;
1583
1584 if (addfd.newfd_flags & ~O_CLOEXEC)
1585 return -EINVAL;
1586
1587 if (addfd.flags & ~(SECCOMP_ADDFD_FLAG_SETFD | SECCOMP_ADDFD_FLAG_SEND))
1588 return -EINVAL;
1589
1590 if (addfd.newfd && !(addfd.flags & SECCOMP_ADDFD_FLAG_SETFD))
1591 return -EINVAL;
1592
1593 kaddfd.file = fget(addfd.srcfd);
1594 if (!kaddfd.file)
1595 return -EBADF;
1596
1597 kaddfd.ioctl_flags = addfd.flags;
1598 kaddfd.flags = addfd.newfd_flags;
1599 kaddfd.setfd = addfd.flags & SECCOMP_ADDFD_FLAG_SETFD;
1600 kaddfd.fd = addfd.newfd;
1601 init_completion(&kaddfd.completion);
1602
1603 ret = mutex_lock_interruptible(&filter->notify_lock);
1604 if (ret < 0)
1605 goto out;
1606
1607 knotif = find_notification(filter, addfd.id);
1608 if (!knotif) {
1609 ret = -ENOENT;
1610 goto out_unlock;
1611 }
1612
1613 /*
1614 * We do not want to allow for FD injection to occur before the
1615 * notification has been picked up by a userspace handler, or after
1616 * the notification has been replied to.
1617 */
1618 if (knotif->state != SECCOMP_NOTIFY_SENT) {
1619 ret = -EINPROGRESS;
1620 goto out_unlock;
1621 }
1622
1623 if (addfd.flags & SECCOMP_ADDFD_FLAG_SEND) {
1624 /*
1625 * Disallow queuing an atomic addfd + send reply while there are
1626 * some addfd requests still to process.
1627 *
1628 * There is no clear reason to support it and allows us to keep
1629 * the loop on the other side straight-forward.
1630 */
1631 if (!list_empty(&knotif->addfd)) {
1632 ret = -EBUSY;
1633 goto out_unlock;
1634 }
1635
1636 /* Allow exactly only one reply */
1637 knotif->state = SECCOMP_NOTIFY_REPLIED;
1638 }
1639
1640 list_add(&kaddfd.list, &knotif->addfd);
1641 complete(&knotif->ready);
1642 mutex_unlock(&filter->notify_lock);
1643
1644 /* Now we wait for it to be processed or be interrupted */
1645 ret = wait_for_completion_interruptible(&kaddfd.completion);
1646 if (ret == 0) {
1647 /*
1648 * We had a successful completion. The other side has already
1649 * removed us from the addfd queue, and
1650 * wait_for_completion_interruptible has a memory barrier upon
1651 * success that lets us read this value directly without
1652 * locking.
1653 */
1654 ret = kaddfd.ret;
1655 goto out;
1656 }
1657
1658 mutex_lock(&filter->notify_lock);
1659 /*
1660 * Even though we were woken up by a signal and not a successful
1661 * completion, a completion may have happened in the mean time.
1662 *
1663 * We need to check again if the addfd request has been handled,
1664 * and if not, we will remove it from the queue.
1665 */
1666 if (list_empty(&kaddfd.list))
1667 ret = kaddfd.ret;
1668 else
1669 list_del(&kaddfd.list);
1670
1671 out_unlock:
1672 mutex_unlock(&filter->notify_lock);
1673 out:
1674 fput(kaddfd.file);
1675
1676 return ret;
1677 }
1678
1679 static long seccomp_notify_ioctl(struct file *file, unsigned int cmd,
1680 unsigned long arg)
1681 {
1682 struct seccomp_filter *filter = file->private_data;
1683 void __user *buf = (void __user *)arg;
1684
1685 /* Fixed-size ioctls */
1686 switch (cmd) {
1687 case SECCOMP_IOCTL_NOTIF_RECV:
1688 return seccomp_notify_recv(filter, buf);
1689 case SECCOMP_IOCTL_NOTIF_SEND:
1690 return seccomp_notify_send(filter, buf);
1691 case SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR:
1692 case SECCOMP_IOCTL_NOTIF_ID_VALID:
1693 return seccomp_notify_id_valid(filter, buf);
1694 }
1695
1696 /* Extensible Argument ioctls */
1697 #define EA_IOCTL(cmd) ((cmd) & ~(IOC_INOUT | IOCSIZE_MASK))
1698 switch (EA_IOCTL(cmd)) {
1699 case EA_IOCTL(SECCOMP_IOCTL_NOTIF_ADDFD):
1700 return seccomp_notify_addfd(filter, buf, _IOC_SIZE(cmd));
1701 default:
1702 return -EINVAL;
1703 }
1704 }
1705
1706 static __poll_t seccomp_notify_poll(struct file *file,
1707 struct poll_table_struct *poll_tab)
1708 {
1709 struct seccomp_filter *filter = file->private_data;
1710 __poll_t ret = 0;
1711 struct seccomp_knotif *cur;
1712
1713 poll_wait(file, &filter->wqh, poll_tab);
1714
1715 if (mutex_lock_interruptible(&filter->notify_lock) < 0)
1716 return EPOLLERR;
1717
1718 list_for_each_entry(cur, &filter->notif->notifications, list) {
1719 if (cur->state == SECCOMP_NOTIFY_INIT)
1720 ret |= EPOLLIN | EPOLLRDNORM;
1721 if (cur->state == SECCOMP_NOTIFY_SENT)
1722 ret |= EPOLLOUT | EPOLLWRNORM;
1723 if ((ret & EPOLLIN) && (ret & EPOLLOUT))
1724 break;
1725 }
1726
1727 mutex_unlock(&filter->notify_lock);
1728
1729 if (refcount_read(&filter->users) == 0)
1730 ret |= EPOLLHUP;
1731
1732 return ret;
1733 }
1734
1735 static const struct file_operations seccomp_notify_ops = {
1736 .poll = seccomp_notify_poll,
1737 .release = seccomp_notify_release,
1738 .unlocked_ioctl = seccomp_notify_ioctl,
1739 .compat_ioctl = seccomp_notify_ioctl,
1740 };
1741
1742 static struct file *init_listener(struct seccomp_filter *filter)
1743 {
1744 struct file *ret;
1745
1746 ret = ERR_PTR(-ENOMEM);
1747 filter->notif = kzalloc(sizeof(*(filter->notif)), GFP_KERNEL);
1748 if (!filter->notif)
1749 goto out;
1750
1751 sema_init(&filter->notif->request, 0);
1752 filter->notif->next_id = get_random_u64();
1753 INIT_LIST_HEAD(&filter->notif->notifications);
1754
1755 ret = anon_inode_getfile("seccomp notify", &seccomp_notify_ops,
1756 filter, O_RDWR);
1757 if (IS_ERR(ret))
1758 goto out_notif;
1759
1760 /* The file has a reference to it now */
1761 __get_seccomp_filter(filter);
1762
1763 out_notif:
1764 if (IS_ERR(ret))
1765 seccomp_notify_free(filter);
1766 out:
1767 return ret;
1768 }
1769
1770 /*
1771 * Does @new_child have a listener while an ancestor also has a listener?
1772 * If so, we'll want to reject this filter.
1773 * This only has to be tested for the current process, even in the TSYNC case,
1774 * because TSYNC installs @child with the same parent on all threads.
1775 * Note that @new_child is not hooked up to its parent at this point yet, so
1776 * we use current->seccomp.filter.
1777 */
1778 static bool has_duplicate_listener(struct seccomp_filter *new_child)
1779 {
1780 struct seccomp_filter *cur;
1781
1782 /* must be protected against concurrent TSYNC */
1783 lockdep_assert_held(&current->sighand->siglock);
1784
1785 if (!new_child->notif)
1786 return false;
1787 for (cur = current->seccomp.filter; cur; cur = cur->prev) {
1788 if (cur->notif)
1789 return true;
1790 }
1791
1792 return false;
1793 }
1794
1795 /**
1796 * seccomp_set_mode_filter: internal function for setting seccomp filter
1797 * @flags: flags to change filter behavior
1798 * @filter: struct sock_fprog containing filter
1799 *
1800 * This function may be called repeatedly to install additional filters.
1801 * Every filter successfully installed will be evaluated (in reverse order)
1802 * for each system call the task makes.
1803 *
1804 * Once current->seccomp.mode is non-zero, it may not be changed.
1805 *
1806 * Returns 0 on success or -EINVAL on failure.
1807 */
1808 static long seccomp_set_mode_filter(unsigned int flags,
1809 const char __user *filter)
1810 {
1811 const unsigned long seccomp_mode = SECCOMP_MODE_FILTER;
1812 struct seccomp_filter *prepared = NULL;
1813 long ret = -EINVAL;
1814 int listener = -1;
1815 struct file *listener_f = NULL;
1816
1817 /* Validate flags. */
1818 if (flags & ~SECCOMP_FILTER_FLAG_MASK)
1819 return -EINVAL;
1820
1821 /*
1822 * In the successful case, NEW_LISTENER returns the new listener fd.
1823 * But in the failure case, TSYNC returns the thread that died. If you
1824 * combine these two flags, there's no way to tell whether something
1825 * succeeded or failed. So, let's disallow this combination if the user
1826 * has not explicitly requested no errors from TSYNC.
1827 */
1828 if ((flags & SECCOMP_FILTER_FLAG_TSYNC) &&
1829 (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) &&
1830 ((flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH) == 0))
1831 return -EINVAL;
1832
1833 /* Prepare the new filter before holding any locks. */
1834 prepared = seccomp_prepare_user_filter(filter);
1835 if (IS_ERR(prepared))
1836 return PTR_ERR(prepared);
1837
1838 if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) {
1839 listener = get_unused_fd_flags(O_CLOEXEC);
1840 if (listener < 0) {
1841 ret = listener;
1842 goto out_free;
1843 }
1844
1845 listener_f = init_listener(prepared);
1846 if (IS_ERR(listener_f)) {
1847 put_unused_fd(listener);
1848 ret = PTR_ERR(listener_f);
1849 goto out_free;
1850 }
1851 }
1852
1853 /*
1854 * Make sure we cannot change seccomp or nnp state via TSYNC
1855 * while another thread is in the middle of calling exec.
1856 */
1857 if (flags & SECCOMP_FILTER_FLAG_TSYNC &&
1858 mutex_lock_killable(&current->signal->cred_guard_mutex))
1859 goto out_put_fd;
1860
1861 spin_lock_irq(&current->sighand->siglock);
1862
1863 if (!seccomp_may_assign_mode(seccomp_mode))
1864 goto out;
1865
1866 if (has_duplicate_listener(prepared)) {
1867 ret = -EBUSY;
1868 goto out;
1869 }
1870
1871 ret = seccomp_attach_filter(flags, prepared);
1872 if (ret)
1873 goto out;
1874 /* Do not free the successfully attached filter. */
1875 prepared = NULL;
1876
1877 seccomp_assign_mode(current, seccomp_mode, flags);
1878 out:
1879 spin_unlock_irq(&current->sighand->siglock);
1880 if (flags & SECCOMP_FILTER_FLAG_TSYNC)
1881 mutex_unlock(&current->signal->cred_guard_mutex);
1882 out_put_fd:
1883 if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) {
1884 if (ret) {
1885 listener_f->private_data = NULL;
1886 fput(listener_f);
1887 put_unused_fd(listener);
1888 seccomp_notify_detach(prepared);
1889 } else {
1890 fd_install(listener, listener_f);
1891 ret = listener;
1892 }
1893 }
1894 out_free:
1895 seccomp_filter_free(prepared);
1896 return ret;
1897 }
1898 #else
1899 static inline long seccomp_set_mode_filter(unsigned int flags,
1900 const char __user *filter)
1901 {
1902 return -EINVAL;
1903 }
1904 #endif
1905
1906 static long seccomp_get_action_avail(const char __user *uaction)
1907 {
1908 u32 action;
1909
1910 if (copy_from_user(&action, uaction, sizeof(action)))
1911 return -EFAULT;
1912
1913 switch (action) {
1914 case SECCOMP_RET_KILL_PROCESS:
1915 case SECCOMP_RET_KILL_THREAD:
1916 case SECCOMP_RET_TRAP:
1917 case SECCOMP_RET_ERRNO:
1918 case SECCOMP_RET_USER_NOTIF:
1919 case SECCOMP_RET_TRACE:
1920 case SECCOMP_RET_LOG:
1921 case SECCOMP_RET_ALLOW:
1922 break;
1923 default:
1924 return -EOPNOTSUPP;
1925 }
1926
1927 return 0;
1928 }
1929
1930 static long seccomp_get_notif_sizes(void __user *usizes)
1931 {
1932 struct seccomp_notif_sizes sizes = {
1933 .seccomp_notif = sizeof(struct seccomp_notif),
1934 .seccomp_notif_resp = sizeof(struct seccomp_notif_resp),
1935 .seccomp_data = sizeof(struct seccomp_data),
1936 };
1937
1938 if (copy_to_user(usizes, &sizes, sizeof(sizes)))
1939 return -EFAULT;
1940
1941 return 0;
1942 }
1943
1944 /* Common entry point for both prctl and syscall. */
1945 static long do_seccomp(unsigned int op, unsigned int flags,
1946 void __user *uargs)
1947 {
1948 switch (op) {
1949 case SECCOMP_SET_MODE_STRICT:
1950 if (flags != 0 || uargs != NULL)
1951 return -EINVAL;
1952 return seccomp_set_mode_strict();
1953 case SECCOMP_SET_MODE_FILTER:
1954 return seccomp_set_mode_filter(flags, uargs);
1955 case SECCOMP_GET_ACTION_AVAIL:
1956 if (flags != 0)
1957 return -EINVAL;
1958
1959 return seccomp_get_action_avail(uargs);
1960 case SECCOMP_GET_NOTIF_SIZES:
1961 if (flags != 0)
1962 return -EINVAL;
1963
1964 return seccomp_get_notif_sizes(uargs);
1965 default:
1966 return -EINVAL;
1967 }
1968 }
1969
1970 SYSCALL_DEFINE3(seccomp, unsigned int, op, unsigned int, flags,
1971 void __user *, uargs)
1972 {
1973 return do_seccomp(op, flags, uargs);
1974 }
1975
1976 /**
1977 * prctl_set_seccomp: configures current->seccomp.mode
1978 * @seccomp_mode: requested mode to use
1979 * @filter: optional struct sock_fprog for use with SECCOMP_MODE_FILTER
1980 *
1981 * Returns 0 on success or -EINVAL on failure.
1982 */
1983 long prctl_set_seccomp(unsigned long seccomp_mode, void __user *filter)
1984 {
1985 unsigned int op;
1986 void __user *uargs;
1987
1988 switch (seccomp_mode) {
1989 case SECCOMP_MODE_STRICT:
1990 op = SECCOMP_SET_MODE_STRICT;
1991 /*
1992 * Setting strict mode through prctl always ignored filter,
1993 * so make sure it is always NULL here to pass the internal
1994 * check in do_seccomp().
1995 */
1996 uargs = NULL;
1997 break;
1998 case SECCOMP_MODE_FILTER:
1999 op = SECCOMP_SET_MODE_FILTER;
2000 uargs = filter;
2001 break;
2002 default:
2003 return -EINVAL;
2004 }
2005
2006 /* prctl interface doesn't have flags, so they are always zero. */
2007 return do_seccomp(op, 0, uargs);
2008 }
2009
2010 #if defined(CONFIG_SECCOMP_FILTER) && defined(CONFIG_CHECKPOINT_RESTORE)
2011 static struct seccomp_filter *get_nth_filter(struct task_struct *task,
2012 unsigned long filter_off)
2013 {
2014 struct seccomp_filter *orig, *filter;
2015 unsigned long count;
2016
2017 /*
2018 * Note: this is only correct because the caller should be the (ptrace)
2019 * tracer of the task, otherwise lock_task_sighand is needed.
2020 */
2021 spin_lock_irq(&task->sighand->siglock);
2022
2023 if (task->seccomp.mode != SECCOMP_MODE_FILTER) {
2024 spin_unlock_irq(&task->sighand->siglock);
2025 return ERR_PTR(-EINVAL);
2026 }
2027
2028 orig = task->seccomp.filter;
2029 __get_seccomp_filter(orig);
2030 spin_unlock_irq(&task->sighand->siglock);
2031
2032 count = 0;
2033 for (filter = orig; filter; filter = filter->prev)
2034 count++;
2035
2036 if (filter_off >= count) {
2037 filter = ERR_PTR(-ENOENT);
2038 goto out;
2039 }
2040
2041 count -= filter_off;
2042 for (filter = orig; filter && count > 1; filter = filter->prev)
2043 count--;
2044
2045 if (WARN_ON(count != 1 || !filter)) {
2046 filter = ERR_PTR(-ENOENT);
2047 goto out;
2048 }
2049
2050 __get_seccomp_filter(filter);
2051
2052 out:
2053 __put_seccomp_filter(orig);
2054 return filter;
2055 }
2056
2057 long seccomp_get_filter(struct task_struct *task, unsigned long filter_off,
2058 void __user *data)
2059 {
2060 struct seccomp_filter *filter;
2061 struct sock_fprog_kern *fprog;
2062 long ret;
2063
2064 if (!capable(CAP_SYS_ADMIN) ||
2065 current->seccomp.mode != SECCOMP_MODE_DISABLED) {
2066 return -EACCES;
2067 }
2068
2069 filter = get_nth_filter(task, filter_off);
2070 if (IS_ERR(filter))
2071 return PTR_ERR(filter);
2072
2073 fprog = filter->prog->orig_prog;
2074 if (!fprog) {
2075 /* This must be a new non-cBPF filter, since we save
2076 * every cBPF filter's orig_prog above when
2077 * CONFIG_CHECKPOINT_RESTORE is enabled.
2078 */
2079 ret = -EMEDIUMTYPE;
2080 goto out;
2081 }
2082
2083 ret = fprog->len;
2084 if (!data)
2085 goto out;
2086
2087 if (copy_to_user(data, fprog->filter, bpf_classic_proglen(fprog)))
2088 ret = -EFAULT;
2089
2090 out:
2091 __put_seccomp_filter(filter);
2092 return ret;
2093 }
2094
2095 long seccomp_get_metadata(struct task_struct *task,
2096 unsigned long size, void __user *data)
2097 {
2098 long ret;
2099 struct seccomp_filter *filter;
2100 struct seccomp_metadata kmd = {};
2101
2102 if (!capable(CAP_SYS_ADMIN) ||
2103 current->seccomp.mode != SECCOMP_MODE_DISABLED) {
2104 return -EACCES;
2105 }
2106
2107 size = min_t(unsigned long, size, sizeof(kmd));
2108
2109 if (size < sizeof(kmd.filter_off))
2110 return -EINVAL;
2111
2112 if (copy_from_user(&kmd.filter_off, data, sizeof(kmd.filter_off)))
2113 return -EFAULT;
2114
2115 filter = get_nth_filter(task, kmd.filter_off);
2116 if (IS_ERR(filter))
2117 return PTR_ERR(filter);
2118
2119 if (filter->log)
2120 kmd.flags |= SECCOMP_FILTER_FLAG_LOG;
2121
2122 ret = size;
2123 if (copy_to_user(data, &kmd, size))
2124 ret = -EFAULT;
2125
2126 __put_seccomp_filter(filter);
2127 return ret;
2128 }
2129 #endif
2130
2131 #ifdef CONFIG_SYSCTL
2132
2133 /* Human readable action names for friendly sysctl interaction */
2134 #define SECCOMP_RET_KILL_PROCESS_NAME "kill_process"
2135 #define SECCOMP_RET_KILL_THREAD_NAME "kill_thread"
2136 #define SECCOMP_RET_TRAP_NAME "trap"
2137 #define SECCOMP_RET_ERRNO_NAME "errno"
2138 #define SECCOMP_RET_USER_NOTIF_NAME "user_notif"
2139 #define SECCOMP_RET_TRACE_NAME "trace"
2140 #define SECCOMP_RET_LOG_NAME "log"
2141 #define SECCOMP_RET_ALLOW_NAME "allow"
2142
2143 static const char seccomp_actions_avail[] =
2144 SECCOMP_RET_KILL_PROCESS_NAME " "
2145 SECCOMP_RET_KILL_THREAD_NAME " "
2146 SECCOMP_RET_TRAP_NAME " "
2147 SECCOMP_RET_ERRNO_NAME " "
2148 SECCOMP_RET_USER_NOTIF_NAME " "
2149 SECCOMP_RET_TRACE_NAME " "
2150 SECCOMP_RET_LOG_NAME " "
2151 SECCOMP_RET_ALLOW_NAME;
2152
2153 struct seccomp_log_name {
2154 u32 log;
2155 const char *name;
2156 };
2157
2158 static const struct seccomp_log_name seccomp_log_names[] = {
2159 { SECCOMP_LOG_KILL_PROCESS, SECCOMP_RET_KILL_PROCESS_NAME },
2160 { SECCOMP_LOG_KILL_THREAD, SECCOMP_RET_KILL_THREAD_NAME },
2161 { SECCOMP_LOG_TRAP, SECCOMP_RET_TRAP_NAME },
2162 { SECCOMP_LOG_ERRNO, SECCOMP_RET_ERRNO_NAME },
2163 { SECCOMP_LOG_USER_NOTIF, SECCOMP_RET_USER_NOTIF_NAME },
2164 { SECCOMP_LOG_TRACE, SECCOMP_RET_TRACE_NAME },
2165 { SECCOMP_LOG_LOG, SECCOMP_RET_LOG_NAME },
2166 { SECCOMP_LOG_ALLOW, SECCOMP_RET_ALLOW_NAME },
2167 { }
2168 };
2169
2170 static bool seccomp_names_from_actions_logged(char *names, size_t size,
2171 u32 actions_logged,
2172 const char *sep)
2173 {
2174 const struct seccomp_log_name *cur;
2175 bool append_sep = false;
2176
2177 for (cur = seccomp_log_names; cur->name && size; cur++) {
2178 ssize_t ret;
2179
2180 if (!(actions_logged & cur->log))
2181 continue;
2182
2183 if (append_sep) {
2184 ret = strscpy(names, sep, size);
2185 if (ret < 0)
2186 return false;
2187
2188 names += ret;
2189 size -= ret;
2190 } else
2191 append_sep = true;
2192
2193 ret = strscpy(names, cur->name, size);
2194 if (ret < 0)
2195 return false;
2196
2197 names += ret;
2198 size -= ret;
2199 }
2200
2201 return true;
2202 }
2203
2204 static bool seccomp_action_logged_from_name(u32 *action_logged,
2205 const char *name)
2206 {
2207 const struct seccomp_log_name *cur;
2208
2209 for (cur = seccomp_log_names; cur->name; cur++) {
2210 if (!strcmp(cur->name, name)) {
2211 *action_logged = cur->log;
2212 return true;
2213 }
2214 }
2215
2216 return false;
2217 }
2218
2219 static bool seccomp_actions_logged_from_names(u32 *actions_logged, char *names)
2220 {
2221 char *name;
2222
2223 *actions_logged = 0;
2224 while ((name = strsep(&names, " ")) && *name) {
2225 u32 action_logged = 0;
2226
2227 if (!seccomp_action_logged_from_name(&action_logged, name))
2228 return false;
2229
2230 *actions_logged |= action_logged;
2231 }
2232
2233 return true;
2234 }
2235
2236 static int read_actions_logged(struct ctl_table *ro_table, void *buffer,
2237 size_t *lenp, loff_t *ppos)
2238 {
2239 char names[sizeof(seccomp_actions_avail)];
2240 struct ctl_table table;
2241
2242 memset(names, 0, sizeof(names));
2243
2244 if (!seccomp_names_from_actions_logged(names, sizeof(names),
2245 seccomp_actions_logged, " "))
2246 return -EINVAL;
2247
2248 table = *ro_table;
2249 table.data = names;
2250 table.maxlen = sizeof(names);
2251 return proc_dostring(&table, 0, buffer, lenp, ppos);
2252 }
2253
2254 static int write_actions_logged(struct ctl_table *ro_table, void *buffer,
2255 size_t *lenp, loff_t *ppos, u32 *actions_logged)
2256 {
2257 char names[sizeof(seccomp_actions_avail)];
2258 struct ctl_table table;
2259 int ret;
2260
2261 if (!capable(CAP_SYS_ADMIN))
2262 return -EPERM;
2263
2264 memset(names, 0, sizeof(names));
2265
2266 table = *ro_table;
2267 table.data = names;
2268 table.maxlen = sizeof(names);
2269 ret = proc_dostring(&table, 1, buffer, lenp, ppos);
2270 if (ret)
2271 return ret;
2272
2273 if (!seccomp_actions_logged_from_names(actions_logged, table.data))
2274 return -EINVAL;
2275
2276 if (*actions_logged & SECCOMP_LOG_ALLOW)
2277 return -EINVAL;
2278
2279 seccomp_actions_logged = *actions_logged;
2280 return 0;
2281 }
2282
2283 static void audit_actions_logged(u32 actions_logged, u32 old_actions_logged,
2284 int ret)
2285 {
2286 char names[sizeof(seccomp_actions_avail)];
2287 char old_names[sizeof(seccomp_actions_avail)];
2288 const char *new = names;
2289 const char *old = old_names;
2290
2291 if (!audit_enabled)
2292 return;
2293
2294 memset(names, 0, sizeof(names));
2295 memset(old_names, 0, sizeof(old_names));
2296
2297 if (ret)
2298 new = "?";
2299 else if (!actions_logged)
2300 new = "(none)";
2301 else if (!seccomp_names_from_actions_logged(names, sizeof(names),
2302 actions_logged, ","))
2303 new = "?";
2304
2305 if (!old_actions_logged)
2306 old = "(none)";
2307 else if (!seccomp_names_from_actions_logged(old_names,
2308 sizeof(old_names),
2309 old_actions_logged, ","))
2310 old = "?";
2311
2312 return audit_seccomp_actions_logged(new, old, !ret);
2313 }
2314
2315 static int seccomp_actions_logged_handler(struct ctl_table *ro_table, int write,
2316 void *buffer, size_t *lenp,
2317 loff_t *ppos)
2318 {
2319 int ret;
2320
2321 if (write) {
2322 u32 actions_logged = 0;
2323 u32 old_actions_logged = seccomp_actions_logged;
2324
2325 ret = write_actions_logged(ro_table, buffer, lenp, ppos,
2326 &actions_logged);
2327 audit_actions_logged(actions_logged, old_actions_logged, ret);
2328 } else
2329 ret = read_actions_logged(ro_table, buffer, lenp, ppos);
2330
2331 return ret;
2332 }
2333
2334 static struct ctl_path seccomp_sysctl_path[] = {
2335 { .procname = "kernel", },
2336 { .procname = "seccomp", },
2337 { }
2338 };
2339
2340 static struct ctl_table seccomp_sysctl_table[] = {
2341 {
2342 .procname = "actions_avail",
2343 .data = (void *) &seccomp_actions_avail,
2344 .maxlen = sizeof(seccomp_actions_avail),
2345 .mode = 0444,
2346 .proc_handler = proc_dostring,
2347 },
2348 {
2349 .procname = "actions_logged",
2350 .mode = 0644,
2351 .proc_handler = seccomp_actions_logged_handler,
2352 },
2353 { }
2354 };
2355
2356 static int __init seccomp_sysctl_init(void)
2357 {
2358 struct ctl_table_header *hdr;
2359
2360 hdr = register_sysctl_paths(seccomp_sysctl_path, seccomp_sysctl_table);
2361 if (!hdr)
2362 pr_warn("sysctl registration failed\n");
2363 else
2364 kmemleak_not_leak(hdr);
2365
2366 return 0;
2367 }
2368
2369 device_initcall(seccomp_sysctl_init)
2370
2371 #endif /* CONFIG_SYSCTL */
2372
2373 #ifdef CONFIG_SECCOMP_CACHE_DEBUG
2374 /* Currently CONFIG_SECCOMP_CACHE_DEBUG implies SECCOMP_ARCH_NATIVE */
2375 static void proc_pid_seccomp_cache_arch(struct seq_file *m, const char *name,
2376 const void *bitmap, size_t bitmap_size)
2377 {
2378 int nr;
2379
2380 for (nr = 0; nr < bitmap_size; nr++) {
2381 bool cached = test_bit(nr, bitmap);
2382 char *status = cached ? "ALLOW" : "FILTER";
2383
2384 seq_printf(m, "%s %d %s\n", name, nr, status);
2385 }
2386 }
2387
2388 int proc_pid_seccomp_cache(struct seq_file *m, struct pid_namespace *ns,
2389 struct pid *pid, struct task_struct *task)
2390 {
2391 struct seccomp_filter *f;
2392 unsigned long flags;
2393
2394 /*
2395 * We don't want some sandboxed process to know what their seccomp
2396 * filters consist of.
2397 */
2398 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
2399 return -EACCES;
2400
2401 if (!lock_task_sighand(task, &flags))
2402 return -ESRCH;
2403
2404 f = READ_ONCE(task->seccomp.filter);
2405 if (!f) {
2406 unlock_task_sighand(task, &flags);
2407 return 0;
2408 }
2409
2410 /* prevent filter from being freed while we are printing it */
2411 __get_seccomp_filter(f);
2412 unlock_task_sighand(task, &flags);
2413
2414 proc_pid_seccomp_cache_arch(m, SECCOMP_ARCH_NATIVE_NAME,
2415 f->cache.allow_native,
2416 SECCOMP_ARCH_NATIVE_NR);
2417
2418 #ifdef SECCOMP_ARCH_COMPAT
2419 proc_pid_seccomp_cache_arch(m, SECCOMP_ARCH_COMPAT_NAME,
2420 f->cache.allow_compat,
2421 SECCOMP_ARCH_COMPAT_NR);
2422 #endif /* SECCOMP_ARCH_COMPAT */
2423
2424 __put_seccomp_filter(f);
2425 return 0;
2426 }
2427 #endif /* CONFIG_SECCOMP_CACHE_DEBUG */