]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/seccomp.c
Merge tag 'ceph-for-5.13-rc1' of git://github.com/ceph/ceph-client
[mirror_ubuntu-jammy-kernel.git] / kernel / seccomp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/kernel/seccomp.c
4 *
5 * Copyright 2004-2005 Andrea Arcangeli <andrea@cpushare.com>
6 *
7 * Copyright (C) 2012 Google, Inc.
8 * Will Drewry <wad@chromium.org>
9 *
10 * This defines a simple but solid secure-computing facility.
11 *
12 * Mode 1 uses a fixed list of allowed system calls.
13 * Mode 2 allows user-defined system call filters in the form
14 * of Berkeley Packet Filters/Linux Socket Filters.
15 */
16 #define pr_fmt(fmt) "seccomp: " fmt
17
18 #include <linux/refcount.h>
19 #include <linux/audit.h>
20 #include <linux/compat.h>
21 #include <linux/coredump.h>
22 #include <linux/kmemleak.h>
23 #include <linux/nospec.h>
24 #include <linux/prctl.h>
25 #include <linux/sched.h>
26 #include <linux/sched/task_stack.h>
27 #include <linux/seccomp.h>
28 #include <linux/slab.h>
29 #include <linux/syscalls.h>
30 #include <linux/sysctl.h>
31
32 #ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER
33 #include <asm/syscall.h>
34 #endif
35
36 #ifdef CONFIG_SECCOMP_FILTER
37 #include <linux/file.h>
38 #include <linux/filter.h>
39 #include <linux/pid.h>
40 #include <linux/ptrace.h>
41 #include <linux/capability.h>
42 #include <linux/tracehook.h>
43 #include <linux/uaccess.h>
44 #include <linux/anon_inodes.h>
45 #include <linux/lockdep.h>
46
47 /*
48 * When SECCOMP_IOCTL_NOTIF_ID_VALID was first introduced, it had the
49 * wrong direction flag in the ioctl number. This is the broken one,
50 * which the kernel needs to keep supporting until all userspaces stop
51 * using the wrong command number.
52 */
53 #define SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR SECCOMP_IOR(2, __u64)
54
55 enum notify_state {
56 SECCOMP_NOTIFY_INIT,
57 SECCOMP_NOTIFY_SENT,
58 SECCOMP_NOTIFY_REPLIED,
59 };
60
61 struct seccomp_knotif {
62 /* The struct pid of the task whose filter triggered the notification */
63 struct task_struct *task;
64
65 /* The "cookie" for this request; this is unique for this filter. */
66 u64 id;
67
68 /*
69 * The seccomp data. This pointer is valid the entire time this
70 * notification is active, since it comes from __seccomp_filter which
71 * eclipses the entire lifecycle here.
72 */
73 const struct seccomp_data *data;
74
75 /*
76 * Notification states. When SECCOMP_RET_USER_NOTIF is returned, a
77 * struct seccomp_knotif is created and starts out in INIT. Once the
78 * handler reads the notification off of an FD, it transitions to SENT.
79 * If a signal is received the state transitions back to INIT and
80 * another message is sent. When the userspace handler replies, state
81 * transitions to REPLIED.
82 */
83 enum notify_state state;
84
85 /* The return values, only valid when in SECCOMP_NOTIFY_REPLIED */
86 int error;
87 long val;
88 u32 flags;
89
90 /*
91 * Signals when this has changed states, such as the listener
92 * dying, a new seccomp addfd message, or changing to REPLIED
93 */
94 struct completion ready;
95
96 struct list_head list;
97
98 /* outstanding addfd requests */
99 struct list_head addfd;
100 };
101
102 /**
103 * struct seccomp_kaddfd - container for seccomp_addfd ioctl messages
104 *
105 * @file: A reference to the file to install in the other task
106 * @fd: The fd number to install it at. If the fd number is -1, it means the
107 * installing process should allocate the fd as normal.
108 * @flags: The flags for the new file descriptor. At the moment, only O_CLOEXEC
109 * is allowed.
110 * @ret: The return value of the installing process. It is set to the fd num
111 * upon success (>= 0).
112 * @completion: Indicates that the installing process has completed fd
113 * installation, or gone away (either due to successful
114 * reply, or signal)
115 *
116 */
117 struct seccomp_kaddfd {
118 struct file *file;
119 int fd;
120 unsigned int flags;
121
122 union {
123 bool setfd;
124 /* To only be set on reply */
125 int ret;
126 };
127 struct completion completion;
128 struct list_head list;
129 };
130
131 /**
132 * struct notification - container for seccomp userspace notifications. Since
133 * most seccomp filters will not have notification listeners attached and this
134 * structure is fairly large, we store the notification-specific stuff in a
135 * separate structure.
136 *
137 * @request: A semaphore that users of this notification can wait on for
138 * changes. Actual reads and writes are still controlled with
139 * filter->notify_lock.
140 * @next_id: The id of the next request.
141 * @notifications: A list of struct seccomp_knotif elements.
142 */
143 struct notification {
144 struct semaphore request;
145 u64 next_id;
146 struct list_head notifications;
147 };
148
149 #ifdef SECCOMP_ARCH_NATIVE
150 /**
151 * struct action_cache - per-filter cache of seccomp actions per
152 * arch/syscall pair
153 *
154 * @allow_native: A bitmap where each bit represents whether the
155 * filter will always allow the syscall, for the
156 * native architecture.
157 * @allow_compat: A bitmap where each bit represents whether the
158 * filter will always allow the syscall, for the
159 * compat architecture.
160 */
161 struct action_cache {
162 DECLARE_BITMAP(allow_native, SECCOMP_ARCH_NATIVE_NR);
163 #ifdef SECCOMP_ARCH_COMPAT
164 DECLARE_BITMAP(allow_compat, SECCOMP_ARCH_COMPAT_NR);
165 #endif
166 };
167 #else
168 struct action_cache { };
169
170 static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter,
171 const struct seccomp_data *sd)
172 {
173 return false;
174 }
175
176 static inline void seccomp_cache_prepare(struct seccomp_filter *sfilter)
177 {
178 }
179 #endif /* SECCOMP_ARCH_NATIVE */
180
181 /**
182 * struct seccomp_filter - container for seccomp BPF programs
183 *
184 * @refs: Reference count to manage the object lifetime.
185 * A filter's reference count is incremented for each directly
186 * attached task, once for the dependent filter, and if
187 * requested for the user notifier. When @refs reaches zero,
188 * the filter can be freed.
189 * @users: A filter's @users count is incremented for each directly
190 * attached task (filter installation, fork(), thread_sync),
191 * and once for the dependent filter (tracked in filter->prev).
192 * When it reaches zero it indicates that no direct or indirect
193 * users of that filter exist. No new tasks can get associated with
194 * this filter after reaching 0. The @users count is always smaller
195 * or equal to @refs. Hence, reaching 0 for @users does not mean
196 * the filter can be freed.
197 * @cache: cache of arch/syscall mappings to actions
198 * @log: true if all actions except for SECCOMP_RET_ALLOW should be logged
199 * @prev: points to a previously installed, or inherited, filter
200 * @prog: the BPF program to evaluate
201 * @notif: the struct that holds all notification related information
202 * @notify_lock: A lock for all notification-related accesses.
203 * @wqh: A wait queue for poll if a notifier is in use.
204 *
205 * seccomp_filter objects are organized in a tree linked via the @prev
206 * pointer. For any task, it appears to be a singly-linked list starting
207 * with current->seccomp.filter, the most recently attached or inherited filter.
208 * However, multiple filters may share a @prev node, by way of fork(), which
209 * results in a unidirectional tree existing in memory. This is similar to
210 * how namespaces work.
211 *
212 * seccomp_filter objects should never be modified after being attached
213 * to a task_struct (other than @refs).
214 */
215 struct seccomp_filter {
216 refcount_t refs;
217 refcount_t users;
218 bool log;
219 struct action_cache cache;
220 struct seccomp_filter *prev;
221 struct bpf_prog *prog;
222 struct notification *notif;
223 struct mutex notify_lock;
224 wait_queue_head_t wqh;
225 };
226
227 /* Limit any path through the tree to 256KB worth of instructions. */
228 #define MAX_INSNS_PER_PATH ((1 << 18) / sizeof(struct sock_filter))
229
230 /*
231 * Endianness is explicitly ignored and left for BPF program authors to manage
232 * as per the specific architecture.
233 */
234 static void populate_seccomp_data(struct seccomp_data *sd)
235 {
236 /*
237 * Instead of using current_pt_reg(), we're already doing the work
238 * to safely fetch "current", so just use "task" everywhere below.
239 */
240 struct task_struct *task = current;
241 struct pt_regs *regs = task_pt_regs(task);
242 unsigned long args[6];
243
244 sd->nr = syscall_get_nr(task, regs);
245 sd->arch = syscall_get_arch(task);
246 syscall_get_arguments(task, regs, args);
247 sd->args[0] = args[0];
248 sd->args[1] = args[1];
249 sd->args[2] = args[2];
250 sd->args[3] = args[3];
251 sd->args[4] = args[4];
252 sd->args[5] = args[5];
253 sd->instruction_pointer = KSTK_EIP(task);
254 }
255
256 /**
257 * seccomp_check_filter - verify seccomp filter code
258 * @filter: filter to verify
259 * @flen: length of filter
260 *
261 * Takes a previously checked filter (by bpf_check_classic) and
262 * redirects all filter code that loads struct sk_buff data
263 * and related data through seccomp_bpf_load. It also
264 * enforces length and alignment checking of those loads.
265 *
266 * Returns 0 if the rule set is legal or -EINVAL if not.
267 */
268 static int seccomp_check_filter(struct sock_filter *filter, unsigned int flen)
269 {
270 int pc;
271 for (pc = 0; pc < flen; pc++) {
272 struct sock_filter *ftest = &filter[pc];
273 u16 code = ftest->code;
274 u32 k = ftest->k;
275
276 switch (code) {
277 case BPF_LD | BPF_W | BPF_ABS:
278 ftest->code = BPF_LDX | BPF_W | BPF_ABS;
279 /* 32-bit aligned and not out of bounds. */
280 if (k >= sizeof(struct seccomp_data) || k & 3)
281 return -EINVAL;
282 continue;
283 case BPF_LD | BPF_W | BPF_LEN:
284 ftest->code = BPF_LD | BPF_IMM;
285 ftest->k = sizeof(struct seccomp_data);
286 continue;
287 case BPF_LDX | BPF_W | BPF_LEN:
288 ftest->code = BPF_LDX | BPF_IMM;
289 ftest->k = sizeof(struct seccomp_data);
290 continue;
291 /* Explicitly include allowed calls. */
292 case BPF_RET | BPF_K:
293 case BPF_RET | BPF_A:
294 case BPF_ALU | BPF_ADD | BPF_K:
295 case BPF_ALU | BPF_ADD | BPF_X:
296 case BPF_ALU | BPF_SUB | BPF_K:
297 case BPF_ALU | BPF_SUB | BPF_X:
298 case BPF_ALU | BPF_MUL | BPF_K:
299 case BPF_ALU | BPF_MUL | BPF_X:
300 case BPF_ALU | BPF_DIV | BPF_K:
301 case BPF_ALU | BPF_DIV | BPF_X:
302 case BPF_ALU | BPF_AND | BPF_K:
303 case BPF_ALU | BPF_AND | BPF_X:
304 case BPF_ALU | BPF_OR | BPF_K:
305 case BPF_ALU | BPF_OR | BPF_X:
306 case BPF_ALU | BPF_XOR | BPF_K:
307 case BPF_ALU | BPF_XOR | BPF_X:
308 case BPF_ALU | BPF_LSH | BPF_K:
309 case BPF_ALU | BPF_LSH | BPF_X:
310 case BPF_ALU | BPF_RSH | BPF_K:
311 case BPF_ALU | BPF_RSH | BPF_X:
312 case BPF_ALU | BPF_NEG:
313 case BPF_LD | BPF_IMM:
314 case BPF_LDX | BPF_IMM:
315 case BPF_MISC | BPF_TAX:
316 case BPF_MISC | BPF_TXA:
317 case BPF_LD | BPF_MEM:
318 case BPF_LDX | BPF_MEM:
319 case BPF_ST:
320 case BPF_STX:
321 case BPF_JMP | BPF_JA:
322 case BPF_JMP | BPF_JEQ | BPF_K:
323 case BPF_JMP | BPF_JEQ | BPF_X:
324 case BPF_JMP | BPF_JGE | BPF_K:
325 case BPF_JMP | BPF_JGE | BPF_X:
326 case BPF_JMP | BPF_JGT | BPF_K:
327 case BPF_JMP | BPF_JGT | BPF_X:
328 case BPF_JMP | BPF_JSET | BPF_K:
329 case BPF_JMP | BPF_JSET | BPF_X:
330 continue;
331 default:
332 return -EINVAL;
333 }
334 }
335 return 0;
336 }
337
338 #ifdef SECCOMP_ARCH_NATIVE
339 static inline bool seccomp_cache_check_allow_bitmap(const void *bitmap,
340 size_t bitmap_size,
341 int syscall_nr)
342 {
343 if (unlikely(syscall_nr < 0 || syscall_nr >= bitmap_size))
344 return false;
345 syscall_nr = array_index_nospec(syscall_nr, bitmap_size);
346
347 return test_bit(syscall_nr, bitmap);
348 }
349
350 /**
351 * seccomp_cache_check_allow - lookup seccomp cache
352 * @sfilter: The seccomp filter
353 * @sd: The seccomp data to lookup the cache with
354 *
355 * Returns true if the seccomp_data is cached and allowed.
356 */
357 static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter,
358 const struct seccomp_data *sd)
359 {
360 int syscall_nr = sd->nr;
361 const struct action_cache *cache = &sfilter->cache;
362
363 #ifndef SECCOMP_ARCH_COMPAT
364 /* A native-only architecture doesn't need to check sd->arch. */
365 return seccomp_cache_check_allow_bitmap(cache->allow_native,
366 SECCOMP_ARCH_NATIVE_NR,
367 syscall_nr);
368 #else
369 if (likely(sd->arch == SECCOMP_ARCH_NATIVE))
370 return seccomp_cache_check_allow_bitmap(cache->allow_native,
371 SECCOMP_ARCH_NATIVE_NR,
372 syscall_nr);
373 if (likely(sd->arch == SECCOMP_ARCH_COMPAT))
374 return seccomp_cache_check_allow_bitmap(cache->allow_compat,
375 SECCOMP_ARCH_COMPAT_NR,
376 syscall_nr);
377 #endif /* SECCOMP_ARCH_COMPAT */
378
379 WARN_ON_ONCE(true);
380 return false;
381 }
382 #endif /* SECCOMP_ARCH_NATIVE */
383
384 /**
385 * seccomp_run_filters - evaluates all seccomp filters against @sd
386 * @sd: optional seccomp data to be passed to filters
387 * @match: stores struct seccomp_filter that resulted in the return value,
388 * unless filter returned SECCOMP_RET_ALLOW, in which case it will
389 * be unchanged.
390 *
391 * Returns valid seccomp BPF response codes.
392 */
393 #define ACTION_ONLY(ret) ((s32)((ret) & (SECCOMP_RET_ACTION_FULL)))
394 static u32 seccomp_run_filters(const struct seccomp_data *sd,
395 struct seccomp_filter **match)
396 {
397 u32 ret = SECCOMP_RET_ALLOW;
398 /* Make sure cross-thread synced filter points somewhere sane. */
399 struct seccomp_filter *f =
400 READ_ONCE(current->seccomp.filter);
401
402 /* Ensure unexpected behavior doesn't result in failing open. */
403 if (WARN_ON(f == NULL))
404 return SECCOMP_RET_KILL_PROCESS;
405
406 if (seccomp_cache_check_allow(f, sd))
407 return SECCOMP_RET_ALLOW;
408
409 /*
410 * All filters in the list are evaluated and the lowest BPF return
411 * value always takes priority (ignoring the DATA).
412 */
413 for (; f; f = f->prev) {
414 u32 cur_ret = bpf_prog_run_pin_on_cpu(f->prog, sd);
415
416 if (ACTION_ONLY(cur_ret) < ACTION_ONLY(ret)) {
417 ret = cur_ret;
418 *match = f;
419 }
420 }
421 return ret;
422 }
423 #endif /* CONFIG_SECCOMP_FILTER */
424
425 static inline bool seccomp_may_assign_mode(unsigned long seccomp_mode)
426 {
427 assert_spin_locked(&current->sighand->siglock);
428
429 if (current->seccomp.mode && current->seccomp.mode != seccomp_mode)
430 return false;
431
432 return true;
433 }
434
435 void __weak arch_seccomp_spec_mitigate(struct task_struct *task) { }
436
437 static inline void seccomp_assign_mode(struct task_struct *task,
438 unsigned long seccomp_mode,
439 unsigned long flags)
440 {
441 assert_spin_locked(&task->sighand->siglock);
442
443 task->seccomp.mode = seccomp_mode;
444 /*
445 * Make sure SYSCALL_WORK_SECCOMP cannot be set before the mode (and
446 * filter) is set.
447 */
448 smp_mb__before_atomic();
449 /* Assume default seccomp processes want spec flaw mitigation. */
450 if ((flags & SECCOMP_FILTER_FLAG_SPEC_ALLOW) == 0)
451 arch_seccomp_spec_mitigate(task);
452 set_task_syscall_work(task, SECCOMP);
453 }
454
455 #ifdef CONFIG_SECCOMP_FILTER
456 /* Returns 1 if the parent is an ancestor of the child. */
457 static int is_ancestor(struct seccomp_filter *parent,
458 struct seccomp_filter *child)
459 {
460 /* NULL is the root ancestor. */
461 if (parent == NULL)
462 return 1;
463 for (; child; child = child->prev)
464 if (child == parent)
465 return 1;
466 return 0;
467 }
468
469 /**
470 * seccomp_can_sync_threads: checks if all threads can be synchronized
471 *
472 * Expects sighand and cred_guard_mutex locks to be held.
473 *
474 * Returns 0 on success, -ve on error, or the pid of a thread which was
475 * either not in the correct seccomp mode or did not have an ancestral
476 * seccomp filter.
477 */
478 static inline pid_t seccomp_can_sync_threads(void)
479 {
480 struct task_struct *thread, *caller;
481
482 BUG_ON(!mutex_is_locked(&current->signal->cred_guard_mutex));
483 assert_spin_locked(&current->sighand->siglock);
484
485 /* Validate all threads being eligible for synchronization. */
486 caller = current;
487 for_each_thread(caller, thread) {
488 pid_t failed;
489
490 /* Skip current, since it is initiating the sync. */
491 if (thread == caller)
492 continue;
493
494 if (thread->seccomp.mode == SECCOMP_MODE_DISABLED ||
495 (thread->seccomp.mode == SECCOMP_MODE_FILTER &&
496 is_ancestor(thread->seccomp.filter,
497 caller->seccomp.filter)))
498 continue;
499
500 /* Return the first thread that cannot be synchronized. */
501 failed = task_pid_vnr(thread);
502 /* If the pid cannot be resolved, then return -ESRCH */
503 if (WARN_ON(failed == 0))
504 failed = -ESRCH;
505 return failed;
506 }
507
508 return 0;
509 }
510
511 static inline void seccomp_filter_free(struct seccomp_filter *filter)
512 {
513 if (filter) {
514 bpf_prog_destroy(filter->prog);
515 kfree(filter);
516 }
517 }
518
519 static void __seccomp_filter_orphan(struct seccomp_filter *orig)
520 {
521 while (orig && refcount_dec_and_test(&orig->users)) {
522 if (waitqueue_active(&orig->wqh))
523 wake_up_poll(&orig->wqh, EPOLLHUP);
524 orig = orig->prev;
525 }
526 }
527
528 static void __put_seccomp_filter(struct seccomp_filter *orig)
529 {
530 /* Clean up single-reference branches iteratively. */
531 while (orig && refcount_dec_and_test(&orig->refs)) {
532 struct seccomp_filter *freeme = orig;
533 orig = orig->prev;
534 seccomp_filter_free(freeme);
535 }
536 }
537
538 static void __seccomp_filter_release(struct seccomp_filter *orig)
539 {
540 /* Notify about any unused filters in the task's former filter tree. */
541 __seccomp_filter_orphan(orig);
542 /* Finally drop all references to the task's former tree. */
543 __put_seccomp_filter(orig);
544 }
545
546 /**
547 * seccomp_filter_release - Detach the task from its filter tree,
548 * drop its reference count, and notify
549 * about unused filters
550 *
551 * This function should only be called when the task is exiting as
552 * it detaches it from its filter tree. As such, READ_ONCE() and
553 * barriers are not needed here, as would normally be needed.
554 */
555 void seccomp_filter_release(struct task_struct *tsk)
556 {
557 struct seccomp_filter *orig = tsk->seccomp.filter;
558
559 /* We are effectively holding the siglock by not having any sighand. */
560 WARN_ON(tsk->sighand != NULL);
561
562 /* Detach task from its filter tree. */
563 tsk->seccomp.filter = NULL;
564 __seccomp_filter_release(orig);
565 }
566
567 /**
568 * seccomp_sync_threads: sets all threads to use current's filter
569 *
570 * Expects sighand and cred_guard_mutex locks to be held, and for
571 * seccomp_can_sync_threads() to have returned success already
572 * without dropping the locks.
573 *
574 */
575 static inline void seccomp_sync_threads(unsigned long flags)
576 {
577 struct task_struct *thread, *caller;
578
579 BUG_ON(!mutex_is_locked(&current->signal->cred_guard_mutex));
580 assert_spin_locked(&current->sighand->siglock);
581
582 /* Synchronize all threads. */
583 caller = current;
584 for_each_thread(caller, thread) {
585 /* Skip current, since it needs no changes. */
586 if (thread == caller)
587 continue;
588
589 /* Get a task reference for the new leaf node. */
590 get_seccomp_filter(caller);
591
592 /*
593 * Drop the task reference to the shared ancestor since
594 * current's path will hold a reference. (This also
595 * allows a put before the assignment.)
596 */
597 __seccomp_filter_release(thread->seccomp.filter);
598
599 /* Make our new filter tree visible. */
600 smp_store_release(&thread->seccomp.filter,
601 caller->seccomp.filter);
602 atomic_set(&thread->seccomp.filter_count,
603 atomic_read(&thread->seccomp.filter_count));
604
605 /*
606 * Don't let an unprivileged task work around
607 * the no_new_privs restriction by creating
608 * a thread that sets it up, enters seccomp,
609 * then dies.
610 */
611 if (task_no_new_privs(caller))
612 task_set_no_new_privs(thread);
613
614 /*
615 * Opt the other thread into seccomp if needed.
616 * As threads are considered to be trust-realm
617 * equivalent (see ptrace_may_access), it is safe to
618 * allow one thread to transition the other.
619 */
620 if (thread->seccomp.mode == SECCOMP_MODE_DISABLED)
621 seccomp_assign_mode(thread, SECCOMP_MODE_FILTER,
622 flags);
623 }
624 }
625
626 /**
627 * seccomp_prepare_filter: Prepares a seccomp filter for use.
628 * @fprog: BPF program to install
629 *
630 * Returns filter on success or an ERR_PTR on failure.
631 */
632 static struct seccomp_filter *seccomp_prepare_filter(struct sock_fprog *fprog)
633 {
634 struct seccomp_filter *sfilter;
635 int ret;
636 const bool save_orig =
637 #if defined(CONFIG_CHECKPOINT_RESTORE) || defined(SECCOMP_ARCH_NATIVE)
638 true;
639 #else
640 false;
641 #endif
642
643 if (fprog->len == 0 || fprog->len > BPF_MAXINSNS)
644 return ERR_PTR(-EINVAL);
645
646 BUG_ON(INT_MAX / fprog->len < sizeof(struct sock_filter));
647
648 /*
649 * Installing a seccomp filter requires that the task has
650 * CAP_SYS_ADMIN in its namespace or be running with no_new_privs.
651 * This avoids scenarios where unprivileged tasks can affect the
652 * behavior of privileged children.
653 */
654 if (!task_no_new_privs(current) &&
655 !ns_capable_noaudit(current_user_ns(), CAP_SYS_ADMIN))
656 return ERR_PTR(-EACCES);
657
658 /* Allocate a new seccomp_filter */
659 sfilter = kzalloc(sizeof(*sfilter), GFP_KERNEL | __GFP_NOWARN);
660 if (!sfilter)
661 return ERR_PTR(-ENOMEM);
662
663 mutex_init(&sfilter->notify_lock);
664 ret = bpf_prog_create_from_user(&sfilter->prog, fprog,
665 seccomp_check_filter, save_orig);
666 if (ret < 0) {
667 kfree(sfilter);
668 return ERR_PTR(ret);
669 }
670
671 refcount_set(&sfilter->refs, 1);
672 refcount_set(&sfilter->users, 1);
673 init_waitqueue_head(&sfilter->wqh);
674
675 return sfilter;
676 }
677
678 /**
679 * seccomp_prepare_user_filter - prepares a user-supplied sock_fprog
680 * @user_filter: pointer to the user data containing a sock_fprog.
681 *
682 * Returns 0 on success and non-zero otherwise.
683 */
684 static struct seccomp_filter *
685 seccomp_prepare_user_filter(const char __user *user_filter)
686 {
687 struct sock_fprog fprog;
688 struct seccomp_filter *filter = ERR_PTR(-EFAULT);
689
690 #ifdef CONFIG_COMPAT
691 if (in_compat_syscall()) {
692 struct compat_sock_fprog fprog32;
693 if (copy_from_user(&fprog32, user_filter, sizeof(fprog32)))
694 goto out;
695 fprog.len = fprog32.len;
696 fprog.filter = compat_ptr(fprog32.filter);
697 } else /* falls through to the if below. */
698 #endif
699 if (copy_from_user(&fprog, user_filter, sizeof(fprog)))
700 goto out;
701 filter = seccomp_prepare_filter(&fprog);
702 out:
703 return filter;
704 }
705
706 #ifdef SECCOMP_ARCH_NATIVE
707 /**
708 * seccomp_is_const_allow - check if filter is constant allow with given data
709 * @fprog: The BPF programs
710 * @sd: The seccomp data to check against, only syscall number and arch
711 * number are considered constant.
712 */
713 static bool seccomp_is_const_allow(struct sock_fprog_kern *fprog,
714 struct seccomp_data *sd)
715 {
716 unsigned int reg_value = 0;
717 unsigned int pc;
718 bool op_res;
719
720 if (WARN_ON_ONCE(!fprog))
721 return false;
722
723 for (pc = 0; pc < fprog->len; pc++) {
724 struct sock_filter *insn = &fprog->filter[pc];
725 u16 code = insn->code;
726 u32 k = insn->k;
727
728 switch (code) {
729 case BPF_LD | BPF_W | BPF_ABS:
730 switch (k) {
731 case offsetof(struct seccomp_data, nr):
732 reg_value = sd->nr;
733 break;
734 case offsetof(struct seccomp_data, arch):
735 reg_value = sd->arch;
736 break;
737 default:
738 /* can't optimize (non-constant value load) */
739 return false;
740 }
741 break;
742 case BPF_RET | BPF_K:
743 /* reached return with constant values only, check allow */
744 return k == SECCOMP_RET_ALLOW;
745 case BPF_JMP | BPF_JA:
746 pc += insn->k;
747 break;
748 case BPF_JMP | BPF_JEQ | BPF_K:
749 case BPF_JMP | BPF_JGE | BPF_K:
750 case BPF_JMP | BPF_JGT | BPF_K:
751 case BPF_JMP | BPF_JSET | BPF_K:
752 switch (BPF_OP(code)) {
753 case BPF_JEQ:
754 op_res = reg_value == k;
755 break;
756 case BPF_JGE:
757 op_res = reg_value >= k;
758 break;
759 case BPF_JGT:
760 op_res = reg_value > k;
761 break;
762 case BPF_JSET:
763 op_res = !!(reg_value & k);
764 break;
765 default:
766 /* can't optimize (unknown jump) */
767 return false;
768 }
769
770 pc += op_res ? insn->jt : insn->jf;
771 break;
772 case BPF_ALU | BPF_AND | BPF_K:
773 reg_value &= k;
774 break;
775 default:
776 /* can't optimize (unknown insn) */
777 return false;
778 }
779 }
780
781 /* ran off the end of the filter?! */
782 WARN_ON(1);
783 return false;
784 }
785
786 static void seccomp_cache_prepare_bitmap(struct seccomp_filter *sfilter,
787 void *bitmap, const void *bitmap_prev,
788 size_t bitmap_size, int arch)
789 {
790 struct sock_fprog_kern *fprog = sfilter->prog->orig_prog;
791 struct seccomp_data sd;
792 int nr;
793
794 if (bitmap_prev) {
795 /* The new filter must be as restrictive as the last. */
796 bitmap_copy(bitmap, bitmap_prev, bitmap_size);
797 } else {
798 /* Before any filters, all syscalls are always allowed. */
799 bitmap_fill(bitmap, bitmap_size);
800 }
801
802 for (nr = 0; nr < bitmap_size; nr++) {
803 /* No bitmap change: not a cacheable action. */
804 if (!test_bit(nr, bitmap))
805 continue;
806
807 sd.nr = nr;
808 sd.arch = arch;
809
810 /* No bitmap change: continue to always allow. */
811 if (seccomp_is_const_allow(fprog, &sd))
812 continue;
813
814 /*
815 * Not a cacheable action: always run filters.
816 * atomic clear_bit() not needed, filter not visible yet.
817 */
818 __clear_bit(nr, bitmap);
819 }
820 }
821
822 /**
823 * seccomp_cache_prepare - emulate the filter to find cacheable syscalls
824 * @sfilter: The seccomp filter
825 *
826 * Returns 0 if successful or -errno if error occurred.
827 */
828 static void seccomp_cache_prepare(struct seccomp_filter *sfilter)
829 {
830 struct action_cache *cache = &sfilter->cache;
831 const struct action_cache *cache_prev =
832 sfilter->prev ? &sfilter->prev->cache : NULL;
833
834 seccomp_cache_prepare_bitmap(sfilter, cache->allow_native,
835 cache_prev ? cache_prev->allow_native : NULL,
836 SECCOMP_ARCH_NATIVE_NR,
837 SECCOMP_ARCH_NATIVE);
838
839 #ifdef SECCOMP_ARCH_COMPAT
840 seccomp_cache_prepare_bitmap(sfilter, cache->allow_compat,
841 cache_prev ? cache_prev->allow_compat : NULL,
842 SECCOMP_ARCH_COMPAT_NR,
843 SECCOMP_ARCH_COMPAT);
844 #endif /* SECCOMP_ARCH_COMPAT */
845 }
846 #endif /* SECCOMP_ARCH_NATIVE */
847
848 /**
849 * seccomp_attach_filter: validate and attach filter
850 * @flags: flags to change filter behavior
851 * @filter: seccomp filter to add to the current process
852 *
853 * Caller must be holding current->sighand->siglock lock.
854 *
855 * Returns 0 on success, -ve on error, or
856 * - in TSYNC mode: the pid of a thread which was either not in the correct
857 * seccomp mode or did not have an ancestral seccomp filter
858 * - in NEW_LISTENER mode: the fd of the new listener
859 */
860 static long seccomp_attach_filter(unsigned int flags,
861 struct seccomp_filter *filter)
862 {
863 unsigned long total_insns;
864 struct seccomp_filter *walker;
865
866 assert_spin_locked(&current->sighand->siglock);
867
868 /* Validate resulting filter length. */
869 total_insns = filter->prog->len;
870 for (walker = current->seccomp.filter; walker; walker = walker->prev)
871 total_insns += walker->prog->len + 4; /* 4 instr penalty */
872 if (total_insns > MAX_INSNS_PER_PATH)
873 return -ENOMEM;
874
875 /* If thread sync has been requested, check that it is possible. */
876 if (flags & SECCOMP_FILTER_FLAG_TSYNC) {
877 int ret;
878
879 ret = seccomp_can_sync_threads();
880 if (ret) {
881 if (flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH)
882 return -ESRCH;
883 else
884 return ret;
885 }
886 }
887
888 /* Set log flag, if present. */
889 if (flags & SECCOMP_FILTER_FLAG_LOG)
890 filter->log = true;
891
892 /*
893 * If there is an existing filter, make it the prev and don't drop its
894 * task reference.
895 */
896 filter->prev = current->seccomp.filter;
897 seccomp_cache_prepare(filter);
898 current->seccomp.filter = filter;
899 atomic_inc(&current->seccomp.filter_count);
900
901 /* Now that the new filter is in place, synchronize to all threads. */
902 if (flags & SECCOMP_FILTER_FLAG_TSYNC)
903 seccomp_sync_threads(flags);
904
905 return 0;
906 }
907
908 static void __get_seccomp_filter(struct seccomp_filter *filter)
909 {
910 refcount_inc(&filter->refs);
911 }
912
913 /* get_seccomp_filter - increments the reference count of the filter on @tsk */
914 void get_seccomp_filter(struct task_struct *tsk)
915 {
916 struct seccomp_filter *orig = tsk->seccomp.filter;
917 if (!orig)
918 return;
919 __get_seccomp_filter(orig);
920 refcount_inc(&orig->users);
921 }
922
923 static void seccomp_init_siginfo(kernel_siginfo_t *info, int syscall, int reason)
924 {
925 clear_siginfo(info);
926 info->si_signo = SIGSYS;
927 info->si_code = SYS_SECCOMP;
928 info->si_call_addr = (void __user *)KSTK_EIP(current);
929 info->si_errno = reason;
930 info->si_arch = syscall_get_arch(current);
931 info->si_syscall = syscall;
932 }
933
934 /**
935 * seccomp_send_sigsys - signals the task to allow in-process syscall emulation
936 * @syscall: syscall number to send to userland
937 * @reason: filter-supplied reason code to send to userland (via si_errno)
938 *
939 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
940 */
941 static void seccomp_send_sigsys(int syscall, int reason)
942 {
943 struct kernel_siginfo info;
944 seccomp_init_siginfo(&info, syscall, reason);
945 force_sig_info(&info);
946 }
947 #endif /* CONFIG_SECCOMP_FILTER */
948
949 /* For use with seccomp_actions_logged */
950 #define SECCOMP_LOG_KILL_PROCESS (1 << 0)
951 #define SECCOMP_LOG_KILL_THREAD (1 << 1)
952 #define SECCOMP_LOG_TRAP (1 << 2)
953 #define SECCOMP_LOG_ERRNO (1 << 3)
954 #define SECCOMP_LOG_TRACE (1 << 4)
955 #define SECCOMP_LOG_LOG (1 << 5)
956 #define SECCOMP_LOG_ALLOW (1 << 6)
957 #define SECCOMP_LOG_USER_NOTIF (1 << 7)
958
959 static u32 seccomp_actions_logged = SECCOMP_LOG_KILL_PROCESS |
960 SECCOMP_LOG_KILL_THREAD |
961 SECCOMP_LOG_TRAP |
962 SECCOMP_LOG_ERRNO |
963 SECCOMP_LOG_USER_NOTIF |
964 SECCOMP_LOG_TRACE |
965 SECCOMP_LOG_LOG;
966
967 static inline void seccomp_log(unsigned long syscall, long signr, u32 action,
968 bool requested)
969 {
970 bool log = false;
971
972 switch (action) {
973 case SECCOMP_RET_ALLOW:
974 break;
975 case SECCOMP_RET_TRAP:
976 log = requested && seccomp_actions_logged & SECCOMP_LOG_TRAP;
977 break;
978 case SECCOMP_RET_ERRNO:
979 log = requested && seccomp_actions_logged & SECCOMP_LOG_ERRNO;
980 break;
981 case SECCOMP_RET_TRACE:
982 log = requested && seccomp_actions_logged & SECCOMP_LOG_TRACE;
983 break;
984 case SECCOMP_RET_USER_NOTIF:
985 log = requested && seccomp_actions_logged & SECCOMP_LOG_USER_NOTIF;
986 break;
987 case SECCOMP_RET_LOG:
988 log = seccomp_actions_logged & SECCOMP_LOG_LOG;
989 break;
990 case SECCOMP_RET_KILL_THREAD:
991 log = seccomp_actions_logged & SECCOMP_LOG_KILL_THREAD;
992 break;
993 case SECCOMP_RET_KILL_PROCESS:
994 default:
995 log = seccomp_actions_logged & SECCOMP_LOG_KILL_PROCESS;
996 }
997
998 /*
999 * Emit an audit message when the action is RET_KILL_*, RET_LOG, or the
1000 * FILTER_FLAG_LOG bit was set. The admin has the ability to silence
1001 * any action from being logged by removing the action name from the
1002 * seccomp_actions_logged sysctl.
1003 */
1004 if (!log)
1005 return;
1006
1007 audit_seccomp(syscall, signr, action);
1008 }
1009
1010 /*
1011 * Secure computing mode 1 allows only read/write/exit/sigreturn.
1012 * To be fully secure this must be combined with rlimit
1013 * to limit the stack allocations too.
1014 */
1015 static const int mode1_syscalls[] = {
1016 __NR_seccomp_read, __NR_seccomp_write, __NR_seccomp_exit, __NR_seccomp_sigreturn,
1017 -1, /* negative terminated */
1018 };
1019
1020 static void __secure_computing_strict(int this_syscall)
1021 {
1022 const int *allowed_syscalls = mode1_syscalls;
1023 #ifdef CONFIG_COMPAT
1024 if (in_compat_syscall())
1025 allowed_syscalls = get_compat_mode1_syscalls();
1026 #endif
1027 do {
1028 if (*allowed_syscalls == this_syscall)
1029 return;
1030 } while (*++allowed_syscalls != -1);
1031
1032 #ifdef SECCOMP_DEBUG
1033 dump_stack();
1034 #endif
1035 seccomp_log(this_syscall, SIGKILL, SECCOMP_RET_KILL_THREAD, true);
1036 do_exit(SIGKILL);
1037 }
1038
1039 #ifndef CONFIG_HAVE_ARCH_SECCOMP_FILTER
1040 void secure_computing_strict(int this_syscall)
1041 {
1042 int mode = current->seccomp.mode;
1043
1044 if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) &&
1045 unlikely(current->ptrace & PT_SUSPEND_SECCOMP))
1046 return;
1047
1048 if (mode == SECCOMP_MODE_DISABLED)
1049 return;
1050 else if (mode == SECCOMP_MODE_STRICT)
1051 __secure_computing_strict(this_syscall);
1052 else
1053 BUG();
1054 }
1055 #else
1056
1057 #ifdef CONFIG_SECCOMP_FILTER
1058 static u64 seccomp_next_notify_id(struct seccomp_filter *filter)
1059 {
1060 /*
1061 * Note: overflow is ok here, the id just needs to be unique per
1062 * filter.
1063 */
1064 lockdep_assert_held(&filter->notify_lock);
1065 return filter->notif->next_id++;
1066 }
1067
1068 static void seccomp_handle_addfd(struct seccomp_kaddfd *addfd)
1069 {
1070 /*
1071 * Remove the notification, and reset the list pointers, indicating
1072 * that it has been handled.
1073 */
1074 list_del_init(&addfd->list);
1075 if (!addfd->setfd)
1076 addfd->ret = receive_fd(addfd->file, addfd->flags);
1077 else
1078 addfd->ret = receive_fd_replace(addfd->fd, addfd->file,
1079 addfd->flags);
1080 complete(&addfd->completion);
1081 }
1082
1083 static int seccomp_do_user_notification(int this_syscall,
1084 struct seccomp_filter *match,
1085 const struct seccomp_data *sd)
1086 {
1087 int err;
1088 u32 flags = 0;
1089 long ret = 0;
1090 struct seccomp_knotif n = {};
1091 struct seccomp_kaddfd *addfd, *tmp;
1092
1093 mutex_lock(&match->notify_lock);
1094 err = -ENOSYS;
1095 if (!match->notif)
1096 goto out;
1097
1098 n.task = current;
1099 n.state = SECCOMP_NOTIFY_INIT;
1100 n.data = sd;
1101 n.id = seccomp_next_notify_id(match);
1102 init_completion(&n.ready);
1103 list_add(&n.list, &match->notif->notifications);
1104 INIT_LIST_HEAD(&n.addfd);
1105
1106 up(&match->notif->request);
1107 wake_up_poll(&match->wqh, EPOLLIN | EPOLLRDNORM);
1108 mutex_unlock(&match->notify_lock);
1109
1110 /*
1111 * This is where we wait for a reply from userspace.
1112 */
1113 wait:
1114 err = wait_for_completion_interruptible(&n.ready);
1115 mutex_lock(&match->notify_lock);
1116 if (err == 0) {
1117 /* Check if we were woken up by a addfd message */
1118 addfd = list_first_entry_or_null(&n.addfd,
1119 struct seccomp_kaddfd, list);
1120 if (addfd && n.state != SECCOMP_NOTIFY_REPLIED) {
1121 seccomp_handle_addfd(addfd);
1122 mutex_unlock(&match->notify_lock);
1123 goto wait;
1124 }
1125 ret = n.val;
1126 err = n.error;
1127 flags = n.flags;
1128 }
1129
1130 /* If there were any pending addfd calls, clear them out */
1131 list_for_each_entry_safe(addfd, tmp, &n.addfd, list) {
1132 /* The process went away before we got a chance to handle it */
1133 addfd->ret = -ESRCH;
1134 list_del_init(&addfd->list);
1135 complete(&addfd->completion);
1136 }
1137
1138 /*
1139 * Note that it's possible the listener died in between the time when
1140 * we were notified of a response (or a signal) and when we were able to
1141 * re-acquire the lock, so only delete from the list if the
1142 * notification actually exists.
1143 *
1144 * Also note that this test is only valid because there's no way to
1145 * *reattach* to a notifier right now. If one is added, we'll need to
1146 * keep track of the notif itself and make sure they match here.
1147 */
1148 if (match->notif)
1149 list_del(&n.list);
1150 out:
1151 mutex_unlock(&match->notify_lock);
1152
1153 /* Userspace requests to continue the syscall. */
1154 if (flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE)
1155 return 0;
1156
1157 syscall_set_return_value(current, current_pt_regs(),
1158 err, ret);
1159 return -1;
1160 }
1161
1162 static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd,
1163 const bool recheck_after_trace)
1164 {
1165 u32 filter_ret, action;
1166 struct seccomp_filter *match = NULL;
1167 int data;
1168 struct seccomp_data sd_local;
1169
1170 /*
1171 * Make sure that any changes to mode from another thread have
1172 * been seen after SYSCALL_WORK_SECCOMP was seen.
1173 */
1174 smp_rmb();
1175
1176 if (!sd) {
1177 populate_seccomp_data(&sd_local);
1178 sd = &sd_local;
1179 }
1180
1181 filter_ret = seccomp_run_filters(sd, &match);
1182 data = filter_ret & SECCOMP_RET_DATA;
1183 action = filter_ret & SECCOMP_RET_ACTION_FULL;
1184
1185 switch (action) {
1186 case SECCOMP_RET_ERRNO:
1187 /* Set low-order bits as an errno, capped at MAX_ERRNO. */
1188 if (data > MAX_ERRNO)
1189 data = MAX_ERRNO;
1190 syscall_set_return_value(current, current_pt_regs(),
1191 -data, 0);
1192 goto skip;
1193
1194 case SECCOMP_RET_TRAP:
1195 /* Show the handler the original registers. */
1196 syscall_rollback(current, current_pt_regs());
1197 /* Let the filter pass back 16 bits of data. */
1198 seccomp_send_sigsys(this_syscall, data);
1199 goto skip;
1200
1201 case SECCOMP_RET_TRACE:
1202 /* We've been put in this state by the ptracer already. */
1203 if (recheck_after_trace)
1204 return 0;
1205
1206 /* ENOSYS these calls if there is no tracer attached. */
1207 if (!ptrace_event_enabled(current, PTRACE_EVENT_SECCOMP)) {
1208 syscall_set_return_value(current,
1209 current_pt_regs(),
1210 -ENOSYS, 0);
1211 goto skip;
1212 }
1213
1214 /* Allow the BPF to provide the event message */
1215 ptrace_event(PTRACE_EVENT_SECCOMP, data);
1216 /*
1217 * The delivery of a fatal signal during event
1218 * notification may silently skip tracer notification,
1219 * which could leave us with a potentially unmodified
1220 * syscall that the tracer would have liked to have
1221 * changed. Since the process is about to die, we just
1222 * force the syscall to be skipped and let the signal
1223 * kill the process and correctly handle any tracer exit
1224 * notifications.
1225 */
1226 if (fatal_signal_pending(current))
1227 goto skip;
1228 /* Check if the tracer forced the syscall to be skipped. */
1229 this_syscall = syscall_get_nr(current, current_pt_regs());
1230 if (this_syscall < 0)
1231 goto skip;
1232
1233 /*
1234 * Recheck the syscall, since it may have changed. This
1235 * intentionally uses a NULL struct seccomp_data to force
1236 * a reload of all registers. This does not goto skip since
1237 * a skip would have already been reported.
1238 */
1239 if (__seccomp_filter(this_syscall, NULL, true))
1240 return -1;
1241
1242 return 0;
1243
1244 case SECCOMP_RET_USER_NOTIF:
1245 if (seccomp_do_user_notification(this_syscall, match, sd))
1246 goto skip;
1247
1248 return 0;
1249
1250 case SECCOMP_RET_LOG:
1251 seccomp_log(this_syscall, 0, action, true);
1252 return 0;
1253
1254 case SECCOMP_RET_ALLOW:
1255 /*
1256 * Note that the "match" filter will always be NULL for
1257 * this action since SECCOMP_RET_ALLOW is the starting
1258 * state in seccomp_run_filters().
1259 */
1260 return 0;
1261
1262 case SECCOMP_RET_KILL_THREAD:
1263 case SECCOMP_RET_KILL_PROCESS:
1264 default:
1265 seccomp_log(this_syscall, SIGSYS, action, true);
1266 /* Dump core only if this is the last remaining thread. */
1267 if (action != SECCOMP_RET_KILL_THREAD ||
1268 get_nr_threads(current) == 1) {
1269 kernel_siginfo_t info;
1270
1271 /* Show the original registers in the dump. */
1272 syscall_rollback(current, current_pt_regs());
1273 /* Trigger a manual coredump since do_exit skips it. */
1274 seccomp_init_siginfo(&info, this_syscall, data);
1275 do_coredump(&info);
1276 }
1277 if (action == SECCOMP_RET_KILL_THREAD)
1278 do_exit(SIGSYS);
1279 else
1280 do_group_exit(SIGSYS);
1281 }
1282
1283 unreachable();
1284
1285 skip:
1286 seccomp_log(this_syscall, 0, action, match ? match->log : false);
1287 return -1;
1288 }
1289 #else
1290 static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd,
1291 const bool recheck_after_trace)
1292 {
1293 BUG();
1294
1295 return -1;
1296 }
1297 #endif
1298
1299 int __secure_computing(const struct seccomp_data *sd)
1300 {
1301 int mode = current->seccomp.mode;
1302 int this_syscall;
1303
1304 if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) &&
1305 unlikely(current->ptrace & PT_SUSPEND_SECCOMP))
1306 return 0;
1307
1308 this_syscall = sd ? sd->nr :
1309 syscall_get_nr(current, current_pt_regs());
1310
1311 switch (mode) {
1312 case SECCOMP_MODE_STRICT:
1313 __secure_computing_strict(this_syscall); /* may call do_exit */
1314 return 0;
1315 case SECCOMP_MODE_FILTER:
1316 return __seccomp_filter(this_syscall, sd, false);
1317 default:
1318 BUG();
1319 }
1320 }
1321 #endif /* CONFIG_HAVE_ARCH_SECCOMP_FILTER */
1322
1323 long prctl_get_seccomp(void)
1324 {
1325 return current->seccomp.mode;
1326 }
1327
1328 /**
1329 * seccomp_set_mode_strict: internal function for setting strict seccomp
1330 *
1331 * Once current->seccomp.mode is non-zero, it may not be changed.
1332 *
1333 * Returns 0 on success or -EINVAL on failure.
1334 */
1335 static long seccomp_set_mode_strict(void)
1336 {
1337 const unsigned long seccomp_mode = SECCOMP_MODE_STRICT;
1338 long ret = -EINVAL;
1339
1340 spin_lock_irq(&current->sighand->siglock);
1341
1342 if (!seccomp_may_assign_mode(seccomp_mode))
1343 goto out;
1344
1345 #ifdef TIF_NOTSC
1346 disable_TSC();
1347 #endif
1348 seccomp_assign_mode(current, seccomp_mode, 0);
1349 ret = 0;
1350
1351 out:
1352 spin_unlock_irq(&current->sighand->siglock);
1353
1354 return ret;
1355 }
1356
1357 #ifdef CONFIG_SECCOMP_FILTER
1358 static void seccomp_notify_free(struct seccomp_filter *filter)
1359 {
1360 kfree(filter->notif);
1361 filter->notif = NULL;
1362 }
1363
1364 static void seccomp_notify_detach(struct seccomp_filter *filter)
1365 {
1366 struct seccomp_knotif *knotif;
1367
1368 if (!filter)
1369 return;
1370
1371 mutex_lock(&filter->notify_lock);
1372
1373 /*
1374 * If this file is being closed because e.g. the task who owned it
1375 * died, let's wake everyone up who was waiting on us.
1376 */
1377 list_for_each_entry(knotif, &filter->notif->notifications, list) {
1378 if (knotif->state == SECCOMP_NOTIFY_REPLIED)
1379 continue;
1380
1381 knotif->state = SECCOMP_NOTIFY_REPLIED;
1382 knotif->error = -ENOSYS;
1383 knotif->val = 0;
1384
1385 /*
1386 * We do not need to wake up any pending addfd messages, as
1387 * the notifier will do that for us, as this just looks
1388 * like a standard reply.
1389 */
1390 complete(&knotif->ready);
1391 }
1392
1393 seccomp_notify_free(filter);
1394 mutex_unlock(&filter->notify_lock);
1395 }
1396
1397 static int seccomp_notify_release(struct inode *inode, struct file *file)
1398 {
1399 struct seccomp_filter *filter = file->private_data;
1400
1401 seccomp_notify_detach(filter);
1402 __put_seccomp_filter(filter);
1403 return 0;
1404 }
1405
1406 /* must be called with notif_lock held */
1407 static inline struct seccomp_knotif *
1408 find_notification(struct seccomp_filter *filter, u64 id)
1409 {
1410 struct seccomp_knotif *cur;
1411
1412 lockdep_assert_held(&filter->notify_lock);
1413
1414 list_for_each_entry(cur, &filter->notif->notifications, list) {
1415 if (cur->id == id)
1416 return cur;
1417 }
1418
1419 return NULL;
1420 }
1421
1422
1423 static long seccomp_notify_recv(struct seccomp_filter *filter,
1424 void __user *buf)
1425 {
1426 struct seccomp_knotif *knotif = NULL, *cur;
1427 struct seccomp_notif unotif;
1428 ssize_t ret;
1429
1430 /* Verify that we're not given garbage to keep struct extensible. */
1431 ret = check_zeroed_user(buf, sizeof(unotif));
1432 if (ret < 0)
1433 return ret;
1434 if (!ret)
1435 return -EINVAL;
1436
1437 memset(&unotif, 0, sizeof(unotif));
1438
1439 ret = down_interruptible(&filter->notif->request);
1440 if (ret < 0)
1441 return ret;
1442
1443 mutex_lock(&filter->notify_lock);
1444 list_for_each_entry(cur, &filter->notif->notifications, list) {
1445 if (cur->state == SECCOMP_NOTIFY_INIT) {
1446 knotif = cur;
1447 break;
1448 }
1449 }
1450
1451 /*
1452 * If we didn't find a notification, it could be that the task was
1453 * interrupted by a fatal signal between the time we were woken and
1454 * when we were able to acquire the rw lock.
1455 */
1456 if (!knotif) {
1457 ret = -ENOENT;
1458 goto out;
1459 }
1460
1461 unotif.id = knotif->id;
1462 unotif.pid = task_pid_vnr(knotif->task);
1463 unotif.data = *(knotif->data);
1464
1465 knotif->state = SECCOMP_NOTIFY_SENT;
1466 wake_up_poll(&filter->wqh, EPOLLOUT | EPOLLWRNORM);
1467 ret = 0;
1468 out:
1469 mutex_unlock(&filter->notify_lock);
1470
1471 if (ret == 0 && copy_to_user(buf, &unotif, sizeof(unotif))) {
1472 ret = -EFAULT;
1473
1474 /*
1475 * Userspace screwed up. To make sure that we keep this
1476 * notification alive, let's reset it back to INIT. It
1477 * may have died when we released the lock, so we need to make
1478 * sure it's still around.
1479 */
1480 mutex_lock(&filter->notify_lock);
1481 knotif = find_notification(filter, unotif.id);
1482 if (knotif) {
1483 knotif->state = SECCOMP_NOTIFY_INIT;
1484 up(&filter->notif->request);
1485 }
1486 mutex_unlock(&filter->notify_lock);
1487 }
1488
1489 return ret;
1490 }
1491
1492 static long seccomp_notify_send(struct seccomp_filter *filter,
1493 void __user *buf)
1494 {
1495 struct seccomp_notif_resp resp = {};
1496 struct seccomp_knotif *knotif;
1497 long ret;
1498
1499 if (copy_from_user(&resp, buf, sizeof(resp)))
1500 return -EFAULT;
1501
1502 if (resp.flags & ~SECCOMP_USER_NOTIF_FLAG_CONTINUE)
1503 return -EINVAL;
1504
1505 if ((resp.flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE) &&
1506 (resp.error || resp.val))
1507 return -EINVAL;
1508
1509 ret = mutex_lock_interruptible(&filter->notify_lock);
1510 if (ret < 0)
1511 return ret;
1512
1513 knotif = find_notification(filter, resp.id);
1514 if (!knotif) {
1515 ret = -ENOENT;
1516 goto out;
1517 }
1518
1519 /* Allow exactly one reply. */
1520 if (knotif->state != SECCOMP_NOTIFY_SENT) {
1521 ret = -EINPROGRESS;
1522 goto out;
1523 }
1524
1525 ret = 0;
1526 knotif->state = SECCOMP_NOTIFY_REPLIED;
1527 knotif->error = resp.error;
1528 knotif->val = resp.val;
1529 knotif->flags = resp.flags;
1530 complete(&knotif->ready);
1531 out:
1532 mutex_unlock(&filter->notify_lock);
1533 return ret;
1534 }
1535
1536 static long seccomp_notify_id_valid(struct seccomp_filter *filter,
1537 void __user *buf)
1538 {
1539 struct seccomp_knotif *knotif;
1540 u64 id;
1541 long ret;
1542
1543 if (copy_from_user(&id, buf, sizeof(id)))
1544 return -EFAULT;
1545
1546 ret = mutex_lock_interruptible(&filter->notify_lock);
1547 if (ret < 0)
1548 return ret;
1549
1550 knotif = find_notification(filter, id);
1551 if (knotif && knotif->state == SECCOMP_NOTIFY_SENT)
1552 ret = 0;
1553 else
1554 ret = -ENOENT;
1555
1556 mutex_unlock(&filter->notify_lock);
1557 return ret;
1558 }
1559
1560 static long seccomp_notify_addfd(struct seccomp_filter *filter,
1561 struct seccomp_notif_addfd __user *uaddfd,
1562 unsigned int size)
1563 {
1564 struct seccomp_notif_addfd addfd;
1565 struct seccomp_knotif *knotif;
1566 struct seccomp_kaddfd kaddfd;
1567 int ret;
1568
1569 BUILD_BUG_ON(sizeof(addfd) < SECCOMP_NOTIFY_ADDFD_SIZE_VER0);
1570 BUILD_BUG_ON(sizeof(addfd) != SECCOMP_NOTIFY_ADDFD_SIZE_LATEST);
1571
1572 if (size < SECCOMP_NOTIFY_ADDFD_SIZE_VER0 || size >= PAGE_SIZE)
1573 return -EINVAL;
1574
1575 ret = copy_struct_from_user(&addfd, sizeof(addfd), uaddfd, size);
1576 if (ret)
1577 return ret;
1578
1579 if (addfd.newfd_flags & ~O_CLOEXEC)
1580 return -EINVAL;
1581
1582 if (addfd.flags & ~SECCOMP_ADDFD_FLAG_SETFD)
1583 return -EINVAL;
1584
1585 if (addfd.newfd && !(addfd.flags & SECCOMP_ADDFD_FLAG_SETFD))
1586 return -EINVAL;
1587
1588 kaddfd.file = fget(addfd.srcfd);
1589 if (!kaddfd.file)
1590 return -EBADF;
1591
1592 kaddfd.flags = addfd.newfd_flags;
1593 kaddfd.setfd = addfd.flags & SECCOMP_ADDFD_FLAG_SETFD;
1594 kaddfd.fd = addfd.newfd;
1595 init_completion(&kaddfd.completion);
1596
1597 ret = mutex_lock_interruptible(&filter->notify_lock);
1598 if (ret < 0)
1599 goto out;
1600
1601 knotif = find_notification(filter, addfd.id);
1602 if (!knotif) {
1603 ret = -ENOENT;
1604 goto out_unlock;
1605 }
1606
1607 /*
1608 * We do not want to allow for FD injection to occur before the
1609 * notification has been picked up by a userspace handler, or after
1610 * the notification has been replied to.
1611 */
1612 if (knotif->state != SECCOMP_NOTIFY_SENT) {
1613 ret = -EINPROGRESS;
1614 goto out_unlock;
1615 }
1616
1617 list_add(&kaddfd.list, &knotif->addfd);
1618 complete(&knotif->ready);
1619 mutex_unlock(&filter->notify_lock);
1620
1621 /* Now we wait for it to be processed or be interrupted */
1622 ret = wait_for_completion_interruptible(&kaddfd.completion);
1623 if (ret == 0) {
1624 /*
1625 * We had a successful completion. The other side has already
1626 * removed us from the addfd queue, and
1627 * wait_for_completion_interruptible has a memory barrier upon
1628 * success that lets us read this value directly without
1629 * locking.
1630 */
1631 ret = kaddfd.ret;
1632 goto out;
1633 }
1634
1635 mutex_lock(&filter->notify_lock);
1636 /*
1637 * Even though we were woken up by a signal and not a successful
1638 * completion, a completion may have happened in the mean time.
1639 *
1640 * We need to check again if the addfd request has been handled,
1641 * and if not, we will remove it from the queue.
1642 */
1643 if (list_empty(&kaddfd.list))
1644 ret = kaddfd.ret;
1645 else
1646 list_del(&kaddfd.list);
1647
1648 out_unlock:
1649 mutex_unlock(&filter->notify_lock);
1650 out:
1651 fput(kaddfd.file);
1652
1653 return ret;
1654 }
1655
1656 static long seccomp_notify_ioctl(struct file *file, unsigned int cmd,
1657 unsigned long arg)
1658 {
1659 struct seccomp_filter *filter = file->private_data;
1660 void __user *buf = (void __user *)arg;
1661
1662 /* Fixed-size ioctls */
1663 switch (cmd) {
1664 case SECCOMP_IOCTL_NOTIF_RECV:
1665 return seccomp_notify_recv(filter, buf);
1666 case SECCOMP_IOCTL_NOTIF_SEND:
1667 return seccomp_notify_send(filter, buf);
1668 case SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR:
1669 case SECCOMP_IOCTL_NOTIF_ID_VALID:
1670 return seccomp_notify_id_valid(filter, buf);
1671 }
1672
1673 /* Extensible Argument ioctls */
1674 #define EA_IOCTL(cmd) ((cmd) & ~(IOC_INOUT | IOCSIZE_MASK))
1675 switch (EA_IOCTL(cmd)) {
1676 case EA_IOCTL(SECCOMP_IOCTL_NOTIF_ADDFD):
1677 return seccomp_notify_addfd(filter, buf, _IOC_SIZE(cmd));
1678 default:
1679 return -EINVAL;
1680 }
1681 }
1682
1683 static __poll_t seccomp_notify_poll(struct file *file,
1684 struct poll_table_struct *poll_tab)
1685 {
1686 struct seccomp_filter *filter = file->private_data;
1687 __poll_t ret = 0;
1688 struct seccomp_knotif *cur;
1689
1690 poll_wait(file, &filter->wqh, poll_tab);
1691
1692 if (mutex_lock_interruptible(&filter->notify_lock) < 0)
1693 return EPOLLERR;
1694
1695 list_for_each_entry(cur, &filter->notif->notifications, list) {
1696 if (cur->state == SECCOMP_NOTIFY_INIT)
1697 ret |= EPOLLIN | EPOLLRDNORM;
1698 if (cur->state == SECCOMP_NOTIFY_SENT)
1699 ret |= EPOLLOUT | EPOLLWRNORM;
1700 if ((ret & EPOLLIN) && (ret & EPOLLOUT))
1701 break;
1702 }
1703
1704 mutex_unlock(&filter->notify_lock);
1705
1706 if (refcount_read(&filter->users) == 0)
1707 ret |= EPOLLHUP;
1708
1709 return ret;
1710 }
1711
1712 static const struct file_operations seccomp_notify_ops = {
1713 .poll = seccomp_notify_poll,
1714 .release = seccomp_notify_release,
1715 .unlocked_ioctl = seccomp_notify_ioctl,
1716 .compat_ioctl = seccomp_notify_ioctl,
1717 };
1718
1719 static struct file *init_listener(struct seccomp_filter *filter)
1720 {
1721 struct file *ret;
1722
1723 ret = ERR_PTR(-ENOMEM);
1724 filter->notif = kzalloc(sizeof(*(filter->notif)), GFP_KERNEL);
1725 if (!filter->notif)
1726 goto out;
1727
1728 sema_init(&filter->notif->request, 0);
1729 filter->notif->next_id = get_random_u64();
1730 INIT_LIST_HEAD(&filter->notif->notifications);
1731
1732 ret = anon_inode_getfile("seccomp notify", &seccomp_notify_ops,
1733 filter, O_RDWR);
1734 if (IS_ERR(ret))
1735 goto out_notif;
1736
1737 /* The file has a reference to it now */
1738 __get_seccomp_filter(filter);
1739
1740 out_notif:
1741 if (IS_ERR(ret))
1742 seccomp_notify_free(filter);
1743 out:
1744 return ret;
1745 }
1746
1747 /*
1748 * Does @new_child have a listener while an ancestor also has a listener?
1749 * If so, we'll want to reject this filter.
1750 * This only has to be tested for the current process, even in the TSYNC case,
1751 * because TSYNC installs @child with the same parent on all threads.
1752 * Note that @new_child is not hooked up to its parent at this point yet, so
1753 * we use current->seccomp.filter.
1754 */
1755 static bool has_duplicate_listener(struct seccomp_filter *new_child)
1756 {
1757 struct seccomp_filter *cur;
1758
1759 /* must be protected against concurrent TSYNC */
1760 lockdep_assert_held(&current->sighand->siglock);
1761
1762 if (!new_child->notif)
1763 return false;
1764 for (cur = current->seccomp.filter; cur; cur = cur->prev) {
1765 if (cur->notif)
1766 return true;
1767 }
1768
1769 return false;
1770 }
1771
1772 /**
1773 * seccomp_set_mode_filter: internal function for setting seccomp filter
1774 * @flags: flags to change filter behavior
1775 * @filter: struct sock_fprog containing filter
1776 *
1777 * This function may be called repeatedly to install additional filters.
1778 * Every filter successfully installed will be evaluated (in reverse order)
1779 * for each system call the task makes.
1780 *
1781 * Once current->seccomp.mode is non-zero, it may not be changed.
1782 *
1783 * Returns 0 on success or -EINVAL on failure.
1784 */
1785 static long seccomp_set_mode_filter(unsigned int flags,
1786 const char __user *filter)
1787 {
1788 const unsigned long seccomp_mode = SECCOMP_MODE_FILTER;
1789 struct seccomp_filter *prepared = NULL;
1790 long ret = -EINVAL;
1791 int listener = -1;
1792 struct file *listener_f = NULL;
1793
1794 /* Validate flags. */
1795 if (flags & ~SECCOMP_FILTER_FLAG_MASK)
1796 return -EINVAL;
1797
1798 /*
1799 * In the successful case, NEW_LISTENER returns the new listener fd.
1800 * But in the failure case, TSYNC returns the thread that died. If you
1801 * combine these two flags, there's no way to tell whether something
1802 * succeeded or failed. So, let's disallow this combination if the user
1803 * has not explicitly requested no errors from TSYNC.
1804 */
1805 if ((flags & SECCOMP_FILTER_FLAG_TSYNC) &&
1806 (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) &&
1807 ((flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH) == 0))
1808 return -EINVAL;
1809
1810 /* Prepare the new filter before holding any locks. */
1811 prepared = seccomp_prepare_user_filter(filter);
1812 if (IS_ERR(prepared))
1813 return PTR_ERR(prepared);
1814
1815 if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) {
1816 listener = get_unused_fd_flags(O_CLOEXEC);
1817 if (listener < 0) {
1818 ret = listener;
1819 goto out_free;
1820 }
1821
1822 listener_f = init_listener(prepared);
1823 if (IS_ERR(listener_f)) {
1824 put_unused_fd(listener);
1825 ret = PTR_ERR(listener_f);
1826 goto out_free;
1827 }
1828 }
1829
1830 /*
1831 * Make sure we cannot change seccomp or nnp state via TSYNC
1832 * while another thread is in the middle of calling exec.
1833 */
1834 if (flags & SECCOMP_FILTER_FLAG_TSYNC &&
1835 mutex_lock_killable(&current->signal->cred_guard_mutex))
1836 goto out_put_fd;
1837
1838 spin_lock_irq(&current->sighand->siglock);
1839
1840 if (!seccomp_may_assign_mode(seccomp_mode))
1841 goto out;
1842
1843 if (has_duplicate_listener(prepared)) {
1844 ret = -EBUSY;
1845 goto out;
1846 }
1847
1848 ret = seccomp_attach_filter(flags, prepared);
1849 if (ret)
1850 goto out;
1851 /* Do not free the successfully attached filter. */
1852 prepared = NULL;
1853
1854 seccomp_assign_mode(current, seccomp_mode, flags);
1855 out:
1856 spin_unlock_irq(&current->sighand->siglock);
1857 if (flags & SECCOMP_FILTER_FLAG_TSYNC)
1858 mutex_unlock(&current->signal->cred_guard_mutex);
1859 out_put_fd:
1860 if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) {
1861 if (ret) {
1862 listener_f->private_data = NULL;
1863 fput(listener_f);
1864 put_unused_fd(listener);
1865 seccomp_notify_detach(prepared);
1866 } else {
1867 fd_install(listener, listener_f);
1868 ret = listener;
1869 }
1870 }
1871 out_free:
1872 seccomp_filter_free(prepared);
1873 return ret;
1874 }
1875 #else
1876 static inline long seccomp_set_mode_filter(unsigned int flags,
1877 const char __user *filter)
1878 {
1879 return -EINVAL;
1880 }
1881 #endif
1882
1883 static long seccomp_get_action_avail(const char __user *uaction)
1884 {
1885 u32 action;
1886
1887 if (copy_from_user(&action, uaction, sizeof(action)))
1888 return -EFAULT;
1889
1890 switch (action) {
1891 case SECCOMP_RET_KILL_PROCESS:
1892 case SECCOMP_RET_KILL_THREAD:
1893 case SECCOMP_RET_TRAP:
1894 case SECCOMP_RET_ERRNO:
1895 case SECCOMP_RET_USER_NOTIF:
1896 case SECCOMP_RET_TRACE:
1897 case SECCOMP_RET_LOG:
1898 case SECCOMP_RET_ALLOW:
1899 break;
1900 default:
1901 return -EOPNOTSUPP;
1902 }
1903
1904 return 0;
1905 }
1906
1907 static long seccomp_get_notif_sizes(void __user *usizes)
1908 {
1909 struct seccomp_notif_sizes sizes = {
1910 .seccomp_notif = sizeof(struct seccomp_notif),
1911 .seccomp_notif_resp = sizeof(struct seccomp_notif_resp),
1912 .seccomp_data = sizeof(struct seccomp_data),
1913 };
1914
1915 if (copy_to_user(usizes, &sizes, sizeof(sizes)))
1916 return -EFAULT;
1917
1918 return 0;
1919 }
1920
1921 /* Common entry point for both prctl and syscall. */
1922 static long do_seccomp(unsigned int op, unsigned int flags,
1923 void __user *uargs)
1924 {
1925 switch (op) {
1926 case SECCOMP_SET_MODE_STRICT:
1927 if (flags != 0 || uargs != NULL)
1928 return -EINVAL;
1929 return seccomp_set_mode_strict();
1930 case SECCOMP_SET_MODE_FILTER:
1931 return seccomp_set_mode_filter(flags, uargs);
1932 case SECCOMP_GET_ACTION_AVAIL:
1933 if (flags != 0)
1934 return -EINVAL;
1935
1936 return seccomp_get_action_avail(uargs);
1937 case SECCOMP_GET_NOTIF_SIZES:
1938 if (flags != 0)
1939 return -EINVAL;
1940
1941 return seccomp_get_notif_sizes(uargs);
1942 default:
1943 return -EINVAL;
1944 }
1945 }
1946
1947 SYSCALL_DEFINE3(seccomp, unsigned int, op, unsigned int, flags,
1948 void __user *, uargs)
1949 {
1950 return do_seccomp(op, flags, uargs);
1951 }
1952
1953 /**
1954 * prctl_set_seccomp: configures current->seccomp.mode
1955 * @seccomp_mode: requested mode to use
1956 * @filter: optional struct sock_fprog for use with SECCOMP_MODE_FILTER
1957 *
1958 * Returns 0 on success or -EINVAL on failure.
1959 */
1960 long prctl_set_seccomp(unsigned long seccomp_mode, void __user *filter)
1961 {
1962 unsigned int op;
1963 void __user *uargs;
1964
1965 switch (seccomp_mode) {
1966 case SECCOMP_MODE_STRICT:
1967 op = SECCOMP_SET_MODE_STRICT;
1968 /*
1969 * Setting strict mode through prctl always ignored filter,
1970 * so make sure it is always NULL here to pass the internal
1971 * check in do_seccomp().
1972 */
1973 uargs = NULL;
1974 break;
1975 case SECCOMP_MODE_FILTER:
1976 op = SECCOMP_SET_MODE_FILTER;
1977 uargs = filter;
1978 break;
1979 default:
1980 return -EINVAL;
1981 }
1982
1983 /* prctl interface doesn't have flags, so they are always zero. */
1984 return do_seccomp(op, 0, uargs);
1985 }
1986
1987 #if defined(CONFIG_SECCOMP_FILTER) && defined(CONFIG_CHECKPOINT_RESTORE)
1988 static struct seccomp_filter *get_nth_filter(struct task_struct *task,
1989 unsigned long filter_off)
1990 {
1991 struct seccomp_filter *orig, *filter;
1992 unsigned long count;
1993
1994 /*
1995 * Note: this is only correct because the caller should be the (ptrace)
1996 * tracer of the task, otherwise lock_task_sighand is needed.
1997 */
1998 spin_lock_irq(&task->sighand->siglock);
1999
2000 if (task->seccomp.mode != SECCOMP_MODE_FILTER) {
2001 spin_unlock_irq(&task->sighand->siglock);
2002 return ERR_PTR(-EINVAL);
2003 }
2004
2005 orig = task->seccomp.filter;
2006 __get_seccomp_filter(orig);
2007 spin_unlock_irq(&task->sighand->siglock);
2008
2009 count = 0;
2010 for (filter = orig; filter; filter = filter->prev)
2011 count++;
2012
2013 if (filter_off >= count) {
2014 filter = ERR_PTR(-ENOENT);
2015 goto out;
2016 }
2017
2018 count -= filter_off;
2019 for (filter = orig; filter && count > 1; filter = filter->prev)
2020 count--;
2021
2022 if (WARN_ON(count != 1 || !filter)) {
2023 filter = ERR_PTR(-ENOENT);
2024 goto out;
2025 }
2026
2027 __get_seccomp_filter(filter);
2028
2029 out:
2030 __put_seccomp_filter(orig);
2031 return filter;
2032 }
2033
2034 long seccomp_get_filter(struct task_struct *task, unsigned long filter_off,
2035 void __user *data)
2036 {
2037 struct seccomp_filter *filter;
2038 struct sock_fprog_kern *fprog;
2039 long ret;
2040
2041 if (!capable(CAP_SYS_ADMIN) ||
2042 current->seccomp.mode != SECCOMP_MODE_DISABLED) {
2043 return -EACCES;
2044 }
2045
2046 filter = get_nth_filter(task, filter_off);
2047 if (IS_ERR(filter))
2048 return PTR_ERR(filter);
2049
2050 fprog = filter->prog->orig_prog;
2051 if (!fprog) {
2052 /* This must be a new non-cBPF filter, since we save
2053 * every cBPF filter's orig_prog above when
2054 * CONFIG_CHECKPOINT_RESTORE is enabled.
2055 */
2056 ret = -EMEDIUMTYPE;
2057 goto out;
2058 }
2059
2060 ret = fprog->len;
2061 if (!data)
2062 goto out;
2063
2064 if (copy_to_user(data, fprog->filter, bpf_classic_proglen(fprog)))
2065 ret = -EFAULT;
2066
2067 out:
2068 __put_seccomp_filter(filter);
2069 return ret;
2070 }
2071
2072 long seccomp_get_metadata(struct task_struct *task,
2073 unsigned long size, void __user *data)
2074 {
2075 long ret;
2076 struct seccomp_filter *filter;
2077 struct seccomp_metadata kmd = {};
2078
2079 if (!capable(CAP_SYS_ADMIN) ||
2080 current->seccomp.mode != SECCOMP_MODE_DISABLED) {
2081 return -EACCES;
2082 }
2083
2084 size = min_t(unsigned long, size, sizeof(kmd));
2085
2086 if (size < sizeof(kmd.filter_off))
2087 return -EINVAL;
2088
2089 if (copy_from_user(&kmd.filter_off, data, sizeof(kmd.filter_off)))
2090 return -EFAULT;
2091
2092 filter = get_nth_filter(task, kmd.filter_off);
2093 if (IS_ERR(filter))
2094 return PTR_ERR(filter);
2095
2096 if (filter->log)
2097 kmd.flags |= SECCOMP_FILTER_FLAG_LOG;
2098
2099 ret = size;
2100 if (copy_to_user(data, &kmd, size))
2101 ret = -EFAULT;
2102
2103 __put_seccomp_filter(filter);
2104 return ret;
2105 }
2106 #endif
2107
2108 #ifdef CONFIG_SYSCTL
2109
2110 /* Human readable action names for friendly sysctl interaction */
2111 #define SECCOMP_RET_KILL_PROCESS_NAME "kill_process"
2112 #define SECCOMP_RET_KILL_THREAD_NAME "kill_thread"
2113 #define SECCOMP_RET_TRAP_NAME "trap"
2114 #define SECCOMP_RET_ERRNO_NAME "errno"
2115 #define SECCOMP_RET_USER_NOTIF_NAME "user_notif"
2116 #define SECCOMP_RET_TRACE_NAME "trace"
2117 #define SECCOMP_RET_LOG_NAME "log"
2118 #define SECCOMP_RET_ALLOW_NAME "allow"
2119
2120 static const char seccomp_actions_avail[] =
2121 SECCOMP_RET_KILL_PROCESS_NAME " "
2122 SECCOMP_RET_KILL_THREAD_NAME " "
2123 SECCOMP_RET_TRAP_NAME " "
2124 SECCOMP_RET_ERRNO_NAME " "
2125 SECCOMP_RET_USER_NOTIF_NAME " "
2126 SECCOMP_RET_TRACE_NAME " "
2127 SECCOMP_RET_LOG_NAME " "
2128 SECCOMP_RET_ALLOW_NAME;
2129
2130 struct seccomp_log_name {
2131 u32 log;
2132 const char *name;
2133 };
2134
2135 static const struct seccomp_log_name seccomp_log_names[] = {
2136 { SECCOMP_LOG_KILL_PROCESS, SECCOMP_RET_KILL_PROCESS_NAME },
2137 { SECCOMP_LOG_KILL_THREAD, SECCOMP_RET_KILL_THREAD_NAME },
2138 { SECCOMP_LOG_TRAP, SECCOMP_RET_TRAP_NAME },
2139 { SECCOMP_LOG_ERRNO, SECCOMP_RET_ERRNO_NAME },
2140 { SECCOMP_LOG_USER_NOTIF, SECCOMP_RET_USER_NOTIF_NAME },
2141 { SECCOMP_LOG_TRACE, SECCOMP_RET_TRACE_NAME },
2142 { SECCOMP_LOG_LOG, SECCOMP_RET_LOG_NAME },
2143 { SECCOMP_LOG_ALLOW, SECCOMP_RET_ALLOW_NAME },
2144 { }
2145 };
2146
2147 static bool seccomp_names_from_actions_logged(char *names, size_t size,
2148 u32 actions_logged,
2149 const char *sep)
2150 {
2151 const struct seccomp_log_name *cur;
2152 bool append_sep = false;
2153
2154 for (cur = seccomp_log_names; cur->name && size; cur++) {
2155 ssize_t ret;
2156
2157 if (!(actions_logged & cur->log))
2158 continue;
2159
2160 if (append_sep) {
2161 ret = strscpy(names, sep, size);
2162 if (ret < 0)
2163 return false;
2164
2165 names += ret;
2166 size -= ret;
2167 } else
2168 append_sep = true;
2169
2170 ret = strscpy(names, cur->name, size);
2171 if (ret < 0)
2172 return false;
2173
2174 names += ret;
2175 size -= ret;
2176 }
2177
2178 return true;
2179 }
2180
2181 static bool seccomp_action_logged_from_name(u32 *action_logged,
2182 const char *name)
2183 {
2184 const struct seccomp_log_name *cur;
2185
2186 for (cur = seccomp_log_names; cur->name; cur++) {
2187 if (!strcmp(cur->name, name)) {
2188 *action_logged = cur->log;
2189 return true;
2190 }
2191 }
2192
2193 return false;
2194 }
2195
2196 static bool seccomp_actions_logged_from_names(u32 *actions_logged, char *names)
2197 {
2198 char *name;
2199
2200 *actions_logged = 0;
2201 while ((name = strsep(&names, " ")) && *name) {
2202 u32 action_logged = 0;
2203
2204 if (!seccomp_action_logged_from_name(&action_logged, name))
2205 return false;
2206
2207 *actions_logged |= action_logged;
2208 }
2209
2210 return true;
2211 }
2212
2213 static int read_actions_logged(struct ctl_table *ro_table, void *buffer,
2214 size_t *lenp, loff_t *ppos)
2215 {
2216 char names[sizeof(seccomp_actions_avail)];
2217 struct ctl_table table;
2218
2219 memset(names, 0, sizeof(names));
2220
2221 if (!seccomp_names_from_actions_logged(names, sizeof(names),
2222 seccomp_actions_logged, " "))
2223 return -EINVAL;
2224
2225 table = *ro_table;
2226 table.data = names;
2227 table.maxlen = sizeof(names);
2228 return proc_dostring(&table, 0, buffer, lenp, ppos);
2229 }
2230
2231 static int write_actions_logged(struct ctl_table *ro_table, void *buffer,
2232 size_t *lenp, loff_t *ppos, u32 *actions_logged)
2233 {
2234 char names[sizeof(seccomp_actions_avail)];
2235 struct ctl_table table;
2236 int ret;
2237
2238 if (!capable(CAP_SYS_ADMIN))
2239 return -EPERM;
2240
2241 memset(names, 0, sizeof(names));
2242
2243 table = *ro_table;
2244 table.data = names;
2245 table.maxlen = sizeof(names);
2246 ret = proc_dostring(&table, 1, buffer, lenp, ppos);
2247 if (ret)
2248 return ret;
2249
2250 if (!seccomp_actions_logged_from_names(actions_logged, table.data))
2251 return -EINVAL;
2252
2253 if (*actions_logged & SECCOMP_LOG_ALLOW)
2254 return -EINVAL;
2255
2256 seccomp_actions_logged = *actions_logged;
2257 return 0;
2258 }
2259
2260 static void audit_actions_logged(u32 actions_logged, u32 old_actions_logged,
2261 int ret)
2262 {
2263 char names[sizeof(seccomp_actions_avail)];
2264 char old_names[sizeof(seccomp_actions_avail)];
2265 const char *new = names;
2266 const char *old = old_names;
2267
2268 if (!audit_enabled)
2269 return;
2270
2271 memset(names, 0, sizeof(names));
2272 memset(old_names, 0, sizeof(old_names));
2273
2274 if (ret)
2275 new = "?";
2276 else if (!actions_logged)
2277 new = "(none)";
2278 else if (!seccomp_names_from_actions_logged(names, sizeof(names),
2279 actions_logged, ","))
2280 new = "?";
2281
2282 if (!old_actions_logged)
2283 old = "(none)";
2284 else if (!seccomp_names_from_actions_logged(old_names,
2285 sizeof(old_names),
2286 old_actions_logged, ","))
2287 old = "?";
2288
2289 return audit_seccomp_actions_logged(new, old, !ret);
2290 }
2291
2292 static int seccomp_actions_logged_handler(struct ctl_table *ro_table, int write,
2293 void *buffer, size_t *lenp,
2294 loff_t *ppos)
2295 {
2296 int ret;
2297
2298 if (write) {
2299 u32 actions_logged = 0;
2300 u32 old_actions_logged = seccomp_actions_logged;
2301
2302 ret = write_actions_logged(ro_table, buffer, lenp, ppos,
2303 &actions_logged);
2304 audit_actions_logged(actions_logged, old_actions_logged, ret);
2305 } else
2306 ret = read_actions_logged(ro_table, buffer, lenp, ppos);
2307
2308 return ret;
2309 }
2310
2311 static struct ctl_path seccomp_sysctl_path[] = {
2312 { .procname = "kernel", },
2313 { .procname = "seccomp", },
2314 { }
2315 };
2316
2317 static struct ctl_table seccomp_sysctl_table[] = {
2318 {
2319 .procname = "actions_avail",
2320 .data = (void *) &seccomp_actions_avail,
2321 .maxlen = sizeof(seccomp_actions_avail),
2322 .mode = 0444,
2323 .proc_handler = proc_dostring,
2324 },
2325 {
2326 .procname = "actions_logged",
2327 .mode = 0644,
2328 .proc_handler = seccomp_actions_logged_handler,
2329 },
2330 { }
2331 };
2332
2333 static int __init seccomp_sysctl_init(void)
2334 {
2335 struct ctl_table_header *hdr;
2336
2337 hdr = register_sysctl_paths(seccomp_sysctl_path, seccomp_sysctl_table);
2338 if (!hdr)
2339 pr_warn("sysctl registration failed\n");
2340 else
2341 kmemleak_not_leak(hdr);
2342
2343 return 0;
2344 }
2345
2346 device_initcall(seccomp_sysctl_init)
2347
2348 #endif /* CONFIG_SYSCTL */
2349
2350 #ifdef CONFIG_SECCOMP_CACHE_DEBUG
2351 /* Currently CONFIG_SECCOMP_CACHE_DEBUG implies SECCOMP_ARCH_NATIVE */
2352 static void proc_pid_seccomp_cache_arch(struct seq_file *m, const char *name,
2353 const void *bitmap, size_t bitmap_size)
2354 {
2355 int nr;
2356
2357 for (nr = 0; nr < bitmap_size; nr++) {
2358 bool cached = test_bit(nr, bitmap);
2359 char *status = cached ? "ALLOW" : "FILTER";
2360
2361 seq_printf(m, "%s %d %s\n", name, nr, status);
2362 }
2363 }
2364
2365 int proc_pid_seccomp_cache(struct seq_file *m, struct pid_namespace *ns,
2366 struct pid *pid, struct task_struct *task)
2367 {
2368 struct seccomp_filter *f;
2369 unsigned long flags;
2370
2371 /*
2372 * We don't want some sandboxed process to know what their seccomp
2373 * filters consist of.
2374 */
2375 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
2376 return -EACCES;
2377
2378 if (!lock_task_sighand(task, &flags))
2379 return -ESRCH;
2380
2381 f = READ_ONCE(task->seccomp.filter);
2382 if (!f) {
2383 unlock_task_sighand(task, &flags);
2384 return 0;
2385 }
2386
2387 /* prevent filter from being freed while we are printing it */
2388 __get_seccomp_filter(f);
2389 unlock_task_sighand(task, &flags);
2390
2391 proc_pid_seccomp_cache_arch(m, SECCOMP_ARCH_NATIVE_NAME,
2392 f->cache.allow_native,
2393 SECCOMP_ARCH_NATIVE_NR);
2394
2395 #ifdef SECCOMP_ARCH_COMPAT
2396 proc_pid_seccomp_cache_arch(m, SECCOMP_ARCH_COMPAT_NAME,
2397 f->cache.allow_compat,
2398 SECCOMP_ARCH_COMPAT_NR);
2399 #endif /* SECCOMP_ARCH_COMPAT */
2400
2401 __put_seccomp_filter(f);
2402 return 0;
2403 }
2404 #endif /* CONFIG_SECCOMP_CACHE_DEBUG */