]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/signal.c
HID: wacom: fixup quirks setup for WACOM_DEVICETYPE_PAD
[mirror_ubuntu-artful-kernel.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/ptrace.h>
24 #include <linux/signal.h>
25 #include <linux/signalfd.h>
26 #include <linux/ratelimit.h>
27 #include <linux/tracehook.h>
28 #include <linux/capability.h>
29 #include <linux/freezer.h>
30 #include <linux/pid_namespace.h>
31 #include <linux/nsproxy.h>
32 #include <linux/user_namespace.h>
33 #include <linux/uprobes.h>
34 #include <linux/compat.h>
35 #include <linux/cn_proc.h>
36 #include <linux/compiler.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/signal.h>
40
41 #include <asm/param.h>
42 #include <asm/uaccess.h>
43 #include <asm/unistd.h>
44 #include <asm/siginfo.h>
45 #include <asm/cacheflush.h>
46 #include "audit.h" /* audit_signal_info() */
47
48 /*
49 * SLAB caches for signal bits.
50 */
51
52 static struct kmem_cache *sigqueue_cachep;
53
54 int print_fatal_signals __read_mostly;
55
56 static void __user *sig_handler(struct task_struct *t, int sig)
57 {
58 return t->sighand->action[sig - 1].sa.sa_handler;
59 }
60
61 static int sig_handler_ignored(void __user *handler, int sig)
62 {
63 /* Is it explicitly or implicitly ignored? */
64 return handler == SIG_IGN ||
65 (handler == SIG_DFL && sig_kernel_ignore(sig));
66 }
67
68 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
69 {
70 void __user *handler;
71
72 handler = sig_handler(t, sig);
73
74 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
75 handler == SIG_DFL && !force)
76 return 1;
77
78 return sig_handler_ignored(handler, sig);
79 }
80
81 static int sig_ignored(struct task_struct *t, int sig, bool force)
82 {
83 /*
84 * Blocked signals are never ignored, since the
85 * signal handler may change by the time it is
86 * unblocked.
87 */
88 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
89 return 0;
90
91 if (!sig_task_ignored(t, sig, force))
92 return 0;
93
94 /*
95 * Tracers may want to know about even ignored signals.
96 */
97 return !t->ptrace;
98 }
99
100 /*
101 * Re-calculate pending state from the set of locally pending
102 * signals, globally pending signals, and blocked signals.
103 */
104 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
105 {
106 unsigned long ready;
107 long i;
108
109 switch (_NSIG_WORDS) {
110 default:
111 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
112 ready |= signal->sig[i] &~ blocked->sig[i];
113 break;
114
115 case 4: ready = signal->sig[3] &~ blocked->sig[3];
116 ready |= signal->sig[2] &~ blocked->sig[2];
117 ready |= signal->sig[1] &~ blocked->sig[1];
118 ready |= signal->sig[0] &~ blocked->sig[0];
119 break;
120
121 case 2: ready = signal->sig[1] &~ blocked->sig[1];
122 ready |= signal->sig[0] &~ blocked->sig[0];
123 break;
124
125 case 1: ready = signal->sig[0] &~ blocked->sig[0];
126 }
127 return ready != 0;
128 }
129
130 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
131
132 static int recalc_sigpending_tsk(struct task_struct *t)
133 {
134 if ((t->jobctl & JOBCTL_PENDING_MASK) ||
135 PENDING(&t->pending, &t->blocked) ||
136 PENDING(&t->signal->shared_pending, &t->blocked)) {
137 set_tsk_thread_flag(t, TIF_SIGPENDING);
138 return 1;
139 }
140 /*
141 * We must never clear the flag in another thread, or in current
142 * when it's possible the current syscall is returning -ERESTART*.
143 * So we don't clear it here, and only callers who know they should do.
144 */
145 return 0;
146 }
147
148 /*
149 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
150 * This is superfluous when called on current, the wakeup is a harmless no-op.
151 */
152 void recalc_sigpending_and_wake(struct task_struct *t)
153 {
154 if (recalc_sigpending_tsk(t))
155 signal_wake_up(t, 0);
156 }
157
158 void recalc_sigpending(void)
159 {
160 if (!recalc_sigpending_tsk(current) && !freezing(current))
161 clear_thread_flag(TIF_SIGPENDING);
162
163 }
164
165 /* Given the mask, find the first available signal that should be serviced. */
166
167 #define SYNCHRONOUS_MASK \
168 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
169 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
170
171 int next_signal(struct sigpending *pending, sigset_t *mask)
172 {
173 unsigned long i, *s, *m, x;
174 int sig = 0;
175
176 s = pending->signal.sig;
177 m = mask->sig;
178
179 /*
180 * Handle the first word specially: it contains the
181 * synchronous signals that need to be dequeued first.
182 */
183 x = *s &~ *m;
184 if (x) {
185 if (x & SYNCHRONOUS_MASK)
186 x &= SYNCHRONOUS_MASK;
187 sig = ffz(~x) + 1;
188 return sig;
189 }
190
191 switch (_NSIG_WORDS) {
192 default:
193 for (i = 1; i < _NSIG_WORDS; ++i) {
194 x = *++s &~ *++m;
195 if (!x)
196 continue;
197 sig = ffz(~x) + i*_NSIG_BPW + 1;
198 break;
199 }
200 break;
201
202 case 2:
203 x = s[1] &~ m[1];
204 if (!x)
205 break;
206 sig = ffz(~x) + _NSIG_BPW + 1;
207 break;
208
209 case 1:
210 /* Nothing to do */
211 break;
212 }
213
214 return sig;
215 }
216
217 static inline void print_dropped_signal(int sig)
218 {
219 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
220
221 if (!print_fatal_signals)
222 return;
223
224 if (!__ratelimit(&ratelimit_state))
225 return;
226
227 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
228 current->comm, current->pid, sig);
229 }
230
231 /**
232 * task_set_jobctl_pending - set jobctl pending bits
233 * @task: target task
234 * @mask: pending bits to set
235 *
236 * Clear @mask from @task->jobctl. @mask must be subset of
237 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
238 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
239 * cleared. If @task is already being killed or exiting, this function
240 * becomes noop.
241 *
242 * CONTEXT:
243 * Must be called with @task->sighand->siglock held.
244 *
245 * RETURNS:
246 * %true if @mask is set, %false if made noop because @task was dying.
247 */
248 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
249 {
250 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
251 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
252 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
253
254 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
255 return false;
256
257 if (mask & JOBCTL_STOP_SIGMASK)
258 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
259
260 task->jobctl |= mask;
261 return true;
262 }
263
264 /**
265 * task_clear_jobctl_trapping - clear jobctl trapping bit
266 * @task: target task
267 *
268 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
269 * Clear it and wake up the ptracer. Note that we don't need any further
270 * locking. @task->siglock guarantees that @task->parent points to the
271 * ptracer.
272 *
273 * CONTEXT:
274 * Must be called with @task->sighand->siglock held.
275 */
276 void task_clear_jobctl_trapping(struct task_struct *task)
277 {
278 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
279 task->jobctl &= ~JOBCTL_TRAPPING;
280 smp_mb(); /* advised by wake_up_bit() */
281 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
282 }
283 }
284
285 /**
286 * task_clear_jobctl_pending - clear jobctl pending bits
287 * @task: target task
288 * @mask: pending bits to clear
289 *
290 * Clear @mask from @task->jobctl. @mask must be subset of
291 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
292 * STOP bits are cleared together.
293 *
294 * If clearing of @mask leaves no stop or trap pending, this function calls
295 * task_clear_jobctl_trapping().
296 *
297 * CONTEXT:
298 * Must be called with @task->sighand->siglock held.
299 */
300 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
301 {
302 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
303
304 if (mask & JOBCTL_STOP_PENDING)
305 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
306
307 task->jobctl &= ~mask;
308
309 if (!(task->jobctl & JOBCTL_PENDING_MASK))
310 task_clear_jobctl_trapping(task);
311 }
312
313 /**
314 * task_participate_group_stop - participate in a group stop
315 * @task: task participating in a group stop
316 *
317 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
318 * Group stop states are cleared and the group stop count is consumed if
319 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
320 * stop, the appropriate %SIGNAL_* flags are set.
321 *
322 * CONTEXT:
323 * Must be called with @task->sighand->siglock held.
324 *
325 * RETURNS:
326 * %true if group stop completion should be notified to the parent, %false
327 * otherwise.
328 */
329 static bool task_participate_group_stop(struct task_struct *task)
330 {
331 struct signal_struct *sig = task->signal;
332 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
333
334 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
335
336 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
337
338 if (!consume)
339 return false;
340
341 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
342 sig->group_stop_count--;
343
344 /*
345 * Tell the caller to notify completion iff we are entering into a
346 * fresh group stop. Read comment in do_signal_stop() for details.
347 */
348 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
349 sig->flags = SIGNAL_STOP_STOPPED;
350 return true;
351 }
352 return false;
353 }
354
355 /*
356 * allocate a new signal queue record
357 * - this may be called without locks if and only if t == current, otherwise an
358 * appropriate lock must be held to stop the target task from exiting
359 */
360 static struct sigqueue *
361 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
362 {
363 struct sigqueue *q = NULL;
364 struct user_struct *user;
365
366 /*
367 * Protect access to @t credentials. This can go away when all
368 * callers hold rcu read lock.
369 */
370 rcu_read_lock();
371 user = get_uid(__task_cred(t)->user);
372 atomic_inc(&user->sigpending);
373 rcu_read_unlock();
374
375 if (override_rlimit ||
376 atomic_read(&user->sigpending) <=
377 task_rlimit(t, RLIMIT_SIGPENDING)) {
378 q = kmem_cache_alloc(sigqueue_cachep, flags);
379 } else {
380 print_dropped_signal(sig);
381 }
382
383 if (unlikely(q == NULL)) {
384 atomic_dec(&user->sigpending);
385 free_uid(user);
386 } else {
387 INIT_LIST_HEAD(&q->list);
388 q->flags = 0;
389 q->user = user;
390 }
391
392 return q;
393 }
394
395 static void __sigqueue_free(struct sigqueue *q)
396 {
397 if (q->flags & SIGQUEUE_PREALLOC)
398 return;
399 atomic_dec(&q->user->sigpending);
400 free_uid(q->user);
401 kmem_cache_free(sigqueue_cachep, q);
402 }
403
404 void flush_sigqueue(struct sigpending *queue)
405 {
406 struct sigqueue *q;
407
408 sigemptyset(&queue->signal);
409 while (!list_empty(&queue->list)) {
410 q = list_entry(queue->list.next, struct sigqueue , list);
411 list_del_init(&q->list);
412 __sigqueue_free(q);
413 }
414 }
415
416 /*
417 * Flush all pending signals for this kthread.
418 */
419 void flush_signals(struct task_struct *t)
420 {
421 unsigned long flags;
422
423 spin_lock_irqsave(&t->sighand->siglock, flags);
424 clear_tsk_thread_flag(t, TIF_SIGPENDING);
425 flush_sigqueue(&t->pending);
426 flush_sigqueue(&t->signal->shared_pending);
427 spin_unlock_irqrestore(&t->sighand->siglock, flags);
428 }
429
430 static void __flush_itimer_signals(struct sigpending *pending)
431 {
432 sigset_t signal, retain;
433 struct sigqueue *q, *n;
434
435 signal = pending->signal;
436 sigemptyset(&retain);
437
438 list_for_each_entry_safe(q, n, &pending->list, list) {
439 int sig = q->info.si_signo;
440
441 if (likely(q->info.si_code != SI_TIMER)) {
442 sigaddset(&retain, sig);
443 } else {
444 sigdelset(&signal, sig);
445 list_del_init(&q->list);
446 __sigqueue_free(q);
447 }
448 }
449
450 sigorsets(&pending->signal, &signal, &retain);
451 }
452
453 void flush_itimer_signals(void)
454 {
455 struct task_struct *tsk = current;
456 unsigned long flags;
457
458 spin_lock_irqsave(&tsk->sighand->siglock, flags);
459 __flush_itimer_signals(&tsk->pending);
460 __flush_itimer_signals(&tsk->signal->shared_pending);
461 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
462 }
463
464 void ignore_signals(struct task_struct *t)
465 {
466 int i;
467
468 for (i = 0; i < _NSIG; ++i)
469 t->sighand->action[i].sa.sa_handler = SIG_IGN;
470
471 flush_signals(t);
472 }
473
474 /*
475 * Flush all handlers for a task.
476 */
477
478 void
479 flush_signal_handlers(struct task_struct *t, int force_default)
480 {
481 int i;
482 struct k_sigaction *ka = &t->sighand->action[0];
483 for (i = _NSIG ; i != 0 ; i--) {
484 if (force_default || ka->sa.sa_handler != SIG_IGN)
485 ka->sa.sa_handler = SIG_DFL;
486 ka->sa.sa_flags = 0;
487 #ifdef __ARCH_HAS_SA_RESTORER
488 ka->sa.sa_restorer = NULL;
489 #endif
490 sigemptyset(&ka->sa.sa_mask);
491 ka++;
492 }
493 }
494
495 int unhandled_signal(struct task_struct *tsk, int sig)
496 {
497 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
498 if (is_global_init(tsk))
499 return 1;
500 if (handler != SIG_IGN && handler != SIG_DFL)
501 return 0;
502 /* if ptraced, let the tracer determine */
503 return !tsk->ptrace;
504 }
505
506 /*
507 * Notify the system that a driver wants to block all signals for this
508 * process, and wants to be notified if any signals at all were to be
509 * sent/acted upon. If the notifier routine returns non-zero, then the
510 * signal will be acted upon after all. If the notifier routine returns 0,
511 * then then signal will be blocked. Only one block per process is
512 * allowed. priv is a pointer to private data that the notifier routine
513 * can use to determine if the signal should be blocked or not.
514 */
515 void
516 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
517 {
518 unsigned long flags;
519
520 spin_lock_irqsave(&current->sighand->siglock, flags);
521 current->notifier_mask = mask;
522 current->notifier_data = priv;
523 current->notifier = notifier;
524 spin_unlock_irqrestore(&current->sighand->siglock, flags);
525 }
526
527 /* Notify the system that blocking has ended. */
528
529 void
530 unblock_all_signals(void)
531 {
532 unsigned long flags;
533
534 spin_lock_irqsave(&current->sighand->siglock, flags);
535 current->notifier = NULL;
536 current->notifier_data = NULL;
537 recalc_sigpending();
538 spin_unlock_irqrestore(&current->sighand->siglock, flags);
539 }
540
541 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
542 {
543 struct sigqueue *q, *first = NULL;
544
545 /*
546 * Collect the siginfo appropriate to this signal. Check if
547 * there is another siginfo for the same signal.
548 */
549 list_for_each_entry(q, &list->list, list) {
550 if (q->info.si_signo == sig) {
551 if (first)
552 goto still_pending;
553 first = q;
554 }
555 }
556
557 sigdelset(&list->signal, sig);
558
559 if (first) {
560 still_pending:
561 list_del_init(&first->list);
562 copy_siginfo(info, &first->info);
563 __sigqueue_free(first);
564 } else {
565 /*
566 * Ok, it wasn't in the queue. This must be
567 * a fast-pathed signal or we must have been
568 * out of queue space. So zero out the info.
569 */
570 info->si_signo = sig;
571 info->si_errno = 0;
572 info->si_code = SI_USER;
573 info->si_pid = 0;
574 info->si_uid = 0;
575 }
576 }
577
578 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
579 siginfo_t *info)
580 {
581 int sig = next_signal(pending, mask);
582
583 if (sig) {
584 if (current->notifier) {
585 if (sigismember(current->notifier_mask, sig)) {
586 if (!(current->notifier)(current->notifier_data)) {
587 clear_thread_flag(TIF_SIGPENDING);
588 return 0;
589 }
590 }
591 }
592
593 collect_signal(sig, pending, info);
594 }
595
596 return sig;
597 }
598
599 /*
600 * Dequeue a signal and return the element to the caller, which is
601 * expected to free it.
602 *
603 * All callers have to hold the siglock.
604 */
605 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
606 {
607 int signr;
608
609 /* We only dequeue private signals from ourselves, we don't let
610 * signalfd steal them
611 */
612 signr = __dequeue_signal(&tsk->pending, mask, info);
613 if (!signr) {
614 signr = __dequeue_signal(&tsk->signal->shared_pending,
615 mask, info);
616 /*
617 * itimer signal ?
618 *
619 * itimers are process shared and we restart periodic
620 * itimers in the signal delivery path to prevent DoS
621 * attacks in the high resolution timer case. This is
622 * compliant with the old way of self-restarting
623 * itimers, as the SIGALRM is a legacy signal and only
624 * queued once. Changing the restart behaviour to
625 * restart the timer in the signal dequeue path is
626 * reducing the timer noise on heavy loaded !highres
627 * systems too.
628 */
629 if (unlikely(signr == SIGALRM)) {
630 struct hrtimer *tmr = &tsk->signal->real_timer;
631
632 if (!hrtimer_is_queued(tmr) &&
633 tsk->signal->it_real_incr.tv64 != 0) {
634 hrtimer_forward(tmr, tmr->base->get_time(),
635 tsk->signal->it_real_incr);
636 hrtimer_restart(tmr);
637 }
638 }
639 }
640
641 recalc_sigpending();
642 if (!signr)
643 return 0;
644
645 if (unlikely(sig_kernel_stop(signr))) {
646 /*
647 * Set a marker that we have dequeued a stop signal. Our
648 * caller might release the siglock and then the pending
649 * stop signal it is about to process is no longer in the
650 * pending bitmasks, but must still be cleared by a SIGCONT
651 * (and overruled by a SIGKILL). So those cases clear this
652 * shared flag after we've set it. Note that this flag may
653 * remain set after the signal we return is ignored or
654 * handled. That doesn't matter because its only purpose
655 * is to alert stop-signal processing code when another
656 * processor has come along and cleared the flag.
657 */
658 current->jobctl |= JOBCTL_STOP_DEQUEUED;
659 }
660 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
661 /*
662 * Release the siglock to ensure proper locking order
663 * of timer locks outside of siglocks. Note, we leave
664 * irqs disabled here, since the posix-timers code is
665 * about to disable them again anyway.
666 */
667 spin_unlock(&tsk->sighand->siglock);
668 do_schedule_next_timer(info);
669 spin_lock(&tsk->sighand->siglock);
670 }
671 return signr;
672 }
673
674 /*
675 * Tell a process that it has a new active signal..
676 *
677 * NOTE! we rely on the previous spin_lock to
678 * lock interrupts for us! We can only be called with
679 * "siglock" held, and the local interrupt must
680 * have been disabled when that got acquired!
681 *
682 * No need to set need_resched since signal event passing
683 * goes through ->blocked
684 */
685 void signal_wake_up_state(struct task_struct *t, unsigned int state)
686 {
687 set_tsk_thread_flag(t, TIF_SIGPENDING);
688 /*
689 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
690 * case. We don't check t->state here because there is a race with it
691 * executing another processor and just now entering stopped state.
692 * By using wake_up_state, we ensure the process will wake up and
693 * handle its death signal.
694 */
695 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
696 kick_process(t);
697 }
698
699 /*
700 * Remove signals in mask from the pending set and queue.
701 * Returns 1 if any signals were found.
702 *
703 * All callers must be holding the siglock.
704 */
705 static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
706 {
707 struct sigqueue *q, *n;
708 sigset_t m;
709
710 sigandsets(&m, mask, &s->signal);
711 if (sigisemptyset(&m))
712 return 0;
713
714 sigandnsets(&s->signal, &s->signal, mask);
715 list_for_each_entry_safe(q, n, &s->list, list) {
716 if (sigismember(mask, q->info.si_signo)) {
717 list_del_init(&q->list);
718 __sigqueue_free(q);
719 }
720 }
721 return 1;
722 }
723
724 static inline int is_si_special(const struct siginfo *info)
725 {
726 return info <= SEND_SIG_FORCED;
727 }
728
729 static inline bool si_fromuser(const struct siginfo *info)
730 {
731 return info == SEND_SIG_NOINFO ||
732 (!is_si_special(info) && SI_FROMUSER(info));
733 }
734
735 /*
736 * called with RCU read lock from check_kill_permission()
737 */
738 static int kill_ok_by_cred(struct task_struct *t)
739 {
740 const struct cred *cred = current_cred();
741 const struct cred *tcred = __task_cred(t);
742
743 if (uid_eq(cred->euid, tcred->suid) ||
744 uid_eq(cred->euid, tcred->uid) ||
745 uid_eq(cred->uid, tcred->suid) ||
746 uid_eq(cred->uid, tcred->uid))
747 return 1;
748
749 if (ns_capable(tcred->user_ns, CAP_KILL))
750 return 1;
751
752 return 0;
753 }
754
755 /*
756 * Bad permissions for sending the signal
757 * - the caller must hold the RCU read lock
758 */
759 static int check_kill_permission(int sig, struct siginfo *info,
760 struct task_struct *t)
761 {
762 struct pid *sid;
763 int error;
764
765 if (!valid_signal(sig))
766 return -EINVAL;
767
768 if (!si_fromuser(info))
769 return 0;
770
771 error = audit_signal_info(sig, t); /* Let audit system see the signal */
772 if (error)
773 return error;
774
775 if (!same_thread_group(current, t) &&
776 !kill_ok_by_cred(t)) {
777 switch (sig) {
778 case SIGCONT:
779 sid = task_session(t);
780 /*
781 * We don't return the error if sid == NULL. The
782 * task was unhashed, the caller must notice this.
783 */
784 if (!sid || sid == task_session(current))
785 break;
786 default:
787 return -EPERM;
788 }
789 }
790
791 return security_task_kill(t, info, sig, 0);
792 }
793
794 /**
795 * ptrace_trap_notify - schedule trap to notify ptracer
796 * @t: tracee wanting to notify tracer
797 *
798 * This function schedules sticky ptrace trap which is cleared on the next
799 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
800 * ptracer.
801 *
802 * If @t is running, STOP trap will be taken. If trapped for STOP and
803 * ptracer is listening for events, tracee is woken up so that it can
804 * re-trap for the new event. If trapped otherwise, STOP trap will be
805 * eventually taken without returning to userland after the existing traps
806 * are finished by PTRACE_CONT.
807 *
808 * CONTEXT:
809 * Must be called with @task->sighand->siglock held.
810 */
811 static void ptrace_trap_notify(struct task_struct *t)
812 {
813 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
814 assert_spin_locked(&t->sighand->siglock);
815
816 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
817 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
818 }
819
820 /*
821 * Handle magic process-wide effects of stop/continue signals. Unlike
822 * the signal actions, these happen immediately at signal-generation
823 * time regardless of blocking, ignoring, or handling. This does the
824 * actual continuing for SIGCONT, but not the actual stopping for stop
825 * signals. The process stop is done as a signal action for SIG_DFL.
826 *
827 * Returns true if the signal should be actually delivered, otherwise
828 * it should be dropped.
829 */
830 static bool prepare_signal(int sig, struct task_struct *p, bool force)
831 {
832 struct signal_struct *signal = p->signal;
833 struct task_struct *t;
834 sigset_t flush;
835
836 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
837 if (signal->flags & SIGNAL_GROUP_COREDUMP)
838 return sig == SIGKILL;
839 /*
840 * The process is in the middle of dying, nothing to do.
841 */
842 } else if (sig_kernel_stop(sig)) {
843 /*
844 * This is a stop signal. Remove SIGCONT from all queues.
845 */
846 siginitset(&flush, sigmask(SIGCONT));
847 flush_sigqueue_mask(&flush, &signal->shared_pending);
848 for_each_thread(p, t)
849 flush_sigqueue_mask(&flush, &t->pending);
850 } else if (sig == SIGCONT) {
851 unsigned int why;
852 /*
853 * Remove all stop signals from all queues, wake all threads.
854 */
855 siginitset(&flush, SIG_KERNEL_STOP_MASK);
856 flush_sigqueue_mask(&flush, &signal->shared_pending);
857 for_each_thread(p, t) {
858 flush_sigqueue_mask(&flush, &t->pending);
859 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
860 if (likely(!(t->ptrace & PT_SEIZED)))
861 wake_up_state(t, __TASK_STOPPED);
862 else
863 ptrace_trap_notify(t);
864 }
865
866 /*
867 * Notify the parent with CLD_CONTINUED if we were stopped.
868 *
869 * If we were in the middle of a group stop, we pretend it
870 * was already finished, and then continued. Since SIGCHLD
871 * doesn't queue we report only CLD_STOPPED, as if the next
872 * CLD_CONTINUED was dropped.
873 */
874 why = 0;
875 if (signal->flags & SIGNAL_STOP_STOPPED)
876 why |= SIGNAL_CLD_CONTINUED;
877 else if (signal->group_stop_count)
878 why |= SIGNAL_CLD_STOPPED;
879
880 if (why) {
881 /*
882 * The first thread which returns from do_signal_stop()
883 * will take ->siglock, notice SIGNAL_CLD_MASK, and
884 * notify its parent. See get_signal_to_deliver().
885 */
886 signal->flags = why | SIGNAL_STOP_CONTINUED;
887 signal->group_stop_count = 0;
888 signal->group_exit_code = 0;
889 }
890 }
891
892 return !sig_ignored(p, sig, force);
893 }
894
895 /*
896 * Test if P wants to take SIG. After we've checked all threads with this,
897 * it's equivalent to finding no threads not blocking SIG. Any threads not
898 * blocking SIG were ruled out because they are not running and already
899 * have pending signals. Such threads will dequeue from the shared queue
900 * as soon as they're available, so putting the signal on the shared queue
901 * will be equivalent to sending it to one such thread.
902 */
903 static inline int wants_signal(int sig, struct task_struct *p)
904 {
905 if (sigismember(&p->blocked, sig))
906 return 0;
907 if (p->flags & PF_EXITING)
908 return 0;
909 if (sig == SIGKILL)
910 return 1;
911 if (task_is_stopped_or_traced(p))
912 return 0;
913 return task_curr(p) || !signal_pending(p);
914 }
915
916 static void complete_signal(int sig, struct task_struct *p, int group)
917 {
918 struct signal_struct *signal = p->signal;
919 struct task_struct *t;
920
921 /*
922 * Now find a thread we can wake up to take the signal off the queue.
923 *
924 * If the main thread wants the signal, it gets first crack.
925 * Probably the least surprising to the average bear.
926 */
927 if (wants_signal(sig, p))
928 t = p;
929 else if (!group || thread_group_empty(p))
930 /*
931 * There is just one thread and it does not need to be woken.
932 * It will dequeue unblocked signals before it runs again.
933 */
934 return;
935 else {
936 /*
937 * Otherwise try to find a suitable thread.
938 */
939 t = signal->curr_target;
940 while (!wants_signal(sig, t)) {
941 t = next_thread(t);
942 if (t == signal->curr_target)
943 /*
944 * No thread needs to be woken.
945 * Any eligible threads will see
946 * the signal in the queue soon.
947 */
948 return;
949 }
950 signal->curr_target = t;
951 }
952
953 /*
954 * Found a killable thread. If the signal will be fatal,
955 * then start taking the whole group down immediately.
956 */
957 if (sig_fatal(p, sig) &&
958 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
959 !sigismember(&t->real_blocked, sig) &&
960 (sig == SIGKILL || !t->ptrace)) {
961 /*
962 * This signal will be fatal to the whole group.
963 */
964 if (!sig_kernel_coredump(sig)) {
965 /*
966 * Start a group exit and wake everybody up.
967 * This way we don't have other threads
968 * running and doing things after a slower
969 * thread has the fatal signal pending.
970 */
971 signal->flags = SIGNAL_GROUP_EXIT;
972 signal->group_exit_code = sig;
973 signal->group_stop_count = 0;
974 t = p;
975 do {
976 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
977 sigaddset(&t->pending.signal, SIGKILL);
978 signal_wake_up(t, 1);
979 } while_each_thread(p, t);
980 return;
981 }
982 }
983
984 /*
985 * The signal is already in the shared-pending queue.
986 * Tell the chosen thread to wake up and dequeue it.
987 */
988 signal_wake_up(t, sig == SIGKILL);
989 return;
990 }
991
992 static inline int legacy_queue(struct sigpending *signals, int sig)
993 {
994 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
995 }
996
997 #ifdef CONFIG_USER_NS
998 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
999 {
1000 if (current_user_ns() == task_cred_xxx(t, user_ns))
1001 return;
1002
1003 if (SI_FROMKERNEL(info))
1004 return;
1005
1006 rcu_read_lock();
1007 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1008 make_kuid(current_user_ns(), info->si_uid));
1009 rcu_read_unlock();
1010 }
1011 #else
1012 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1013 {
1014 return;
1015 }
1016 #endif
1017
1018 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1019 int group, int from_ancestor_ns)
1020 {
1021 struct sigpending *pending;
1022 struct sigqueue *q;
1023 int override_rlimit;
1024 int ret = 0, result;
1025
1026 assert_spin_locked(&t->sighand->siglock);
1027
1028 result = TRACE_SIGNAL_IGNORED;
1029 if (!prepare_signal(sig, t,
1030 from_ancestor_ns || (info == SEND_SIG_FORCED)))
1031 goto ret;
1032
1033 pending = group ? &t->signal->shared_pending : &t->pending;
1034 /*
1035 * Short-circuit ignored signals and support queuing
1036 * exactly one non-rt signal, so that we can get more
1037 * detailed information about the cause of the signal.
1038 */
1039 result = TRACE_SIGNAL_ALREADY_PENDING;
1040 if (legacy_queue(pending, sig))
1041 goto ret;
1042
1043 result = TRACE_SIGNAL_DELIVERED;
1044 /*
1045 * fast-pathed signals for kernel-internal things like SIGSTOP
1046 * or SIGKILL.
1047 */
1048 if (info == SEND_SIG_FORCED)
1049 goto out_set;
1050
1051 /*
1052 * Real-time signals must be queued if sent by sigqueue, or
1053 * some other real-time mechanism. It is implementation
1054 * defined whether kill() does so. We attempt to do so, on
1055 * the principle of least surprise, but since kill is not
1056 * allowed to fail with EAGAIN when low on memory we just
1057 * make sure at least one signal gets delivered and don't
1058 * pass on the info struct.
1059 */
1060 if (sig < SIGRTMIN)
1061 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1062 else
1063 override_rlimit = 0;
1064
1065 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1066 override_rlimit);
1067 if (q) {
1068 list_add_tail(&q->list, &pending->list);
1069 switch ((unsigned long) info) {
1070 case (unsigned long) SEND_SIG_NOINFO:
1071 q->info.si_signo = sig;
1072 q->info.si_errno = 0;
1073 q->info.si_code = SI_USER;
1074 q->info.si_pid = task_tgid_nr_ns(current,
1075 task_active_pid_ns(t));
1076 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1077 break;
1078 case (unsigned long) SEND_SIG_PRIV:
1079 q->info.si_signo = sig;
1080 q->info.si_errno = 0;
1081 q->info.si_code = SI_KERNEL;
1082 q->info.si_pid = 0;
1083 q->info.si_uid = 0;
1084 break;
1085 default:
1086 copy_siginfo(&q->info, info);
1087 if (from_ancestor_ns)
1088 q->info.si_pid = 0;
1089 break;
1090 }
1091
1092 userns_fixup_signal_uid(&q->info, t);
1093
1094 } else if (!is_si_special(info)) {
1095 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1096 /*
1097 * Queue overflow, abort. We may abort if the
1098 * signal was rt and sent by user using something
1099 * other than kill().
1100 */
1101 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1102 ret = -EAGAIN;
1103 goto ret;
1104 } else {
1105 /*
1106 * This is a silent loss of information. We still
1107 * send the signal, but the *info bits are lost.
1108 */
1109 result = TRACE_SIGNAL_LOSE_INFO;
1110 }
1111 }
1112
1113 out_set:
1114 signalfd_notify(t, sig);
1115 sigaddset(&pending->signal, sig);
1116 complete_signal(sig, t, group);
1117 ret:
1118 trace_signal_generate(sig, info, t, group, result);
1119 return ret;
1120 }
1121
1122 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1123 int group)
1124 {
1125 int from_ancestor_ns = 0;
1126
1127 #ifdef CONFIG_PID_NS
1128 from_ancestor_ns = si_fromuser(info) &&
1129 !task_pid_nr_ns(current, task_active_pid_ns(t));
1130 #endif
1131
1132 return __send_signal(sig, info, t, group, from_ancestor_ns);
1133 }
1134
1135 static void print_fatal_signal(int signr)
1136 {
1137 struct pt_regs *regs = signal_pt_regs();
1138 printk(KERN_INFO "potentially unexpected fatal signal %d.\n", signr);
1139
1140 #if defined(__i386__) && !defined(__arch_um__)
1141 printk(KERN_INFO "code at %08lx: ", regs->ip);
1142 {
1143 int i;
1144 for (i = 0; i < 16; i++) {
1145 unsigned char insn;
1146
1147 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1148 break;
1149 printk(KERN_CONT "%02x ", insn);
1150 }
1151 }
1152 printk(KERN_CONT "\n");
1153 #endif
1154 preempt_disable();
1155 show_regs(regs);
1156 preempt_enable();
1157 }
1158
1159 static int __init setup_print_fatal_signals(char *str)
1160 {
1161 get_option (&str, &print_fatal_signals);
1162
1163 return 1;
1164 }
1165
1166 __setup("print-fatal-signals=", setup_print_fatal_signals);
1167
1168 int
1169 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1170 {
1171 return send_signal(sig, info, p, 1);
1172 }
1173
1174 static int
1175 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1176 {
1177 return send_signal(sig, info, t, 0);
1178 }
1179
1180 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1181 bool group)
1182 {
1183 unsigned long flags;
1184 int ret = -ESRCH;
1185
1186 if (lock_task_sighand(p, &flags)) {
1187 ret = send_signal(sig, info, p, group);
1188 unlock_task_sighand(p, &flags);
1189 }
1190
1191 return ret;
1192 }
1193
1194 /*
1195 * Force a signal that the process can't ignore: if necessary
1196 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1197 *
1198 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1199 * since we do not want to have a signal handler that was blocked
1200 * be invoked when user space had explicitly blocked it.
1201 *
1202 * We don't want to have recursive SIGSEGV's etc, for example,
1203 * that is why we also clear SIGNAL_UNKILLABLE.
1204 */
1205 int
1206 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1207 {
1208 unsigned long int flags;
1209 int ret, blocked, ignored;
1210 struct k_sigaction *action;
1211
1212 spin_lock_irqsave(&t->sighand->siglock, flags);
1213 action = &t->sighand->action[sig-1];
1214 ignored = action->sa.sa_handler == SIG_IGN;
1215 blocked = sigismember(&t->blocked, sig);
1216 if (blocked || ignored) {
1217 action->sa.sa_handler = SIG_DFL;
1218 if (blocked) {
1219 sigdelset(&t->blocked, sig);
1220 recalc_sigpending_and_wake(t);
1221 }
1222 }
1223 if (action->sa.sa_handler == SIG_DFL)
1224 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1225 ret = specific_send_sig_info(sig, info, t);
1226 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1227
1228 return ret;
1229 }
1230
1231 /*
1232 * Nuke all other threads in the group.
1233 */
1234 int zap_other_threads(struct task_struct *p)
1235 {
1236 struct task_struct *t = p;
1237 int count = 0;
1238
1239 p->signal->group_stop_count = 0;
1240
1241 while_each_thread(p, t) {
1242 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1243 count++;
1244
1245 /* Don't bother with already dead threads */
1246 if (t->exit_state)
1247 continue;
1248 sigaddset(&t->pending.signal, SIGKILL);
1249 signal_wake_up(t, 1);
1250 }
1251
1252 return count;
1253 }
1254
1255 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1256 unsigned long *flags)
1257 {
1258 struct sighand_struct *sighand;
1259
1260 for (;;) {
1261 /*
1262 * Disable interrupts early to avoid deadlocks.
1263 * See rcu_read_unlock() comment header for details.
1264 */
1265 local_irq_save(*flags);
1266 rcu_read_lock();
1267 sighand = rcu_dereference(tsk->sighand);
1268 if (unlikely(sighand == NULL)) {
1269 rcu_read_unlock();
1270 local_irq_restore(*flags);
1271 break;
1272 }
1273 /*
1274 * This sighand can be already freed and even reused, but
1275 * we rely on SLAB_DESTROY_BY_RCU and sighand_ctor() which
1276 * initializes ->siglock: this slab can't go away, it has
1277 * the same object type, ->siglock can't be reinitialized.
1278 *
1279 * We need to ensure that tsk->sighand is still the same
1280 * after we take the lock, we can race with de_thread() or
1281 * __exit_signal(). In the latter case the next iteration
1282 * must see ->sighand == NULL.
1283 */
1284 spin_lock(&sighand->siglock);
1285 if (likely(sighand == tsk->sighand)) {
1286 rcu_read_unlock();
1287 break;
1288 }
1289 spin_unlock(&sighand->siglock);
1290 rcu_read_unlock();
1291 local_irq_restore(*flags);
1292 }
1293
1294 return sighand;
1295 }
1296
1297 /*
1298 * send signal info to all the members of a group
1299 */
1300 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1301 {
1302 int ret;
1303
1304 rcu_read_lock();
1305 ret = check_kill_permission(sig, info, p);
1306 rcu_read_unlock();
1307
1308 if (!ret && sig)
1309 ret = do_send_sig_info(sig, info, p, true);
1310
1311 return ret;
1312 }
1313
1314 /*
1315 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1316 * control characters do (^C, ^Z etc)
1317 * - the caller must hold at least a readlock on tasklist_lock
1318 */
1319 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1320 {
1321 struct task_struct *p = NULL;
1322 int retval, success;
1323
1324 success = 0;
1325 retval = -ESRCH;
1326 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1327 int err = group_send_sig_info(sig, info, p);
1328 success |= !err;
1329 retval = err;
1330 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1331 return success ? 0 : retval;
1332 }
1333
1334 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1335 {
1336 int error = -ESRCH;
1337 struct task_struct *p;
1338
1339 for (;;) {
1340 rcu_read_lock();
1341 p = pid_task(pid, PIDTYPE_PID);
1342 if (p)
1343 error = group_send_sig_info(sig, info, p);
1344 rcu_read_unlock();
1345 if (likely(!p || error != -ESRCH))
1346 return error;
1347
1348 /*
1349 * The task was unhashed in between, try again. If it
1350 * is dead, pid_task() will return NULL, if we race with
1351 * de_thread() it will find the new leader.
1352 */
1353 }
1354 }
1355
1356 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1357 {
1358 int error;
1359 rcu_read_lock();
1360 error = kill_pid_info(sig, info, find_vpid(pid));
1361 rcu_read_unlock();
1362 return error;
1363 }
1364
1365 static int kill_as_cred_perm(const struct cred *cred,
1366 struct task_struct *target)
1367 {
1368 const struct cred *pcred = __task_cred(target);
1369 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1370 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid))
1371 return 0;
1372 return 1;
1373 }
1374
1375 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1376 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1377 const struct cred *cred, u32 secid)
1378 {
1379 int ret = -EINVAL;
1380 struct task_struct *p;
1381 unsigned long flags;
1382
1383 if (!valid_signal(sig))
1384 return ret;
1385
1386 rcu_read_lock();
1387 p = pid_task(pid, PIDTYPE_PID);
1388 if (!p) {
1389 ret = -ESRCH;
1390 goto out_unlock;
1391 }
1392 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1393 ret = -EPERM;
1394 goto out_unlock;
1395 }
1396 ret = security_task_kill(p, info, sig, secid);
1397 if (ret)
1398 goto out_unlock;
1399
1400 if (sig) {
1401 if (lock_task_sighand(p, &flags)) {
1402 ret = __send_signal(sig, info, p, 1, 0);
1403 unlock_task_sighand(p, &flags);
1404 } else
1405 ret = -ESRCH;
1406 }
1407 out_unlock:
1408 rcu_read_unlock();
1409 return ret;
1410 }
1411 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1412
1413 /*
1414 * kill_something_info() interprets pid in interesting ways just like kill(2).
1415 *
1416 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1417 * is probably wrong. Should make it like BSD or SYSV.
1418 */
1419
1420 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1421 {
1422 int ret;
1423
1424 if (pid > 0) {
1425 rcu_read_lock();
1426 ret = kill_pid_info(sig, info, find_vpid(pid));
1427 rcu_read_unlock();
1428 return ret;
1429 }
1430
1431 read_lock(&tasklist_lock);
1432 if (pid != -1) {
1433 ret = __kill_pgrp_info(sig, info,
1434 pid ? find_vpid(-pid) : task_pgrp(current));
1435 } else {
1436 int retval = 0, count = 0;
1437 struct task_struct * p;
1438
1439 for_each_process(p) {
1440 if (task_pid_vnr(p) > 1 &&
1441 !same_thread_group(p, current)) {
1442 int err = group_send_sig_info(sig, info, p);
1443 ++count;
1444 if (err != -EPERM)
1445 retval = err;
1446 }
1447 }
1448 ret = count ? retval : -ESRCH;
1449 }
1450 read_unlock(&tasklist_lock);
1451
1452 return ret;
1453 }
1454
1455 /*
1456 * These are for backward compatibility with the rest of the kernel source.
1457 */
1458
1459 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1460 {
1461 /*
1462 * Make sure legacy kernel users don't send in bad values
1463 * (normal paths check this in check_kill_permission).
1464 */
1465 if (!valid_signal(sig))
1466 return -EINVAL;
1467
1468 return do_send_sig_info(sig, info, p, false);
1469 }
1470
1471 #define __si_special(priv) \
1472 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1473
1474 int
1475 send_sig(int sig, struct task_struct *p, int priv)
1476 {
1477 return send_sig_info(sig, __si_special(priv), p);
1478 }
1479
1480 void
1481 force_sig(int sig, struct task_struct *p)
1482 {
1483 force_sig_info(sig, SEND_SIG_PRIV, p);
1484 }
1485
1486 /*
1487 * When things go south during signal handling, we
1488 * will force a SIGSEGV. And if the signal that caused
1489 * the problem was already a SIGSEGV, we'll want to
1490 * make sure we don't even try to deliver the signal..
1491 */
1492 int
1493 force_sigsegv(int sig, struct task_struct *p)
1494 {
1495 if (sig == SIGSEGV) {
1496 unsigned long flags;
1497 spin_lock_irqsave(&p->sighand->siglock, flags);
1498 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1499 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1500 }
1501 force_sig(SIGSEGV, p);
1502 return 0;
1503 }
1504
1505 int kill_pgrp(struct pid *pid, int sig, int priv)
1506 {
1507 int ret;
1508
1509 read_lock(&tasklist_lock);
1510 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1511 read_unlock(&tasklist_lock);
1512
1513 return ret;
1514 }
1515 EXPORT_SYMBOL(kill_pgrp);
1516
1517 int kill_pid(struct pid *pid, int sig, int priv)
1518 {
1519 return kill_pid_info(sig, __si_special(priv), pid);
1520 }
1521 EXPORT_SYMBOL(kill_pid);
1522
1523 /*
1524 * These functions support sending signals using preallocated sigqueue
1525 * structures. This is needed "because realtime applications cannot
1526 * afford to lose notifications of asynchronous events, like timer
1527 * expirations or I/O completions". In the case of POSIX Timers
1528 * we allocate the sigqueue structure from the timer_create. If this
1529 * allocation fails we are able to report the failure to the application
1530 * with an EAGAIN error.
1531 */
1532 struct sigqueue *sigqueue_alloc(void)
1533 {
1534 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1535
1536 if (q)
1537 q->flags |= SIGQUEUE_PREALLOC;
1538
1539 return q;
1540 }
1541
1542 void sigqueue_free(struct sigqueue *q)
1543 {
1544 unsigned long flags;
1545 spinlock_t *lock = &current->sighand->siglock;
1546
1547 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1548 /*
1549 * We must hold ->siglock while testing q->list
1550 * to serialize with collect_signal() or with
1551 * __exit_signal()->flush_sigqueue().
1552 */
1553 spin_lock_irqsave(lock, flags);
1554 q->flags &= ~SIGQUEUE_PREALLOC;
1555 /*
1556 * If it is queued it will be freed when dequeued,
1557 * like the "regular" sigqueue.
1558 */
1559 if (!list_empty(&q->list))
1560 q = NULL;
1561 spin_unlock_irqrestore(lock, flags);
1562
1563 if (q)
1564 __sigqueue_free(q);
1565 }
1566
1567 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1568 {
1569 int sig = q->info.si_signo;
1570 struct sigpending *pending;
1571 unsigned long flags;
1572 int ret, result;
1573
1574 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1575
1576 ret = -1;
1577 if (!likely(lock_task_sighand(t, &flags)))
1578 goto ret;
1579
1580 ret = 1; /* the signal is ignored */
1581 result = TRACE_SIGNAL_IGNORED;
1582 if (!prepare_signal(sig, t, false))
1583 goto out;
1584
1585 ret = 0;
1586 if (unlikely(!list_empty(&q->list))) {
1587 /*
1588 * If an SI_TIMER entry is already queue just increment
1589 * the overrun count.
1590 */
1591 BUG_ON(q->info.si_code != SI_TIMER);
1592 q->info.si_overrun++;
1593 result = TRACE_SIGNAL_ALREADY_PENDING;
1594 goto out;
1595 }
1596 q->info.si_overrun = 0;
1597
1598 signalfd_notify(t, sig);
1599 pending = group ? &t->signal->shared_pending : &t->pending;
1600 list_add_tail(&q->list, &pending->list);
1601 sigaddset(&pending->signal, sig);
1602 complete_signal(sig, t, group);
1603 result = TRACE_SIGNAL_DELIVERED;
1604 out:
1605 trace_signal_generate(sig, &q->info, t, group, result);
1606 unlock_task_sighand(t, &flags);
1607 ret:
1608 return ret;
1609 }
1610
1611 /*
1612 * Let a parent know about the death of a child.
1613 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1614 *
1615 * Returns true if our parent ignored us and so we've switched to
1616 * self-reaping.
1617 */
1618 bool do_notify_parent(struct task_struct *tsk, int sig)
1619 {
1620 struct siginfo info;
1621 unsigned long flags;
1622 struct sighand_struct *psig;
1623 bool autoreap = false;
1624 cputime_t utime, stime;
1625
1626 BUG_ON(sig == -1);
1627
1628 /* do_notify_parent_cldstop should have been called instead. */
1629 BUG_ON(task_is_stopped_or_traced(tsk));
1630
1631 BUG_ON(!tsk->ptrace &&
1632 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1633
1634 if (sig != SIGCHLD) {
1635 /*
1636 * This is only possible if parent == real_parent.
1637 * Check if it has changed security domain.
1638 */
1639 if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1640 sig = SIGCHLD;
1641 }
1642
1643 info.si_signo = sig;
1644 info.si_errno = 0;
1645 /*
1646 * We are under tasklist_lock here so our parent is tied to
1647 * us and cannot change.
1648 *
1649 * task_active_pid_ns will always return the same pid namespace
1650 * until a task passes through release_task.
1651 *
1652 * write_lock() currently calls preempt_disable() which is the
1653 * same as rcu_read_lock(), but according to Oleg, this is not
1654 * correct to rely on this
1655 */
1656 rcu_read_lock();
1657 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1658 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1659 task_uid(tsk));
1660 rcu_read_unlock();
1661
1662 task_cputime(tsk, &utime, &stime);
1663 info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1664 info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1665
1666 info.si_status = tsk->exit_code & 0x7f;
1667 if (tsk->exit_code & 0x80)
1668 info.si_code = CLD_DUMPED;
1669 else if (tsk->exit_code & 0x7f)
1670 info.si_code = CLD_KILLED;
1671 else {
1672 info.si_code = CLD_EXITED;
1673 info.si_status = tsk->exit_code >> 8;
1674 }
1675
1676 psig = tsk->parent->sighand;
1677 spin_lock_irqsave(&psig->siglock, flags);
1678 if (!tsk->ptrace && sig == SIGCHLD &&
1679 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1680 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1681 /*
1682 * We are exiting and our parent doesn't care. POSIX.1
1683 * defines special semantics for setting SIGCHLD to SIG_IGN
1684 * or setting the SA_NOCLDWAIT flag: we should be reaped
1685 * automatically and not left for our parent's wait4 call.
1686 * Rather than having the parent do it as a magic kind of
1687 * signal handler, we just set this to tell do_exit that we
1688 * can be cleaned up without becoming a zombie. Note that
1689 * we still call __wake_up_parent in this case, because a
1690 * blocked sys_wait4 might now return -ECHILD.
1691 *
1692 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1693 * is implementation-defined: we do (if you don't want
1694 * it, just use SIG_IGN instead).
1695 */
1696 autoreap = true;
1697 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1698 sig = 0;
1699 }
1700 if (valid_signal(sig) && sig)
1701 __group_send_sig_info(sig, &info, tsk->parent);
1702 __wake_up_parent(tsk, tsk->parent);
1703 spin_unlock_irqrestore(&psig->siglock, flags);
1704
1705 return autoreap;
1706 }
1707
1708 /**
1709 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1710 * @tsk: task reporting the state change
1711 * @for_ptracer: the notification is for ptracer
1712 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1713 *
1714 * Notify @tsk's parent that the stopped/continued state has changed. If
1715 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1716 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1717 *
1718 * CONTEXT:
1719 * Must be called with tasklist_lock at least read locked.
1720 */
1721 static void do_notify_parent_cldstop(struct task_struct *tsk,
1722 bool for_ptracer, int why)
1723 {
1724 struct siginfo info;
1725 unsigned long flags;
1726 struct task_struct *parent;
1727 struct sighand_struct *sighand;
1728 cputime_t utime, stime;
1729
1730 if (for_ptracer) {
1731 parent = tsk->parent;
1732 } else {
1733 tsk = tsk->group_leader;
1734 parent = tsk->real_parent;
1735 }
1736
1737 info.si_signo = SIGCHLD;
1738 info.si_errno = 0;
1739 /*
1740 * see comment in do_notify_parent() about the following 4 lines
1741 */
1742 rcu_read_lock();
1743 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1744 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1745 rcu_read_unlock();
1746
1747 task_cputime(tsk, &utime, &stime);
1748 info.si_utime = cputime_to_clock_t(utime);
1749 info.si_stime = cputime_to_clock_t(stime);
1750
1751 info.si_code = why;
1752 switch (why) {
1753 case CLD_CONTINUED:
1754 info.si_status = SIGCONT;
1755 break;
1756 case CLD_STOPPED:
1757 info.si_status = tsk->signal->group_exit_code & 0x7f;
1758 break;
1759 case CLD_TRAPPED:
1760 info.si_status = tsk->exit_code & 0x7f;
1761 break;
1762 default:
1763 BUG();
1764 }
1765
1766 sighand = parent->sighand;
1767 spin_lock_irqsave(&sighand->siglock, flags);
1768 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1769 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1770 __group_send_sig_info(SIGCHLD, &info, parent);
1771 /*
1772 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1773 */
1774 __wake_up_parent(tsk, parent);
1775 spin_unlock_irqrestore(&sighand->siglock, flags);
1776 }
1777
1778 static inline int may_ptrace_stop(void)
1779 {
1780 if (!likely(current->ptrace))
1781 return 0;
1782 /*
1783 * Are we in the middle of do_coredump?
1784 * If so and our tracer is also part of the coredump stopping
1785 * is a deadlock situation, and pointless because our tracer
1786 * is dead so don't allow us to stop.
1787 * If SIGKILL was already sent before the caller unlocked
1788 * ->siglock we must see ->core_state != NULL. Otherwise it
1789 * is safe to enter schedule().
1790 *
1791 * This is almost outdated, a task with the pending SIGKILL can't
1792 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1793 * after SIGKILL was already dequeued.
1794 */
1795 if (unlikely(current->mm->core_state) &&
1796 unlikely(current->mm == current->parent->mm))
1797 return 0;
1798
1799 return 1;
1800 }
1801
1802 /*
1803 * Return non-zero if there is a SIGKILL that should be waking us up.
1804 * Called with the siglock held.
1805 */
1806 static int sigkill_pending(struct task_struct *tsk)
1807 {
1808 return sigismember(&tsk->pending.signal, SIGKILL) ||
1809 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1810 }
1811
1812 /*
1813 * This must be called with current->sighand->siglock held.
1814 *
1815 * This should be the path for all ptrace stops.
1816 * We always set current->last_siginfo while stopped here.
1817 * That makes it a way to test a stopped process for
1818 * being ptrace-stopped vs being job-control-stopped.
1819 *
1820 * If we actually decide not to stop at all because the tracer
1821 * is gone, we keep current->exit_code unless clear_code.
1822 */
1823 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1824 __releases(&current->sighand->siglock)
1825 __acquires(&current->sighand->siglock)
1826 {
1827 bool gstop_done = false;
1828
1829 if (arch_ptrace_stop_needed(exit_code, info)) {
1830 /*
1831 * The arch code has something special to do before a
1832 * ptrace stop. This is allowed to block, e.g. for faults
1833 * on user stack pages. We can't keep the siglock while
1834 * calling arch_ptrace_stop, so we must release it now.
1835 * To preserve proper semantics, we must do this before
1836 * any signal bookkeeping like checking group_stop_count.
1837 * Meanwhile, a SIGKILL could come in before we retake the
1838 * siglock. That must prevent us from sleeping in TASK_TRACED.
1839 * So after regaining the lock, we must check for SIGKILL.
1840 */
1841 spin_unlock_irq(&current->sighand->siglock);
1842 arch_ptrace_stop(exit_code, info);
1843 spin_lock_irq(&current->sighand->siglock);
1844 if (sigkill_pending(current))
1845 return;
1846 }
1847
1848 /*
1849 * We're committing to trapping. TRACED should be visible before
1850 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1851 * Also, transition to TRACED and updates to ->jobctl should be
1852 * atomic with respect to siglock and should be done after the arch
1853 * hook as siglock is released and regrabbed across it.
1854 */
1855 set_current_state(TASK_TRACED);
1856
1857 current->last_siginfo = info;
1858 current->exit_code = exit_code;
1859
1860 /*
1861 * If @why is CLD_STOPPED, we're trapping to participate in a group
1862 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
1863 * across siglock relocks since INTERRUPT was scheduled, PENDING
1864 * could be clear now. We act as if SIGCONT is received after
1865 * TASK_TRACED is entered - ignore it.
1866 */
1867 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1868 gstop_done = task_participate_group_stop(current);
1869
1870 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1871 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1872 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1873 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1874
1875 /* entering a trap, clear TRAPPING */
1876 task_clear_jobctl_trapping(current);
1877
1878 spin_unlock_irq(&current->sighand->siglock);
1879 read_lock(&tasklist_lock);
1880 if (may_ptrace_stop()) {
1881 /*
1882 * Notify parents of the stop.
1883 *
1884 * While ptraced, there are two parents - the ptracer and
1885 * the real_parent of the group_leader. The ptracer should
1886 * know about every stop while the real parent is only
1887 * interested in the completion of group stop. The states
1888 * for the two don't interact with each other. Notify
1889 * separately unless they're gonna be duplicates.
1890 */
1891 do_notify_parent_cldstop(current, true, why);
1892 if (gstop_done && ptrace_reparented(current))
1893 do_notify_parent_cldstop(current, false, why);
1894
1895 /*
1896 * Don't want to allow preemption here, because
1897 * sys_ptrace() needs this task to be inactive.
1898 *
1899 * XXX: implement read_unlock_no_resched().
1900 */
1901 preempt_disable();
1902 read_unlock(&tasklist_lock);
1903 preempt_enable_no_resched();
1904 freezable_schedule();
1905 } else {
1906 /*
1907 * By the time we got the lock, our tracer went away.
1908 * Don't drop the lock yet, another tracer may come.
1909 *
1910 * If @gstop_done, the ptracer went away between group stop
1911 * completion and here. During detach, it would have set
1912 * JOBCTL_STOP_PENDING on us and we'll re-enter
1913 * TASK_STOPPED in do_signal_stop() on return, so notifying
1914 * the real parent of the group stop completion is enough.
1915 */
1916 if (gstop_done)
1917 do_notify_parent_cldstop(current, false, why);
1918
1919 /* tasklist protects us from ptrace_freeze_traced() */
1920 __set_current_state(TASK_RUNNING);
1921 if (clear_code)
1922 current->exit_code = 0;
1923 read_unlock(&tasklist_lock);
1924 }
1925
1926 /*
1927 * We are back. Now reacquire the siglock before touching
1928 * last_siginfo, so that we are sure to have synchronized with
1929 * any signal-sending on another CPU that wants to examine it.
1930 */
1931 spin_lock_irq(&current->sighand->siglock);
1932 current->last_siginfo = NULL;
1933
1934 /* LISTENING can be set only during STOP traps, clear it */
1935 current->jobctl &= ~JOBCTL_LISTENING;
1936
1937 /*
1938 * Queued signals ignored us while we were stopped for tracing.
1939 * So check for any that we should take before resuming user mode.
1940 * This sets TIF_SIGPENDING, but never clears it.
1941 */
1942 recalc_sigpending_tsk(current);
1943 }
1944
1945 static void ptrace_do_notify(int signr, int exit_code, int why)
1946 {
1947 siginfo_t info;
1948
1949 memset(&info, 0, sizeof info);
1950 info.si_signo = signr;
1951 info.si_code = exit_code;
1952 info.si_pid = task_pid_vnr(current);
1953 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1954
1955 /* Let the debugger run. */
1956 ptrace_stop(exit_code, why, 1, &info);
1957 }
1958
1959 void ptrace_notify(int exit_code)
1960 {
1961 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1962 if (unlikely(current->task_works))
1963 task_work_run();
1964
1965 spin_lock_irq(&current->sighand->siglock);
1966 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1967 spin_unlock_irq(&current->sighand->siglock);
1968 }
1969
1970 /**
1971 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1972 * @signr: signr causing group stop if initiating
1973 *
1974 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1975 * and participate in it. If already set, participate in the existing
1976 * group stop. If participated in a group stop (and thus slept), %true is
1977 * returned with siglock released.
1978 *
1979 * If ptraced, this function doesn't handle stop itself. Instead,
1980 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1981 * untouched. The caller must ensure that INTERRUPT trap handling takes
1982 * places afterwards.
1983 *
1984 * CONTEXT:
1985 * Must be called with @current->sighand->siglock held, which is released
1986 * on %true return.
1987 *
1988 * RETURNS:
1989 * %false if group stop is already cancelled or ptrace trap is scheduled.
1990 * %true if participated in group stop.
1991 */
1992 static bool do_signal_stop(int signr)
1993 __releases(&current->sighand->siglock)
1994 {
1995 struct signal_struct *sig = current->signal;
1996
1997 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1998 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1999 struct task_struct *t;
2000
2001 /* signr will be recorded in task->jobctl for retries */
2002 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2003
2004 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2005 unlikely(signal_group_exit(sig)))
2006 return false;
2007 /*
2008 * There is no group stop already in progress. We must
2009 * initiate one now.
2010 *
2011 * While ptraced, a task may be resumed while group stop is
2012 * still in effect and then receive a stop signal and
2013 * initiate another group stop. This deviates from the
2014 * usual behavior as two consecutive stop signals can't
2015 * cause two group stops when !ptraced. That is why we
2016 * also check !task_is_stopped(t) below.
2017 *
2018 * The condition can be distinguished by testing whether
2019 * SIGNAL_STOP_STOPPED is already set. Don't generate
2020 * group_exit_code in such case.
2021 *
2022 * This is not necessary for SIGNAL_STOP_CONTINUED because
2023 * an intervening stop signal is required to cause two
2024 * continued events regardless of ptrace.
2025 */
2026 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2027 sig->group_exit_code = signr;
2028
2029 sig->group_stop_count = 0;
2030
2031 if (task_set_jobctl_pending(current, signr | gstop))
2032 sig->group_stop_count++;
2033
2034 t = current;
2035 while_each_thread(current, t) {
2036 /*
2037 * Setting state to TASK_STOPPED for a group
2038 * stop is always done with the siglock held,
2039 * so this check has no races.
2040 */
2041 if (!task_is_stopped(t) &&
2042 task_set_jobctl_pending(t, signr | gstop)) {
2043 sig->group_stop_count++;
2044 if (likely(!(t->ptrace & PT_SEIZED)))
2045 signal_wake_up(t, 0);
2046 else
2047 ptrace_trap_notify(t);
2048 }
2049 }
2050 }
2051
2052 if (likely(!current->ptrace)) {
2053 int notify = 0;
2054
2055 /*
2056 * If there are no other threads in the group, or if there
2057 * is a group stop in progress and we are the last to stop,
2058 * report to the parent.
2059 */
2060 if (task_participate_group_stop(current))
2061 notify = CLD_STOPPED;
2062
2063 __set_current_state(TASK_STOPPED);
2064 spin_unlock_irq(&current->sighand->siglock);
2065
2066 /*
2067 * Notify the parent of the group stop completion. Because
2068 * we're not holding either the siglock or tasklist_lock
2069 * here, ptracer may attach inbetween; however, this is for
2070 * group stop and should always be delivered to the real
2071 * parent of the group leader. The new ptracer will get
2072 * its notification when this task transitions into
2073 * TASK_TRACED.
2074 */
2075 if (notify) {
2076 read_lock(&tasklist_lock);
2077 do_notify_parent_cldstop(current, false, notify);
2078 read_unlock(&tasklist_lock);
2079 }
2080
2081 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2082 freezable_schedule();
2083 return true;
2084 } else {
2085 /*
2086 * While ptraced, group stop is handled by STOP trap.
2087 * Schedule it and let the caller deal with it.
2088 */
2089 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2090 return false;
2091 }
2092 }
2093
2094 /**
2095 * do_jobctl_trap - take care of ptrace jobctl traps
2096 *
2097 * When PT_SEIZED, it's used for both group stop and explicit
2098 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2099 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2100 * the stop signal; otherwise, %SIGTRAP.
2101 *
2102 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2103 * number as exit_code and no siginfo.
2104 *
2105 * CONTEXT:
2106 * Must be called with @current->sighand->siglock held, which may be
2107 * released and re-acquired before returning with intervening sleep.
2108 */
2109 static void do_jobctl_trap(void)
2110 {
2111 struct signal_struct *signal = current->signal;
2112 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2113
2114 if (current->ptrace & PT_SEIZED) {
2115 if (!signal->group_stop_count &&
2116 !(signal->flags & SIGNAL_STOP_STOPPED))
2117 signr = SIGTRAP;
2118 WARN_ON_ONCE(!signr);
2119 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2120 CLD_STOPPED);
2121 } else {
2122 WARN_ON_ONCE(!signr);
2123 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2124 current->exit_code = 0;
2125 }
2126 }
2127
2128 static int ptrace_signal(int signr, siginfo_t *info)
2129 {
2130 ptrace_signal_deliver();
2131 /*
2132 * We do not check sig_kernel_stop(signr) but set this marker
2133 * unconditionally because we do not know whether debugger will
2134 * change signr. This flag has no meaning unless we are going
2135 * to stop after return from ptrace_stop(). In this case it will
2136 * be checked in do_signal_stop(), we should only stop if it was
2137 * not cleared by SIGCONT while we were sleeping. See also the
2138 * comment in dequeue_signal().
2139 */
2140 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2141 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2142
2143 /* We're back. Did the debugger cancel the sig? */
2144 signr = current->exit_code;
2145 if (signr == 0)
2146 return signr;
2147
2148 current->exit_code = 0;
2149
2150 /*
2151 * Update the siginfo structure if the signal has
2152 * changed. If the debugger wanted something
2153 * specific in the siginfo structure then it should
2154 * have updated *info via PTRACE_SETSIGINFO.
2155 */
2156 if (signr != info->si_signo) {
2157 info->si_signo = signr;
2158 info->si_errno = 0;
2159 info->si_code = SI_USER;
2160 rcu_read_lock();
2161 info->si_pid = task_pid_vnr(current->parent);
2162 info->si_uid = from_kuid_munged(current_user_ns(),
2163 task_uid(current->parent));
2164 rcu_read_unlock();
2165 }
2166
2167 /* If the (new) signal is now blocked, requeue it. */
2168 if (sigismember(&current->blocked, signr)) {
2169 specific_send_sig_info(signr, info, current);
2170 signr = 0;
2171 }
2172
2173 return signr;
2174 }
2175
2176 int get_signal(struct ksignal *ksig)
2177 {
2178 struct sighand_struct *sighand = current->sighand;
2179 struct signal_struct *signal = current->signal;
2180 int signr;
2181
2182 if (unlikely(current->task_works))
2183 task_work_run();
2184
2185 if (unlikely(uprobe_deny_signal()))
2186 return 0;
2187
2188 /*
2189 * Do this once, we can't return to user-mode if freezing() == T.
2190 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2191 * thus do not need another check after return.
2192 */
2193 try_to_freeze();
2194
2195 relock:
2196 spin_lock_irq(&sighand->siglock);
2197 /*
2198 * Every stopped thread goes here after wakeup. Check to see if
2199 * we should notify the parent, prepare_signal(SIGCONT) encodes
2200 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2201 */
2202 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2203 int why;
2204
2205 if (signal->flags & SIGNAL_CLD_CONTINUED)
2206 why = CLD_CONTINUED;
2207 else
2208 why = CLD_STOPPED;
2209
2210 signal->flags &= ~SIGNAL_CLD_MASK;
2211
2212 spin_unlock_irq(&sighand->siglock);
2213
2214 /*
2215 * Notify the parent that we're continuing. This event is
2216 * always per-process and doesn't make whole lot of sense
2217 * for ptracers, who shouldn't consume the state via
2218 * wait(2) either, but, for backward compatibility, notify
2219 * the ptracer of the group leader too unless it's gonna be
2220 * a duplicate.
2221 */
2222 read_lock(&tasklist_lock);
2223 do_notify_parent_cldstop(current, false, why);
2224
2225 if (ptrace_reparented(current->group_leader))
2226 do_notify_parent_cldstop(current->group_leader,
2227 true, why);
2228 read_unlock(&tasklist_lock);
2229
2230 goto relock;
2231 }
2232
2233 for (;;) {
2234 struct k_sigaction *ka;
2235
2236 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2237 do_signal_stop(0))
2238 goto relock;
2239
2240 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2241 do_jobctl_trap();
2242 spin_unlock_irq(&sighand->siglock);
2243 goto relock;
2244 }
2245
2246 signr = dequeue_signal(current, &current->blocked, &ksig->info);
2247
2248 if (!signr)
2249 break; /* will return 0 */
2250
2251 if (unlikely(current->ptrace) && signr != SIGKILL) {
2252 signr = ptrace_signal(signr, &ksig->info);
2253 if (!signr)
2254 continue;
2255 }
2256
2257 ka = &sighand->action[signr-1];
2258
2259 /* Trace actually delivered signals. */
2260 trace_signal_deliver(signr, &ksig->info, ka);
2261
2262 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2263 continue;
2264 if (ka->sa.sa_handler != SIG_DFL) {
2265 /* Run the handler. */
2266 ksig->ka = *ka;
2267
2268 if (ka->sa.sa_flags & SA_ONESHOT)
2269 ka->sa.sa_handler = SIG_DFL;
2270
2271 break; /* will return non-zero "signr" value */
2272 }
2273
2274 /*
2275 * Now we are doing the default action for this signal.
2276 */
2277 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2278 continue;
2279
2280 /*
2281 * Global init gets no signals it doesn't want.
2282 * Container-init gets no signals it doesn't want from same
2283 * container.
2284 *
2285 * Note that if global/container-init sees a sig_kernel_only()
2286 * signal here, the signal must have been generated internally
2287 * or must have come from an ancestor namespace. In either
2288 * case, the signal cannot be dropped.
2289 */
2290 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2291 !sig_kernel_only(signr))
2292 continue;
2293
2294 if (sig_kernel_stop(signr)) {
2295 /*
2296 * The default action is to stop all threads in
2297 * the thread group. The job control signals
2298 * do nothing in an orphaned pgrp, but SIGSTOP
2299 * always works. Note that siglock needs to be
2300 * dropped during the call to is_orphaned_pgrp()
2301 * because of lock ordering with tasklist_lock.
2302 * This allows an intervening SIGCONT to be posted.
2303 * We need to check for that and bail out if necessary.
2304 */
2305 if (signr != SIGSTOP) {
2306 spin_unlock_irq(&sighand->siglock);
2307
2308 /* signals can be posted during this window */
2309
2310 if (is_current_pgrp_orphaned())
2311 goto relock;
2312
2313 spin_lock_irq(&sighand->siglock);
2314 }
2315
2316 if (likely(do_signal_stop(ksig->info.si_signo))) {
2317 /* It released the siglock. */
2318 goto relock;
2319 }
2320
2321 /*
2322 * We didn't actually stop, due to a race
2323 * with SIGCONT or something like that.
2324 */
2325 continue;
2326 }
2327
2328 spin_unlock_irq(&sighand->siglock);
2329
2330 /*
2331 * Anything else is fatal, maybe with a core dump.
2332 */
2333 current->flags |= PF_SIGNALED;
2334
2335 if (sig_kernel_coredump(signr)) {
2336 if (print_fatal_signals)
2337 print_fatal_signal(ksig->info.si_signo);
2338 proc_coredump_connector(current);
2339 /*
2340 * If it was able to dump core, this kills all
2341 * other threads in the group and synchronizes with
2342 * their demise. If we lost the race with another
2343 * thread getting here, it set group_exit_code
2344 * first and our do_group_exit call below will use
2345 * that value and ignore the one we pass it.
2346 */
2347 do_coredump(&ksig->info);
2348 }
2349
2350 /*
2351 * Death signals, no core dump.
2352 */
2353 do_group_exit(ksig->info.si_signo);
2354 /* NOTREACHED */
2355 }
2356 spin_unlock_irq(&sighand->siglock);
2357
2358 ksig->sig = signr;
2359 return ksig->sig > 0;
2360 }
2361
2362 /**
2363 * signal_delivered -
2364 * @ksig: kernel signal struct
2365 * @stepping: nonzero if debugger single-step or block-step in use
2366 *
2367 * This function should be called when a signal has successfully been
2368 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2369 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2370 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2371 */
2372 static void signal_delivered(struct ksignal *ksig, int stepping)
2373 {
2374 sigset_t blocked;
2375
2376 /* A signal was successfully delivered, and the
2377 saved sigmask was stored on the signal frame,
2378 and will be restored by sigreturn. So we can
2379 simply clear the restore sigmask flag. */
2380 clear_restore_sigmask();
2381
2382 sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2383 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2384 sigaddset(&blocked, ksig->sig);
2385 set_current_blocked(&blocked);
2386 tracehook_signal_handler(stepping);
2387 }
2388
2389 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2390 {
2391 if (failed)
2392 force_sigsegv(ksig->sig, current);
2393 else
2394 signal_delivered(ksig, stepping);
2395 }
2396
2397 /*
2398 * It could be that complete_signal() picked us to notify about the
2399 * group-wide signal. Other threads should be notified now to take
2400 * the shared signals in @which since we will not.
2401 */
2402 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2403 {
2404 sigset_t retarget;
2405 struct task_struct *t;
2406
2407 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2408 if (sigisemptyset(&retarget))
2409 return;
2410
2411 t = tsk;
2412 while_each_thread(tsk, t) {
2413 if (t->flags & PF_EXITING)
2414 continue;
2415
2416 if (!has_pending_signals(&retarget, &t->blocked))
2417 continue;
2418 /* Remove the signals this thread can handle. */
2419 sigandsets(&retarget, &retarget, &t->blocked);
2420
2421 if (!signal_pending(t))
2422 signal_wake_up(t, 0);
2423
2424 if (sigisemptyset(&retarget))
2425 break;
2426 }
2427 }
2428
2429 void exit_signals(struct task_struct *tsk)
2430 {
2431 int group_stop = 0;
2432 sigset_t unblocked;
2433
2434 /*
2435 * @tsk is about to have PF_EXITING set - lock out users which
2436 * expect stable threadgroup.
2437 */
2438 threadgroup_change_begin(tsk);
2439
2440 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2441 tsk->flags |= PF_EXITING;
2442 threadgroup_change_end(tsk);
2443 return;
2444 }
2445
2446 spin_lock_irq(&tsk->sighand->siglock);
2447 /*
2448 * From now this task is not visible for group-wide signals,
2449 * see wants_signal(), do_signal_stop().
2450 */
2451 tsk->flags |= PF_EXITING;
2452
2453 threadgroup_change_end(tsk);
2454
2455 if (!signal_pending(tsk))
2456 goto out;
2457
2458 unblocked = tsk->blocked;
2459 signotset(&unblocked);
2460 retarget_shared_pending(tsk, &unblocked);
2461
2462 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2463 task_participate_group_stop(tsk))
2464 group_stop = CLD_STOPPED;
2465 out:
2466 spin_unlock_irq(&tsk->sighand->siglock);
2467
2468 /*
2469 * If group stop has completed, deliver the notification. This
2470 * should always go to the real parent of the group leader.
2471 */
2472 if (unlikely(group_stop)) {
2473 read_lock(&tasklist_lock);
2474 do_notify_parent_cldstop(tsk, false, group_stop);
2475 read_unlock(&tasklist_lock);
2476 }
2477 }
2478
2479 EXPORT_SYMBOL(recalc_sigpending);
2480 EXPORT_SYMBOL_GPL(dequeue_signal);
2481 EXPORT_SYMBOL(flush_signals);
2482 EXPORT_SYMBOL(force_sig);
2483 EXPORT_SYMBOL(send_sig);
2484 EXPORT_SYMBOL(send_sig_info);
2485 EXPORT_SYMBOL(sigprocmask);
2486 EXPORT_SYMBOL(block_all_signals);
2487 EXPORT_SYMBOL(unblock_all_signals);
2488
2489
2490 /*
2491 * System call entry points.
2492 */
2493
2494 /**
2495 * sys_restart_syscall - restart a system call
2496 */
2497 SYSCALL_DEFINE0(restart_syscall)
2498 {
2499 struct restart_block *restart = &current->restart_block;
2500 return restart->fn(restart);
2501 }
2502
2503 long do_no_restart_syscall(struct restart_block *param)
2504 {
2505 return -EINTR;
2506 }
2507
2508 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2509 {
2510 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2511 sigset_t newblocked;
2512 /* A set of now blocked but previously unblocked signals. */
2513 sigandnsets(&newblocked, newset, &current->blocked);
2514 retarget_shared_pending(tsk, &newblocked);
2515 }
2516 tsk->blocked = *newset;
2517 recalc_sigpending();
2518 }
2519
2520 /**
2521 * set_current_blocked - change current->blocked mask
2522 * @newset: new mask
2523 *
2524 * It is wrong to change ->blocked directly, this helper should be used
2525 * to ensure the process can't miss a shared signal we are going to block.
2526 */
2527 void set_current_blocked(sigset_t *newset)
2528 {
2529 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2530 __set_current_blocked(newset);
2531 }
2532
2533 void __set_current_blocked(const sigset_t *newset)
2534 {
2535 struct task_struct *tsk = current;
2536
2537 spin_lock_irq(&tsk->sighand->siglock);
2538 __set_task_blocked(tsk, newset);
2539 spin_unlock_irq(&tsk->sighand->siglock);
2540 }
2541
2542 /*
2543 * This is also useful for kernel threads that want to temporarily
2544 * (or permanently) block certain signals.
2545 *
2546 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2547 * interface happily blocks "unblockable" signals like SIGKILL
2548 * and friends.
2549 */
2550 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2551 {
2552 struct task_struct *tsk = current;
2553 sigset_t newset;
2554
2555 /* Lockless, only current can change ->blocked, never from irq */
2556 if (oldset)
2557 *oldset = tsk->blocked;
2558
2559 switch (how) {
2560 case SIG_BLOCK:
2561 sigorsets(&newset, &tsk->blocked, set);
2562 break;
2563 case SIG_UNBLOCK:
2564 sigandnsets(&newset, &tsk->blocked, set);
2565 break;
2566 case SIG_SETMASK:
2567 newset = *set;
2568 break;
2569 default:
2570 return -EINVAL;
2571 }
2572
2573 __set_current_blocked(&newset);
2574 return 0;
2575 }
2576
2577 /**
2578 * sys_rt_sigprocmask - change the list of currently blocked signals
2579 * @how: whether to add, remove, or set signals
2580 * @nset: stores pending signals
2581 * @oset: previous value of signal mask if non-null
2582 * @sigsetsize: size of sigset_t type
2583 */
2584 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2585 sigset_t __user *, oset, size_t, sigsetsize)
2586 {
2587 sigset_t old_set, new_set;
2588 int error;
2589
2590 /* XXX: Don't preclude handling different sized sigset_t's. */
2591 if (sigsetsize != sizeof(sigset_t))
2592 return -EINVAL;
2593
2594 old_set = current->blocked;
2595
2596 if (nset) {
2597 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2598 return -EFAULT;
2599 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2600
2601 error = sigprocmask(how, &new_set, NULL);
2602 if (error)
2603 return error;
2604 }
2605
2606 if (oset) {
2607 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2608 return -EFAULT;
2609 }
2610
2611 return 0;
2612 }
2613
2614 #ifdef CONFIG_COMPAT
2615 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2616 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2617 {
2618 #ifdef __BIG_ENDIAN
2619 sigset_t old_set = current->blocked;
2620
2621 /* XXX: Don't preclude handling different sized sigset_t's. */
2622 if (sigsetsize != sizeof(sigset_t))
2623 return -EINVAL;
2624
2625 if (nset) {
2626 compat_sigset_t new32;
2627 sigset_t new_set;
2628 int error;
2629 if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2630 return -EFAULT;
2631
2632 sigset_from_compat(&new_set, &new32);
2633 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2634
2635 error = sigprocmask(how, &new_set, NULL);
2636 if (error)
2637 return error;
2638 }
2639 if (oset) {
2640 compat_sigset_t old32;
2641 sigset_to_compat(&old32, &old_set);
2642 if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2643 return -EFAULT;
2644 }
2645 return 0;
2646 #else
2647 return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2648 (sigset_t __user *)oset, sigsetsize);
2649 #endif
2650 }
2651 #endif
2652
2653 static int do_sigpending(void *set, unsigned long sigsetsize)
2654 {
2655 if (sigsetsize > sizeof(sigset_t))
2656 return -EINVAL;
2657
2658 spin_lock_irq(&current->sighand->siglock);
2659 sigorsets(set, &current->pending.signal,
2660 &current->signal->shared_pending.signal);
2661 spin_unlock_irq(&current->sighand->siglock);
2662
2663 /* Outside the lock because only this thread touches it. */
2664 sigandsets(set, &current->blocked, set);
2665 return 0;
2666 }
2667
2668 /**
2669 * sys_rt_sigpending - examine a pending signal that has been raised
2670 * while blocked
2671 * @uset: stores pending signals
2672 * @sigsetsize: size of sigset_t type or larger
2673 */
2674 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2675 {
2676 sigset_t set;
2677 int err = do_sigpending(&set, sigsetsize);
2678 if (!err && copy_to_user(uset, &set, sigsetsize))
2679 err = -EFAULT;
2680 return err;
2681 }
2682
2683 #ifdef CONFIG_COMPAT
2684 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2685 compat_size_t, sigsetsize)
2686 {
2687 #ifdef __BIG_ENDIAN
2688 sigset_t set;
2689 int err = do_sigpending(&set, sigsetsize);
2690 if (!err) {
2691 compat_sigset_t set32;
2692 sigset_to_compat(&set32, &set);
2693 /* we can get here only if sigsetsize <= sizeof(set) */
2694 if (copy_to_user(uset, &set32, sigsetsize))
2695 err = -EFAULT;
2696 }
2697 return err;
2698 #else
2699 return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2700 #endif
2701 }
2702 #endif
2703
2704 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2705
2706 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2707 {
2708 int err;
2709
2710 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2711 return -EFAULT;
2712 if (from->si_code < 0)
2713 return __copy_to_user(to, from, sizeof(siginfo_t))
2714 ? -EFAULT : 0;
2715 /*
2716 * If you change siginfo_t structure, please be sure
2717 * this code is fixed accordingly.
2718 * Please remember to update the signalfd_copyinfo() function
2719 * inside fs/signalfd.c too, in case siginfo_t changes.
2720 * It should never copy any pad contained in the structure
2721 * to avoid security leaks, but must copy the generic
2722 * 3 ints plus the relevant union member.
2723 */
2724 err = __put_user(from->si_signo, &to->si_signo);
2725 err |= __put_user(from->si_errno, &to->si_errno);
2726 err |= __put_user((short)from->si_code, &to->si_code);
2727 switch (from->si_code & __SI_MASK) {
2728 case __SI_KILL:
2729 err |= __put_user(from->si_pid, &to->si_pid);
2730 err |= __put_user(from->si_uid, &to->si_uid);
2731 break;
2732 case __SI_TIMER:
2733 err |= __put_user(from->si_tid, &to->si_tid);
2734 err |= __put_user(from->si_overrun, &to->si_overrun);
2735 err |= __put_user(from->si_ptr, &to->si_ptr);
2736 break;
2737 case __SI_POLL:
2738 err |= __put_user(from->si_band, &to->si_band);
2739 err |= __put_user(from->si_fd, &to->si_fd);
2740 break;
2741 case __SI_FAULT:
2742 err |= __put_user(from->si_addr, &to->si_addr);
2743 #ifdef __ARCH_SI_TRAPNO
2744 err |= __put_user(from->si_trapno, &to->si_trapno);
2745 #endif
2746 #ifdef BUS_MCEERR_AO
2747 /*
2748 * Other callers might not initialize the si_lsb field,
2749 * so check explicitly for the right codes here.
2750 */
2751 if (from->si_signo == SIGBUS &&
2752 (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO))
2753 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2754 #endif
2755 #ifdef SEGV_BNDERR
2756 if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2757 err |= __put_user(from->si_lower, &to->si_lower);
2758 err |= __put_user(from->si_upper, &to->si_upper);
2759 }
2760 #endif
2761 break;
2762 case __SI_CHLD:
2763 err |= __put_user(from->si_pid, &to->si_pid);
2764 err |= __put_user(from->si_uid, &to->si_uid);
2765 err |= __put_user(from->si_status, &to->si_status);
2766 err |= __put_user(from->si_utime, &to->si_utime);
2767 err |= __put_user(from->si_stime, &to->si_stime);
2768 break;
2769 case __SI_RT: /* This is not generated by the kernel as of now. */
2770 case __SI_MESGQ: /* But this is */
2771 err |= __put_user(from->si_pid, &to->si_pid);
2772 err |= __put_user(from->si_uid, &to->si_uid);
2773 err |= __put_user(from->si_ptr, &to->si_ptr);
2774 break;
2775 #ifdef __ARCH_SIGSYS
2776 case __SI_SYS:
2777 err |= __put_user(from->si_call_addr, &to->si_call_addr);
2778 err |= __put_user(from->si_syscall, &to->si_syscall);
2779 err |= __put_user(from->si_arch, &to->si_arch);
2780 break;
2781 #endif
2782 default: /* this is just in case for now ... */
2783 err |= __put_user(from->si_pid, &to->si_pid);
2784 err |= __put_user(from->si_uid, &to->si_uid);
2785 break;
2786 }
2787 return err;
2788 }
2789
2790 #endif
2791
2792 /**
2793 * do_sigtimedwait - wait for queued signals specified in @which
2794 * @which: queued signals to wait for
2795 * @info: if non-null, the signal's siginfo is returned here
2796 * @ts: upper bound on process time suspension
2797 */
2798 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2799 const struct timespec *ts)
2800 {
2801 struct task_struct *tsk = current;
2802 long timeout = MAX_SCHEDULE_TIMEOUT;
2803 sigset_t mask = *which;
2804 int sig;
2805
2806 if (ts) {
2807 if (!timespec_valid(ts))
2808 return -EINVAL;
2809 timeout = timespec_to_jiffies(ts);
2810 /*
2811 * We can be close to the next tick, add another one
2812 * to ensure we will wait at least the time asked for.
2813 */
2814 if (ts->tv_sec || ts->tv_nsec)
2815 timeout++;
2816 }
2817
2818 /*
2819 * Invert the set of allowed signals to get those we want to block.
2820 */
2821 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2822 signotset(&mask);
2823
2824 spin_lock_irq(&tsk->sighand->siglock);
2825 sig = dequeue_signal(tsk, &mask, info);
2826 if (!sig && timeout) {
2827 /*
2828 * None ready, temporarily unblock those we're interested
2829 * while we are sleeping in so that we'll be awakened when
2830 * they arrive. Unblocking is always fine, we can avoid
2831 * set_current_blocked().
2832 */
2833 tsk->real_blocked = tsk->blocked;
2834 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2835 recalc_sigpending();
2836 spin_unlock_irq(&tsk->sighand->siglock);
2837
2838 timeout = freezable_schedule_timeout_interruptible(timeout);
2839
2840 spin_lock_irq(&tsk->sighand->siglock);
2841 __set_task_blocked(tsk, &tsk->real_blocked);
2842 sigemptyset(&tsk->real_blocked);
2843 sig = dequeue_signal(tsk, &mask, info);
2844 }
2845 spin_unlock_irq(&tsk->sighand->siglock);
2846
2847 if (sig)
2848 return sig;
2849 return timeout ? -EINTR : -EAGAIN;
2850 }
2851
2852 /**
2853 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
2854 * in @uthese
2855 * @uthese: queued signals to wait for
2856 * @uinfo: if non-null, the signal's siginfo is returned here
2857 * @uts: upper bound on process time suspension
2858 * @sigsetsize: size of sigset_t type
2859 */
2860 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2861 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2862 size_t, sigsetsize)
2863 {
2864 sigset_t these;
2865 struct timespec ts;
2866 siginfo_t info;
2867 int ret;
2868
2869 /* XXX: Don't preclude handling different sized sigset_t's. */
2870 if (sigsetsize != sizeof(sigset_t))
2871 return -EINVAL;
2872
2873 if (copy_from_user(&these, uthese, sizeof(these)))
2874 return -EFAULT;
2875
2876 if (uts) {
2877 if (copy_from_user(&ts, uts, sizeof(ts)))
2878 return -EFAULT;
2879 }
2880
2881 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2882
2883 if (ret > 0 && uinfo) {
2884 if (copy_siginfo_to_user(uinfo, &info))
2885 ret = -EFAULT;
2886 }
2887
2888 return ret;
2889 }
2890
2891 /**
2892 * sys_kill - send a signal to a process
2893 * @pid: the PID of the process
2894 * @sig: signal to be sent
2895 */
2896 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2897 {
2898 struct siginfo info;
2899
2900 info.si_signo = sig;
2901 info.si_errno = 0;
2902 info.si_code = SI_USER;
2903 info.si_pid = task_tgid_vnr(current);
2904 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2905
2906 return kill_something_info(sig, &info, pid);
2907 }
2908
2909 static int
2910 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2911 {
2912 struct task_struct *p;
2913 int error = -ESRCH;
2914
2915 rcu_read_lock();
2916 p = find_task_by_vpid(pid);
2917 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2918 error = check_kill_permission(sig, info, p);
2919 /*
2920 * The null signal is a permissions and process existence
2921 * probe. No signal is actually delivered.
2922 */
2923 if (!error && sig) {
2924 error = do_send_sig_info(sig, info, p, false);
2925 /*
2926 * If lock_task_sighand() failed we pretend the task
2927 * dies after receiving the signal. The window is tiny,
2928 * and the signal is private anyway.
2929 */
2930 if (unlikely(error == -ESRCH))
2931 error = 0;
2932 }
2933 }
2934 rcu_read_unlock();
2935
2936 return error;
2937 }
2938
2939 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2940 {
2941 struct siginfo info = {};
2942
2943 info.si_signo = sig;
2944 info.si_errno = 0;
2945 info.si_code = SI_TKILL;
2946 info.si_pid = task_tgid_vnr(current);
2947 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2948
2949 return do_send_specific(tgid, pid, sig, &info);
2950 }
2951
2952 /**
2953 * sys_tgkill - send signal to one specific thread
2954 * @tgid: the thread group ID of the thread
2955 * @pid: the PID of the thread
2956 * @sig: signal to be sent
2957 *
2958 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2959 * exists but it's not belonging to the target process anymore. This
2960 * method solves the problem of threads exiting and PIDs getting reused.
2961 */
2962 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2963 {
2964 /* This is only valid for single tasks */
2965 if (pid <= 0 || tgid <= 0)
2966 return -EINVAL;
2967
2968 return do_tkill(tgid, pid, sig);
2969 }
2970
2971 /**
2972 * sys_tkill - send signal to one specific task
2973 * @pid: the PID of the task
2974 * @sig: signal to be sent
2975 *
2976 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2977 */
2978 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2979 {
2980 /* This is only valid for single tasks */
2981 if (pid <= 0)
2982 return -EINVAL;
2983
2984 return do_tkill(0, pid, sig);
2985 }
2986
2987 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
2988 {
2989 /* Not even root can pretend to send signals from the kernel.
2990 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2991 */
2992 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
2993 (task_pid_vnr(current) != pid))
2994 return -EPERM;
2995
2996 info->si_signo = sig;
2997
2998 /* POSIX.1b doesn't mention process groups. */
2999 return kill_proc_info(sig, info, pid);
3000 }
3001
3002 /**
3003 * sys_rt_sigqueueinfo - send signal information to a signal
3004 * @pid: the PID of the thread
3005 * @sig: signal to be sent
3006 * @uinfo: signal info to be sent
3007 */
3008 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3009 siginfo_t __user *, uinfo)
3010 {
3011 siginfo_t info;
3012 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3013 return -EFAULT;
3014 return do_rt_sigqueueinfo(pid, sig, &info);
3015 }
3016
3017 #ifdef CONFIG_COMPAT
3018 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3019 compat_pid_t, pid,
3020 int, sig,
3021 struct compat_siginfo __user *, uinfo)
3022 {
3023 siginfo_t info = {};
3024 int ret = copy_siginfo_from_user32(&info, uinfo);
3025 if (unlikely(ret))
3026 return ret;
3027 return do_rt_sigqueueinfo(pid, sig, &info);
3028 }
3029 #endif
3030
3031 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3032 {
3033 /* This is only valid for single tasks */
3034 if (pid <= 0 || tgid <= 0)
3035 return -EINVAL;
3036
3037 /* Not even root can pretend to send signals from the kernel.
3038 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3039 */
3040 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3041 (task_pid_vnr(current) != pid))
3042 return -EPERM;
3043
3044 info->si_signo = sig;
3045
3046 return do_send_specific(tgid, pid, sig, info);
3047 }
3048
3049 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3050 siginfo_t __user *, uinfo)
3051 {
3052 siginfo_t info;
3053
3054 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3055 return -EFAULT;
3056
3057 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3058 }
3059
3060 #ifdef CONFIG_COMPAT
3061 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3062 compat_pid_t, tgid,
3063 compat_pid_t, pid,
3064 int, sig,
3065 struct compat_siginfo __user *, uinfo)
3066 {
3067 siginfo_t info = {};
3068
3069 if (copy_siginfo_from_user32(&info, uinfo))
3070 return -EFAULT;
3071 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3072 }
3073 #endif
3074
3075 /*
3076 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3077 */
3078 void kernel_sigaction(int sig, __sighandler_t action)
3079 {
3080 spin_lock_irq(&current->sighand->siglock);
3081 current->sighand->action[sig - 1].sa.sa_handler = action;
3082 if (action == SIG_IGN) {
3083 sigset_t mask;
3084
3085 sigemptyset(&mask);
3086 sigaddset(&mask, sig);
3087
3088 flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3089 flush_sigqueue_mask(&mask, &current->pending);
3090 recalc_sigpending();
3091 }
3092 spin_unlock_irq(&current->sighand->siglock);
3093 }
3094 EXPORT_SYMBOL(kernel_sigaction);
3095
3096 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3097 {
3098 struct task_struct *p = current, *t;
3099 struct k_sigaction *k;
3100 sigset_t mask;
3101
3102 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3103 return -EINVAL;
3104
3105 k = &p->sighand->action[sig-1];
3106
3107 spin_lock_irq(&p->sighand->siglock);
3108 if (oact)
3109 *oact = *k;
3110
3111 if (act) {
3112 sigdelsetmask(&act->sa.sa_mask,
3113 sigmask(SIGKILL) | sigmask(SIGSTOP));
3114 *k = *act;
3115 /*
3116 * POSIX 3.3.1.3:
3117 * "Setting a signal action to SIG_IGN for a signal that is
3118 * pending shall cause the pending signal to be discarded,
3119 * whether or not it is blocked."
3120 *
3121 * "Setting a signal action to SIG_DFL for a signal that is
3122 * pending and whose default action is to ignore the signal
3123 * (for example, SIGCHLD), shall cause the pending signal to
3124 * be discarded, whether or not it is blocked"
3125 */
3126 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3127 sigemptyset(&mask);
3128 sigaddset(&mask, sig);
3129 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3130 for_each_thread(p, t)
3131 flush_sigqueue_mask(&mask, &t->pending);
3132 }
3133 }
3134
3135 spin_unlock_irq(&p->sighand->siglock);
3136 return 0;
3137 }
3138
3139 static int
3140 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3141 {
3142 stack_t oss;
3143 int error;
3144
3145 oss.ss_sp = (void __user *) current->sas_ss_sp;
3146 oss.ss_size = current->sas_ss_size;
3147 oss.ss_flags = sas_ss_flags(sp);
3148
3149 if (uss) {
3150 void __user *ss_sp;
3151 size_t ss_size;
3152 int ss_flags;
3153
3154 error = -EFAULT;
3155 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3156 goto out;
3157 error = __get_user(ss_sp, &uss->ss_sp) |
3158 __get_user(ss_flags, &uss->ss_flags) |
3159 __get_user(ss_size, &uss->ss_size);
3160 if (error)
3161 goto out;
3162
3163 error = -EPERM;
3164 if (on_sig_stack(sp))
3165 goto out;
3166
3167 error = -EINVAL;
3168 /*
3169 * Note - this code used to test ss_flags incorrectly:
3170 * old code may have been written using ss_flags==0
3171 * to mean ss_flags==SS_ONSTACK (as this was the only
3172 * way that worked) - this fix preserves that older
3173 * mechanism.
3174 */
3175 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3176 goto out;
3177
3178 if (ss_flags == SS_DISABLE) {
3179 ss_size = 0;
3180 ss_sp = NULL;
3181 } else {
3182 error = -ENOMEM;
3183 if (ss_size < MINSIGSTKSZ)
3184 goto out;
3185 }
3186
3187 current->sas_ss_sp = (unsigned long) ss_sp;
3188 current->sas_ss_size = ss_size;
3189 }
3190
3191 error = 0;
3192 if (uoss) {
3193 error = -EFAULT;
3194 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3195 goto out;
3196 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3197 __put_user(oss.ss_size, &uoss->ss_size) |
3198 __put_user(oss.ss_flags, &uoss->ss_flags);
3199 }
3200
3201 out:
3202 return error;
3203 }
3204 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3205 {
3206 return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3207 }
3208
3209 int restore_altstack(const stack_t __user *uss)
3210 {
3211 int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3212 /* squash all but EFAULT for now */
3213 return err == -EFAULT ? err : 0;
3214 }
3215
3216 int __save_altstack(stack_t __user *uss, unsigned long sp)
3217 {
3218 struct task_struct *t = current;
3219 return __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3220 __put_user(sas_ss_flags(sp), &uss->ss_flags) |
3221 __put_user(t->sas_ss_size, &uss->ss_size);
3222 }
3223
3224 #ifdef CONFIG_COMPAT
3225 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3226 const compat_stack_t __user *, uss_ptr,
3227 compat_stack_t __user *, uoss_ptr)
3228 {
3229 stack_t uss, uoss;
3230 int ret;
3231 mm_segment_t seg;
3232
3233 if (uss_ptr) {
3234 compat_stack_t uss32;
3235
3236 memset(&uss, 0, sizeof(stack_t));
3237 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3238 return -EFAULT;
3239 uss.ss_sp = compat_ptr(uss32.ss_sp);
3240 uss.ss_flags = uss32.ss_flags;
3241 uss.ss_size = uss32.ss_size;
3242 }
3243 seg = get_fs();
3244 set_fs(KERNEL_DS);
3245 ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3246 (stack_t __force __user *) &uoss,
3247 compat_user_stack_pointer());
3248 set_fs(seg);
3249 if (ret >= 0 && uoss_ptr) {
3250 if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3251 __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3252 __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3253 __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3254 ret = -EFAULT;
3255 }
3256 return ret;
3257 }
3258
3259 int compat_restore_altstack(const compat_stack_t __user *uss)
3260 {
3261 int err = compat_sys_sigaltstack(uss, NULL);
3262 /* squash all but -EFAULT for now */
3263 return err == -EFAULT ? err : 0;
3264 }
3265
3266 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3267 {
3268 struct task_struct *t = current;
3269 return __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) |
3270 __put_user(sas_ss_flags(sp), &uss->ss_flags) |
3271 __put_user(t->sas_ss_size, &uss->ss_size);
3272 }
3273 #endif
3274
3275 #ifdef __ARCH_WANT_SYS_SIGPENDING
3276
3277 /**
3278 * sys_sigpending - examine pending signals
3279 * @set: where mask of pending signal is returned
3280 */
3281 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3282 {
3283 return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t));
3284 }
3285
3286 #endif
3287
3288 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3289 /**
3290 * sys_sigprocmask - examine and change blocked signals
3291 * @how: whether to add, remove, or set signals
3292 * @nset: signals to add or remove (if non-null)
3293 * @oset: previous value of signal mask if non-null
3294 *
3295 * Some platforms have their own version with special arguments;
3296 * others support only sys_rt_sigprocmask.
3297 */
3298
3299 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3300 old_sigset_t __user *, oset)
3301 {
3302 old_sigset_t old_set, new_set;
3303 sigset_t new_blocked;
3304
3305 old_set = current->blocked.sig[0];
3306
3307 if (nset) {
3308 if (copy_from_user(&new_set, nset, sizeof(*nset)))
3309 return -EFAULT;
3310
3311 new_blocked = current->blocked;
3312
3313 switch (how) {
3314 case SIG_BLOCK:
3315 sigaddsetmask(&new_blocked, new_set);
3316 break;
3317 case SIG_UNBLOCK:
3318 sigdelsetmask(&new_blocked, new_set);
3319 break;
3320 case SIG_SETMASK:
3321 new_blocked.sig[0] = new_set;
3322 break;
3323 default:
3324 return -EINVAL;
3325 }
3326
3327 set_current_blocked(&new_blocked);
3328 }
3329
3330 if (oset) {
3331 if (copy_to_user(oset, &old_set, sizeof(*oset)))
3332 return -EFAULT;
3333 }
3334
3335 return 0;
3336 }
3337 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3338
3339 #ifndef CONFIG_ODD_RT_SIGACTION
3340 /**
3341 * sys_rt_sigaction - alter an action taken by a process
3342 * @sig: signal to be sent
3343 * @act: new sigaction
3344 * @oact: used to save the previous sigaction
3345 * @sigsetsize: size of sigset_t type
3346 */
3347 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3348 const struct sigaction __user *, act,
3349 struct sigaction __user *, oact,
3350 size_t, sigsetsize)
3351 {
3352 struct k_sigaction new_sa, old_sa;
3353 int ret = -EINVAL;
3354
3355 /* XXX: Don't preclude handling different sized sigset_t's. */
3356 if (sigsetsize != sizeof(sigset_t))
3357 goto out;
3358
3359 if (act) {
3360 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3361 return -EFAULT;
3362 }
3363
3364 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3365
3366 if (!ret && oact) {
3367 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3368 return -EFAULT;
3369 }
3370 out:
3371 return ret;
3372 }
3373 #ifdef CONFIG_COMPAT
3374 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3375 const struct compat_sigaction __user *, act,
3376 struct compat_sigaction __user *, oact,
3377 compat_size_t, sigsetsize)
3378 {
3379 struct k_sigaction new_ka, old_ka;
3380 compat_sigset_t mask;
3381 #ifdef __ARCH_HAS_SA_RESTORER
3382 compat_uptr_t restorer;
3383 #endif
3384 int ret;
3385
3386 /* XXX: Don't preclude handling different sized sigset_t's. */
3387 if (sigsetsize != sizeof(compat_sigset_t))
3388 return -EINVAL;
3389
3390 if (act) {
3391 compat_uptr_t handler;
3392 ret = get_user(handler, &act->sa_handler);
3393 new_ka.sa.sa_handler = compat_ptr(handler);
3394 #ifdef __ARCH_HAS_SA_RESTORER
3395 ret |= get_user(restorer, &act->sa_restorer);
3396 new_ka.sa.sa_restorer = compat_ptr(restorer);
3397 #endif
3398 ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3399 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3400 if (ret)
3401 return -EFAULT;
3402 sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3403 }
3404
3405 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3406 if (!ret && oact) {
3407 sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3408 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3409 &oact->sa_handler);
3410 ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3411 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3412 #ifdef __ARCH_HAS_SA_RESTORER
3413 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3414 &oact->sa_restorer);
3415 #endif
3416 }
3417 return ret;
3418 }
3419 #endif
3420 #endif /* !CONFIG_ODD_RT_SIGACTION */
3421
3422 #ifdef CONFIG_OLD_SIGACTION
3423 SYSCALL_DEFINE3(sigaction, int, sig,
3424 const struct old_sigaction __user *, act,
3425 struct old_sigaction __user *, oact)
3426 {
3427 struct k_sigaction new_ka, old_ka;
3428 int ret;
3429
3430 if (act) {
3431 old_sigset_t mask;
3432 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3433 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3434 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3435 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3436 __get_user(mask, &act->sa_mask))
3437 return -EFAULT;
3438 #ifdef __ARCH_HAS_KA_RESTORER
3439 new_ka.ka_restorer = NULL;
3440 #endif
3441 siginitset(&new_ka.sa.sa_mask, mask);
3442 }
3443
3444 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3445
3446 if (!ret && oact) {
3447 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3448 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3449 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3450 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3451 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3452 return -EFAULT;
3453 }
3454
3455 return ret;
3456 }
3457 #endif
3458 #ifdef CONFIG_COMPAT_OLD_SIGACTION
3459 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3460 const struct compat_old_sigaction __user *, act,
3461 struct compat_old_sigaction __user *, oact)
3462 {
3463 struct k_sigaction new_ka, old_ka;
3464 int ret;
3465 compat_old_sigset_t mask;
3466 compat_uptr_t handler, restorer;
3467
3468 if (act) {
3469 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3470 __get_user(handler, &act->sa_handler) ||
3471 __get_user(restorer, &act->sa_restorer) ||
3472 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3473 __get_user(mask, &act->sa_mask))
3474 return -EFAULT;
3475
3476 #ifdef __ARCH_HAS_KA_RESTORER
3477 new_ka.ka_restorer = NULL;
3478 #endif
3479 new_ka.sa.sa_handler = compat_ptr(handler);
3480 new_ka.sa.sa_restorer = compat_ptr(restorer);
3481 siginitset(&new_ka.sa.sa_mask, mask);
3482 }
3483
3484 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3485
3486 if (!ret && oact) {
3487 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3488 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3489 &oact->sa_handler) ||
3490 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3491 &oact->sa_restorer) ||
3492 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3493 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3494 return -EFAULT;
3495 }
3496 return ret;
3497 }
3498 #endif
3499
3500 #ifdef CONFIG_SGETMASK_SYSCALL
3501
3502 /*
3503 * For backwards compatibility. Functionality superseded by sigprocmask.
3504 */
3505 SYSCALL_DEFINE0(sgetmask)
3506 {
3507 /* SMP safe */
3508 return current->blocked.sig[0];
3509 }
3510
3511 SYSCALL_DEFINE1(ssetmask, int, newmask)
3512 {
3513 int old = current->blocked.sig[0];
3514 sigset_t newset;
3515
3516 siginitset(&newset, newmask);
3517 set_current_blocked(&newset);
3518
3519 return old;
3520 }
3521 #endif /* CONFIG_SGETMASK_SYSCALL */
3522
3523 #ifdef __ARCH_WANT_SYS_SIGNAL
3524 /*
3525 * For backwards compatibility. Functionality superseded by sigaction.
3526 */
3527 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3528 {
3529 struct k_sigaction new_sa, old_sa;
3530 int ret;
3531
3532 new_sa.sa.sa_handler = handler;
3533 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3534 sigemptyset(&new_sa.sa.sa_mask);
3535
3536 ret = do_sigaction(sig, &new_sa, &old_sa);
3537
3538 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3539 }
3540 #endif /* __ARCH_WANT_SYS_SIGNAL */
3541
3542 #ifdef __ARCH_WANT_SYS_PAUSE
3543
3544 SYSCALL_DEFINE0(pause)
3545 {
3546 while (!signal_pending(current)) {
3547 __set_current_state(TASK_INTERRUPTIBLE);
3548 schedule();
3549 }
3550 return -ERESTARTNOHAND;
3551 }
3552
3553 #endif
3554
3555 int sigsuspend(sigset_t *set)
3556 {
3557 current->saved_sigmask = current->blocked;
3558 set_current_blocked(set);
3559
3560 __set_current_state(TASK_INTERRUPTIBLE);
3561 schedule();
3562 set_restore_sigmask();
3563 return -ERESTARTNOHAND;
3564 }
3565
3566 /**
3567 * sys_rt_sigsuspend - replace the signal mask for a value with the
3568 * @unewset value until a signal is received
3569 * @unewset: new signal mask value
3570 * @sigsetsize: size of sigset_t type
3571 */
3572 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3573 {
3574 sigset_t newset;
3575
3576 /* XXX: Don't preclude handling different sized sigset_t's. */
3577 if (sigsetsize != sizeof(sigset_t))
3578 return -EINVAL;
3579
3580 if (copy_from_user(&newset, unewset, sizeof(newset)))
3581 return -EFAULT;
3582 return sigsuspend(&newset);
3583 }
3584
3585 #ifdef CONFIG_COMPAT
3586 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3587 {
3588 #ifdef __BIG_ENDIAN
3589 sigset_t newset;
3590 compat_sigset_t newset32;
3591
3592 /* XXX: Don't preclude handling different sized sigset_t's. */
3593 if (sigsetsize != sizeof(sigset_t))
3594 return -EINVAL;
3595
3596 if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3597 return -EFAULT;
3598 sigset_from_compat(&newset, &newset32);
3599 return sigsuspend(&newset);
3600 #else
3601 /* on little-endian bitmaps don't care about granularity */
3602 return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3603 #endif
3604 }
3605 #endif
3606
3607 #ifdef CONFIG_OLD_SIGSUSPEND
3608 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3609 {
3610 sigset_t blocked;
3611 siginitset(&blocked, mask);
3612 return sigsuspend(&blocked);
3613 }
3614 #endif
3615 #ifdef CONFIG_OLD_SIGSUSPEND3
3616 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3617 {
3618 sigset_t blocked;
3619 siginitset(&blocked, mask);
3620 return sigsuspend(&blocked);
3621 }
3622 #endif
3623
3624 __weak const char *arch_vma_name(struct vm_area_struct *vma)
3625 {
3626 return NULL;
3627 }
3628
3629 void __init signals_init(void)
3630 {
3631 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3632 }
3633
3634 #ifdef CONFIG_KGDB_KDB
3635 #include <linux/kdb.h>
3636 /*
3637 * kdb_send_sig_info - Allows kdb to send signals without exposing
3638 * signal internals. This function checks if the required locks are
3639 * available before calling the main signal code, to avoid kdb
3640 * deadlocks.
3641 */
3642 void
3643 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3644 {
3645 static struct task_struct *kdb_prev_t;
3646 int sig, new_t;
3647 if (!spin_trylock(&t->sighand->siglock)) {
3648 kdb_printf("Can't do kill command now.\n"
3649 "The sigmask lock is held somewhere else in "
3650 "kernel, try again later\n");
3651 return;
3652 }
3653 spin_unlock(&t->sighand->siglock);
3654 new_t = kdb_prev_t != t;
3655 kdb_prev_t = t;
3656 if (t->state != TASK_RUNNING && new_t) {
3657 kdb_printf("Process is not RUNNING, sending a signal from "
3658 "kdb risks deadlock\n"
3659 "on the run queue locks. "
3660 "The signal has _not_ been sent.\n"
3661 "Reissue the kill command if you want to risk "
3662 "the deadlock.\n");
3663 return;
3664 }
3665 sig = info->si_signo;
3666 if (send_sig_info(sig, info, t))
3667 kdb_printf("Fail to deliver Signal %d to process %d.\n",
3668 sig, t->pid);
3669 else
3670 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3671 }
3672 #endif /* CONFIG_KGDB_KDB */