]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/signal.c
laptop-mode URL update
[mirror_ubuntu-artful-kernel.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/capability.h>
25 #include <linux/freezer.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/nsproxy.h>
28
29 #include <asm/param.h>
30 #include <asm/uaccess.h>
31 #include <asm/unistd.h>
32 #include <asm/siginfo.h>
33 #include "audit.h" /* audit_signal_info() */
34
35 /*
36 * SLAB caches for signal bits.
37 */
38
39 static struct kmem_cache *sigqueue_cachep;
40
41 /*
42 * In POSIX a signal is sent either to a specific thread (Linux task)
43 * or to the process as a whole (Linux thread group). How the signal
44 * is sent determines whether it's to one thread or the whole group,
45 * which determines which signal mask(s) are involved in blocking it
46 * from being delivered until later. When the signal is delivered,
47 * either it's caught or ignored by a user handler or it has a default
48 * effect that applies to the whole thread group (POSIX process).
49 *
50 * The possible effects an unblocked signal set to SIG_DFL can have are:
51 * ignore - Nothing Happens
52 * terminate - kill the process, i.e. all threads in the group,
53 * similar to exit_group. The group leader (only) reports
54 * WIFSIGNALED status to its parent.
55 * coredump - write a core dump file describing all threads using
56 * the same mm and then kill all those threads
57 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
58 *
59 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
60 * Other signals when not blocked and set to SIG_DFL behaves as follows.
61 * The job control signals also have other special effects.
62 *
63 * +--------------------+------------------+
64 * | POSIX signal | default action |
65 * +--------------------+------------------+
66 * | SIGHUP | terminate |
67 * | SIGINT | terminate |
68 * | SIGQUIT | coredump |
69 * | SIGILL | coredump |
70 * | SIGTRAP | coredump |
71 * | SIGABRT/SIGIOT | coredump |
72 * | SIGBUS | coredump |
73 * | SIGFPE | coredump |
74 * | SIGKILL | terminate(+) |
75 * | SIGUSR1 | terminate |
76 * | SIGSEGV | coredump |
77 * | SIGUSR2 | terminate |
78 * | SIGPIPE | terminate |
79 * | SIGALRM | terminate |
80 * | SIGTERM | terminate |
81 * | SIGCHLD | ignore |
82 * | SIGCONT | ignore(*) |
83 * | SIGSTOP | stop(*)(+) |
84 * | SIGTSTP | stop(*) |
85 * | SIGTTIN | stop(*) |
86 * | SIGTTOU | stop(*) |
87 * | SIGURG | ignore |
88 * | SIGXCPU | coredump |
89 * | SIGXFSZ | coredump |
90 * | SIGVTALRM | terminate |
91 * | SIGPROF | terminate |
92 * | SIGPOLL/SIGIO | terminate |
93 * | SIGSYS/SIGUNUSED | coredump |
94 * | SIGSTKFLT | terminate |
95 * | SIGWINCH | ignore |
96 * | SIGPWR | terminate |
97 * | SIGRTMIN-SIGRTMAX | terminate |
98 * +--------------------+------------------+
99 * | non-POSIX signal | default action |
100 * +--------------------+------------------+
101 * | SIGEMT | coredump |
102 * +--------------------+------------------+
103 *
104 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
105 * (*) Special job control effects:
106 * When SIGCONT is sent, it resumes the process (all threads in the group)
107 * from TASK_STOPPED state and also clears any pending/queued stop signals
108 * (any of those marked with "stop(*)"). This happens regardless of blocking,
109 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
110 * any pending/queued SIGCONT signals; this happens regardless of blocking,
111 * catching, or ignored the stop signal, though (except for SIGSTOP) the
112 * default action of stopping the process may happen later or never.
113 */
114
115 #ifdef SIGEMT
116 #define M_SIGEMT M(SIGEMT)
117 #else
118 #define M_SIGEMT 0
119 #endif
120
121 #if SIGRTMIN > BITS_PER_LONG
122 #define M(sig) (1ULL << ((sig)-1))
123 #else
124 #define M(sig) (1UL << ((sig)-1))
125 #endif
126 #define T(sig, mask) (M(sig) & (mask))
127
128 #define SIG_KERNEL_ONLY_MASK (\
129 M(SIGKILL) | M(SIGSTOP) )
130
131 #define SIG_KERNEL_STOP_MASK (\
132 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
133
134 #define SIG_KERNEL_COREDUMP_MASK (\
135 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
136 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
137 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
138
139 #define SIG_KERNEL_IGNORE_MASK (\
140 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
141
142 #define sig_kernel_only(sig) \
143 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
144 #define sig_kernel_coredump(sig) \
145 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
146 #define sig_kernel_ignore(sig) \
147 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
148 #define sig_kernel_stop(sig) \
149 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
150
151 #define sig_needs_tasklist(sig) ((sig) == SIGCONT)
152
153 #define sig_user_defined(t, signr) \
154 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
155 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
156
157 #define sig_fatal(t, signr) \
158 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
159 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
160
161 static int sig_ignored(struct task_struct *t, int sig)
162 {
163 void __user * handler;
164
165 /*
166 * Tracers always want to know about signals..
167 */
168 if (t->ptrace & PT_PTRACED)
169 return 0;
170
171 /*
172 * Blocked signals are never ignored, since the
173 * signal handler may change by the time it is
174 * unblocked.
175 */
176 if (sigismember(&t->blocked, sig))
177 return 0;
178
179 /* Is it explicitly or implicitly ignored? */
180 handler = t->sighand->action[sig-1].sa.sa_handler;
181 return handler == SIG_IGN ||
182 (handler == SIG_DFL && sig_kernel_ignore(sig));
183 }
184
185 /*
186 * Re-calculate pending state from the set of locally pending
187 * signals, globally pending signals, and blocked signals.
188 */
189 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
190 {
191 unsigned long ready;
192 long i;
193
194 switch (_NSIG_WORDS) {
195 default:
196 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
197 ready |= signal->sig[i] &~ blocked->sig[i];
198 break;
199
200 case 4: ready = signal->sig[3] &~ blocked->sig[3];
201 ready |= signal->sig[2] &~ blocked->sig[2];
202 ready |= signal->sig[1] &~ blocked->sig[1];
203 ready |= signal->sig[0] &~ blocked->sig[0];
204 break;
205
206 case 2: ready = signal->sig[1] &~ blocked->sig[1];
207 ready |= signal->sig[0] &~ blocked->sig[0];
208 break;
209
210 case 1: ready = signal->sig[0] &~ blocked->sig[0];
211 }
212 return ready != 0;
213 }
214
215 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
216
217 fastcall void recalc_sigpending_tsk(struct task_struct *t)
218 {
219 if (t->signal->group_stop_count > 0 ||
220 (freezing(t)) ||
221 PENDING(&t->pending, &t->blocked) ||
222 PENDING(&t->signal->shared_pending, &t->blocked))
223 set_tsk_thread_flag(t, TIF_SIGPENDING);
224 else
225 clear_tsk_thread_flag(t, TIF_SIGPENDING);
226 }
227
228 void recalc_sigpending(void)
229 {
230 recalc_sigpending_tsk(current);
231 }
232
233 /* Given the mask, find the first available signal that should be serviced. */
234
235 static int
236 next_signal(struct sigpending *pending, sigset_t *mask)
237 {
238 unsigned long i, *s, *m, x;
239 int sig = 0;
240
241 s = pending->signal.sig;
242 m = mask->sig;
243 switch (_NSIG_WORDS) {
244 default:
245 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
246 if ((x = *s &~ *m) != 0) {
247 sig = ffz(~x) + i*_NSIG_BPW + 1;
248 break;
249 }
250 break;
251
252 case 2: if ((x = s[0] &~ m[0]) != 0)
253 sig = 1;
254 else if ((x = s[1] &~ m[1]) != 0)
255 sig = _NSIG_BPW + 1;
256 else
257 break;
258 sig += ffz(~x);
259 break;
260
261 case 1: if ((x = *s &~ *m) != 0)
262 sig = ffz(~x) + 1;
263 break;
264 }
265
266 return sig;
267 }
268
269 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
270 int override_rlimit)
271 {
272 struct sigqueue *q = NULL;
273 struct user_struct *user;
274
275 /*
276 * In order to avoid problems with "switch_user()", we want to make
277 * sure that the compiler doesn't re-load "t->user"
278 */
279 user = t->user;
280 barrier();
281 atomic_inc(&user->sigpending);
282 if (override_rlimit ||
283 atomic_read(&user->sigpending) <=
284 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
285 q = kmem_cache_alloc(sigqueue_cachep, flags);
286 if (unlikely(q == NULL)) {
287 atomic_dec(&user->sigpending);
288 } else {
289 INIT_LIST_HEAD(&q->list);
290 q->flags = 0;
291 q->user = get_uid(user);
292 }
293 return(q);
294 }
295
296 static void __sigqueue_free(struct sigqueue *q)
297 {
298 if (q->flags & SIGQUEUE_PREALLOC)
299 return;
300 atomic_dec(&q->user->sigpending);
301 free_uid(q->user);
302 kmem_cache_free(sigqueue_cachep, q);
303 }
304
305 void flush_sigqueue(struct sigpending *queue)
306 {
307 struct sigqueue *q;
308
309 sigemptyset(&queue->signal);
310 while (!list_empty(&queue->list)) {
311 q = list_entry(queue->list.next, struct sigqueue , list);
312 list_del_init(&q->list);
313 __sigqueue_free(q);
314 }
315 }
316
317 /*
318 * Flush all pending signals for a task.
319 */
320 void flush_signals(struct task_struct *t)
321 {
322 unsigned long flags;
323
324 spin_lock_irqsave(&t->sighand->siglock, flags);
325 clear_tsk_thread_flag(t,TIF_SIGPENDING);
326 flush_sigqueue(&t->pending);
327 flush_sigqueue(&t->signal->shared_pending);
328 spin_unlock_irqrestore(&t->sighand->siglock, flags);
329 }
330
331 /*
332 * Flush all handlers for a task.
333 */
334
335 void
336 flush_signal_handlers(struct task_struct *t, int force_default)
337 {
338 int i;
339 struct k_sigaction *ka = &t->sighand->action[0];
340 for (i = _NSIG ; i != 0 ; i--) {
341 if (force_default || ka->sa.sa_handler != SIG_IGN)
342 ka->sa.sa_handler = SIG_DFL;
343 ka->sa.sa_flags = 0;
344 sigemptyset(&ka->sa.sa_mask);
345 ka++;
346 }
347 }
348
349
350 /* Notify the system that a driver wants to block all signals for this
351 * process, and wants to be notified if any signals at all were to be
352 * sent/acted upon. If the notifier routine returns non-zero, then the
353 * signal will be acted upon after all. If the notifier routine returns 0,
354 * then then signal will be blocked. Only one block per process is
355 * allowed. priv is a pointer to private data that the notifier routine
356 * can use to determine if the signal should be blocked or not. */
357
358 void
359 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
360 {
361 unsigned long flags;
362
363 spin_lock_irqsave(&current->sighand->siglock, flags);
364 current->notifier_mask = mask;
365 current->notifier_data = priv;
366 current->notifier = notifier;
367 spin_unlock_irqrestore(&current->sighand->siglock, flags);
368 }
369
370 /* Notify the system that blocking has ended. */
371
372 void
373 unblock_all_signals(void)
374 {
375 unsigned long flags;
376
377 spin_lock_irqsave(&current->sighand->siglock, flags);
378 current->notifier = NULL;
379 current->notifier_data = NULL;
380 recalc_sigpending();
381 spin_unlock_irqrestore(&current->sighand->siglock, flags);
382 }
383
384 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
385 {
386 struct sigqueue *q, *first = NULL;
387 int still_pending = 0;
388
389 if (unlikely(!sigismember(&list->signal, sig)))
390 return 0;
391
392 /*
393 * Collect the siginfo appropriate to this signal. Check if
394 * there is another siginfo for the same signal.
395 */
396 list_for_each_entry(q, &list->list, list) {
397 if (q->info.si_signo == sig) {
398 if (first) {
399 still_pending = 1;
400 break;
401 }
402 first = q;
403 }
404 }
405 if (first) {
406 list_del_init(&first->list);
407 copy_siginfo(info, &first->info);
408 __sigqueue_free(first);
409 if (!still_pending)
410 sigdelset(&list->signal, sig);
411 } else {
412
413 /* Ok, it wasn't in the queue. This must be
414 a fast-pathed signal or we must have been
415 out of queue space. So zero out the info.
416 */
417 sigdelset(&list->signal, sig);
418 info->si_signo = sig;
419 info->si_errno = 0;
420 info->si_code = 0;
421 info->si_pid = 0;
422 info->si_uid = 0;
423 }
424 return 1;
425 }
426
427 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
428 siginfo_t *info)
429 {
430 int sig = next_signal(pending, mask);
431
432 if (sig) {
433 if (current->notifier) {
434 if (sigismember(current->notifier_mask, sig)) {
435 if (!(current->notifier)(current->notifier_data)) {
436 clear_thread_flag(TIF_SIGPENDING);
437 return 0;
438 }
439 }
440 }
441
442 if (!collect_signal(sig, pending, info))
443 sig = 0;
444 }
445
446 return sig;
447 }
448
449 /*
450 * Dequeue a signal and return the element to the caller, which is
451 * expected to free it.
452 *
453 * All callers have to hold the siglock.
454 */
455 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
456 {
457 int signr = __dequeue_signal(&tsk->pending, mask, info);
458 if (!signr) {
459 signr = __dequeue_signal(&tsk->signal->shared_pending,
460 mask, info);
461 /*
462 * itimer signal ?
463 *
464 * itimers are process shared and we restart periodic
465 * itimers in the signal delivery path to prevent DoS
466 * attacks in the high resolution timer case. This is
467 * compliant with the old way of self restarting
468 * itimers, as the SIGALRM is a legacy signal and only
469 * queued once. Changing the restart behaviour to
470 * restart the timer in the signal dequeue path is
471 * reducing the timer noise on heavy loaded !highres
472 * systems too.
473 */
474 if (unlikely(signr == SIGALRM)) {
475 struct hrtimer *tmr = &tsk->signal->real_timer;
476
477 if (!hrtimer_is_queued(tmr) &&
478 tsk->signal->it_real_incr.tv64 != 0) {
479 hrtimer_forward(tmr, tmr->base->get_time(),
480 tsk->signal->it_real_incr);
481 hrtimer_restart(tmr);
482 }
483 }
484 }
485 recalc_sigpending_tsk(tsk);
486 if (signr && unlikely(sig_kernel_stop(signr))) {
487 /*
488 * Set a marker that we have dequeued a stop signal. Our
489 * caller might release the siglock and then the pending
490 * stop signal it is about to process is no longer in the
491 * pending bitmasks, but must still be cleared by a SIGCONT
492 * (and overruled by a SIGKILL). So those cases clear this
493 * shared flag after we've set it. Note that this flag may
494 * remain set after the signal we return is ignored or
495 * handled. That doesn't matter because its only purpose
496 * is to alert stop-signal processing code when another
497 * processor has come along and cleared the flag.
498 */
499 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
500 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
501 }
502 if ( signr &&
503 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
504 info->si_sys_private){
505 /*
506 * Release the siglock to ensure proper locking order
507 * of timer locks outside of siglocks. Note, we leave
508 * irqs disabled here, since the posix-timers code is
509 * about to disable them again anyway.
510 */
511 spin_unlock(&tsk->sighand->siglock);
512 do_schedule_next_timer(info);
513 spin_lock(&tsk->sighand->siglock);
514 }
515 return signr;
516 }
517
518 /*
519 * Tell a process that it has a new active signal..
520 *
521 * NOTE! we rely on the previous spin_lock to
522 * lock interrupts for us! We can only be called with
523 * "siglock" held, and the local interrupt must
524 * have been disabled when that got acquired!
525 *
526 * No need to set need_resched since signal event passing
527 * goes through ->blocked
528 */
529 void signal_wake_up(struct task_struct *t, int resume)
530 {
531 unsigned int mask;
532
533 set_tsk_thread_flag(t, TIF_SIGPENDING);
534
535 /*
536 * For SIGKILL, we want to wake it up in the stopped/traced case.
537 * We don't check t->state here because there is a race with it
538 * executing another processor and just now entering stopped state.
539 * By using wake_up_state, we ensure the process will wake up and
540 * handle its death signal.
541 */
542 mask = TASK_INTERRUPTIBLE;
543 if (resume)
544 mask |= TASK_STOPPED | TASK_TRACED;
545 if (!wake_up_state(t, mask))
546 kick_process(t);
547 }
548
549 /*
550 * Remove signals in mask from the pending set and queue.
551 * Returns 1 if any signals were found.
552 *
553 * All callers must be holding the siglock.
554 *
555 * This version takes a sigset mask and looks at all signals,
556 * not just those in the first mask word.
557 */
558 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
559 {
560 struct sigqueue *q, *n;
561 sigset_t m;
562
563 sigandsets(&m, mask, &s->signal);
564 if (sigisemptyset(&m))
565 return 0;
566
567 signandsets(&s->signal, &s->signal, mask);
568 list_for_each_entry_safe(q, n, &s->list, list) {
569 if (sigismember(mask, q->info.si_signo)) {
570 list_del_init(&q->list);
571 __sigqueue_free(q);
572 }
573 }
574 return 1;
575 }
576 /*
577 * Remove signals in mask from the pending set and queue.
578 * Returns 1 if any signals were found.
579 *
580 * All callers must be holding the siglock.
581 */
582 static int rm_from_queue(unsigned long mask, struct sigpending *s)
583 {
584 struct sigqueue *q, *n;
585
586 if (!sigtestsetmask(&s->signal, mask))
587 return 0;
588
589 sigdelsetmask(&s->signal, mask);
590 list_for_each_entry_safe(q, n, &s->list, list) {
591 if (q->info.si_signo < SIGRTMIN &&
592 (mask & sigmask(q->info.si_signo))) {
593 list_del_init(&q->list);
594 __sigqueue_free(q);
595 }
596 }
597 return 1;
598 }
599
600 /*
601 * Bad permissions for sending the signal
602 */
603 static int check_kill_permission(int sig, struct siginfo *info,
604 struct task_struct *t)
605 {
606 int error = -EINVAL;
607 if (!valid_signal(sig))
608 return error;
609 error = -EPERM;
610 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
611 && ((sig != SIGCONT) ||
612 (process_session(current) != process_session(t)))
613 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
614 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
615 && !capable(CAP_KILL))
616 return error;
617
618 error = security_task_kill(t, info, sig, 0);
619 if (!error)
620 audit_signal_info(sig, t); /* Let audit system see the signal */
621 return error;
622 }
623
624 /* forward decl */
625 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
626
627 /*
628 * Handle magic process-wide effects of stop/continue signals.
629 * Unlike the signal actions, these happen immediately at signal-generation
630 * time regardless of blocking, ignoring, or handling. This does the
631 * actual continuing for SIGCONT, but not the actual stopping for stop
632 * signals. The process stop is done as a signal action for SIG_DFL.
633 */
634 static void handle_stop_signal(int sig, struct task_struct *p)
635 {
636 struct task_struct *t;
637
638 if (p->signal->flags & SIGNAL_GROUP_EXIT)
639 /*
640 * The process is in the middle of dying already.
641 */
642 return;
643
644 if (sig_kernel_stop(sig)) {
645 /*
646 * This is a stop signal. Remove SIGCONT from all queues.
647 */
648 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
649 t = p;
650 do {
651 rm_from_queue(sigmask(SIGCONT), &t->pending);
652 t = next_thread(t);
653 } while (t != p);
654 } else if (sig == SIGCONT) {
655 /*
656 * Remove all stop signals from all queues,
657 * and wake all threads.
658 */
659 if (unlikely(p->signal->group_stop_count > 0)) {
660 /*
661 * There was a group stop in progress. We'll
662 * pretend it finished before we got here. We are
663 * obliged to report it to the parent: if the
664 * SIGSTOP happened "after" this SIGCONT, then it
665 * would have cleared this pending SIGCONT. If it
666 * happened "before" this SIGCONT, then the parent
667 * got the SIGCHLD about the stop finishing before
668 * the continue happened. We do the notification
669 * now, and it's as if the stop had finished and
670 * the SIGCHLD was pending on entry to this kill.
671 */
672 p->signal->group_stop_count = 0;
673 p->signal->flags = SIGNAL_STOP_CONTINUED;
674 spin_unlock(&p->sighand->siglock);
675 do_notify_parent_cldstop(p, CLD_STOPPED);
676 spin_lock(&p->sighand->siglock);
677 }
678 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
679 t = p;
680 do {
681 unsigned int state;
682 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
683
684 /*
685 * If there is a handler for SIGCONT, we must make
686 * sure that no thread returns to user mode before
687 * we post the signal, in case it was the only
688 * thread eligible to run the signal handler--then
689 * it must not do anything between resuming and
690 * running the handler. With the TIF_SIGPENDING
691 * flag set, the thread will pause and acquire the
692 * siglock that we hold now and until we've queued
693 * the pending signal.
694 *
695 * Wake up the stopped thread _after_ setting
696 * TIF_SIGPENDING
697 */
698 state = TASK_STOPPED;
699 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
700 set_tsk_thread_flag(t, TIF_SIGPENDING);
701 state |= TASK_INTERRUPTIBLE;
702 }
703 wake_up_state(t, state);
704
705 t = next_thread(t);
706 } while (t != p);
707
708 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
709 /*
710 * We were in fact stopped, and are now continued.
711 * Notify the parent with CLD_CONTINUED.
712 */
713 p->signal->flags = SIGNAL_STOP_CONTINUED;
714 p->signal->group_exit_code = 0;
715 spin_unlock(&p->sighand->siglock);
716 do_notify_parent_cldstop(p, CLD_CONTINUED);
717 spin_lock(&p->sighand->siglock);
718 } else {
719 /*
720 * We are not stopped, but there could be a stop
721 * signal in the middle of being processed after
722 * being removed from the queue. Clear that too.
723 */
724 p->signal->flags = 0;
725 }
726 } else if (sig == SIGKILL) {
727 /*
728 * Make sure that any pending stop signal already dequeued
729 * is undone by the wakeup for SIGKILL.
730 */
731 p->signal->flags = 0;
732 }
733 }
734
735 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
736 struct sigpending *signals)
737 {
738 struct sigqueue * q = NULL;
739 int ret = 0;
740
741 /*
742 * fast-pathed signals for kernel-internal things like SIGSTOP
743 * or SIGKILL.
744 */
745 if (info == SEND_SIG_FORCED)
746 goto out_set;
747
748 /* Real-time signals must be queued if sent by sigqueue, or
749 some other real-time mechanism. It is implementation
750 defined whether kill() does so. We attempt to do so, on
751 the principle of least surprise, but since kill is not
752 allowed to fail with EAGAIN when low on memory we just
753 make sure at least one signal gets delivered and don't
754 pass on the info struct. */
755
756 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
757 (is_si_special(info) ||
758 info->si_code >= 0)));
759 if (q) {
760 list_add_tail(&q->list, &signals->list);
761 switch ((unsigned long) info) {
762 case (unsigned long) SEND_SIG_NOINFO:
763 q->info.si_signo = sig;
764 q->info.si_errno = 0;
765 q->info.si_code = SI_USER;
766 q->info.si_pid = current->pid;
767 q->info.si_uid = current->uid;
768 break;
769 case (unsigned long) SEND_SIG_PRIV:
770 q->info.si_signo = sig;
771 q->info.si_errno = 0;
772 q->info.si_code = SI_KERNEL;
773 q->info.si_pid = 0;
774 q->info.si_uid = 0;
775 break;
776 default:
777 copy_siginfo(&q->info, info);
778 break;
779 }
780 } else if (!is_si_special(info)) {
781 if (sig >= SIGRTMIN && info->si_code != SI_USER)
782 /*
783 * Queue overflow, abort. We may abort if the signal was rt
784 * and sent by user using something other than kill().
785 */
786 return -EAGAIN;
787 }
788
789 out_set:
790 sigaddset(&signals->signal, sig);
791 return ret;
792 }
793
794 #define LEGACY_QUEUE(sigptr, sig) \
795 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
796
797
798 static int
799 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
800 {
801 int ret = 0;
802
803 BUG_ON(!irqs_disabled());
804 assert_spin_locked(&t->sighand->siglock);
805
806 /* Short-circuit ignored signals. */
807 if (sig_ignored(t, sig))
808 goto out;
809
810 /* Support queueing exactly one non-rt signal, so that we
811 can get more detailed information about the cause of
812 the signal. */
813 if (LEGACY_QUEUE(&t->pending, sig))
814 goto out;
815
816 ret = send_signal(sig, info, t, &t->pending);
817 if (!ret && !sigismember(&t->blocked, sig))
818 signal_wake_up(t, sig == SIGKILL);
819 out:
820 return ret;
821 }
822
823 /*
824 * Force a signal that the process can't ignore: if necessary
825 * we unblock the signal and change any SIG_IGN to SIG_DFL.
826 *
827 * Note: If we unblock the signal, we always reset it to SIG_DFL,
828 * since we do not want to have a signal handler that was blocked
829 * be invoked when user space had explicitly blocked it.
830 *
831 * We don't want to have recursive SIGSEGV's etc, for example.
832 */
833 int
834 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
835 {
836 unsigned long int flags;
837 int ret, blocked, ignored;
838 struct k_sigaction *action;
839
840 spin_lock_irqsave(&t->sighand->siglock, flags);
841 action = &t->sighand->action[sig-1];
842 ignored = action->sa.sa_handler == SIG_IGN;
843 blocked = sigismember(&t->blocked, sig);
844 if (blocked || ignored) {
845 action->sa.sa_handler = SIG_DFL;
846 if (blocked) {
847 sigdelset(&t->blocked, sig);
848 recalc_sigpending_tsk(t);
849 }
850 }
851 ret = specific_send_sig_info(sig, info, t);
852 spin_unlock_irqrestore(&t->sighand->siglock, flags);
853
854 return ret;
855 }
856
857 void
858 force_sig_specific(int sig, struct task_struct *t)
859 {
860 force_sig_info(sig, SEND_SIG_FORCED, t);
861 }
862
863 /*
864 * Test if P wants to take SIG. After we've checked all threads with this,
865 * it's equivalent to finding no threads not blocking SIG. Any threads not
866 * blocking SIG were ruled out because they are not running and already
867 * have pending signals. Such threads will dequeue from the shared queue
868 * as soon as they're available, so putting the signal on the shared queue
869 * will be equivalent to sending it to one such thread.
870 */
871 static inline int wants_signal(int sig, struct task_struct *p)
872 {
873 if (sigismember(&p->blocked, sig))
874 return 0;
875 if (p->flags & PF_EXITING)
876 return 0;
877 if (sig == SIGKILL)
878 return 1;
879 if (p->state & (TASK_STOPPED | TASK_TRACED))
880 return 0;
881 return task_curr(p) || !signal_pending(p);
882 }
883
884 static void
885 __group_complete_signal(int sig, struct task_struct *p)
886 {
887 struct task_struct *t;
888
889 /*
890 * Now find a thread we can wake up to take the signal off the queue.
891 *
892 * If the main thread wants the signal, it gets first crack.
893 * Probably the least surprising to the average bear.
894 */
895 if (wants_signal(sig, p))
896 t = p;
897 else if (thread_group_empty(p))
898 /*
899 * There is just one thread and it does not need to be woken.
900 * It will dequeue unblocked signals before it runs again.
901 */
902 return;
903 else {
904 /*
905 * Otherwise try to find a suitable thread.
906 */
907 t = p->signal->curr_target;
908 if (t == NULL)
909 /* restart balancing at this thread */
910 t = p->signal->curr_target = p;
911
912 while (!wants_signal(sig, t)) {
913 t = next_thread(t);
914 if (t == p->signal->curr_target)
915 /*
916 * No thread needs to be woken.
917 * Any eligible threads will see
918 * the signal in the queue soon.
919 */
920 return;
921 }
922 p->signal->curr_target = t;
923 }
924
925 /*
926 * Found a killable thread. If the signal will be fatal,
927 * then start taking the whole group down immediately.
928 */
929 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
930 !sigismember(&t->real_blocked, sig) &&
931 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
932 /*
933 * This signal will be fatal to the whole group.
934 */
935 if (!sig_kernel_coredump(sig)) {
936 /*
937 * Start a group exit and wake everybody up.
938 * This way we don't have other threads
939 * running and doing things after a slower
940 * thread has the fatal signal pending.
941 */
942 p->signal->flags = SIGNAL_GROUP_EXIT;
943 p->signal->group_exit_code = sig;
944 p->signal->group_stop_count = 0;
945 t = p;
946 do {
947 sigaddset(&t->pending.signal, SIGKILL);
948 signal_wake_up(t, 1);
949 t = next_thread(t);
950 } while (t != p);
951 return;
952 }
953
954 /*
955 * There will be a core dump. We make all threads other
956 * than the chosen one go into a group stop so that nothing
957 * happens until it gets scheduled, takes the signal off
958 * the shared queue, and does the core dump. This is a
959 * little more complicated than strictly necessary, but it
960 * keeps the signal state that winds up in the core dump
961 * unchanged from the death state, e.g. which thread had
962 * the core-dump signal unblocked.
963 */
964 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
965 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
966 p->signal->group_stop_count = 0;
967 p->signal->group_exit_task = t;
968 t = p;
969 do {
970 p->signal->group_stop_count++;
971 signal_wake_up(t, 0);
972 t = next_thread(t);
973 } while (t != p);
974 wake_up_process(p->signal->group_exit_task);
975 return;
976 }
977
978 /*
979 * The signal is already in the shared-pending queue.
980 * Tell the chosen thread to wake up and dequeue it.
981 */
982 signal_wake_up(t, sig == SIGKILL);
983 return;
984 }
985
986 int
987 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
988 {
989 int ret = 0;
990
991 assert_spin_locked(&p->sighand->siglock);
992 handle_stop_signal(sig, p);
993
994 /* Short-circuit ignored signals. */
995 if (sig_ignored(p, sig))
996 return ret;
997
998 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
999 /* This is a non-RT signal and we already have one queued. */
1000 return ret;
1001
1002 /*
1003 * Put this signal on the shared-pending queue, or fail with EAGAIN.
1004 * We always use the shared queue for process-wide signals,
1005 * to avoid several races.
1006 */
1007 ret = send_signal(sig, info, p, &p->signal->shared_pending);
1008 if (unlikely(ret))
1009 return ret;
1010
1011 __group_complete_signal(sig, p);
1012 return 0;
1013 }
1014
1015 /*
1016 * Nuke all other threads in the group.
1017 */
1018 void zap_other_threads(struct task_struct *p)
1019 {
1020 struct task_struct *t;
1021
1022 p->signal->flags = SIGNAL_GROUP_EXIT;
1023 p->signal->group_stop_count = 0;
1024
1025 if (thread_group_empty(p))
1026 return;
1027
1028 for (t = next_thread(p); t != p; t = next_thread(t)) {
1029 /*
1030 * Don't bother with already dead threads
1031 */
1032 if (t->exit_state)
1033 continue;
1034
1035 /*
1036 * We don't want to notify the parent, since we are
1037 * killed as part of a thread group due to another
1038 * thread doing an execve() or similar. So set the
1039 * exit signal to -1 to allow immediate reaping of
1040 * the process. But don't detach the thread group
1041 * leader.
1042 */
1043 if (t != p->group_leader)
1044 t->exit_signal = -1;
1045
1046 /* SIGKILL will be handled before any pending SIGSTOP */
1047 sigaddset(&t->pending.signal, SIGKILL);
1048 signal_wake_up(t, 1);
1049 }
1050 }
1051
1052 /*
1053 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
1054 */
1055 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1056 {
1057 struct sighand_struct *sighand;
1058
1059 for (;;) {
1060 sighand = rcu_dereference(tsk->sighand);
1061 if (unlikely(sighand == NULL))
1062 break;
1063
1064 spin_lock_irqsave(&sighand->siglock, *flags);
1065 if (likely(sighand == tsk->sighand))
1066 break;
1067 spin_unlock_irqrestore(&sighand->siglock, *flags);
1068 }
1069
1070 return sighand;
1071 }
1072
1073 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1074 {
1075 unsigned long flags;
1076 int ret;
1077
1078 ret = check_kill_permission(sig, info, p);
1079
1080 if (!ret && sig) {
1081 ret = -ESRCH;
1082 if (lock_task_sighand(p, &flags)) {
1083 ret = __group_send_sig_info(sig, info, p);
1084 unlock_task_sighand(p, &flags);
1085 }
1086 }
1087
1088 return ret;
1089 }
1090
1091 /*
1092 * kill_pgrp_info() sends a signal to a process group: this is what the tty
1093 * control characters do (^C, ^Z etc)
1094 */
1095
1096 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1097 {
1098 struct task_struct *p = NULL;
1099 int retval, success;
1100
1101 success = 0;
1102 retval = -ESRCH;
1103 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1104 int err = group_send_sig_info(sig, info, p);
1105 success |= !err;
1106 retval = err;
1107 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1108 return success ? 0 : retval;
1109 }
1110
1111 int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1112 {
1113 int retval;
1114
1115 read_lock(&tasklist_lock);
1116 retval = __kill_pgrp_info(sig, info, pgrp);
1117 read_unlock(&tasklist_lock);
1118
1119 return retval;
1120 }
1121
1122 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1123 {
1124 int error;
1125 struct task_struct *p;
1126
1127 rcu_read_lock();
1128 if (unlikely(sig_needs_tasklist(sig)))
1129 read_lock(&tasklist_lock);
1130
1131 p = pid_task(pid, PIDTYPE_PID);
1132 error = -ESRCH;
1133 if (p)
1134 error = group_send_sig_info(sig, info, p);
1135
1136 if (unlikely(sig_needs_tasklist(sig)))
1137 read_unlock(&tasklist_lock);
1138 rcu_read_unlock();
1139 return error;
1140 }
1141
1142 int
1143 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1144 {
1145 int error;
1146 rcu_read_lock();
1147 error = kill_pid_info(sig, info, find_pid(pid));
1148 rcu_read_unlock();
1149 return error;
1150 }
1151
1152 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1153 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1154 uid_t uid, uid_t euid, u32 secid)
1155 {
1156 int ret = -EINVAL;
1157 struct task_struct *p;
1158
1159 if (!valid_signal(sig))
1160 return ret;
1161
1162 read_lock(&tasklist_lock);
1163 p = pid_task(pid, PIDTYPE_PID);
1164 if (!p) {
1165 ret = -ESRCH;
1166 goto out_unlock;
1167 }
1168 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1169 && (euid != p->suid) && (euid != p->uid)
1170 && (uid != p->suid) && (uid != p->uid)) {
1171 ret = -EPERM;
1172 goto out_unlock;
1173 }
1174 ret = security_task_kill(p, info, sig, secid);
1175 if (ret)
1176 goto out_unlock;
1177 if (sig && p->sighand) {
1178 unsigned long flags;
1179 spin_lock_irqsave(&p->sighand->siglock, flags);
1180 ret = __group_send_sig_info(sig, info, p);
1181 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1182 }
1183 out_unlock:
1184 read_unlock(&tasklist_lock);
1185 return ret;
1186 }
1187 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1188
1189 /*
1190 * kill_something_info() interprets pid in interesting ways just like kill(2).
1191 *
1192 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1193 * is probably wrong. Should make it like BSD or SYSV.
1194 */
1195
1196 static int kill_something_info(int sig, struct siginfo *info, int pid)
1197 {
1198 int ret;
1199 rcu_read_lock();
1200 if (!pid) {
1201 ret = kill_pgrp_info(sig, info, task_pgrp(current));
1202 } else if (pid == -1) {
1203 int retval = 0, count = 0;
1204 struct task_struct * p;
1205
1206 read_lock(&tasklist_lock);
1207 for_each_process(p) {
1208 if (p->pid > 1 && p->tgid != current->tgid) {
1209 int err = group_send_sig_info(sig, info, p);
1210 ++count;
1211 if (err != -EPERM)
1212 retval = err;
1213 }
1214 }
1215 read_unlock(&tasklist_lock);
1216 ret = count ? retval : -ESRCH;
1217 } else if (pid < 0) {
1218 ret = kill_pgrp_info(sig, info, find_pid(-pid));
1219 } else {
1220 ret = kill_pid_info(sig, info, find_pid(pid));
1221 }
1222 rcu_read_unlock();
1223 return ret;
1224 }
1225
1226 /*
1227 * These are for backward compatibility with the rest of the kernel source.
1228 */
1229
1230 /*
1231 * These two are the most common entry points. They send a signal
1232 * just to the specific thread.
1233 */
1234 int
1235 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1236 {
1237 int ret;
1238 unsigned long flags;
1239
1240 /*
1241 * Make sure legacy kernel users don't send in bad values
1242 * (normal paths check this in check_kill_permission).
1243 */
1244 if (!valid_signal(sig))
1245 return -EINVAL;
1246
1247 /*
1248 * We need the tasklist lock even for the specific
1249 * thread case (when we don't need to follow the group
1250 * lists) in order to avoid races with "p->sighand"
1251 * going away or changing from under us.
1252 */
1253 read_lock(&tasklist_lock);
1254 spin_lock_irqsave(&p->sighand->siglock, flags);
1255 ret = specific_send_sig_info(sig, info, p);
1256 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1257 read_unlock(&tasklist_lock);
1258 return ret;
1259 }
1260
1261 #define __si_special(priv) \
1262 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1263
1264 int
1265 send_sig(int sig, struct task_struct *p, int priv)
1266 {
1267 return send_sig_info(sig, __si_special(priv), p);
1268 }
1269
1270 /*
1271 * This is the entry point for "process-wide" signals.
1272 * They will go to an appropriate thread in the thread group.
1273 */
1274 int
1275 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1276 {
1277 int ret;
1278 read_lock(&tasklist_lock);
1279 ret = group_send_sig_info(sig, info, p);
1280 read_unlock(&tasklist_lock);
1281 return ret;
1282 }
1283
1284 void
1285 force_sig(int sig, struct task_struct *p)
1286 {
1287 force_sig_info(sig, SEND_SIG_PRIV, p);
1288 }
1289
1290 /*
1291 * When things go south during signal handling, we
1292 * will force a SIGSEGV. And if the signal that caused
1293 * the problem was already a SIGSEGV, we'll want to
1294 * make sure we don't even try to deliver the signal..
1295 */
1296 int
1297 force_sigsegv(int sig, struct task_struct *p)
1298 {
1299 if (sig == SIGSEGV) {
1300 unsigned long flags;
1301 spin_lock_irqsave(&p->sighand->siglock, flags);
1302 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1303 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1304 }
1305 force_sig(SIGSEGV, p);
1306 return 0;
1307 }
1308
1309 int kill_pgrp(struct pid *pid, int sig, int priv)
1310 {
1311 return kill_pgrp_info(sig, __si_special(priv), pid);
1312 }
1313 EXPORT_SYMBOL(kill_pgrp);
1314
1315 int kill_pid(struct pid *pid, int sig, int priv)
1316 {
1317 return kill_pid_info(sig, __si_special(priv), pid);
1318 }
1319 EXPORT_SYMBOL(kill_pid);
1320
1321 int
1322 kill_proc(pid_t pid, int sig, int priv)
1323 {
1324 return kill_proc_info(sig, __si_special(priv), pid);
1325 }
1326
1327 /*
1328 * These functions support sending signals using preallocated sigqueue
1329 * structures. This is needed "because realtime applications cannot
1330 * afford to lose notifications of asynchronous events, like timer
1331 * expirations or I/O completions". In the case of Posix Timers
1332 * we allocate the sigqueue structure from the timer_create. If this
1333 * allocation fails we are able to report the failure to the application
1334 * with an EAGAIN error.
1335 */
1336
1337 struct sigqueue *sigqueue_alloc(void)
1338 {
1339 struct sigqueue *q;
1340
1341 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1342 q->flags |= SIGQUEUE_PREALLOC;
1343 return(q);
1344 }
1345
1346 void sigqueue_free(struct sigqueue *q)
1347 {
1348 unsigned long flags;
1349 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1350 /*
1351 * If the signal is still pending remove it from the
1352 * pending queue.
1353 */
1354 if (unlikely(!list_empty(&q->list))) {
1355 spinlock_t *lock = &current->sighand->siglock;
1356 read_lock(&tasklist_lock);
1357 spin_lock_irqsave(lock, flags);
1358 if (!list_empty(&q->list))
1359 list_del_init(&q->list);
1360 spin_unlock_irqrestore(lock, flags);
1361 read_unlock(&tasklist_lock);
1362 }
1363 q->flags &= ~SIGQUEUE_PREALLOC;
1364 __sigqueue_free(q);
1365 }
1366
1367 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1368 {
1369 unsigned long flags;
1370 int ret = 0;
1371
1372 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1373
1374 /*
1375 * The rcu based delayed sighand destroy makes it possible to
1376 * run this without tasklist lock held. The task struct itself
1377 * cannot go away as create_timer did get_task_struct().
1378 *
1379 * We return -1, when the task is marked exiting, so
1380 * posix_timer_event can redirect it to the group leader
1381 */
1382 rcu_read_lock();
1383
1384 if (!likely(lock_task_sighand(p, &flags))) {
1385 ret = -1;
1386 goto out_err;
1387 }
1388
1389 if (unlikely(!list_empty(&q->list))) {
1390 /*
1391 * If an SI_TIMER entry is already queue just increment
1392 * the overrun count.
1393 */
1394 BUG_ON(q->info.si_code != SI_TIMER);
1395 q->info.si_overrun++;
1396 goto out;
1397 }
1398 /* Short-circuit ignored signals. */
1399 if (sig_ignored(p, sig)) {
1400 ret = 1;
1401 goto out;
1402 }
1403
1404 list_add_tail(&q->list, &p->pending.list);
1405 sigaddset(&p->pending.signal, sig);
1406 if (!sigismember(&p->blocked, sig))
1407 signal_wake_up(p, sig == SIGKILL);
1408
1409 out:
1410 unlock_task_sighand(p, &flags);
1411 out_err:
1412 rcu_read_unlock();
1413
1414 return ret;
1415 }
1416
1417 int
1418 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1419 {
1420 unsigned long flags;
1421 int ret = 0;
1422
1423 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1424
1425 read_lock(&tasklist_lock);
1426 /* Since it_lock is held, p->sighand cannot be NULL. */
1427 spin_lock_irqsave(&p->sighand->siglock, flags);
1428 handle_stop_signal(sig, p);
1429
1430 /* Short-circuit ignored signals. */
1431 if (sig_ignored(p, sig)) {
1432 ret = 1;
1433 goto out;
1434 }
1435
1436 if (unlikely(!list_empty(&q->list))) {
1437 /*
1438 * If an SI_TIMER entry is already queue just increment
1439 * the overrun count. Other uses should not try to
1440 * send the signal multiple times.
1441 */
1442 BUG_ON(q->info.si_code != SI_TIMER);
1443 q->info.si_overrun++;
1444 goto out;
1445 }
1446
1447 /*
1448 * Put this signal on the shared-pending queue.
1449 * We always use the shared queue for process-wide signals,
1450 * to avoid several races.
1451 */
1452 list_add_tail(&q->list, &p->signal->shared_pending.list);
1453 sigaddset(&p->signal->shared_pending.signal, sig);
1454
1455 __group_complete_signal(sig, p);
1456 out:
1457 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1458 read_unlock(&tasklist_lock);
1459 return ret;
1460 }
1461
1462 /*
1463 * Wake up any threads in the parent blocked in wait* syscalls.
1464 */
1465 static inline void __wake_up_parent(struct task_struct *p,
1466 struct task_struct *parent)
1467 {
1468 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1469 }
1470
1471 /*
1472 * Let a parent know about the death of a child.
1473 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1474 */
1475
1476 void do_notify_parent(struct task_struct *tsk, int sig)
1477 {
1478 struct siginfo info;
1479 unsigned long flags;
1480 struct sighand_struct *psig;
1481
1482 BUG_ON(sig == -1);
1483
1484 /* do_notify_parent_cldstop should have been called instead. */
1485 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1486
1487 BUG_ON(!tsk->ptrace &&
1488 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1489
1490 info.si_signo = sig;
1491 info.si_errno = 0;
1492 info.si_pid = tsk->pid;
1493 info.si_uid = tsk->uid;
1494
1495 /* FIXME: find out whether or not this is supposed to be c*time. */
1496 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1497 tsk->signal->utime));
1498 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1499 tsk->signal->stime));
1500
1501 info.si_status = tsk->exit_code & 0x7f;
1502 if (tsk->exit_code & 0x80)
1503 info.si_code = CLD_DUMPED;
1504 else if (tsk->exit_code & 0x7f)
1505 info.si_code = CLD_KILLED;
1506 else {
1507 info.si_code = CLD_EXITED;
1508 info.si_status = tsk->exit_code >> 8;
1509 }
1510
1511 psig = tsk->parent->sighand;
1512 spin_lock_irqsave(&psig->siglock, flags);
1513 if (!tsk->ptrace && sig == SIGCHLD &&
1514 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1515 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1516 /*
1517 * We are exiting and our parent doesn't care. POSIX.1
1518 * defines special semantics for setting SIGCHLD to SIG_IGN
1519 * or setting the SA_NOCLDWAIT flag: we should be reaped
1520 * automatically and not left for our parent's wait4 call.
1521 * Rather than having the parent do it as a magic kind of
1522 * signal handler, we just set this to tell do_exit that we
1523 * can be cleaned up without becoming a zombie. Note that
1524 * we still call __wake_up_parent in this case, because a
1525 * blocked sys_wait4 might now return -ECHILD.
1526 *
1527 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1528 * is implementation-defined: we do (if you don't want
1529 * it, just use SIG_IGN instead).
1530 */
1531 tsk->exit_signal = -1;
1532 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1533 sig = 0;
1534 }
1535 if (valid_signal(sig) && sig > 0)
1536 __group_send_sig_info(sig, &info, tsk->parent);
1537 __wake_up_parent(tsk, tsk->parent);
1538 spin_unlock_irqrestore(&psig->siglock, flags);
1539 }
1540
1541 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1542 {
1543 struct siginfo info;
1544 unsigned long flags;
1545 struct task_struct *parent;
1546 struct sighand_struct *sighand;
1547
1548 if (tsk->ptrace & PT_PTRACED)
1549 parent = tsk->parent;
1550 else {
1551 tsk = tsk->group_leader;
1552 parent = tsk->real_parent;
1553 }
1554
1555 info.si_signo = SIGCHLD;
1556 info.si_errno = 0;
1557 info.si_pid = tsk->pid;
1558 info.si_uid = tsk->uid;
1559
1560 /* FIXME: find out whether or not this is supposed to be c*time. */
1561 info.si_utime = cputime_to_jiffies(tsk->utime);
1562 info.si_stime = cputime_to_jiffies(tsk->stime);
1563
1564 info.si_code = why;
1565 switch (why) {
1566 case CLD_CONTINUED:
1567 info.si_status = SIGCONT;
1568 break;
1569 case CLD_STOPPED:
1570 info.si_status = tsk->signal->group_exit_code & 0x7f;
1571 break;
1572 case CLD_TRAPPED:
1573 info.si_status = tsk->exit_code & 0x7f;
1574 break;
1575 default:
1576 BUG();
1577 }
1578
1579 sighand = parent->sighand;
1580 spin_lock_irqsave(&sighand->siglock, flags);
1581 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1582 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1583 __group_send_sig_info(SIGCHLD, &info, parent);
1584 /*
1585 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1586 */
1587 __wake_up_parent(tsk, parent);
1588 spin_unlock_irqrestore(&sighand->siglock, flags);
1589 }
1590
1591 static inline int may_ptrace_stop(void)
1592 {
1593 if (!likely(current->ptrace & PT_PTRACED))
1594 return 0;
1595
1596 if (unlikely(current->parent == current->real_parent &&
1597 (current->ptrace & PT_ATTACHED)))
1598 return 0;
1599
1600 if (unlikely(current->signal == current->parent->signal) &&
1601 unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))
1602 return 0;
1603
1604 /*
1605 * Are we in the middle of do_coredump?
1606 * If so and our tracer is also part of the coredump stopping
1607 * is a deadlock situation, and pointless because our tracer
1608 * is dead so don't allow us to stop.
1609 * If SIGKILL was already sent before the caller unlocked
1610 * ->siglock we must see ->core_waiters != 0. Otherwise it
1611 * is safe to enter schedule().
1612 */
1613 if (unlikely(current->mm->core_waiters) &&
1614 unlikely(current->mm == current->parent->mm))
1615 return 0;
1616
1617 return 1;
1618 }
1619
1620 /*
1621 * This must be called with current->sighand->siglock held.
1622 *
1623 * This should be the path for all ptrace stops.
1624 * We always set current->last_siginfo while stopped here.
1625 * That makes it a way to test a stopped process for
1626 * being ptrace-stopped vs being job-control-stopped.
1627 *
1628 * If we actually decide not to stop at all because the tracer is gone,
1629 * we leave nostop_code in current->exit_code.
1630 */
1631 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1632 {
1633 /*
1634 * If there is a group stop in progress,
1635 * we must participate in the bookkeeping.
1636 */
1637 if (current->signal->group_stop_count > 0)
1638 --current->signal->group_stop_count;
1639
1640 current->last_siginfo = info;
1641 current->exit_code = exit_code;
1642
1643 /* Let the debugger run. */
1644 set_current_state(TASK_TRACED);
1645 spin_unlock_irq(&current->sighand->siglock);
1646 try_to_freeze();
1647 read_lock(&tasklist_lock);
1648 if (may_ptrace_stop()) {
1649 do_notify_parent_cldstop(current, CLD_TRAPPED);
1650 read_unlock(&tasklist_lock);
1651 schedule();
1652 } else {
1653 /*
1654 * By the time we got the lock, our tracer went away.
1655 * Don't stop here.
1656 */
1657 read_unlock(&tasklist_lock);
1658 set_current_state(TASK_RUNNING);
1659 current->exit_code = nostop_code;
1660 }
1661
1662 /*
1663 * We are back. Now reacquire the siglock before touching
1664 * last_siginfo, so that we are sure to have synchronized with
1665 * any signal-sending on another CPU that wants to examine it.
1666 */
1667 spin_lock_irq(&current->sighand->siglock);
1668 current->last_siginfo = NULL;
1669
1670 /*
1671 * Queued signals ignored us while we were stopped for tracing.
1672 * So check for any that we should take before resuming user mode.
1673 */
1674 recalc_sigpending();
1675 }
1676
1677 void ptrace_notify(int exit_code)
1678 {
1679 siginfo_t info;
1680
1681 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1682
1683 memset(&info, 0, sizeof info);
1684 info.si_signo = SIGTRAP;
1685 info.si_code = exit_code;
1686 info.si_pid = current->pid;
1687 info.si_uid = current->uid;
1688
1689 /* Let the debugger run. */
1690 spin_lock_irq(&current->sighand->siglock);
1691 ptrace_stop(exit_code, 0, &info);
1692 spin_unlock_irq(&current->sighand->siglock);
1693 }
1694
1695 static void
1696 finish_stop(int stop_count)
1697 {
1698 /*
1699 * If there are no other threads in the group, or if there is
1700 * a group stop in progress and we are the last to stop,
1701 * report to the parent. When ptraced, every thread reports itself.
1702 */
1703 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1704 read_lock(&tasklist_lock);
1705 do_notify_parent_cldstop(current, CLD_STOPPED);
1706 read_unlock(&tasklist_lock);
1707 }
1708
1709 do {
1710 schedule();
1711 } while (try_to_freeze());
1712 /*
1713 * Now we don't run again until continued.
1714 */
1715 current->exit_code = 0;
1716 }
1717
1718 /*
1719 * This performs the stopping for SIGSTOP and other stop signals.
1720 * We have to stop all threads in the thread group.
1721 * Returns nonzero if we've actually stopped and released the siglock.
1722 * Returns zero if we didn't stop and still hold the siglock.
1723 */
1724 static int do_signal_stop(int signr)
1725 {
1726 struct signal_struct *sig = current->signal;
1727 int stop_count;
1728
1729 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1730 return 0;
1731
1732 if (sig->group_stop_count > 0) {
1733 /*
1734 * There is a group stop in progress. We don't need to
1735 * start another one.
1736 */
1737 stop_count = --sig->group_stop_count;
1738 } else {
1739 /*
1740 * There is no group stop already in progress.
1741 * We must initiate one now.
1742 */
1743 struct task_struct *t;
1744
1745 sig->group_exit_code = signr;
1746
1747 stop_count = 0;
1748 for (t = next_thread(current); t != current; t = next_thread(t))
1749 /*
1750 * Setting state to TASK_STOPPED for a group
1751 * stop is always done with the siglock held,
1752 * so this check has no races.
1753 */
1754 if (!t->exit_state &&
1755 !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1756 stop_count++;
1757 signal_wake_up(t, 0);
1758 }
1759 sig->group_stop_count = stop_count;
1760 }
1761
1762 if (stop_count == 0)
1763 sig->flags = SIGNAL_STOP_STOPPED;
1764 current->exit_code = sig->group_exit_code;
1765 __set_current_state(TASK_STOPPED);
1766
1767 spin_unlock_irq(&current->sighand->siglock);
1768 finish_stop(stop_count);
1769 return 1;
1770 }
1771
1772 /*
1773 * Do appropriate magic when group_stop_count > 0.
1774 * We return nonzero if we stopped, after releasing the siglock.
1775 * We return zero if we still hold the siglock and should look
1776 * for another signal without checking group_stop_count again.
1777 */
1778 static int handle_group_stop(void)
1779 {
1780 int stop_count;
1781
1782 if (current->signal->group_exit_task == current) {
1783 /*
1784 * Group stop is so we can do a core dump,
1785 * We are the initiating thread, so get on with it.
1786 */
1787 current->signal->group_exit_task = NULL;
1788 return 0;
1789 }
1790
1791 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1792 /*
1793 * Group stop is so another thread can do a core dump,
1794 * or else we are racing against a death signal.
1795 * Just punt the stop so we can get the next signal.
1796 */
1797 return 0;
1798
1799 /*
1800 * There is a group stop in progress. We stop
1801 * without any associated signal being in our queue.
1802 */
1803 stop_count = --current->signal->group_stop_count;
1804 if (stop_count == 0)
1805 current->signal->flags = SIGNAL_STOP_STOPPED;
1806 current->exit_code = current->signal->group_exit_code;
1807 set_current_state(TASK_STOPPED);
1808 spin_unlock_irq(&current->sighand->siglock);
1809 finish_stop(stop_count);
1810 return 1;
1811 }
1812
1813 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1814 struct pt_regs *regs, void *cookie)
1815 {
1816 sigset_t *mask = &current->blocked;
1817 int signr = 0;
1818
1819 try_to_freeze();
1820
1821 relock:
1822 spin_lock_irq(&current->sighand->siglock);
1823 for (;;) {
1824 struct k_sigaction *ka;
1825
1826 if (unlikely(current->signal->group_stop_count > 0) &&
1827 handle_group_stop())
1828 goto relock;
1829
1830 signr = dequeue_signal(current, mask, info);
1831
1832 if (!signr)
1833 break; /* will return 0 */
1834
1835 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1836 ptrace_signal_deliver(regs, cookie);
1837
1838 /* Let the debugger run. */
1839 ptrace_stop(signr, signr, info);
1840
1841 /* We're back. Did the debugger cancel the sig? */
1842 signr = current->exit_code;
1843 if (signr == 0)
1844 continue;
1845
1846 current->exit_code = 0;
1847
1848 /* Update the siginfo structure if the signal has
1849 changed. If the debugger wanted something
1850 specific in the siginfo structure then it should
1851 have updated *info via PTRACE_SETSIGINFO. */
1852 if (signr != info->si_signo) {
1853 info->si_signo = signr;
1854 info->si_errno = 0;
1855 info->si_code = SI_USER;
1856 info->si_pid = current->parent->pid;
1857 info->si_uid = current->parent->uid;
1858 }
1859
1860 /* If the (new) signal is now blocked, requeue it. */
1861 if (sigismember(&current->blocked, signr)) {
1862 specific_send_sig_info(signr, info, current);
1863 continue;
1864 }
1865 }
1866
1867 ka = &current->sighand->action[signr-1];
1868 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1869 continue;
1870 if (ka->sa.sa_handler != SIG_DFL) {
1871 /* Run the handler. */
1872 *return_ka = *ka;
1873
1874 if (ka->sa.sa_flags & SA_ONESHOT)
1875 ka->sa.sa_handler = SIG_DFL;
1876
1877 break; /* will return non-zero "signr" value */
1878 }
1879
1880 /*
1881 * Now we are doing the default action for this signal.
1882 */
1883 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1884 continue;
1885
1886 /*
1887 * Init of a pid space gets no signals it doesn't want from
1888 * within that pid space. It can of course get signals from
1889 * its parent pid space.
1890 */
1891 if (current == child_reaper(current))
1892 continue;
1893
1894 if (sig_kernel_stop(signr)) {
1895 /*
1896 * The default action is to stop all threads in
1897 * the thread group. The job control signals
1898 * do nothing in an orphaned pgrp, but SIGSTOP
1899 * always works. Note that siglock needs to be
1900 * dropped during the call to is_orphaned_pgrp()
1901 * because of lock ordering with tasklist_lock.
1902 * This allows an intervening SIGCONT to be posted.
1903 * We need to check for that and bail out if necessary.
1904 */
1905 if (signr != SIGSTOP) {
1906 spin_unlock_irq(&current->sighand->siglock);
1907
1908 /* signals can be posted during this window */
1909
1910 if (is_current_pgrp_orphaned())
1911 goto relock;
1912
1913 spin_lock_irq(&current->sighand->siglock);
1914 }
1915
1916 if (likely(do_signal_stop(signr))) {
1917 /* It released the siglock. */
1918 goto relock;
1919 }
1920
1921 /*
1922 * We didn't actually stop, due to a race
1923 * with SIGCONT or something like that.
1924 */
1925 continue;
1926 }
1927
1928 spin_unlock_irq(&current->sighand->siglock);
1929
1930 /*
1931 * Anything else is fatal, maybe with a core dump.
1932 */
1933 current->flags |= PF_SIGNALED;
1934 if (sig_kernel_coredump(signr)) {
1935 /*
1936 * If it was able to dump core, this kills all
1937 * other threads in the group and synchronizes with
1938 * their demise. If we lost the race with another
1939 * thread getting here, it set group_exit_code
1940 * first and our do_group_exit call below will use
1941 * that value and ignore the one we pass it.
1942 */
1943 do_coredump((long)signr, signr, regs);
1944 }
1945
1946 /*
1947 * Death signals, no core dump.
1948 */
1949 do_group_exit(signr);
1950 /* NOTREACHED */
1951 }
1952 spin_unlock_irq(&current->sighand->siglock);
1953 return signr;
1954 }
1955
1956 EXPORT_SYMBOL(recalc_sigpending);
1957 EXPORT_SYMBOL_GPL(dequeue_signal);
1958 EXPORT_SYMBOL(flush_signals);
1959 EXPORT_SYMBOL(force_sig);
1960 EXPORT_SYMBOL(kill_proc);
1961 EXPORT_SYMBOL(ptrace_notify);
1962 EXPORT_SYMBOL(send_sig);
1963 EXPORT_SYMBOL(send_sig_info);
1964 EXPORT_SYMBOL(sigprocmask);
1965 EXPORT_SYMBOL(block_all_signals);
1966 EXPORT_SYMBOL(unblock_all_signals);
1967
1968
1969 /*
1970 * System call entry points.
1971 */
1972
1973 asmlinkage long sys_restart_syscall(void)
1974 {
1975 struct restart_block *restart = &current_thread_info()->restart_block;
1976 return restart->fn(restart);
1977 }
1978
1979 long do_no_restart_syscall(struct restart_block *param)
1980 {
1981 return -EINTR;
1982 }
1983
1984 /*
1985 * We don't need to get the kernel lock - this is all local to this
1986 * particular thread.. (and that's good, because this is _heavily_
1987 * used by various programs)
1988 */
1989
1990 /*
1991 * This is also useful for kernel threads that want to temporarily
1992 * (or permanently) block certain signals.
1993 *
1994 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1995 * interface happily blocks "unblockable" signals like SIGKILL
1996 * and friends.
1997 */
1998 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1999 {
2000 int error;
2001
2002 spin_lock_irq(&current->sighand->siglock);
2003 if (oldset)
2004 *oldset = current->blocked;
2005
2006 error = 0;
2007 switch (how) {
2008 case SIG_BLOCK:
2009 sigorsets(&current->blocked, &current->blocked, set);
2010 break;
2011 case SIG_UNBLOCK:
2012 signandsets(&current->blocked, &current->blocked, set);
2013 break;
2014 case SIG_SETMASK:
2015 current->blocked = *set;
2016 break;
2017 default:
2018 error = -EINVAL;
2019 }
2020 recalc_sigpending();
2021 spin_unlock_irq(&current->sighand->siglock);
2022
2023 return error;
2024 }
2025
2026 asmlinkage long
2027 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2028 {
2029 int error = -EINVAL;
2030 sigset_t old_set, new_set;
2031
2032 /* XXX: Don't preclude handling different sized sigset_t's. */
2033 if (sigsetsize != sizeof(sigset_t))
2034 goto out;
2035
2036 if (set) {
2037 error = -EFAULT;
2038 if (copy_from_user(&new_set, set, sizeof(*set)))
2039 goto out;
2040 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2041
2042 error = sigprocmask(how, &new_set, &old_set);
2043 if (error)
2044 goto out;
2045 if (oset)
2046 goto set_old;
2047 } else if (oset) {
2048 spin_lock_irq(&current->sighand->siglock);
2049 old_set = current->blocked;
2050 spin_unlock_irq(&current->sighand->siglock);
2051
2052 set_old:
2053 error = -EFAULT;
2054 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2055 goto out;
2056 }
2057 error = 0;
2058 out:
2059 return error;
2060 }
2061
2062 long do_sigpending(void __user *set, unsigned long sigsetsize)
2063 {
2064 long error = -EINVAL;
2065 sigset_t pending;
2066
2067 if (sigsetsize > sizeof(sigset_t))
2068 goto out;
2069
2070 spin_lock_irq(&current->sighand->siglock);
2071 sigorsets(&pending, &current->pending.signal,
2072 &current->signal->shared_pending.signal);
2073 spin_unlock_irq(&current->sighand->siglock);
2074
2075 /* Outside the lock because only this thread touches it. */
2076 sigandsets(&pending, &current->blocked, &pending);
2077
2078 error = -EFAULT;
2079 if (!copy_to_user(set, &pending, sigsetsize))
2080 error = 0;
2081
2082 out:
2083 return error;
2084 }
2085
2086 asmlinkage long
2087 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2088 {
2089 return do_sigpending(set, sigsetsize);
2090 }
2091
2092 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2093
2094 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2095 {
2096 int err;
2097
2098 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2099 return -EFAULT;
2100 if (from->si_code < 0)
2101 return __copy_to_user(to, from, sizeof(siginfo_t))
2102 ? -EFAULT : 0;
2103 /*
2104 * If you change siginfo_t structure, please be sure
2105 * this code is fixed accordingly.
2106 * It should never copy any pad contained in the structure
2107 * to avoid security leaks, but must copy the generic
2108 * 3 ints plus the relevant union member.
2109 */
2110 err = __put_user(from->si_signo, &to->si_signo);
2111 err |= __put_user(from->si_errno, &to->si_errno);
2112 err |= __put_user((short)from->si_code, &to->si_code);
2113 switch (from->si_code & __SI_MASK) {
2114 case __SI_KILL:
2115 err |= __put_user(from->si_pid, &to->si_pid);
2116 err |= __put_user(from->si_uid, &to->si_uid);
2117 break;
2118 case __SI_TIMER:
2119 err |= __put_user(from->si_tid, &to->si_tid);
2120 err |= __put_user(from->si_overrun, &to->si_overrun);
2121 err |= __put_user(from->si_ptr, &to->si_ptr);
2122 break;
2123 case __SI_POLL:
2124 err |= __put_user(from->si_band, &to->si_band);
2125 err |= __put_user(from->si_fd, &to->si_fd);
2126 break;
2127 case __SI_FAULT:
2128 err |= __put_user(from->si_addr, &to->si_addr);
2129 #ifdef __ARCH_SI_TRAPNO
2130 err |= __put_user(from->si_trapno, &to->si_trapno);
2131 #endif
2132 break;
2133 case __SI_CHLD:
2134 err |= __put_user(from->si_pid, &to->si_pid);
2135 err |= __put_user(from->si_uid, &to->si_uid);
2136 err |= __put_user(from->si_status, &to->si_status);
2137 err |= __put_user(from->si_utime, &to->si_utime);
2138 err |= __put_user(from->si_stime, &to->si_stime);
2139 break;
2140 case __SI_RT: /* This is not generated by the kernel as of now. */
2141 case __SI_MESGQ: /* But this is */
2142 err |= __put_user(from->si_pid, &to->si_pid);
2143 err |= __put_user(from->si_uid, &to->si_uid);
2144 err |= __put_user(from->si_ptr, &to->si_ptr);
2145 break;
2146 default: /* this is just in case for now ... */
2147 err |= __put_user(from->si_pid, &to->si_pid);
2148 err |= __put_user(from->si_uid, &to->si_uid);
2149 break;
2150 }
2151 return err;
2152 }
2153
2154 #endif
2155
2156 asmlinkage long
2157 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2158 siginfo_t __user *uinfo,
2159 const struct timespec __user *uts,
2160 size_t sigsetsize)
2161 {
2162 int ret, sig;
2163 sigset_t these;
2164 struct timespec ts;
2165 siginfo_t info;
2166 long timeout = 0;
2167
2168 /* XXX: Don't preclude handling different sized sigset_t's. */
2169 if (sigsetsize != sizeof(sigset_t))
2170 return -EINVAL;
2171
2172 if (copy_from_user(&these, uthese, sizeof(these)))
2173 return -EFAULT;
2174
2175 /*
2176 * Invert the set of allowed signals to get those we
2177 * want to block.
2178 */
2179 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2180 signotset(&these);
2181
2182 if (uts) {
2183 if (copy_from_user(&ts, uts, sizeof(ts)))
2184 return -EFAULT;
2185 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2186 || ts.tv_sec < 0)
2187 return -EINVAL;
2188 }
2189
2190 spin_lock_irq(&current->sighand->siglock);
2191 sig = dequeue_signal(current, &these, &info);
2192 if (!sig) {
2193 timeout = MAX_SCHEDULE_TIMEOUT;
2194 if (uts)
2195 timeout = (timespec_to_jiffies(&ts)
2196 + (ts.tv_sec || ts.tv_nsec));
2197
2198 if (timeout) {
2199 /* None ready -- temporarily unblock those we're
2200 * interested while we are sleeping in so that we'll
2201 * be awakened when they arrive. */
2202 current->real_blocked = current->blocked;
2203 sigandsets(&current->blocked, &current->blocked, &these);
2204 recalc_sigpending();
2205 spin_unlock_irq(&current->sighand->siglock);
2206
2207 timeout = schedule_timeout_interruptible(timeout);
2208
2209 spin_lock_irq(&current->sighand->siglock);
2210 sig = dequeue_signal(current, &these, &info);
2211 current->blocked = current->real_blocked;
2212 siginitset(&current->real_blocked, 0);
2213 recalc_sigpending();
2214 }
2215 }
2216 spin_unlock_irq(&current->sighand->siglock);
2217
2218 if (sig) {
2219 ret = sig;
2220 if (uinfo) {
2221 if (copy_siginfo_to_user(uinfo, &info))
2222 ret = -EFAULT;
2223 }
2224 } else {
2225 ret = -EAGAIN;
2226 if (timeout)
2227 ret = -EINTR;
2228 }
2229
2230 return ret;
2231 }
2232
2233 asmlinkage long
2234 sys_kill(int pid, int sig)
2235 {
2236 struct siginfo info;
2237
2238 info.si_signo = sig;
2239 info.si_errno = 0;
2240 info.si_code = SI_USER;
2241 info.si_pid = current->tgid;
2242 info.si_uid = current->uid;
2243
2244 return kill_something_info(sig, &info, pid);
2245 }
2246
2247 static int do_tkill(int tgid, int pid, int sig)
2248 {
2249 int error;
2250 struct siginfo info;
2251 struct task_struct *p;
2252
2253 error = -ESRCH;
2254 info.si_signo = sig;
2255 info.si_errno = 0;
2256 info.si_code = SI_TKILL;
2257 info.si_pid = current->tgid;
2258 info.si_uid = current->uid;
2259
2260 read_lock(&tasklist_lock);
2261 p = find_task_by_pid(pid);
2262 if (p && (tgid <= 0 || p->tgid == tgid)) {
2263 error = check_kill_permission(sig, &info, p);
2264 /*
2265 * The null signal is a permissions and process existence
2266 * probe. No signal is actually delivered.
2267 */
2268 if (!error && sig && p->sighand) {
2269 spin_lock_irq(&p->sighand->siglock);
2270 handle_stop_signal(sig, p);
2271 error = specific_send_sig_info(sig, &info, p);
2272 spin_unlock_irq(&p->sighand->siglock);
2273 }
2274 }
2275 read_unlock(&tasklist_lock);
2276
2277 return error;
2278 }
2279
2280 /**
2281 * sys_tgkill - send signal to one specific thread
2282 * @tgid: the thread group ID of the thread
2283 * @pid: the PID of the thread
2284 * @sig: signal to be sent
2285 *
2286 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2287 * exists but it's not belonging to the target process anymore. This
2288 * method solves the problem of threads exiting and PIDs getting reused.
2289 */
2290 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2291 {
2292 /* This is only valid for single tasks */
2293 if (pid <= 0 || tgid <= 0)
2294 return -EINVAL;
2295
2296 return do_tkill(tgid, pid, sig);
2297 }
2298
2299 /*
2300 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2301 */
2302 asmlinkage long
2303 sys_tkill(int pid, int sig)
2304 {
2305 /* This is only valid for single tasks */
2306 if (pid <= 0)
2307 return -EINVAL;
2308
2309 return do_tkill(0, pid, sig);
2310 }
2311
2312 asmlinkage long
2313 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2314 {
2315 siginfo_t info;
2316
2317 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2318 return -EFAULT;
2319
2320 /* Not even root can pretend to send signals from the kernel.
2321 Nor can they impersonate a kill(), which adds source info. */
2322 if (info.si_code >= 0)
2323 return -EPERM;
2324 info.si_signo = sig;
2325
2326 /* POSIX.1b doesn't mention process groups. */
2327 return kill_proc_info(sig, &info, pid);
2328 }
2329
2330 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2331 {
2332 struct k_sigaction *k;
2333 sigset_t mask;
2334
2335 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2336 return -EINVAL;
2337
2338 k = &current->sighand->action[sig-1];
2339
2340 spin_lock_irq(&current->sighand->siglock);
2341 if (signal_pending(current)) {
2342 /*
2343 * If there might be a fatal signal pending on multiple
2344 * threads, make sure we take it before changing the action.
2345 */
2346 spin_unlock_irq(&current->sighand->siglock);
2347 return -ERESTARTNOINTR;
2348 }
2349
2350 if (oact)
2351 *oact = *k;
2352
2353 if (act) {
2354 sigdelsetmask(&act->sa.sa_mask,
2355 sigmask(SIGKILL) | sigmask(SIGSTOP));
2356 *k = *act;
2357 /*
2358 * POSIX 3.3.1.3:
2359 * "Setting a signal action to SIG_IGN for a signal that is
2360 * pending shall cause the pending signal to be discarded,
2361 * whether or not it is blocked."
2362 *
2363 * "Setting a signal action to SIG_DFL for a signal that is
2364 * pending and whose default action is to ignore the signal
2365 * (for example, SIGCHLD), shall cause the pending signal to
2366 * be discarded, whether or not it is blocked"
2367 */
2368 if (act->sa.sa_handler == SIG_IGN ||
2369 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2370 struct task_struct *t = current;
2371 sigemptyset(&mask);
2372 sigaddset(&mask, sig);
2373 rm_from_queue_full(&mask, &t->signal->shared_pending);
2374 do {
2375 rm_from_queue_full(&mask, &t->pending);
2376 recalc_sigpending_tsk(t);
2377 t = next_thread(t);
2378 } while (t != current);
2379 }
2380 }
2381
2382 spin_unlock_irq(&current->sighand->siglock);
2383 return 0;
2384 }
2385
2386 int
2387 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2388 {
2389 stack_t oss;
2390 int error;
2391
2392 if (uoss) {
2393 oss.ss_sp = (void __user *) current->sas_ss_sp;
2394 oss.ss_size = current->sas_ss_size;
2395 oss.ss_flags = sas_ss_flags(sp);
2396 }
2397
2398 if (uss) {
2399 void __user *ss_sp;
2400 size_t ss_size;
2401 int ss_flags;
2402
2403 error = -EFAULT;
2404 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2405 || __get_user(ss_sp, &uss->ss_sp)
2406 || __get_user(ss_flags, &uss->ss_flags)
2407 || __get_user(ss_size, &uss->ss_size))
2408 goto out;
2409
2410 error = -EPERM;
2411 if (on_sig_stack(sp))
2412 goto out;
2413
2414 error = -EINVAL;
2415 /*
2416 *
2417 * Note - this code used to test ss_flags incorrectly
2418 * old code may have been written using ss_flags==0
2419 * to mean ss_flags==SS_ONSTACK (as this was the only
2420 * way that worked) - this fix preserves that older
2421 * mechanism
2422 */
2423 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2424 goto out;
2425
2426 if (ss_flags == SS_DISABLE) {
2427 ss_size = 0;
2428 ss_sp = NULL;
2429 } else {
2430 error = -ENOMEM;
2431 if (ss_size < MINSIGSTKSZ)
2432 goto out;
2433 }
2434
2435 current->sas_ss_sp = (unsigned long) ss_sp;
2436 current->sas_ss_size = ss_size;
2437 }
2438
2439 if (uoss) {
2440 error = -EFAULT;
2441 if (copy_to_user(uoss, &oss, sizeof(oss)))
2442 goto out;
2443 }
2444
2445 error = 0;
2446 out:
2447 return error;
2448 }
2449
2450 #ifdef __ARCH_WANT_SYS_SIGPENDING
2451
2452 asmlinkage long
2453 sys_sigpending(old_sigset_t __user *set)
2454 {
2455 return do_sigpending(set, sizeof(*set));
2456 }
2457
2458 #endif
2459
2460 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2461 /* Some platforms have their own version with special arguments others
2462 support only sys_rt_sigprocmask. */
2463
2464 asmlinkage long
2465 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2466 {
2467 int error;
2468 old_sigset_t old_set, new_set;
2469
2470 if (set) {
2471 error = -EFAULT;
2472 if (copy_from_user(&new_set, set, sizeof(*set)))
2473 goto out;
2474 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2475
2476 spin_lock_irq(&current->sighand->siglock);
2477 old_set = current->blocked.sig[0];
2478
2479 error = 0;
2480 switch (how) {
2481 default:
2482 error = -EINVAL;
2483 break;
2484 case SIG_BLOCK:
2485 sigaddsetmask(&current->blocked, new_set);
2486 break;
2487 case SIG_UNBLOCK:
2488 sigdelsetmask(&current->blocked, new_set);
2489 break;
2490 case SIG_SETMASK:
2491 current->blocked.sig[0] = new_set;
2492 break;
2493 }
2494
2495 recalc_sigpending();
2496 spin_unlock_irq(&current->sighand->siglock);
2497 if (error)
2498 goto out;
2499 if (oset)
2500 goto set_old;
2501 } else if (oset) {
2502 old_set = current->blocked.sig[0];
2503 set_old:
2504 error = -EFAULT;
2505 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2506 goto out;
2507 }
2508 error = 0;
2509 out:
2510 return error;
2511 }
2512 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2513
2514 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2515 asmlinkage long
2516 sys_rt_sigaction(int sig,
2517 const struct sigaction __user *act,
2518 struct sigaction __user *oact,
2519 size_t sigsetsize)
2520 {
2521 struct k_sigaction new_sa, old_sa;
2522 int ret = -EINVAL;
2523
2524 /* XXX: Don't preclude handling different sized sigset_t's. */
2525 if (sigsetsize != sizeof(sigset_t))
2526 goto out;
2527
2528 if (act) {
2529 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2530 return -EFAULT;
2531 }
2532
2533 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2534
2535 if (!ret && oact) {
2536 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2537 return -EFAULT;
2538 }
2539 out:
2540 return ret;
2541 }
2542 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2543
2544 #ifdef __ARCH_WANT_SYS_SGETMASK
2545
2546 /*
2547 * For backwards compatibility. Functionality superseded by sigprocmask.
2548 */
2549 asmlinkage long
2550 sys_sgetmask(void)
2551 {
2552 /* SMP safe */
2553 return current->blocked.sig[0];
2554 }
2555
2556 asmlinkage long
2557 sys_ssetmask(int newmask)
2558 {
2559 int old;
2560
2561 spin_lock_irq(&current->sighand->siglock);
2562 old = current->blocked.sig[0];
2563
2564 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2565 sigmask(SIGSTOP)));
2566 recalc_sigpending();
2567 spin_unlock_irq(&current->sighand->siglock);
2568
2569 return old;
2570 }
2571 #endif /* __ARCH_WANT_SGETMASK */
2572
2573 #ifdef __ARCH_WANT_SYS_SIGNAL
2574 /*
2575 * For backwards compatibility. Functionality superseded by sigaction.
2576 */
2577 asmlinkage unsigned long
2578 sys_signal(int sig, __sighandler_t handler)
2579 {
2580 struct k_sigaction new_sa, old_sa;
2581 int ret;
2582
2583 new_sa.sa.sa_handler = handler;
2584 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2585 sigemptyset(&new_sa.sa.sa_mask);
2586
2587 ret = do_sigaction(sig, &new_sa, &old_sa);
2588
2589 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2590 }
2591 #endif /* __ARCH_WANT_SYS_SIGNAL */
2592
2593 #ifdef __ARCH_WANT_SYS_PAUSE
2594
2595 asmlinkage long
2596 sys_pause(void)
2597 {
2598 current->state = TASK_INTERRUPTIBLE;
2599 schedule();
2600 return -ERESTARTNOHAND;
2601 }
2602
2603 #endif
2604
2605 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2606 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2607 {
2608 sigset_t newset;
2609
2610 /* XXX: Don't preclude handling different sized sigset_t's. */
2611 if (sigsetsize != sizeof(sigset_t))
2612 return -EINVAL;
2613
2614 if (copy_from_user(&newset, unewset, sizeof(newset)))
2615 return -EFAULT;
2616 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2617
2618 spin_lock_irq(&current->sighand->siglock);
2619 current->saved_sigmask = current->blocked;
2620 current->blocked = newset;
2621 recalc_sigpending();
2622 spin_unlock_irq(&current->sighand->siglock);
2623
2624 current->state = TASK_INTERRUPTIBLE;
2625 schedule();
2626 set_thread_flag(TIF_RESTORE_SIGMASK);
2627 return -ERESTARTNOHAND;
2628 }
2629 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2630
2631 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2632 {
2633 return NULL;
2634 }
2635
2636 void __init signals_init(void)
2637 {
2638 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2639 }