]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/signal.c
x86/speculation/mmio: Reuse SRBDS mitigation for SBDS
[mirror_ubuntu-jammy-kernel.git] / kernel / signal.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/signal.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 *
9 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
10 * Changes to use preallocated sigqueue structures
11 * to allow signals to be sent reliably.
12 */
13
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/tracehook.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/cgroup.h>
47 #include <linux/audit.h>
48
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/signal.h>
51
52 #include <asm/param.h>
53 #include <linux/uaccess.h>
54 #include <asm/unistd.h>
55 #include <asm/siginfo.h>
56 #include <asm/cacheflush.h>
57 #include <asm/syscall.h> /* for syscall_get_* */
58
59 /*
60 * SLAB caches for signal bits.
61 */
62
63 static struct kmem_cache *sigqueue_cachep;
64
65 int print_fatal_signals __read_mostly;
66
67 static void __user *sig_handler(struct task_struct *t, int sig)
68 {
69 return t->sighand->action[sig - 1].sa.sa_handler;
70 }
71
72 static inline bool sig_handler_ignored(void __user *handler, int sig)
73 {
74 /* Is it explicitly or implicitly ignored? */
75 return handler == SIG_IGN ||
76 (handler == SIG_DFL && sig_kernel_ignore(sig));
77 }
78
79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
80 {
81 void __user *handler;
82
83 handler = sig_handler(t, sig);
84
85 /* SIGKILL and SIGSTOP may not be sent to the global init */
86 if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
87 return true;
88
89 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
90 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
91 return true;
92
93 /* Only allow kernel generated signals to this kthread */
94 if (unlikely((t->flags & PF_KTHREAD) &&
95 (handler == SIG_KTHREAD_KERNEL) && !force))
96 return true;
97
98 return sig_handler_ignored(handler, sig);
99 }
100
101 static bool sig_ignored(struct task_struct *t, int sig, bool force)
102 {
103 /*
104 * Blocked signals are never ignored, since the
105 * signal handler may change by the time it is
106 * unblocked.
107 */
108 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
109 return false;
110
111 /*
112 * Tracers may want to know about even ignored signal unless it
113 * is SIGKILL which can't be reported anyway but can be ignored
114 * by SIGNAL_UNKILLABLE task.
115 */
116 if (t->ptrace && sig != SIGKILL)
117 return false;
118
119 return sig_task_ignored(t, sig, force);
120 }
121
122 /*
123 * Re-calculate pending state from the set of locally pending
124 * signals, globally pending signals, and blocked signals.
125 */
126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
127 {
128 unsigned long ready;
129 long i;
130
131 switch (_NSIG_WORDS) {
132 default:
133 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
134 ready |= signal->sig[i] &~ blocked->sig[i];
135 break;
136
137 case 4: ready = signal->sig[3] &~ blocked->sig[3];
138 ready |= signal->sig[2] &~ blocked->sig[2];
139 ready |= signal->sig[1] &~ blocked->sig[1];
140 ready |= signal->sig[0] &~ blocked->sig[0];
141 break;
142
143 case 2: ready = signal->sig[1] &~ blocked->sig[1];
144 ready |= signal->sig[0] &~ blocked->sig[0];
145 break;
146
147 case 1: ready = signal->sig[0] &~ blocked->sig[0];
148 }
149 return ready != 0;
150 }
151
152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
153
154 static bool recalc_sigpending_tsk(struct task_struct *t)
155 {
156 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
157 PENDING(&t->pending, &t->blocked) ||
158 PENDING(&t->signal->shared_pending, &t->blocked) ||
159 cgroup_task_frozen(t)) {
160 set_tsk_thread_flag(t, TIF_SIGPENDING);
161 return true;
162 }
163
164 /*
165 * We must never clear the flag in another thread, or in current
166 * when it's possible the current syscall is returning -ERESTART*.
167 * So we don't clear it here, and only callers who know they should do.
168 */
169 return false;
170 }
171
172 /*
173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
174 * This is superfluous when called on current, the wakeup is a harmless no-op.
175 */
176 void recalc_sigpending_and_wake(struct task_struct *t)
177 {
178 if (recalc_sigpending_tsk(t))
179 signal_wake_up(t, 0);
180 }
181
182 void recalc_sigpending(void)
183 {
184 if (!recalc_sigpending_tsk(current) && !freezing(current))
185 clear_thread_flag(TIF_SIGPENDING);
186
187 }
188 EXPORT_SYMBOL(recalc_sigpending);
189
190 void calculate_sigpending(void)
191 {
192 /* Have any signals or users of TIF_SIGPENDING been delayed
193 * until after fork?
194 */
195 spin_lock_irq(&current->sighand->siglock);
196 set_tsk_thread_flag(current, TIF_SIGPENDING);
197 recalc_sigpending();
198 spin_unlock_irq(&current->sighand->siglock);
199 }
200
201 /* Given the mask, find the first available signal that should be serviced. */
202
203 #define SYNCHRONOUS_MASK \
204 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
205 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
206
207 int next_signal(struct sigpending *pending, sigset_t *mask)
208 {
209 unsigned long i, *s, *m, x;
210 int sig = 0;
211
212 s = pending->signal.sig;
213 m = mask->sig;
214
215 /*
216 * Handle the first word specially: it contains the
217 * synchronous signals that need to be dequeued first.
218 */
219 x = *s &~ *m;
220 if (x) {
221 if (x & SYNCHRONOUS_MASK)
222 x &= SYNCHRONOUS_MASK;
223 sig = ffz(~x) + 1;
224 return sig;
225 }
226
227 switch (_NSIG_WORDS) {
228 default:
229 for (i = 1; i < _NSIG_WORDS; ++i) {
230 x = *++s &~ *++m;
231 if (!x)
232 continue;
233 sig = ffz(~x) + i*_NSIG_BPW + 1;
234 break;
235 }
236 break;
237
238 case 2:
239 x = s[1] &~ m[1];
240 if (!x)
241 break;
242 sig = ffz(~x) + _NSIG_BPW + 1;
243 break;
244
245 case 1:
246 /* Nothing to do */
247 break;
248 }
249
250 return sig;
251 }
252
253 static inline void print_dropped_signal(int sig)
254 {
255 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
256
257 if (!print_fatal_signals)
258 return;
259
260 if (!__ratelimit(&ratelimit_state))
261 return;
262
263 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
264 current->comm, current->pid, sig);
265 }
266
267 /**
268 * task_set_jobctl_pending - set jobctl pending bits
269 * @task: target task
270 * @mask: pending bits to set
271 *
272 * Clear @mask from @task->jobctl. @mask must be subset of
273 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
274 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
275 * cleared. If @task is already being killed or exiting, this function
276 * becomes noop.
277 *
278 * CONTEXT:
279 * Must be called with @task->sighand->siglock held.
280 *
281 * RETURNS:
282 * %true if @mask is set, %false if made noop because @task was dying.
283 */
284 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
285 {
286 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
287 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
288 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
289
290 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
291 return false;
292
293 if (mask & JOBCTL_STOP_SIGMASK)
294 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
295
296 task->jobctl |= mask;
297 return true;
298 }
299
300 /**
301 * task_clear_jobctl_trapping - clear jobctl trapping bit
302 * @task: target task
303 *
304 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
305 * Clear it and wake up the ptracer. Note that we don't need any further
306 * locking. @task->siglock guarantees that @task->parent points to the
307 * ptracer.
308 *
309 * CONTEXT:
310 * Must be called with @task->sighand->siglock held.
311 */
312 void task_clear_jobctl_trapping(struct task_struct *task)
313 {
314 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
315 task->jobctl &= ~JOBCTL_TRAPPING;
316 smp_mb(); /* advised by wake_up_bit() */
317 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
318 }
319 }
320
321 /**
322 * task_clear_jobctl_pending - clear jobctl pending bits
323 * @task: target task
324 * @mask: pending bits to clear
325 *
326 * Clear @mask from @task->jobctl. @mask must be subset of
327 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
328 * STOP bits are cleared together.
329 *
330 * If clearing of @mask leaves no stop or trap pending, this function calls
331 * task_clear_jobctl_trapping().
332 *
333 * CONTEXT:
334 * Must be called with @task->sighand->siglock held.
335 */
336 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
337 {
338 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
339
340 if (mask & JOBCTL_STOP_PENDING)
341 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
342
343 task->jobctl &= ~mask;
344
345 if (!(task->jobctl & JOBCTL_PENDING_MASK))
346 task_clear_jobctl_trapping(task);
347 }
348
349 /**
350 * task_participate_group_stop - participate in a group stop
351 * @task: task participating in a group stop
352 *
353 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
354 * Group stop states are cleared and the group stop count is consumed if
355 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
356 * stop, the appropriate `SIGNAL_*` flags are set.
357 *
358 * CONTEXT:
359 * Must be called with @task->sighand->siglock held.
360 *
361 * RETURNS:
362 * %true if group stop completion should be notified to the parent, %false
363 * otherwise.
364 */
365 static bool task_participate_group_stop(struct task_struct *task)
366 {
367 struct signal_struct *sig = task->signal;
368 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
369
370 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
371
372 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
373
374 if (!consume)
375 return false;
376
377 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
378 sig->group_stop_count--;
379
380 /*
381 * Tell the caller to notify completion iff we are entering into a
382 * fresh group stop. Read comment in do_signal_stop() for details.
383 */
384 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
385 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
386 return true;
387 }
388 return false;
389 }
390
391 void task_join_group_stop(struct task_struct *task)
392 {
393 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
394 struct signal_struct *sig = current->signal;
395
396 if (sig->group_stop_count) {
397 sig->group_stop_count++;
398 mask |= JOBCTL_STOP_CONSUME;
399 } else if (!(sig->flags & SIGNAL_STOP_STOPPED))
400 return;
401
402 /* Have the new thread join an on-going signal group stop */
403 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
404 }
405
406 /*
407 * allocate a new signal queue record
408 * - this may be called without locks if and only if t == current, otherwise an
409 * appropriate lock must be held to stop the target task from exiting
410 */
411 static struct sigqueue *
412 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
413 int override_rlimit, const unsigned int sigqueue_flags)
414 {
415 struct sigqueue *q = NULL;
416 struct ucounts *ucounts = NULL;
417 long sigpending;
418
419 /*
420 * Protect access to @t credentials. This can go away when all
421 * callers hold rcu read lock.
422 *
423 * NOTE! A pending signal will hold on to the user refcount,
424 * and we get/put the refcount only when the sigpending count
425 * changes from/to zero.
426 */
427 rcu_read_lock();
428 ucounts = task_ucounts(t);
429 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
430 rcu_read_unlock();
431 if (!sigpending)
432 return NULL;
433
434 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
435 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
436 } else {
437 print_dropped_signal(sig);
438 }
439
440 if (unlikely(q == NULL)) {
441 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
442 } else {
443 INIT_LIST_HEAD(&q->list);
444 q->flags = sigqueue_flags;
445 q->ucounts = ucounts;
446 }
447 return q;
448 }
449
450 static void __sigqueue_free(struct sigqueue *q)
451 {
452 if (q->flags & SIGQUEUE_PREALLOC)
453 return;
454 if (q->ucounts) {
455 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
456 q->ucounts = NULL;
457 }
458 kmem_cache_free(sigqueue_cachep, q);
459 }
460
461 void flush_sigqueue(struct sigpending *queue)
462 {
463 struct sigqueue *q;
464
465 sigemptyset(&queue->signal);
466 while (!list_empty(&queue->list)) {
467 q = list_entry(queue->list.next, struct sigqueue , list);
468 list_del_init(&q->list);
469 __sigqueue_free(q);
470 }
471 }
472
473 /*
474 * Flush all pending signals for this kthread.
475 */
476 void flush_signals(struct task_struct *t)
477 {
478 unsigned long flags;
479
480 spin_lock_irqsave(&t->sighand->siglock, flags);
481 clear_tsk_thread_flag(t, TIF_SIGPENDING);
482 flush_sigqueue(&t->pending);
483 flush_sigqueue(&t->signal->shared_pending);
484 spin_unlock_irqrestore(&t->sighand->siglock, flags);
485 }
486 EXPORT_SYMBOL(flush_signals);
487
488 #ifdef CONFIG_POSIX_TIMERS
489 static void __flush_itimer_signals(struct sigpending *pending)
490 {
491 sigset_t signal, retain;
492 struct sigqueue *q, *n;
493
494 signal = pending->signal;
495 sigemptyset(&retain);
496
497 list_for_each_entry_safe(q, n, &pending->list, list) {
498 int sig = q->info.si_signo;
499
500 if (likely(q->info.si_code != SI_TIMER)) {
501 sigaddset(&retain, sig);
502 } else {
503 sigdelset(&signal, sig);
504 list_del_init(&q->list);
505 __sigqueue_free(q);
506 }
507 }
508
509 sigorsets(&pending->signal, &signal, &retain);
510 }
511
512 void flush_itimer_signals(void)
513 {
514 struct task_struct *tsk = current;
515 unsigned long flags;
516
517 spin_lock_irqsave(&tsk->sighand->siglock, flags);
518 __flush_itimer_signals(&tsk->pending);
519 __flush_itimer_signals(&tsk->signal->shared_pending);
520 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
521 }
522 #endif
523
524 void ignore_signals(struct task_struct *t)
525 {
526 int i;
527
528 for (i = 0; i < _NSIG; ++i)
529 t->sighand->action[i].sa.sa_handler = SIG_IGN;
530
531 flush_signals(t);
532 }
533
534 /*
535 * Flush all handlers for a task.
536 */
537
538 void
539 flush_signal_handlers(struct task_struct *t, int force_default)
540 {
541 int i;
542 struct k_sigaction *ka = &t->sighand->action[0];
543 for (i = _NSIG ; i != 0 ; i--) {
544 if (force_default || ka->sa.sa_handler != SIG_IGN)
545 ka->sa.sa_handler = SIG_DFL;
546 ka->sa.sa_flags = 0;
547 #ifdef __ARCH_HAS_SA_RESTORER
548 ka->sa.sa_restorer = NULL;
549 #endif
550 sigemptyset(&ka->sa.sa_mask);
551 ka++;
552 }
553 }
554
555 bool unhandled_signal(struct task_struct *tsk, int sig)
556 {
557 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
558 if (is_global_init(tsk))
559 return true;
560
561 if (handler != SIG_IGN && handler != SIG_DFL)
562 return false;
563
564 /* if ptraced, let the tracer determine */
565 return !tsk->ptrace;
566 }
567
568 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
569 bool *resched_timer)
570 {
571 struct sigqueue *q, *first = NULL;
572
573 /*
574 * Collect the siginfo appropriate to this signal. Check if
575 * there is another siginfo for the same signal.
576 */
577 list_for_each_entry(q, &list->list, list) {
578 if (q->info.si_signo == sig) {
579 if (first)
580 goto still_pending;
581 first = q;
582 }
583 }
584
585 sigdelset(&list->signal, sig);
586
587 if (first) {
588 still_pending:
589 list_del_init(&first->list);
590 copy_siginfo(info, &first->info);
591
592 *resched_timer =
593 (first->flags & SIGQUEUE_PREALLOC) &&
594 (info->si_code == SI_TIMER) &&
595 (info->si_sys_private);
596
597 __sigqueue_free(first);
598 } else {
599 /*
600 * Ok, it wasn't in the queue. This must be
601 * a fast-pathed signal or we must have been
602 * out of queue space. So zero out the info.
603 */
604 clear_siginfo(info);
605 info->si_signo = sig;
606 info->si_errno = 0;
607 info->si_code = SI_USER;
608 info->si_pid = 0;
609 info->si_uid = 0;
610 }
611 }
612
613 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
614 kernel_siginfo_t *info, bool *resched_timer)
615 {
616 int sig = next_signal(pending, mask);
617
618 if (sig)
619 collect_signal(sig, pending, info, resched_timer);
620 return sig;
621 }
622
623 /*
624 * Dequeue a signal and return the element to the caller, which is
625 * expected to free it.
626 *
627 * All callers have to hold the siglock.
628 */
629 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
630 {
631 bool resched_timer = false;
632 int signr;
633
634 /* We only dequeue private signals from ourselves, we don't let
635 * signalfd steal them
636 */
637 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
638 if (!signr) {
639 signr = __dequeue_signal(&tsk->signal->shared_pending,
640 mask, info, &resched_timer);
641 #ifdef CONFIG_POSIX_TIMERS
642 /*
643 * itimer signal ?
644 *
645 * itimers are process shared and we restart periodic
646 * itimers in the signal delivery path to prevent DoS
647 * attacks in the high resolution timer case. This is
648 * compliant with the old way of self-restarting
649 * itimers, as the SIGALRM is a legacy signal and only
650 * queued once. Changing the restart behaviour to
651 * restart the timer in the signal dequeue path is
652 * reducing the timer noise on heavy loaded !highres
653 * systems too.
654 */
655 if (unlikely(signr == SIGALRM)) {
656 struct hrtimer *tmr = &tsk->signal->real_timer;
657
658 if (!hrtimer_is_queued(tmr) &&
659 tsk->signal->it_real_incr != 0) {
660 hrtimer_forward(tmr, tmr->base->get_time(),
661 tsk->signal->it_real_incr);
662 hrtimer_restart(tmr);
663 }
664 }
665 #endif
666 }
667
668 recalc_sigpending();
669 if (!signr)
670 return 0;
671
672 if (unlikely(sig_kernel_stop(signr))) {
673 /*
674 * Set a marker that we have dequeued a stop signal. Our
675 * caller might release the siglock and then the pending
676 * stop signal it is about to process is no longer in the
677 * pending bitmasks, but must still be cleared by a SIGCONT
678 * (and overruled by a SIGKILL). So those cases clear this
679 * shared flag after we've set it. Note that this flag may
680 * remain set after the signal we return is ignored or
681 * handled. That doesn't matter because its only purpose
682 * is to alert stop-signal processing code when another
683 * processor has come along and cleared the flag.
684 */
685 current->jobctl |= JOBCTL_STOP_DEQUEUED;
686 }
687 #ifdef CONFIG_POSIX_TIMERS
688 if (resched_timer) {
689 /*
690 * Release the siglock to ensure proper locking order
691 * of timer locks outside of siglocks. Note, we leave
692 * irqs disabled here, since the posix-timers code is
693 * about to disable them again anyway.
694 */
695 spin_unlock(&tsk->sighand->siglock);
696 posixtimer_rearm(info);
697 spin_lock(&tsk->sighand->siglock);
698
699 /* Don't expose the si_sys_private value to userspace */
700 info->si_sys_private = 0;
701 }
702 #endif
703 return signr;
704 }
705 EXPORT_SYMBOL_GPL(dequeue_signal);
706
707 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
708 {
709 struct task_struct *tsk = current;
710 struct sigpending *pending = &tsk->pending;
711 struct sigqueue *q, *sync = NULL;
712
713 /*
714 * Might a synchronous signal be in the queue?
715 */
716 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
717 return 0;
718
719 /*
720 * Return the first synchronous signal in the queue.
721 */
722 list_for_each_entry(q, &pending->list, list) {
723 /* Synchronous signals have a positive si_code */
724 if ((q->info.si_code > SI_USER) &&
725 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
726 sync = q;
727 goto next;
728 }
729 }
730 return 0;
731 next:
732 /*
733 * Check if there is another siginfo for the same signal.
734 */
735 list_for_each_entry_continue(q, &pending->list, list) {
736 if (q->info.si_signo == sync->info.si_signo)
737 goto still_pending;
738 }
739
740 sigdelset(&pending->signal, sync->info.si_signo);
741 recalc_sigpending();
742 still_pending:
743 list_del_init(&sync->list);
744 copy_siginfo(info, &sync->info);
745 __sigqueue_free(sync);
746 return info->si_signo;
747 }
748
749 /*
750 * Tell a process that it has a new active signal..
751 *
752 * NOTE! we rely on the previous spin_lock to
753 * lock interrupts for us! We can only be called with
754 * "siglock" held, and the local interrupt must
755 * have been disabled when that got acquired!
756 *
757 * No need to set need_resched since signal event passing
758 * goes through ->blocked
759 */
760 void signal_wake_up_state(struct task_struct *t, unsigned int state)
761 {
762 set_tsk_thread_flag(t, TIF_SIGPENDING);
763 /*
764 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
765 * case. We don't check t->state here because there is a race with it
766 * executing another processor and just now entering stopped state.
767 * By using wake_up_state, we ensure the process will wake up and
768 * handle its death signal.
769 */
770 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
771 kick_process(t);
772 }
773
774 /*
775 * Remove signals in mask from the pending set and queue.
776 * Returns 1 if any signals were found.
777 *
778 * All callers must be holding the siglock.
779 */
780 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
781 {
782 struct sigqueue *q, *n;
783 sigset_t m;
784
785 sigandsets(&m, mask, &s->signal);
786 if (sigisemptyset(&m))
787 return;
788
789 sigandnsets(&s->signal, &s->signal, mask);
790 list_for_each_entry_safe(q, n, &s->list, list) {
791 if (sigismember(mask, q->info.si_signo)) {
792 list_del_init(&q->list);
793 __sigqueue_free(q);
794 }
795 }
796 }
797
798 static inline int is_si_special(const struct kernel_siginfo *info)
799 {
800 return info <= SEND_SIG_PRIV;
801 }
802
803 static inline bool si_fromuser(const struct kernel_siginfo *info)
804 {
805 return info == SEND_SIG_NOINFO ||
806 (!is_si_special(info) && SI_FROMUSER(info));
807 }
808
809 /*
810 * called with RCU read lock from check_kill_permission()
811 */
812 static bool kill_ok_by_cred(struct task_struct *t)
813 {
814 const struct cred *cred = current_cred();
815 const struct cred *tcred = __task_cred(t);
816
817 return uid_eq(cred->euid, tcred->suid) ||
818 uid_eq(cred->euid, tcred->uid) ||
819 uid_eq(cred->uid, tcred->suid) ||
820 uid_eq(cred->uid, tcred->uid) ||
821 ns_capable(tcred->user_ns, CAP_KILL);
822 }
823
824 /*
825 * Bad permissions for sending the signal
826 * - the caller must hold the RCU read lock
827 */
828 static int check_kill_permission(int sig, struct kernel_siginfo *info,
829 struct task_struct *t)
830 {
831 struct pid *sid;
832 int error;
833
834 if (!valid_signal(sig))
835 return -EINVAL;
836
837 if (!si_fromuser(info))
838 return 0;
839
840 error = audit_signal_info(sig, t); /* Let audit system see the signal */
841 if (error)
842 return error;
843
844 if (!same_thread_group(current, t) &&
845 !kill_ok_by_cred(t)) {
846 switch (sig) {
847 case SIGCONT:
848 sid = task_session(t);
849 /*
850 * We don't return the error if sid == NULL. The
851 * task was unhashed, the caller must notice this.
852 */
853 if (!sid || sid == task_session(current))
854 break;
855 fallthrough;
856 default:
857 return -EPERM;
858 }
859 }
860
861 return security_task_kill(t, info, sig, NULL);
862 }
863
864 /**
865 * ptrace_trap_notify - schedule trap to notify ptracer
866 * @t: tracee wanting to notify tracer
867 *
868 * This function schedules sticky ptrace trap which is cleared on the next
869 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
870 * ptracer.
871 *
872 * If @t is running, STOP trap will be taken. If trapped for STOP and
873 * ptracer is listening for events, tracee is woken up so that it can
874 * re-trap for the new event. If trapped otherwise, STOP trap will be
875 * eventually taken without returning to userland after the existing traps
876 * are finished by PTRACE_CONT.
877 *
878 * CONTEXT:
879 * Must be called with @task->sighand->siglock held.
880 */
881 static void ptrace_trap_notify(struct task_struct *t)
882 {
883 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
884 assert_spin_locked(&t->sighand->siglock);
885
886 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
887 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
888 }
889
890 /*
891 * Handle magic process-wide effects of stop/continue signals. Unlike
892 * the signal actions, these happen immediately at signal-generation
893 * time regardless of blocking, ignoring, or handling. This does the
894 * actual continuing for SIGCONT, but not the actual stopping for stop
895 * signals. The process stop is done as a signal action for SIG_DFL.
896 *
897 * Returns true if the signal should be actually delivered, otherwise
898 * it should be dropped.
899 */
900 static bool prepare_signal(int sig, struct task_struct *p, bool force)
901 {
902 struct signal_struct *signal = p->signal;
903 struct task_struct *t;
904 sigset_t flush;
905
906 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
907 if (!(signal->flags & SIGNAL_GROUP_EXIT))
908 return sig == SIGKILL;
909 /*
910 * The process is in the middle of dying, nothing to do.
911 */
912 } else if (sig_kernel_stop(sig)) {
913 /*
914 * This is a stop signal. Remove SIGCONT from all queues.
915 */
916 siginitset(&flush, sigmask(SIGCONT));
917 flush_sigqueue_mask(&flush, &signal->shared_pending);
918 for_each_thread(p, t)
919 flush_sigqueue_mask(&flush, &t->pending);
920 } else if (sig == SIGCONT) {
921 unsigned int why;
922 /*
923 * Remove all stop signals from all queues, wake all threads.
924 */
925 siginitset(&flush, SIG_KERNEL_STOP_MASK);
926 flush_sigqueue_mask(&flush, &signal->shared_pending);
927 for_each_thread(p, t) {
928 flush_sigqueue_mask(&flush, &t->pending);
929 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
930 if (likely(!(t->ptrace & PT_SEIZED)))
931 wake_up_state(t, __TASK_STOPPED);
932 else
933 ptrace_trap_notify(t);
934 }
935
936 /*
937 * Notify the parent with CLD_CONTINUED if we were stopped.
938 *
939 * If we were in the middle of a group stop, we pretend it
940 * was already finished, and then continued. Since SIGCHLD
941 * doesn't queue we report only CLD_STOPPED, as if the next
942 * CLD_CONTINUED was dropped.
943 */
944 why = 0;
945 if (signal->flags & SIGNAL_STOP_STOPPED)
946 why |= SIGNAL_CLD_CONTINUED;
947 else if (signal->group_stop_count)
948 why |= SIGNAL_CLD_STOPPED;
949
950 if (why) {
951 /*
952 * The first thread which returns from do_signal_stop()
953 * will take ->siglock, notice SIGNAL_CLD_MASK, and
954 * notify its parent. See get_signal().
955 */
956 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
957 signal->group_stop_count = 0;
958 signal->group_exit_code = 0;
959 }
960 }
961
962 return !sig_ignored(p, sig, force);
963 }
964
965 /*
966 * Test if P wants to take SIG. After we've checked all threads with this,
967 * it's equivalent to finding no threads not blocking SIG. Any threads not
968 * blocking SIG were ruled out because they are not running and already
969 * have pending signals. Such threads will dequeue from the shared queue
970 * as soon as they're available, so putting the signal on the shared queue
971 * will be equivalent to sending it to one such thread.
972 */
973 static inline bool wants_signal(int sig, struct task_struct *p)
974 {
975 if (sigismember(&p->blocked, sig))
976 return false;
977
978 if (p->flags & PF_EXITING)
979 return false;
980
981 if (sig == SIGKILL)
982 return true;
983
984 if (task_is_stopped_or_traced(p))
985 return false;
986
987 return task_curr(p) || !task_sigpending(p);
988 }
989
990 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
991 {
992 struct signal_struct *signal = p->signal;
993 struct task_struct *t;
994
995 /*
996 * Now find a thread we can wake up to take the signal off the queue.
997 *
998 * If the main thread wants the signal, it gets first crack.
999 * Probably the least surprising to the average bear.
1000 */
1001 if (wants_signal(sig, p))
1002 t = p;
1003 else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1004 /*
1005 * There is just one thread and it does not need to be woken.
1006 * It will dequeue unblocked signals before it runs again.
1007 */
1008 return;
1009 else {
1010 /*
1011 * Otherwise try to find a suitable thread.
1012 */
1013 t = signal->curr_target;
1014 while (!wants_signal(sig, t)) {
1015 t = next_thread(t);
1016 if (t == signal->curr_target)
1017 /*
1018 * No thread needs to be woken.
1019 * Any eligible threads will see
1020 * the signal in the queue soon.
1021 */
1022 return;
1023 }
1024 signal->curr_target = t;
1025 }
1026
1027 /*
1028 * Found a killable thread. If the signal will be fatal,
1029 * then start taking the whole group down immediately.
1030 */
1031 if (sig_fatal(p, sig) &&
1032 !(signal->flags & SIGNAL_GROUP_EXIT) &&
1033 !sigismember(&t->real_blocked, sig) &&
1034 (sig == SIGKILL || !p->ptrace)) {
1035 /*
1036 * This signal will be fatal to the whole group.
1037 */
1038 if (!sig_kernel_coredump(sig)) {
1039 /*
1040 * Start a group exit and wake everybody up.
1041 * This way we don't have other threads
1042 * running and doing things after a slower
1043 * thread has the fatal signal pending.
1044 */
1045 signal->flags = SIGNAL_GROUP_EXIT;
1046 signal->group_exit_code = sig;
1047 signal->group_stop_count = 0;
1048 t = p;
1049 do {
1050 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1051 sigaddset(&t->pending.signal, SIGKILL);
1052 signal_wake_up(t, 1);
1053 } while_each_thread(p, t);
1054 return;
1055 }
1056 }
1057
1058 /*
1059 * The signal is already in the shared-pending queue.
1060 * Tell the chosen thread to wake up and dequeue it.
1061 */
1062 signal_wake_up(t, sig == SIGKILL);
1063 return;
1064 }
1065
1066 static inline bool legacy_queue(struct sigpending *signals, int sig)
1067 {
1068 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1069 }
1070
1071 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1072 enum pid_type type, bool force)
1073 {
1074 struct sigpending *pending;
1075 struct sigqueue *q;
1076 int override_rlimit;
1077 int ret = 0, result;
1078
1079 assert_spin_locked(&t->sighand->siglock);
1080
1081 result = TRACE_SIGNAL_IGNORED;
1082 if (!prepare_signal(sig, t, force))
1083 goto ret;
1084
1085 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1086 /*
1087 * Short-circuit ignored signals and support queuing
1088 * exactly one non-rt signal, so that we can get more
1089 * detailed information about the cause of the signal.
1090 */
1091 result = TRACE_SIGNAL_ALREADY_PENDING;
1092 if (legacy_queue(pending, sig))
1093 goto ret;
1094
1095 result = TRACE_SIGNAL_DELIVERED;
1096 /*
1097 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1098 */
1099 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1100 goto out_set;
1101
1102 /*
1103 * Real-time signals must be queued if sent by sigqueue, or
1104 * some other real-time mechanism. It is implementation
1105 * defined whether kill() does so. We attempt to do so, on
1106 * the principle of least surprise, but since kill is not
1107 * allowed to fail with EAGAIN when low on memory we just
1108 * make sure at least one signal gets delivered and don't
1109 * pass on the info struct.
1110 */
1111 if (sig < SIGRTMIN)
1112 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1113 else
1114 override_rlimit = 0;
1115
1116 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1117
1118 if (q) {
1119 list_add_tail(&q->list, &pending->list);
1120 switch ((unsigned long) info) {
1121 case (unsigned long) SEND_SIG_NOINFO:
1122 clear_siginfo(&q->info);
1123 q->info.si_signo = sig;
1124 q->info.si_errno = 0;
1125 q->info.si_code = SI_USER;
1126 q->info.si_pid = task_tgid_nr_ns(current,
1127 task_active_pid_ns(t));
1128 rcu_read_lock();
1129 q->info.si_uid =
1130 from_kuid_munged(task_cred_xxx(t, user_ns),
1131 current_uid());
1132 rcu_read_unlock();
1133 break;
1134 case (unsigned long) SEND_SIG_PRIV:
1135 clear_siginfo(&q->info);
1136 q->info.si_signo = sig;
1137 q->info.si_errno = 0;
1138 q->info.si_code = SI_KERNEL;
1139 q->info.si_pid = 0;
1140 q->info.si_uid = 0;
1141 break;
1142 default:
1143 copy_siginfo(&q->info, info);
1144 break;
1145 }
1146 } else if (!is_si_special(info) &&
1147 sig >= SIGRTMIN && info->si_code != SI_USER) {
1148 /*
1149 * Queue overflow, abort. We may abort if the
1150 * signal was rt and sent by user using something
1151 * other than kill().
1152 */
1153 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1154 ret = -EAGAIN;
1155 goto ret;
1156 } else {
1157 /*
1158 * This is a silent loss of information. We still
1159 * send the signal, but the *info bits are lost.
1160 */
1161 result = TRACE_SIGNAL_LOSE_INFO;
1162 }
1163
1164 out_set:
1165 signalfd_notify(t, sig);
1166 sigaddset(&pending->signal, sig);
1167
1168 /* Let multiprocess signals appear after on-going forks */
1169 if (type > PIDTYPE_TGID) {
1170 struct multiprocess_signals *delayed;
1171 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1172 sigset_t *signal = &delayed->signal;
1173 /* Can't queue both a stop and a continue signal */
1174 if (sig == SIGCONT)
1175 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1176 else if (sig_kernel_stop(sig))
1177 sigdelset(signal, SIGCONT);
1178 sigaddset(signal, sig);
1179 }
1180 }
1181
1182 complete_signal(sig, t, type);
1183 ret:
1184 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1185 return ret;
1186 }
1187
1188 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1189 {
1190 bool ret = false;
1191 switch (siginfo_layout(info->si_signo, info->si_code)) {
1192 case SIL_KILL:
1193 case SIL_CHLD:
1194 case SIL_RT:
1195 ret = true;
1196 break;
1197 case SIL_TIMER:
1198 case SIL_POLL:
1199 case SIL_FAULT:
1200 case SIL_FAULT_TRAPNO:
1201 case SIL_FAULT_MCEERR:
1202 case SIL_FAULT_BNDERR:
1203 case SIL_FAULT_PKUERR:
1204 case SIL_FAULT_PERF_EVENT:
1205 case SIL_SYS:
1206 ret = false;
1207 break;
1208 }
1209 return ret;
1210 }
1211
1212 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1213 enum pid_type type)
1214 {
1215 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1216 bool force = false;
1217
1218 if (info == SEND_SIG_NOINFO) {
1219 /* Force if sent from an ancestor pid namespace */
1220 force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1221 } else if (info == SEND_SIG_PRIV) {
1222 /* Don't ignore kernel generated signals */
1223 force = true;
1224 } else if (has_si_pid_and_uid(info)) {
1225 /* SIGKILL and SIGSTOP is special or has ids */
1226 struct user_namespace *t_user_ns;
1227
1228 rcu_read_lock();
1229 t_user_ns = task_cred_xxx(t, user_ns);
1230 if (current_user_ns() != t_user_ns) {
1231 kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1232 info->si_uid = from_kuid_munged(t_user_ns, uid);
1233 }
1234 rcu_read_unlock();
1235
1236 /* A kernel generated signal? */
1237 force = (info->si_code == SI_KERNEL);
1238
1239 /* From an ancestor pid namespace? */
1240 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1241 info->si_pid = 0;
1242 force = true;
1243 }
1244 }
1245 return __send_signal(sig, info, t, type, force);
1246 }
1247
1248 static void print_fatal_signal(int signr)
1249 {
1250 struct pt_regs *regs = signal_pt_regs();
1251 pr_info("potentially unexpected fatal signal %d.\n", signr);
1252
1253 #if defined(__i386__) && !defined(__arch_um__)
1254 pr_info("code at %08lx: ", regs->ip);
1255 {
1256 int i;
1257 for (i = 0; i < 16; i++) {
1258 unsigned char insn;
1259
1260 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1261 break;
1262 pr_cont("%02x ", insn);
1263 }
1264 }
1265 pr_cont("\n");
1266 #endif
1267 preempt_disable();
1268 show_regs(regs);
1269 preempt_enable();
1270 }
1271
1272 static int __init setup_print_fatal_signals(char *str)
1273 {
1274 get_option (&str, &print_fatal_signals);
1275
1276 return 1;
1277 }
1278
1279 __setup("print-fatal-signals=", setup_print_fatal_signals);
1280
1281 int
1282 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1283 {
1284 return send_signal(sig, info, p, PIDTYPE_TGID);
1285 }
1286
1287 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1288 enum pid_type type)
1289 {
1290 unsigned long flags;
1291 int ret = -ESRCH;
1292
1293 if (lock_task_sighand(p, &flags)) {
1294 ret = send_signal(sig, info, p, type);
1295 unlock_task_sighand(p, &flags);
1296 }
1297
1298 return ret;
1299 }
1300
1301 enum sig_handler {
1302 HANDLER_CURRENT, /* If reachable use the current handler */
1303 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1304 HANDLER_EXIT, /* Only visible as the process exit code */
1305 };
1306
1307 /*
1308 * Force a signal that the process can't ignore: if necessary
1309 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1310 *
1311 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1312 * since we do not want to have a signal handler that was blocked
1313 * be invoked when user space had explicitly blocked it.
1314 *
1315 * We don't want to have recursive SIGSEGV's etc, for example,
1316 * that is why we also clear SIGNAL_UNKILLABLE.
1317 */
1318 static int
1319 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1320 enum sig_handler handler)
1321 {
1322 unsigned long int flags;
1323 int ret, blocked, ignored;
1324 struct k_sigaction *action;
1325 int sig = info->si_signo;
1326
1327 spin_lock_irqsave(&t->sighand->siglock, flags);
1328 action = &t->sighand->action[sig-1];
1329 ignored = action->sa.sa_handler == SIG_IGN;
1330 blocked = sigismember(&t->blocked, sig);
1331 if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1332 action->sa.sa_handler = SIG_DFL;
1333 if (handler == HANDLER_EXIT)
1334 action->sa.sa_flags |= SA_IMMUTABLE;
1335 if (blocked) {
1336 sigdelset(&t->blocked, sig);
1337 recalc_sigpending_and_wake(t);
1338 }
1339 }
1340 /*
1341 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1342 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1343 */
1344 if (action->sa.sa_handler == SIG_DFL &&
1345 (!t->ptrace || (handler == HANDLER_EXIT)))
1346 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1347 ret = send_signal(sig, info, t, PIDTYPE_PID);
1348 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1349
1350 return ret;
1351 }
1352
1353 int force_sig_info(struct kernel_siginfo *info)
1354 {
1355 return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1356 }
1357
1358 /*
1359 * Nuke all other threads in the group.
1360 */
1361 int zap_other_threads(struct task_struct *p)
1362 {
1363 struct task_struct *t = p;
1364 int count = 0;
1365
1366 p->signal->group_stop_count = 0;
1367
1368 while_each_thread(p, t) {
1369 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1370 count++;
1371
1372 /* Don't bother with already dead threads */
1373 if (t->exit_state)
1374 continue;
1375 sigaddset(&t->pending.signal, SIGKILL);
1376 signal_wake_up(t, 1);
1377 }
1378
1379 return count;
1380 }
1381
1382 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1383 unsigned long *flags)
1384 {
1385 struct sighand_struct *sighand;
1386
1387 rcu_read_lock();
1388 for (;;) {
1389 sighand = rcu_dereference(tsk->sighand);
1390 if (unlikely(sighand == NULL))
1391 break;
1392
1393 /*
1394 * This sighand can be already freed and even reused, but
1395 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1396 * initializes ->siglock: this slab can't go away, it has
1397 * the same object type, ->siglock can't be reinitialized.
1398 *
1399 * We need to ensure that tsk->sighand is still the same
1400 * after we take the lock, we can race with de_thread() or
1401 * __exit_signal(). In the latter case the next iteration
1402 * must see ->sighand == NULL.
1403 */
1404 spin_lock_irqsave(&sighand->siglock, *flags);
1405 if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1406 break;
1407 spin_unlock_irqrestore(&sighand->siglock, *flags);
1408 }
1409 rcu_read_unlock();
1410
1411 return sighand;
1412 }
1413
1414 #ifdef CONFIG_LOCKDEP
1415 void lockdep_assert_task_sighand_held(struct task_struct *task)
1416 {
1417 struct sighand_struct *sighand;
1418
1419 rcu_read_lock();
1420 sighand = rcu_dereference(task->sighand);
1421 if (sighand)
1422 lockdep_assert_held(&sighand->siglock);
1423 else
1424 WARN_ON_ONCE(1);
1425 rcu_read_unlock();
1426 }
1427 #endif
1428
1429 /*
1430 * send signal info to all the members of a group
1431 */
1432 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1433 struct task_struct *p, enum pid_type type)
1434 {
1435 int ret;
1436
1437 rcu_read_lock();
1438 ret = check_kill_permission(sig, info, p);
1439 rcu_read_unlock();
1440
1441 if (!ret && sig)
1442 ret = do_send_sig_info(sig, info, p, type);
1443
1444 return ret;
1445 }
1446
1447 /*
1448 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1449 * control characters do (^C, ^Z etc)
1450 * - the caller must hold at least a readlock on tasklist_lock
1451 */
1452 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1453 {
1454 struct task_struct *p = NULL;
1455 int retval, success;
1456
1457 success = 0;
1458 retval = -ESRCH;
1459 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1460 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1461 success |= !err;
1462 retval = err;
1463 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1464 return success ? 0 : retval;
1465 }
1466
1467 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1468 {
1469 int error = -ESRCH;
1470 struct task_struct *p;
1471
1472 for (;;) {
1473 rcu_read_lock();
1474 p = pid_task(pid, PIDTYPE_PID);
1475 if (p)
1476 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1477 rcu_read_unlock();
1478 if (likely(!p || error != -ESRCH))
1479 return error;
1480
1481 /*
1482 * The task was unhashed in between, try again. If it
1483 * is dead, pid_task() will return NULL, if we race with
1484 * de_thread() it will find the new leader.
1485 */
1486 }
1487 }
1488
1489 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1490 {
1491 int error;
1492 rcu_read_lock();
1493 error = kill_pid_info(sig, info, find_vpid(pid));
1494 rcu_read_unlock();
1495 return error;
1496 }
1497
1498 static inline bool kill_as_cred_perm(const struct cred *cred,
1499 struct task_struct *target)
1500 {
1501 const struct cred *pcred = __task_cred(target);
1502
1503 return uid_eq(cred->euid, pcred->suid) ||
1504 uid_eq(cred->euid, pcred->uid) ||
1505 uid_eq(cred->uid, pcred->suid) ||
1506 uid_eq(cred->uid, pcred->uid);
1507 }
1508
1509 /*
1510 * The usb asyncio usage of siginfo is wrong. The glibc support
1511 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1512 * AKA after the generic fields:
1513 * kernel_pid_t si_pid;
1514 * kernel_uid32_t si_uid;
1515 * sigval_t si_value;
1516 *
1517 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1518 * after the generic fields is:
1519 * void __user *si_addr;
1520 *
1521 * This is a practical problem when there is a 64bit big endian kernel
1522 * and a 32bit userspace. As the 32bit address will encoded in the low
1523 * 32bits of the pointer. Those low 32bits will be stored at higher
1524 * address than appear in a 32 bit pointer. So userspace will not
1525 * see the address it was expecting for it's completions.
1526 *
1527 * There is nothing in the encoding that can allow
1528 * copy_siginfo_to_user32 to detect this confusion of formats, so
1529 * handle this by requiring the caller of kill_pid_usb_asyncio to
1530 * notice when this situration takes place and to store the 32bit
1531 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1532 * parameter.
1533 */
1534 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1535 struct pid *pid, const struct cred *cred)
1536 {
1537 struct kernel_siginfo info;
1538 struct task_struct *p;
1539 unsigned long flags;
1540 int ret = -EINVAL;
1541
1542 if (!valid_signal(sig))
1543 return ret;
1544
1545 clear_siginfo(&info);
1546 info.si_signo = sig;
1547 info.si_errno = errno;
1548 info.si_code = SI_ASYNCIO;
1549 *((sigval_t *)&info.si_pid) = addr;
1550
1551 rcu_read_lock();
1552 p = pid_task(pid, PIDTYPE_PID);
1553 if (!p) {
1554 ret = -ESRCH;
1555 goto out_unlock;
1556 }
1557 if (!kill_as_cred_perm(cred, p)) {
1558 ret = -EPERM;
1559 goto out_unlock;
1560 }
1561 ret = security_task_kill(p, &info, sig, cred);
1562 if (ret)
1563 goto out_unlock;
1564
1565 if (sig) {
1566 if (lock_task_sighand(p, &flags)) {
1567 ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1568 unlock_task_sighand(p, &flags);
1569 } else
1570 ret = -ESRCH;
1571 }
1572 out_unlock:
1573 rcu_read_unlock();
1574 return ret;
1575 }
1576 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1577
1578 /*
1579 * kill_something_info() interprets pid in interesting ways just like kill(2).
1580 *
1581 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1582 * is probably wrong. Should make it like BSD or SYSV.
1583 */
1584
1585 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1586 {
1587 int ret;
1588
1589 if (pid > 0)
1590 return kill_proc_info(sig, info, pid);
1591
1592 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1593 if (pid == INT_MIN)
1594 return -ESRCH;
1595
1596 read_lock(&tasklist_lock);
1597 if (pid != -1) {
1598 ret = __kill_pgrp_info(sig, info,
1599 pid ? find_vpid(-pid) : task_pgrp(current));
1600 } else {
1601 int retval = 0, count = 0;
1602 struct task_struct * p;
1603
1604 for_each_process(p) {
1605 if (task_pid_vnr(p) > 1 &&
1606 !same_thread_group(p, current)) {
1607 int err = group_send_sig_info(sig, info, p,
1608 PIDTYPE_MAX);
1609 ++count;
1610 if (err != -EPERM)
1611 retval = err;
1612 }
1613 }
1614 ret = count ? retval : -ESRCH;
1615 }
1616 read_unlock(&tasklist_lock);
1617
1618 return ret;
1619 }
1620
1621 /*
1622 * These are for backward compatibility with the rest of the kernel source.
1623 */
1624
1625 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1626 {
1627 /*
1628 * Make sure legacy kernel users don't send in bad values
1629 * (normal paths check this in check_kill_permission).
1630 */
1631 if (!valid_signal(sig))
1632 return -EINVAL;
1633
1634 return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1635 }
1636 EXPORT_SYMBOL(send_sig_info);
1637
1638 #define __si_special(priv) \
1639 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1640
1641 int
1642 send_sig(int sig, struct task_struct *p, int priv)
1643 {
1644 return send_sig_info(sig, __si_special(priv), p);
1645 }
1646 EXPORT_SYMBOL(send_sig);
1647
1648 void force_sig(int sig)
1649 {
1650 struct kernel_siginfo info;
1651
1652 clear_siginfo(&info);
1653 info.si_signo = sig;
1654 info.si_errno = 0;
1655 info.si_code = SI_KERNEL;
1656 info.si_pid = 0;
1657 info.si_uid = 0;
1658 force_sig_info(&info);
1659 }
1660 EXPORT_SYMBOL(force_sig);
1661
1662 void force_fatal_sig(int sig)
1663 {
1664 struct kernel_siginfo info;
1665
1666 clear_siginfo(&info);
1667 info.si_signo = sig;
1668 info.si_errno = 0;
1669 info.si_code = SI_KERNEL;
1670 info.si_pid = 0;
1671 info.si_uid = 0;
1672 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1673 }
1674
1675 void force_exit_sig(int sig)
1676 {
1677 struct kernel_siginfo info;
1678
1679 clear_siginfo(&info);
1680 info.si_signo = sig;
1681 info.si_errno = 0;
1682 info.si_code = SI_KERNEL;
1683 info.si_pid = 0;
1684 info.si_uid = 0;
1685 force_sig_info_to_task(&info, current, HANDLER_EXIT);
1686 }
1687
1688 /*
1689 * When things go south during signal handling, we
1690 * will force a SIGSEGV. And if the signal that caused
1691 * the problem was already a SIGSEGV, we'll want to
1692 * make sure we don't even try to deliver the signal..
1693 */
1694 void force_sigsegv(int sig)
1695 {
1696 if (sig == SIGSEGV)
1697 force_fatal_sig(SIGSEGV);
1698 else
1699 force_sig(SIGSEGV);
1700 }
1701
1702 int force_sig_fault_to_task(int sig, int code, void __user *addr
1703 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1704 , struct task_struct *t)
1705 {
1706 struct kernel_siginfo info;
1707
1708 clear_siginfo(&info);
1709 info.si_signo = sig;
1710 info.si_errno = 0;
1711 info.si_code = code;
1712 info.si_addr = addr;
1713 #ifdef __ia64__
1714 info.si_imm = imm;
1715 info.si_flags = flags;
1716 info.si_isr = isr;
1717 #endif
1718 return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1719 }
1720
1721 int force_sig_fault(int sig, int code, void __user *addr
1722 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1723 {
1724 return force_sig_fault_to_task(sig, code, addr
1725 ___ARCH_SI_IA64(imm, flags, isr), current);
1726 }
1727
1728 int send_sig_fault(int sig, int code, void __user *addr
1729 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1730 , struct task_struct *t)
1731 {
1732 struct kernel_siginfo info;
1733
1734 clear_siginfo(&info);
1735 info.si_signo = sig;
1736 info.si_errno = 0;
1737 info.si_code = code;
1738 info.si_addr = addr;
1739 #ifdef __ia64__
1740 info.si_imm = imm;
1741 info.si_flags = flags;
1742 info.si_isr = isr;
1743 #endif
1744 return send_sig_info(info.si_signo, &info, t);
1745 }
1746
1747 int force_sig_mceerr(int code, void __user *addr, short lsb)
1748 {
1749 struct kernel_siginfo info;
1750
1751 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1752 clear_siginfo(&info);
1753 info.si_signo = SIGBUS;
1754 info.si_errno = 0;
1755 info.si_code = code;
1756 info.si_addr = addr;
1757 info.si_addr_lsb = lsb;
1758 return force_sig_info(&info);
1759 }
1760
1761 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1762 {
1763 struct kernel_siginfo info;
1764
1765 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1766 clear_siginfo(&info);
1767 info.si_signo = SIGBUS;
1768 info.si_errno = 0;
1769 info.si_code = code;
1770 info.si_addr = addr;
1771 info.si_addr_lsb = lsb;
1772 return send_sig_info(info.si_signo, &info, t);
1773 }
1774 EXPORT_SYMBOL(send_sig_mceerr);
1775
1776 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1777 {
1778 struct kernel_siginfo info;
1779
1780 clear_siginfo(&info);
1781 info.si_signo = SIGSEGV;
1782 info.si_errno = 0;
1783 info.si_code = SEGV_BNDERR;
1784 info.si_addr = addr;
1785 info.si_lower = lower;
1786 info.si_upper = upper;
1787 return force_sig_info(&info);
1788 }
1789
1790 #ifdef SEGV_PKUERR
1791 int force_sig_pkuerr(void __user *addr, u32 pkey)
1792 {
1793 struct kernel_siginfo info;
1794
1795 clear_siginfo(&info);
1796 info.si_signo = SIGSEGV;
1797 info.si_errno = 0;
1798 info.si_code = SEGV_PKUERR;
1799 info.si_addr = addr;
1800 info.si_pkey = pkey;
1801 return force_sig_info(&info);
1802 }
1803 #endif
1804
1805 int force_sig_perf(void __user *addr, u32 type, u64 sig_data)
1806 {
1807 struct kernel_siginfo info;
1808
1809 clear_siginfo(&info);
1810 info.si_signo = SIGTRAP;
1811 info.si_errno = 0;
1812 info.si_code = TRAP_PERF;
1813 info.si_addr = addr;
1814 info.si_perf_data = sig_data;
1815 info.si_perf_type = type;
1816
1817 return force_sig_info(&info);
1818 }
1819
1820 /**
1821 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1822 * @syscall: syscall number to send to userland
1823 * @reason: filter-supplied reason code to send to userland (via si_errno)
1824 *
1825 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1826 */
1827 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1828 {
1829 struct kernel_siginfo info;
1830
1831 clear_siginfo(&info);
1832 info.si_signo = SIGSYS;
1833 info.si_code = SYS_SECCOMP;
1834 info.si_call_addr = (void __user *)KSTK_EIP(current);
1835 info.si_errno = reason;
1836 info.si_arch = syscall_get_arch(current);
1837 info.si_syscall = syscall;
1838 return force_sig_info_to_task(&info, current,
1839 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1840 }
1841
1842 /* For the crazy architectures that include trap information in
1843 * the errno field, instead of an actual errno value.
1844 */
1845 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1846 {
1847 struct kernel_siginfo info;
1848
1849 clear_siginfo(&info);
1850 info.si_signo = SIGTRAP;
1851 info.si_errno = errno;
1852 info.si_code = TRAP_HWBKPT;
1853 info.si_addr = addr;
1854 return force_sig_info(&info);
1855 }
1856
1857 /* For the rare architectures that include trap information using
1858 * si_trapno.
1859 */
1860 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1861 {
1862 struct kernel_siginfo info;
1863
1864 clear_siginfo(&info);
1865 info.si_signo = sig;
1866 info.si_errno = 0;
1867 info.si_code = code;
1868 info.si_addr = addr;
1869 info.si_trapno = trapno;
1870 return force_sig_info(&info);
1871 }
1872
1873 /* For the rare architectures that include trap information using
1874 * si_trapno.
1875 */
1876 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1877 struct task_struct *t)
1878 {
1879 struct kernel_siginfo info;
1880
1881 clear_siginfo(&info);
1882 info.si_signo = sig;
1883 info.si_errno = 0;
1884 info.si_code = code;
1885 info.si_addr = addr;
1886 info.si_trapno = trapno;
1887 return send_sig_info(info.si_signo, &info, t);
1888 }
1889
1890 int kill_pgrp(struct pid *pid, int sig, int priv)
1891 {
1892 int ret;
1893
1894 read_lock(&tasklist_lock);
1895 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1896 read_unlock(&tasklist_lock);
1897
1898 return ret;
1899 }
1900 EXPORT_SYMBOL(kill_pgrp);
1901
1902 int kill_pid(struct pid *pid, int sig, int priv)
1903 {
1904 return kill_pid_info(sig, __si_special(priv), pid);
1905 }
1906 EXPORT_SYMBOL(kill_pid);
1907
1908 /*
1909 * These functions support sending signals using preallocated sigqueue
1910 * structures. This is needed "because realtime applications cannot
1911 * afford to lose notifications of asynchronous events, like timer
1912 * expirations or I/O completions". In the case of POSIX Timers
1913 * we allocate the sigqueue structure from the timer_create. If this
1914 * allocation fails we are able to report the failure to the application
1915 * with an EAGAIN error.
1916 */
1917 struct sigqueue *sigqueue_alloc(void)
1918 {
1919 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1920 }
1921
1922 void sigqueue_free(struct sigqueue *q)
1923 {
1924 unsigned long flags;
1925 spinlock_t *lock = &current->sighand->siglock;
1926
1927 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1928 /*
1929 * We must hold ->siglock while testing q->list
1930 * to serialize with collect_signal() or with
1931 * __exit_signal()->flush_sigqueue().
1932 */
1933 spin_lock_irqsave(lock, flags);
1934 q->flags &= ~SIGQUEUE_PREALLOC;
1935 /*
1936 * If it is queued it will be freed when dequeued,
1937 * like the "regular" sigqueue.
1938 */
1939 if (!list_empty(&q->list))
1940 q = NULL;
1941 spin_unlock_irqrestore(lock, flags);
1942
1943 if (q)
1944 __sigqueue_free(q);
1945 }
1946
1947 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1948 {
1949 int sig = q->info.si_signo;
1950 struct sigpending *pending;
1951 struct task_struct *t;
1952 unsigned long flags;
1953 int ret, result;
1954
1955 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1956
1957 ret = -1;
1958 rcu_read_lock();
1959 t = pid_task(pid, type);
1960 if (!t || !likely(lock_task_sighand(t, &flags)))
1961 goto ret;
1962
1963 ret = 1; /* the signal is ignored */
1964 result = TRACE_SIGNAL_IGNORED;
1965 if (!prepare_signal(sig, t, false))
1966 goto out;
1967
1968 ret = 0;
1969 if (unlikely(!list_empty(&q->list))) {
1970 /*
1971 * If an SI_TIMER entry is already queue just increment
1972 * the overrun count.
1973 */
1974 BUG_ON(q->info.si_code != SI_TIMER);
1975 q->info.si_overrun++;
1976 result = TRACE_SIGNAL_ALREADY_PENDING;
1977 goto out;
1978 }
1979 q->info.si_overrun = 0;
1980
1981 signalfd_notify(t, sig);
1982 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1983 list_add_tail(&q->list, &pending->list);
1984 sigaddset(&pending->signal, sig);
1985 complete_signal(sig, t, type);
1986 result = TRACE_SIGNAL_DELIVERED;
1987 out:
1988 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1989 unlock_task_sighand(t, &flags);
1990 ret:
1991 rcu_read_unlock();
1992 return ret;
1993 }
1994
1995 static void do_notify_pidfd(struct task_struct *task)
1996 {
1997 struct pid *pid;
1998
1999 WARN_ON(task->exit_state == 0);
2000 pid = task_pid(task);
2001 wake_up_all(&pid->wait_pidfd);
2002 }
2003
2004 /*
2005 * Let a parent know about the death of a child.
2006 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2007 *
2008 * Returns true if our parent ignored us and so we've switched to
2009 * self-reaping.
2010 */
2011 bool do_notify_parent(struct task_struct *tsk, int sig)
2012 {
2013 struct kernel_siginfo info;
2014 unsigned long flags;
2015 struct sighand_struct *psig;
2016 bool autoreap = false;
2017 u64 utime, stime;
2018
2019 BUG_ON(sig == -1);
2020
2021 /* do_notify_parent_cldstop should have been called instead. */
2022 BUG_ON(task_is_stopped_or_traced(tsk));
2023
2024 BUG_ON(!tsk->ptrace &&
2025 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2026
2027 /* Wake up all pidfd waiters */
2028 do_notify_pidfd(tsk);
2029
2030 if (sig != SIGCHLD) {
2031 /*
2032 * This is only possible if parent == real_parent.
2033 * Check if it has changed security domain.
2034 */
2035 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2036 sig = SIGCHLD;
2037 }
2038
2039 clear_siginfo(&info);
2040 info.si_signo = sig;
2041 info.si_errno = 0;
2042 /*
2043 * We are under tasklist_lock here so our parent is tied to
2044 * us and cannot change.
2045 *
2046 * task_active_pid_ns will always return the same pid namespace
2047 * until a task passes through release_task.
2048 *
2049 * write_lock() currently calls preempt_disable() which is the
2050 * same as rcu_read_lock(), but according to Oleg, this is not
2051 * correct to rely on this
2052 */
2053 rcu_read_lock();
2054 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2055 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2056 task_uid(tsk));
2057 rcu_read_unlock();
2058
2059 task_cputime(tsk, &utime, &stime);
2060 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2061 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2062
2063 info.si_status = tsk->exit_code & 0x7f;
2064 if (tsk->exit_code & 0x80)
2065 info.si_code = CLD_DUMPED;
2066 else if (tsk->exit_code & 0x7f)
2067 info.si_code = CLD_KILLED;
2068 else {
2069 info.si_code = CLD_EXITED;
2070 info.si_status = tsk->exit_code >> 8;
2071 }
2072
2073 psig = tsk->parent->sighand;
2074 spin_lock_irqsave(&psig->siglock, flags);
2075 if (!tsk->ptrace && sig == SIGCHLD &&
2076 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2077 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2078 /*
2079 * We are exiting and our parent doesn't care. POSIX.1
2080 * defines special semantics for setting SIGCHLD to SIG_IGN
2081 * or setting the SA_NOCLDWAIT flag: we should be reaped
2082 * automatically and not left for our parent's wait4 call.
2083 * Rather than having the parent do it as a magic kind of
2084 * signal handler, we just set this to tell do_exit that we
2085 * can be cleaned up without becoming a zombie. Note that
2086 * we still call __wake_up_parent in this case, because a
2087 * blocked sys_wait4 might now return -ECHILD.
2088 *
2089 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2090 * is implementation-defined: we do (if you don't want
2091 * it, just use SIG_IGN instead).
2092 */
2093 autoreap = true;
2094 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2095 sig = 0;
2096 }
2097 /*
2098 * Send with __send_signal as si_pid and si_uid are in the
2099 * parent's namespaces.
2100 */
2101 if (valid_signal(sig) && sig)
2102 __send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2103 __wake_up_parent(tsk, tsk->parent);
2104 spin_unlock_irqrestore(&psig->siglock, flags);
2105
2106 return autoreap;
2107 }
2108
2109 /**
2110 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2111 * @tsk: task reporting the state change
2112 * @for_ptracer: the notification is for ptracer
2113 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2114 *
2115 * Notify @tsk's parent that the stopped/continued state has changed. If
2116 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2117 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2118 *
2119 * CONTEXT:
2120 * Must be called with tasklist_lock at least read locked.
2121 */
2122 static void do_notify_parent_cldstop(struct task_struct *tsk,
2123 bool for_ptracer, int why)
2124 {
2125 struct kernel_siginfo info;
2126 unsigned long flags;
2127 struct task_struct *parent;
2128 struct sighand_struct *sighand;
2129 u64 utime, stime;
2130
2131 if (for_ptracer) {
2132 parent = tsk->parent;
2133 } else {
2134 tsk = tsk->group_leader;
2135 parent = tsk->real_parent;
2136 }
2137
2138 clear_siginfo(&info);
2139 info.si_signo = SIGCHLD;
2140 info.si_errno = 0;
2141 /*
2142 * see comment in do_notify_parent() about the following 4 lines
2143 */
2144 rcu_read_lock();
2145 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2146 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2147 rcu_read_unlock();
2148
2149 task_cputime(tsk, &utime, &stime);
2150 info.si_utime = nsec_to_clock_t(utime);
2151 info.si_stime = nsec_to_clock_t(stime);
2152
2153 info.si_code = why;
2154 switch (why) {
2155 case CLD_CONTINUED:
2156 info.si_status = SIGCONT;
2157 break;
2158 case CLD_STOPPED:
2159 info.si_status = tsk->signal->group_exit_code & 0x7f;
2160 break;
2161 case CLD_TRAPPED:
2162 info.si_status = tsk->exit_code & 0x7f;
2163 break;
2164 default:
2165 BUG();
2166 }
2167
2168 sighand = parent->sighand;
2169 spin_lock_irqsave(&sighand->siglock, flags);
2170 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2171 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2172 __group_send_sig_info(SIGCHLD, &info, parent);
2173 /*
2174 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2175 */
2176 __wake_up_parent(tsk, parent);
2177 spin_unlock_irqrestore(&sighand->siglock, flags);
2178 }
2179
2180 static inline bool may_ptrace_stop(void)
2181 {
2182 if (!likely(current->ptrace))
2183 return false;
2184 /*
2185 * Are we in the middle of do_coredump?
2186 * If so and our tracer is also part of the coredump stopping
2187 * is a deadlock situation, and pointless because our tracer
2188 * is dead so don't allow us to stop.
2189 * If SIGKILL was already sent before the caller unlocked
2190 * ->siglock we must see ->core_state != NULL. Otherwise it
2191 * is safe to enter schedule().
2192 *
2193 * This is almost outdated, a task with the pending SIGKILL can't
2194 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2195 * after SIGKILL was already dequeued.
2196 */
2197 if (unlikely(current->mm->core_state) &&
2198 unlikely(current->mm == current->parent->mm))
2199 return false;
2200
2201 return true;
2202 }
2203
2204
2205 /*
2206 * This must be called with current->sighand->siglock held.
2207 *
2208 * This should be the path for all ptrace stops.
2209 * We always set current->last_siginfo while stopped here.
2210 * That makes it a way to test a stopped process for
2211 * being ptrace-stopped vs being job-control-stopped.
2212 *
2213 * If we actually decide not to stop at all because the tracer
2214 * is gone, we keep current->exit_code unless clear_code.
2215 */
2216 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2217 __releases(&current->sighand->siglock)
2218 __acquires(&current->sighand->siglock)
2219 {
2220 bool gstop_done = false;
2221
2222 if (arch_ptrace_stop_needed(exit_code, info)) {
2223 /*
2224 * The arch code has something special to do before a
2225 * ptrace stop. This is allowed to block, e.g. for faults
2226 * on user stack pages. We can't keep the siglock while
2227 * calling arch_ptrace_stop, so we must release it now.
2228 * To preserve proper semantics, we must do this before
2229 * any signal bookkeeping like checking group_stop_count.
2230 */
2231 spin_unlock_irq(&current->sighand->siglock);
2232 arch_ptrace_stop(exit_code, info);
2233 spin_lock_irq(&current->sighand->siglock);
2234 }
2235
2236 /*
2237 * schedule() will not sleep if there is a pending signal that
2238 * can awaken the task.
2239 */
2240 set_special_state(TASK_TRACED);
2241
2242 /*
2243 * We're committing to trapping. TRACED should be visible before
2244 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2245 * Also, transition to TRACED and updates to ->jobctl should be
2246 * atomic with respect to siglock and should be done after the arch
2247 * hook as siglock is released and regrabbed across it.
2248 *
2249 * TRACER TRACEE
2250 *
2251 * ptrace_attach()
2252 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
2253 * do_wait()
2254 * set_current_state() smp_wmb();
2255 * ptrace_do_wait()
2256 * wait_task_stopped()
2257 * task_stopped_code()
2258 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
2259 */
2260 smp_wmb();
2261
2262 current->last_siginfo = info;
2263 current->exit_code = exit_code;
2264
2265 /*
2266 * If @why is CLD_STOPPED, we're trapping to participate in a group
2267 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
2268 * across siglock relocks since INTERRUPT was scheduled, PENDING
2269 * could be clear now. We act as if SIGCONT is received after
2270 * TASK_TRACED is entered - ignore it.
2271 */
2272 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2273 gstop_done = task_participate_group_stop(current);
2274
2275 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2276 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2277 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2278 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2279
2280 /* entering a trap, clear TRAPPING */
2281 task_clear_jobctl_trapping(current);
2282
2283 spin_unlock_irq(&current->sighand->siglock);
2284 read_lock(&tasklist_lock);
2285 if (may_ptrace_stop()) {
2286 /*
2287 * Notify parents of the stop.
2288 *
2289 * While ptraced, there are two parents - the ptracer and
2290 * the real_parent of the group_leader. The ptracer should
2291 * know about every stop while the real parent is only
2292 * interested in the completion of group stop. The states
2293 * for the two don't interact with each other. Notify
2294 * separately unless they're gonna be duplicates.
2295 */
2296 do_notify_parent_cldstop(current, true, why);
2297 if (gstop_done && ptrace_reparented(current))
2298 do_notify_parent_cldstop(current, false, why);
2299
2300 /*
2301 * Don't want to allow preemption here, because
2302 * sys_ptrace() needs this task to be inactive.
2303 *
2304 * XXX: implement read_unlock_no_resched().
2305 */
2306 preempt_disable();
2307 read_unlock(&tasklist_lock);
2308 cgroup_enter_frozen();
2309 preempt_enable_no_resched();
2310 freezable_schedule();
2311 cgroup_leave_frozen(true);
2312 } else {
2313 /*
2314 * By the time we got the lock, our tracer went away.
2315 * Don't drop the lock yet, another tracer may come.
2316 *
2317 * If @gstop_done, the ptracer went away between group stop
2318 * completion and here. During detach, it would have set
2319 * JOBCTL_STOP_PENDING on us and we'll re-enter
2320 * TASK_STOPPED in do_signal_stop() on return, so notifying
2321 * the real parent of the group stop completion is enough.
2322 */
2323 if (gstop_done)
2324 do_notify_parent_cldstop(current, false, why);
2325
2326 /* tasklist protects us from ptrace_freeze_traced() */
2327 __set_current_state(TASK_RUNNING);
2328 if (clear_code)
2329 current->exit_code = 0;
2330 read_unlock(&tasklist_lock);
2331 }
2332
2333 /*
2334 * We are back. Now reacquire the siglock before touching
2335 * last_siginfo, so that we are sure to have synchronized with
2336 * any signal-sending on another CPU that wants to examine it.
2337 */
2338 spin_lock_irq(&current->sighand->siglock);
2339 current->last_siginfo = NULL;
2340
2341 /* LISTENING can be set only during STOP traps, clear it */
2342 current->jobctl &= ~JOBCTL_LISTENING;
2343
2344 /*
2345 * Queued signals ignored us while we were stopped for tracing.
2346 * So check for any that we should take before resuming user mode.
2347 * This sets TIF_SIGPENDING, but never clears it.
2348 */
2349 recalc_sigpending_tsk(current);
2350 }
2351
2352 static void ptrace_do_notify(int signr, int exit_code, int why)
2353 {
2354 kernel_siginfo_t info;
2355
2356 clear_siginfo(&info);
2357 info.si_signo = signr;
2358 info.si_code = exit_code;
2359 info.si_pid = task_pid_vnr(current);
2360 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2361
2362 /* Let the debugger run. */
2363 ptrace_stop(exit_code, why, 1, &info);
2364 }
2365
2366 void ptrace_notify(int exit_code)
2367 {
2368 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2369 if (unlikely(current->task_works))
2370 task_work_run();
2371
2372 spin_lock_irq(&current->sighand->siglock);
2373 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2374 spin_unlock_irq(&current->sighand->siglock);
2375 }
2376
2377 /**
2378 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2379 * @signr: signr causing group stop if initiating
2380 *
2381 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2382 * and participate in it. If already set, participate in the existing
2383 * group stop. If participated in a group stop (and thus slept), %true is
2384 * returned with siglock released.
2385 *
2386 * If ptraced, this function doesn't handle stop itself. Instead,
2387 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2388 * untouched. The caller must ensure that INTERRUPT trap handling takes
2389 * places afterwards.
2390 *
2391 * CONTEXT:
2392 * Must be called with @current->sighand->siglock held, which is released
2393 * on %true return.
2394 *
2395 * RETURNS:
2396 * %false if group stop is already cancelled or ptrace trap is scheduled.
2397 * %true if participated in group stop.
2398 */
2399 static bool do_signal_stop(int signr)
2400 __releases(&current->sighand->siglock)
2401 {
2402 struct signal_struct *sig = current->signal;
2403
2404 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2405 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2406 struct task_struct *t;
2407
2408 /* signr will be recorded in task->jobctl for retries */
2409 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2410
2411 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2412 unlikely(signal_group_exit(sig)))
2413 return false;
2414 /*
2415 * There is no group stop already in progress. We must
2416 * initiate one now.
2417 *
2418 * While ptraced, a task may be resumed while group stop is
2419 * still in effect and then receive a stop signal and
2420 * initiate another group stop. This deviates from the
2421 * usual behavior as two consecutive stop signals can't
2422 * cause two group stops when !ptraced. That is why we
2423 * also check !task_is_stopped(t) below.
2424 *
2425 * The condition can be distinguished by testing whether
2426 * SIGNAL_STOP_STOPPED is already set. Don't generate
2427 * group_exit_code in such case.
2428 *
2429 * This is not necessary for SIGNAL_STOP_CONTINUED because
2430 * an intervening stop signal is required to cause two
2431 * continued events regardless of ptrace.
2432 */
2433 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2434 sig->group_exit_code = signr;
2435
2436 sig->group_stop_count = 0;
2437
2438 if (task_set_jobctl_pending(current, signr | gstop))
2439 sig->group_stop_count++;
2440
2441 t = current;
2442 while_each_thread(current, t) {
2443 /*
2444 * Setting state to TASK_STOPPED for a group
2445 * stop is always done with the siglock held,
2446 * so this check has no races.
2447 */
2448 if (!task_is_stopped(t) &&
2449 task_set_jobctl_pending(t, signr | gstop)) {
2450 sig->group_stop_count++;
2451 if (likely(!(t->ptrace & PT_SEIZED)))
2452 signal_wake_up(t, 0);
2453 else
2454 ptrace_trap_notify(t);
2455 }
2456 }
2457 }
2458
2459 if (likely(!current->ptrace)) {
2460 int notify = 0;
2461
2462 /*
2463 * If there are no other threads in the group, or if there
2464 * is a group stop in progress and we are the last to stop,
2465 * report to the parent.
2466 */
2467 if (task_participate_group_stop(current))
2468 notify = CLD_STOPPED;
2469
2470 set_special_state(TASK_STOPPED);
2471 spin_unlock_irq(&current->sighand->siglock);
2472
2473 /*
2474 * Notify the parent of the group stop completion. Because
2475 * we're not holding either the siglock or tasklist_lock
2476 * here, ptracer may attach inbetween; however, this is for
2477 * group stop and should always be delivered to the real
2478 * parent of the group leader. The new ptracer will get
2479 * its notification when this task transitions into
2480 * TASK_TRACED.
2481 */
2482 if (notify) {
2483 read_lock(&tasklist_lock);
2484 do_notify_parent_cldstop(current, false, notify);
2485 read_unlock(&tasklist_lock);
2486 }
2487
2488 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2489 cgroup_enter_frozen();
2490 freezable_schedule();
2491 return true;
2492 } else {
2493 /*
2494 * While ptraced, group stop is handled by STOP trap.
2495 * Schedule it and let the caller deal with it.
2496 */
2497 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2498 return false;
2499 }
2500 }
2501
2502 /**
2503 * do_jobctl_trap - take care of ptrace jobctl traps
2504 *
2505 * When PT_SEIZED, it's used for both group stop and explicit
2506 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2507 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2508 * the stop signal; otherwise, %SIGTRAP.
2509 *
2510 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2511 * number as exit_code and no siginfo.
2512 *
2513 * CONTEXT:
2514 * Must be called with @current->sighand->siglock held, which may be
2515 * released and re-acquired before returning with intervening sleep.
2516 */
2517 static void do_jobctl_trap(void)
2518 {
2519 struct signal_struct *signal = current->signal;
2520 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2521
2522 if (current->ptrace & PT_SEIZED) {
2523 if (!signal->group_stop_count &&
2524 !(signal->flags & SIGNAL_STOP_STOPPED))
2525 signr = SIGTRAP;
2526 WARN_ON_ONCE(!signr);
2527 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2528 CLD_STOPPED);
2529 } else {
2530 WARN_ON_ONCE(!signr);
2531 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2532 current->exit_code = 0;
2533 }
2534 }
2535
2536 /**
2537 * do_freezer_trap - handle the freezer jobctl trap
2538 *
2539 * Puts the task into frozen state, if only the task is not about to quit.
2540 * In this case it drops JOBCTL_TRAP_FREEZE.
2541 *
2542 * CONTEXT:
2543 * Must be called with @current->sighand->siglock held,
2544 * which is always released before returning.
2545 */
2546 static void do_freezer_trap(void)
2547 __releases(&current->sighand->siglock)
2548 {
2549 /*
2550 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2551 * let's make another loop to give it a chance to be handled.
2552 * In any case, we'll return back.
2553 */
2554 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2555 JOBCTL_TRAP_FREEZE) {
2556 spin_unlock_irq(&current->sighand->siglock);
2557 return;
2558 }
2559
2560 /*
2561 * Now we're sure that there is no pending fatal signal and no
2562 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2563 * immediately (if there is a non-fatal signal pending), and
2564 * put the task into sleep.
2565 */
2566 __set_current_state(TASK_INTERRUPTIBLE);
2567 clear_thread_flag(TIF_SIGPENDING);
2568 spin_unlock_irq(&current->sighand->siglock);
2569 cgroup_enter_frozen();
2570 freezable_schedule();
2571 }
2572
2573 static int ptrace_signal(int signr, kernel_siginfo_t *info)
2574 {
2575 /*
2576 * We do not check sig_kernel_stop(signr) but set this marker
2577 * unconditionally because we do not know whether debugger will
2578 * change signr. This flag has no meaning unless we are going
2579 * to stop after return from ptrace_stop(). In this case it will
2580 * be checked in do_signal_stop(), we should only stop if it was
2581 * not cleared by SIGCONT while we were sleeping. See also the
2582 * comment in dequeue_signal().
2583 */
2584 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2585 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2586
2587 /* We're back. Did the debugger cancel the sig? */
2588 signr = current->exit_code;
2589 if (signr == 0)
2590 return signr;
2591
2592 current->exit_code = 0;
2593
2594 /*
2595 * Update the siginfo structure if the signal has
2596 * changed. If the debugger wanted something
2597 * specific in the siginfo structure then it should
2598 * have updated *info via PTRACE_SETSIGINFO.
2599 */
2600 if (signr != info->si_signo) {
2601 clear_siginfo(info);
2602 info->si_signo = signr;
2603 info->si_errno = 0;
2604 info->si_code = SI_USER;
2605 rcu_read_lock();
2606 info->si_pid = task_pid_vnr(current->parent);
2607 info->si_uid = from_kuid_munged(current_user_ns(),
2608 task_uid(current->parent));
2609 rcu_read_unlock();
2610 }
2611
2612 /* If the (new) signal is now blocked, requeue it. */
2613 if (sigismember(&current->blocked, signr)) {
2614 send_signal(signr, info, current, PIDTYPE_PID);
2615 signr = 0;
2616 }
2617
2618 return signr;
2619 }
2620
2621 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2622 {
2623 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2624 case SIL_FAULT:
2625 case SIL_FAULT_TRAPNO:
2626 case SIL_FAULT_MCEERR:
2627 case SIL_FAULT_BNDERR:
2628 case SIL_FAULT_PKUERR:
2629 case SIL_FAULT_PERF_EVENT:
2630 ksig->info.si_addr = arch_untagged_si_addr(
2631 ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2632 break;
2633 case SIL_KILL:
2634 case SIL_TIMER:
2635 case SIL_POLL:
2636 case SIL_CHLD:
2637 case SIL_RT:
2638 case SIL_SYS:
2639 break;
2640 }
2641 }
2642
2643 bool get_signal(struct ksignal *ksig)
2644 {
2645 struct sighand_struct *sighand = current->sighand;
2646 struct signal_struct *signal = current->signal;
2647 int signr;
2648
2649 if (unlikely(current->task_works))
2650 task_work_run();
2651
2652 /*
2653 * For non-generic architectures, check for TIF_NOTIFY_SIGNAL so
2654 * that the arch handlers don't all have to do it. If we get here
2655 * without TIF_SIGPENDING, just exit after running signal work.
2656 */
2657 if (!IS_ENABLED(CONFIG_GENERIC_ENTRY)) {
2658 if (test_thread_flag(TIF_NOTIFY_SIGNAL))
2659 tracehook_notify_signal();
2660 if (!task_sigpending(current))
2661 return false;
2662 }
2663
2664 if (unlikely(uprobe_deny_signal()))
2665 return false;
2666
2667 /*
2668 * Do this once, we can't return to user-mode if freezing() == T.
2669 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2670 * thus do not need another check after return.
2671 */
2672 try_to_freeze();
2673
2674 relock:
2675 spin_lock_irq(&sighand->siglock);
2676
2677 /*
2678 * Every stopped thread goes here after wakeup. Check to see if
2679 * we should notify the parent, prepare_signal(SIGCONT) encodes
2680 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2681 */
2682 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2683 int why;
2684
2685 if (signal->flags & SIGNAL_CLD_CONTINUED)
2686 why = CLD_CONTINUED;
2687 else
2688 why = CLD_STOPPED;
2689
2690 signal->flags &= ~SIGNAL_CLD_MASK;
2691
2692 spin_unlock_irq(&sighand->siglock);
2693
2694 /*
2695 * Notify the parent that we're continuing. This event is
2696 * always per-process and doesn't make whole lot of sense
2697 * for ptracers, who shouldn't consume the state via
2698 * wait(2) either, but, for backward compatibility, notify
2699 * the ptracer of the group leader too unless it's gonna be
2700 * a duplicate.
2701 */
2702 read_lock(&tasklist_lock);
2703 do_notify_parent_cldstop(current, false, why);
2704
2705 if (ptrace_reparented(current->group_leader))
2706 do_notify_parent_cldstop(current->group_leader,
2707 true, why);
2708 read_unlock(&tasklist_lock);
2709
2710 goto relock;
2711 }
2712
2713 for (;;) {
2714 struct k_sigaction *ka;
2715
2716 /* Has this task already been marked for death? */
2717 if (signal_group_exit(signal)) {
2718 ksig->info.si_signo = signr = SIGKILL;
2719 sigdelset(&current->pending.signal, SIGKILL);
2720 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2721 &sighand->action[SIGKILL - 1]);
2722 recalc_sigpending();
2723 goto fatal;
2724 }
2725
2726 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2727 do_signal_stop(0))
2728 goto relock;
2729
2730 if (unlikely(current->jobctl &
2731 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2732 if (current->jobctl & JOBCTL_TRAP_MASK) {
2733 do_jobctl_trap();
2734 spin_unlock_irq(&sighand->siglock);
2735 } else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2736 do_freezer_trap();
2737
2738 goto relock;
2739 }
2740
2741 /*
2742 * If the task is leaving the frozen state, let's update
2743 * cgroup counters and reset the frozen bit.
2744 */
2745 if (unlikely(cgroup_task_frozen(current))) {
2746 spin_unlock_irq(&sighand->siglock);
2747 cgroup_leave_frozen(false);
2748 goto relock;
2749 }
2750
2751 /*
2752 * Signals generated by the execution of an instruction
2753 * need to be delivered before any other pending signals
2754 * so that the instruction pointer in the signal stack
2755 * frame points to the faulting instruction.
2756 */
2757 signr = dequeue_synchronous_signal(&ksig->info);
2758 if (!signr)
2759 signr = dequeue_signal(current, &current->blocked, &ksig->info);
2760
2761 if (!signr)
2762 break; /* will return 0 */
2763
2764 if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2765 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2766 signr = ptrace_signal(signr, &ksig->info);
2767 if (!signr)
2768 continue;
2769 }
2770
2771 ka = &sighand->action[signr-1];
2772
2773 /* Trace actually delivered signals. */
2774 trace_signal_deliver(signr, &ksig->info, ka);
2775
2776 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2777 continue;
2778 if (ka->sa.sa_handler != SIG_DFL) {
2779 /* Run the handler. */
2780 ksig->ka = *ka;
2781
2782 if (ka->sa.sa_flags & SA_ONESHOT)
2783 ka->sa.sa_handler = SIG_DFL;
2784
2785 break; /* will return non-zero "signr" value */
2786 }
2787
2788 /*
2789 * Now we are doing the default action for this signal.
2790 */
2791 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2792 continue;
2793
2794 /*
2795 * Global init gets no signals it doesn't want.
2796 * Container-init gets no signals it doesn't want from same
2797 * container.
2798 *
2799 * Note that if global/container-init sees a sig_kernel_only()
2800 * signal here, the signal must have been generated internally
2801 * or must have come from an ancestor namespace. In either
2802 * case, the signal cannot be dropped.
2803 */
2804 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2805 !sig_kernel_only(signr))
2806 continue;
2807
2808 if (sig_kernel_stop(signr)) {
2809 /*
2810 * The default action is to stop all threads in
2811 * the thread group. The job control signals
2812 * do nothing in an orphaned pgrp, but SIGSTOP
2813 * always works. Note that siglock needs to be
2814 * dropped during the call to is_orphaned_pgrp()
2815 * because of lock ordering with tasklist_lock.
2816 * This allows an intervening SIGCONT to be posted.
2817 * We need to check for that and bail out if necessary.
2818 */
2819 if (signr != SIGSTOP) {
2820 spin_unlock_irq(&sighand->siglock);
2821
2822 /* signals can be posted during this window */
2823
2824 if (is_current_pgrp_orphaned())
2825 goto relock;
2826
2827 spin_lock_irq(&sighand->siglock);
2828 }
2829
2830 if (likely(do_signal_stop(ksig->info.si_signo))) {
2831 /* It released the siglock. */
2832 goto relock;
2833 }
2834
2835 /*
2836 * We didn't actually stop, due to a race
2837 * with SIGCONT or something like that.
2838 */
2839 continue;
2840 }
2841
2842 fatal:
2843 spin_unlock_irq(&sighand->siglock);
2844 if (unlikely(cgroup_task_frozen(current)))
2845 cgroup_leave_frozen(true);
2846
2847 /*
2848 * Anything else is fatal, maybe with a core dump.
2849 */
2850 current->flags |= PF_SIGNALED;
2851
2852 if (sig_kernel_coredump(signr)) {
2853 if (print_fatal_signals)
2854 print_fatal_signal(ksig->info.si_signo);
2855 proc_coredump_connector(current);
2856 /*
2857 * If it was able to dump core, this kills all
2858 * other threads in the group and synchronizes with
2859 * their demise. If we lost the race with another
2860 * thread getting here, it set group_exit_code
2861 * first and our do_group_exit call below will use
2862 * that value and ignore the one we pass it.
2863 */
2864 do_coredump(&ksig->info);
2865 }
2866
2867 /*
2868 * PF_IO_WORKER threads will catch and exit on fatal signals
2869 * themselves. They have cleanup that must be performed, so
2870 * we cannot call do_exit() on their behalf.
2871 */
2872 if (current->flags & PF_IO_WORKER)
2873 goto out;
2874
2875 /*
2876 * Death signals, no core dump.
2877 */
2878 do_group_exit(ksig->info.si_signo);
2879 /* NOTREACHED */
2880 }
2881 spin_unlock_irq(&sighand->siglock);
2882 out:
2883 ksig->sig = signr;
2884
2885 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2886 hide_si_addr_tag_bits(ksig);
2887
2888 return ksig->sig > 0;
2889 }
2890
2891 /**
2892 * signal_delivered -
2893 * @ksig: kernel signal struct
2894 * @stepping: nonzero if debugger single-step or block-step in use
2895 *
2896 * This function should be called when a signal has successfully been
2897 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2898 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2899 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2900 */
2901 static void signal_delivered(struct ksignal *ksig, int stepping)
2902 {
2903 sigset_t blocked;
2904
2905 /* A signal was successfully delivered, and the
2906 saved sigmask was stored on the signal frame,
2907 and will be restored by sigreturn. So we can
2908 simply clear the restore sigmask flag. */
2909 clear_restore_sigmask();
2910
2911 sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2912 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2913 sigaddset(&blocked, ksig->sig);
2914 set_current_blocked(&blocked);
2915 if (current->sas_ss_flags & SS_AUTODISARM)
2916 sas_ss_reset(current);
2917 tracehook_signal_handler(stepping);
2918 }
2919
2920 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2921 {
2922 if (failed)
2923 force_sigsegv(ksig->sig);
2924 else
2925 signal_delivered(ksig, stepping);
2926 }
2927
2928 /*
2929 * It could be that complete_signal() picked us to notify about the
2930 * group-wide signal. Other threads should be notified now to take
2931 * the shared signals in @which since we will not.
2932 */
2933 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2934 {
2935 sigset_t retarget;
2936 struct task_struct *t;
2937
2938 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2939 if (sigisemptyset(&retarget))
2940 return;
2941
2942 t = tsk;
2943 while_each_thread(tsk, t) {
2944 if (t->flags & PF_EXITING)
2945 continue;
2946
2947 if (!has_pending_signals(&retarget, &t->blocked))
2948 continue;
2949 /* Remove the signals this thread can handle. */
2950 sigandsets(&retarget, &retarget, &t->blocked);
2951
2952 if (!task_sigpending(t))
2953 signal_wake_up(t, 0);
2954
2955 if (sigisemptyset(&retarget))
2956 break;
2957 }
2958 }
2959
2960 void exit_signals(struct task_struct *tsk)
2961 {
2962 int group_stop = 0;
2963 sigset_t unblocked;
2964
2965 /*
2966 * @tsk is about to have PF_EXITING set - lock out users which
2967 * expect stable threadgroup.
2968 */
2969 cgroup_threadgroup_change_begin(tsk);
2970
2971 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2972 tsk->flags |= PF_EXITING;
2973 cgroup_threadgroup_change_end(tsk);
2974 return;
2975 }
2976
2977 spin_lock_irq(&tsk->sighand->siglock);
2978 /*
2979 * From now this task is not visible for group-wide signals,
2980 * see wants_signal(), do_signal_stop().
2981 */
2982 tsk->flags |= PF_EXITING;
2983
2984 cgroup_threadgroup_change_end(tsk);
2985
2986 if (!task_sigpending(tsk))
2987 goto out;
2988
2989 unblocked = tsk->blocked;
2990 signotset(&unblocked);
2991 retarget_shared_pending(tsk, &unblocked);
2992
2993 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2994 task_participate_group_stop(tsk))
2995 group_stop = CLD_STOPPED;
2996 out:
2997 spin_unlock_irq(&tsk->sighand->siglock);
2998
2999 /*
3000 * If group stop has completed, deliver the notification. This
3001 * should always go to the real parent of the group leader.
3002 */
3003 if (unlikely(group_stop)) {
3004 read_lock(&tasklist_lock);
3005 do_notify_parent_cldstop(tsk, false, group_stop);
3006 read_unlock(&tasklist_lock);
3007 }
3008 }
3009
3010 /*
3011 * System call entry points.
3012 */
3013
3014 /**
3015 * sys_restart_syscall - restart a system call
3016 */
3017 SYSCALL_DEFINE0(restart_syscall)
3018 {
3019 struct restart_block *restart = &current->restart_block;
3020 return restart->fn(restart);
3021 }
3022
3023 long do_no_restart_syscall(struct restart_block *param)
3024 {
3025 return -EINTR;
3026 }
3027
3028 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3029 {
3030 if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3031 sigset_t newblocked;
3032 /* A set of now blocked but previously unblocked signals. */
3033 sigandnsets(&newblocked, newset, &current->blocked);
3034 retarget_shared_pending(tsk, &newblocked);
3035 }
3036 tsk->blocked = *newset;
3037 recalc_sigpending();
3038 }
3039
3040 /**
3041 * set_current_blocked - change current->blocked mask
3042 * @newset: new mask
3043 *
3044 * It is wrong to change ->blocked directly, this helper should be used
3045 * to ensure the process can't miss a shared signal we are going to block.
3046 */
3047 void set_current_blocked(sigset_t *newset)
3048 {
3049 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3050 __set_current_blocked(newset);
3051 }
3052
3053 void __set_current_blocked(const sigset_t *newset)
3054 {
3055 struct task_struct *tsk = current;
3056
3057 /*
3058 * In case the signal mask hasn't changed, there is nothing we need
3059 * to do. The current->blocked shouldn't be modified by other task.
3060 */
3061 if (sigequalsets(&tsk->blocked, newset))
3062 return;
3063
3064 spin_lock_irq(&tsk->sighand->siglock);
3065 __set_task_blocked(tsk, newset);
3066 spin_unlock_irq(&tsk->sighand->siglock);
3067 }
3068
3069 /*
3070 * This is also useful for kernel threads that want to temporarily
3071 * (or permanently) block certain signals.
3072 *
3073 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3074 * interface happily blocks "unblockable" signals like SIGKILL
3075 * and friends.
3076 */
3077 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3078 {
3079 struct task_struct *tsk = current;
3080 sigset_t newset;
3081
3082 /* Lockless, only current can change ->blocked, never from irq */
3083 if (oldset)
3084 *oldset = tsk->blocked;
3085
3086 switch (how) {
3087 case SIG_BLOCK:
3088 sigorsets(&newset, &tsk->blocked, set);
3089 break;
3090 case SIG_UNBLOCK:
3091 sigandnsets(&newset, &tsk->blocked, set);
3092 break;
3093 case SIG_SETMASK:
3094 newset = *set;
3095 break;
3096 default:
3097 return -EINVAL;
3098 }
3099
3100 __set_current_blocked(&newset);
3101 return 0;
3102 }
3103 EXPORT_SYMBOL(sigprocmask);
3104
3105 /*
3106 * The api helps set app-provided sigmasks.
3107 *
3108 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3109 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3110 *
3111 * Note that it does set_restore_sigmask() in advance, so it must be always
3112 * paired with restore_saved_sigmask_unless() before return from syscall.
3113 */
3114 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3115 {
3116 sigset_t kmask;
3117
3118 if (!umask)
3119 return 0;
3120 if (sigsetsize != sizeof(sigset_t))
3121 return -EINVAL;
3122 if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3123 return -EFAULT;
3124
3125 set_restore_sigmask();
3126 current->saved_sigmask = current->blocked;
3127 set_current_blocked(&kmask);
3128
3129 return 0;
3130 }
3131
3132 #ifdef CONFIG_COMPAT
3133 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3134 size_t sigsetsize)
3135 {
3136 sigset_t kmask;
3137
3138 if (!umask)
3139 return 0;
3140 if (sigsetsize != sizeof(compat_sigset_t))
3141 return -EINVAL;
3142 if (get_compat_sigset(&kmask, umask))
3143 return -EFAULT;
3144
3145 set_restore_sigmask();
3146 current->saved_sigmask = current->blocked;
3147 set_current_blocked(&kmask);
3148
3149 return 0;
3150 }
3151 #endif
3152
3153 /**
3154 * sys_rt_sigprocmask - change the list of currently blocked signals
3155 * @how: whether to add, remove, or set signals
3156 * @nset: stores pending signals
3157 * @oset: previous value of signal mask if non-null
3158 * @sigsetsize: size of sigset_t type
3159 */
3160 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3161 sigset_t __user *, oset, size_t, sigsetsize)
3162 {
3163 sigset_t old_set, new_set;
3164 int error;
3165
3166 /* XXX: Don't preclude handling different sized sigset_t's. */
3167 if (sigsetsize != sizeof(sigset_t))
3168 return -EINVAL;
3169
3170 old_set = current->blocked;
3171
3172 if (nset) {
3173 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3174 return -EFAULT;
3175 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3176
3177 error = sigprocmask(how, &new_set, NULL);
3178 if (error)
3179 return error;
3180 }
3181
3182 if (oset) {
3183 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3184 return -EFAULT;
3185 }
3186
3187 return 0;
3188 }
3189
3190 #ifdef CONFIG_COMPAT
3191 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3192 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3193 {
3194 sigset_t old_set = current->blocked;
3195
3196 /* XXX: Don't preclude handling different sized sigset_t's. */
3197 if (sigsetsize != sizeof(sigset_t))
3198 return -EINVAL;
3199
3200 if (nset) {
3201 sigset_t new_set;
3202 int error;
3203 if (get_compat_sigset(&new_set, nset))
3204 return -EFAULT;
3205 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3206
3207 error = sigprocmask(how, &new_set, NULL);
3208 if (error)
3209 return error;
3210 }
3211 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3212 }
3213 #endif
3214
3215 static void do_sigpending(sigset_t *set)
3216 {
3217 spin_lock_irq(&current->sighand->siglock);
3218 sigorsets(set, &current->pending.signal,
3219 &current->signal->shared_pending.signal);
3220 spin_unlock_irq(&current->sighand->siglock);
3221
3222 /* Outside the lock because only this thread touches it. */
3223 sigandsets(set, &current->blocked, set);
3224 }
3225
3226 /**
3227 * sys_rt_sigpending - examine a pending signal that has been raised
3228 * while blocked
3229 * @uset: stores pending signals
3230 * @sigsetsize: size of sigset_t type or larger
3231 */
3232 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3233 {
3234 sigset_t set;
3235
3236 if (sigsetsize > sizeof(*uset))
3237 return -EINVAL;
3238
3239 do_sigpending(&set);
3240
3241 if (copy_to_user(uset, &set, sigsetsize))
3242 return -EFAULT;
3243
3244 return 0;
3245 }
3246
3247 #ifdef CONFIG_COMPAT
3248 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3249 compat_size_t, sigsetsize)
3250 {
3251 sigset_t set;
3252
3253 if (sigsetsize > sizeof(*uset))
3254 return -EINVAL;
3255
3256 do_sigpending(&set);
3257
3258 return put_compat_sigset(uset, &set, sigsetsize);
3259 }
3260 #endif
3261
3262 static const struct {
3263 unsigned char limit, layout;
3264 } sig_sicodes[] = {
3265 [SIGILL] = { NSIGILL, SIL_FAULT },
3266 [SIGFPE] = { NSIGFPE, SIL_FAULT },
3267 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3268 [SIGBUS] = { NSIGBUS, SIL_FAULT },
3269 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3270 #if defined(SIGEMT)
3271 [SIGEMT] = { NSIGEMT, SIL_FAULT },
3272 #endif
3273 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3274 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
3275 [SIGSYS] = { NSIGSYS, SIL_SYS },
3276 };
3277
3278 static bool known_siginfo_layout(unsigned sig, int si_code)
3279 {
3280 if (si_code == SI_KERNEL)
3281 return true;
3282 else if ((si_code > SI_USER)) {
3283 if (sig_specific_sicodes(sig)) {
3284 if (si_code <= sig_sicodes[sig].limit)
3285 return true;
3286 }
3287 else if (si_code <= NSIGPOLL)
3288 return true;
3289 }
3290 else if (si_code >= SI_DETHREAD)
3291 return true;
3292 else if (si_code == SI_ASYNCNL)
3293 return true;
3294 return false;
3295 }
3296
3297 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3298 {
3299 enum siginfo_layout layout = SIL_KILL;
3300 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3301 if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3302 (si_code <= sig_sicodes[sig].limit)) {
3303 layout = sig_sicodes[sig].layout;
3304 /* Handle the exceptions */
3305 if ((sig == SIGBUS) &&
3306 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3307 layout = SIL_FAULT_MCEERR;
3308 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3309 layout = SIL_FAULT_BNDERR;
3310 #ifdef SEGV_PKUERR
3311 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3312 layout = SIL_FAULT_PKUERR;
3313 #endif
3314 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3315 layout = SIL_FAULT_PERF_EVENT;
3316 else if (IS_ENABLED(CONFIG_SPARC) &&
3317 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3318 layout = SIL_FAULT_TRAPNO;
3319 else if (IS_ENABLED(CONFIG_ALPHA) &&
3320 ((sig == SIGFPE) ||
3321 ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3322 layout = SIL_FAULT_TRAPNO;
3323 }
3324 else if (si_code <= NSIGPOLL)
3325 layout = SIL_POLL;
3326 } else {
3327 if (si_code == SI_TIMER)
3328 layout = SIL_TIMER;
3329 else if (si_code == SI_SIGIO)
3330 layout = SIL_POLL;
3331 else if (si_code < 0)
3332 layout = SIL_RT;
3333 }
3334 return layout;
3335 }
3336
3337 static inline char __user *si_expansion(const siginfo_t __user *info)
3338 {
3339 return ((char __user *)info) + sizeof(struct kernel_siginfo);
3340 }
3341
3342 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3343 {
3344 char __user *expansion = si_expansion(to);
3345 if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3346 return -EFAULT;
3347 if (clear_user(expansion, SI_EXPANSION_SIZE))
3348 return -EFAULT;
3349 return 0;
3350 }
3351
3352 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3353 const siginfo_t __user *from)
3354 {
3355 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3356 char __user *expansion = si_expansion(from);
3357 char buf[SI_EXPANSION_SIZE];
3358 int i;
3359 /*
3360 * An unknown si_code might need more than
3361 * sizeof(struct kernel_siginfo) bytes. Verify all of the
3362 * extra bytes are 0. This guarantees copy_siginfo_to_user
3363 * will return this data to userspace exactly.
3364 */
3365 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3366 return -EFAULT;
3367 for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3368 if (buf[i] != 0)
3369 return -E2BIG;
3370 }
3371 }
3372 return 0;
3373 }
3374
3375 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3376 const siginfo_t __user *from)
3377 {
3378 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3379 return -EFAULT;
3380 to->si_signo = signo;
3381 return post_copy_siginfo_from_user(to, from);
3382 }
3383
3384 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3385 {
3386 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3387 return -EFAULT;
3388 return post_copy_siginfo_from_user(to, from);
3389 }
3390
3391 #ifdef CONFIG_COMPAT
3392 /**
3393 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3394 * @to: compat siginfo destination
3395 * @from: kernel siginfo source
3396 *
3397 * Note: This function does not work properly for the SIGCHLD on x32, but
3398 * fortunately it doesn't have to. The only valid callers for this function are
3399 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3400 * The latter does not care because SIGCHLD will never cause a coredump.
3401 */
3402 void copy_siginfo_to_external32(struct compat_siginfo *to,
3403 const struct kernel_siginfo *from)
3404 {
3405 memset(to, 0, sizeof(*to));
3406
3407 to->si_signo = from->si_signo;
3408 to->si_errno = from->si_errno;
3409 to->si_code = from->si_code;
3410 switch(siginfo_layout(from->si_signo, from->si_code)) {
3411 case SIL_KILL:
3412 to->si_pid = from->si_pid;
3413 to->si_uid = from->si_uid;
3414 break;
3415 case SIL_TIMER:
3416 to->si_tid = from->si_tid;
3417 to->si_overrun = from->si_overrun;
3418 to->si_int = from->si_int;
3419 break;
3420 case SIL_POLL:
3421 to->si_band = from->si_band;
3422 to->si_fd = from->si_fd;
3423 break;
3424 case SIL_FAULT:
3425 to->si_addr = ptr_to_compat(from->si_addr);
3426 break;
3427 case SIL_FAULT_TRAPNO:
3428 to->si_addr = ptr_to_compat(from->si_addr);
3429 to->si_trapno = from->si_trapno;
3430 break;
3431 case SIL_FAULT_MCEERR:
3432 to->si_addr = ptr_to_compat(from->si_addr);
3433 to->si_addr_lsb = from->si_addr_lsb;
3434 break;
3435 case SIL_FAULT_BNDERR:
3436 to->si_addr = ptr_to_compat(from->si_addr);
3437 to->si_lower = ptr_to_compat(from->si_lower);
3438 to->si_upper = ptr_to_compat(from->si_upper);
3439 break;
3440 case SIL_FAULT_PKUERR:
3441 to->si_addr = ptr_to_compat(from->si_addr);
3442 to->si_pkey = from->si_pkey;
3443 break;
3444 case SIL_FAULT_PERF_EVENT:
3445 to->si_addr = ptr_to_compat(from->si_addr);
3446 to->si_perf_data = from->si_perf_data;
3447 to->si_perf_type = from->si_perf_type;
3448 break;
3449 case SIL_CHLD:
3450 to->si_pid = from->si_pid;
3451 to->si_uid = from->si_uid;
3452 to->si_status = from->si_status;
3453 to->si_utime = from->si_utime;
3454 to->si_stime = from->si_stime;
3455 break;
3456 case SIL_RT:
3457 to->si_pid = from->si_pid;
3458 to->si_uid = from->si_uid;
3459 to->si_int = from->si_int;
3460 break;
3461 case SIL_SYS:
3462 to->si_call_addr = ptr_to_compat(from->si_call_addr);
3463 to->si_syscall = from->si_syscall;
3464 to->si_arch = from->si_arch;
3465 break;
3466 }
3467 }
3468
3469 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3470 const struct kernel_siginfo *from)
3471 {
3472 struct compat_siginfo new;
3473
3474 copy_siginfo_to_external32(&new, from);
3475 if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3476 return -EFAULT;
3477 return 0;
3478 }
3479
3480 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3481 const struct compat_siginfo *from)
3482 {
3483 clear_siginfo(to);
3484 to->si_signo = from->si_signo;
3485 to->si_errno = from->si_errno;
3486 to->si_code = from->si_code;
3487 switch(siginfo_layout(from->si_signo, from->si_code)) {
3488 case SIL_KILL:
3489 to->si_pid = from->si_pid;
3490 to->si_uid = from->si_uid;
3491 break;
3492 case SIL_TIMER:
3493 to->si_tid = from->si_tid;
3494 to->si_overrun = from->si_overrun;
3495 to->si_int = from->si_int;
3496 break;
3497 case SIL_POLL:
3498 to->si_band = from->si_band;
3499 to->si_fd = from->si_fd;
3500 break;
3501 case SIL_FAULT:
3502 to->si_addr = compat_ptr(from->si_addr);
3503 break;
3504 case SIL_FAULT_TRAPNO:
3505 to->si_addr = compat_ptr(from->si_addr);
3506 to->si_trapno = from->si_trapno;
3507 break;
3508 case SIL_FAULT_MCEERR:
3509 to->si_addr = compat_ptr(from->si_addr);
3510 to->si_addr_lsb = from->si_addr_lsb;
3511 break;
3512 case SIL_FAULT_BNDERR:
3513 to->si_addr = compat_ptr(from->si_addr);
3514 to->si_lower = compat_ptr(from->si_lower);
3515 to->si_upper = compat_ptr(from->si_upper);
3516 break;
3517 case SIL_FAULT_PKUERR:
3518 to->si_addr = compat_ptr(from->si_addr);
3519 to->si_pkey = from->si_pkey;
3520 break;
3521 case SIL_FAULT_PERF_EVENT:
3522 to->si_addr = compat_ptr(from->si_addr);
3523 to->si_perf_data = from->si_perf_data;
3524 to->si_perf_type = from->si_perf_type;
3525 break;
3526 case SIL_CHLD:
3527 to->si_pid = from->si_pid;
3528 to->si_uid = from->si_uid;
3529 to->si_status = from->si_status;
3530 #ifdef CONFIG_X86_X32_ABI
3531 if (in_x32_syscall()) {
3532 to->si_utime = from->_sifields._sigchld_x32._utime;
3533 to->si_stime = from->_sifields._sigchld_x32._stime;
3534 } else
3535 #endif
3536 {
3537 to->si_utime = from->si_utime;
3538 to->si_stime = from->si_stime;
3539 }
3540 break;
3541 case SIL_RT:
3542 to->si_pid = from->si_pid;
3543 to->si_uid = from->si_uid;
3544 to->si_int = from->si_int;
3545 break;
3546 case SIL_SYS:
3547 to->si_call_addr = compat_ptr(from->si_call_addr);
3548 to->si_syscall = from->si_syscall;
3549 to->si_arch = from->si_arch;
3550 break;
3551 }
3552 return 0;
3553 }
3554
3555 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3556 const struct compat_siginfo __user *ufrom)
3557 {
3558 struct compat_siginfo from;
3559
3560 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3561 return -EFAULT;
3562
3563 from.si_signo = signo;
3564 return post_copy_siginfo_from_user32(to, &from);
3565 }
3566
3567 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3568 const struct compat_siginfo __user *ufrom)
3569 {
3570 struct compat_siginfo from;
3571
3572 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3573 return -EFAULT;
3574
3575 return post_copy_siginfo_from_user32(to, &from);
3576 }
3577 #endif /* CONFIG_COMPAT */
3578
3579 /**
3580 * do_sigtimedwait - wait for queued signals specified in @which
3581 * @which: queued signals to wait for
3582 * @info: if non-null, the signal's siginfo is returned here
3583 * @ts: upper bound on process time suspension
3584 */
3585 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3586 const struct timespec64 *ts)
3587 {
3588 ktime_t *to = NULL, timeout = KTIME_MAX;
3589 struct task_struct *tsk = current;
3590 sigset_t mask = *which;
3591 int sig, ret = 0;
3592
3593 if (ts) {
3594 if (!timespec64_valid(ts))
3595 return -EINVAL;
3596 timeout = timespec64_to_ktime(*ts);
3597 to = &timeout;
3598 }
3599
3600 /*
3601 * Invert the set of allowed signals to get those we want to block.
3602 */
3603 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3604 signotset(&mask);
3605
3606 spin_lock_irq(&tsk->sighand->siglock);
3607 sig = dequeue_signal(tsk, &mask, info);
3608 if (!sig && timeout) {
3609 /*
3610 * None ready, temporarily unblock those we're interested
3611 * while we are sleeping in so that we'll be awakened when
3612 * they arrive. Unblocking is always fine, we can avoid
3613 * set_current_blocked().
3614 */
3615 tsk->real_blocked = tsk->blocked;
3616 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3617 recalc_sigpending();
3618 spin_unlock_irq(&tsk->sighand->siglock);
3619
3620 __set_current_state(TASK_INTERRUPTIBLE);
3621 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3622 HRTIMER_MODE_REL);
3623 spin_lock_irq(&tsk->sighand->siglock);
3624 __set_task_blocked(tsk, &tsk->real_blocked);
3625 sigemptyset(&tsk->real_blocked);
3626 sig = dequeue_signal(tsk, &mask, info);
3627 }
3628 spin_unlock_irq(&tsk->sighand->siglock);
3629
3630 if (sig)
3631 return sig;
3632 return ret ? -EINTR : -EAGAIN;
3633 }
3634
3635 /**
3636 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3637 * in @uthese
3638 * @uthese: queued signals to wait for
3639 * @uinfo: if non-null, the signal's siginfo is returned here
3640 * @uts: upper bound on process time suspension
3641 * @sigsetsize: size of sigset_t type
3642 */
3643 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3644 siginfo_t __user *, uinfo,
3645 const struct __kernel_timespec __user *, uts,
3646 size_t, sigsetsize)
3647 {
3648 sigset_t these;
3649 struct timespec64 ts;
3650 kernel_siginfo_t info;
3651 int ret;
3652
3653 /* XXX: Don't preclude handling different sized sigset_t's. */
3654 if (sigsetsize != sizeof(sigset_t))
3655 return -EINVAL;
3656
3657 if (copy_from_user(&these, uthese, sizeof(these)))
3658 return -EFAULT;
3659
3660 if (uts) {
3661 if (get_timespec64(&ts, uts))
3662 return -EFAULT;
3663 }
3664
3665 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3666
3667 if (ret > 0 && uinfo) {
3668 if (copy_siginfo_to_user(uinfo, &info))
3669 ret = -EFAULT;
3670 }
3671
3672 return ret;
3673 }
3674
3675 #ifdef CONFIG_COMPAT_32BIT_TIME
3676 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3677 siginfo_t __user *, uinfo,
3678 const struct old_timespec32 __user *, uts,
3679 size_t, sigsetsize)
3680 {
3681 sigset_t these;
3682 struct timespec64 ts;
3683 kernel_siginfo_t info;
3684 int ret;
3685
3686 if (sigsetsize != sizeof(sigset_t))
3687 return -EINVAL;
3688
3689 if (copy_from_user(&these, uthese, sizeof(these)))
3690 return -EFAULT;
3691
3692 if (uts) {
3693 if (get_old_timespec32(&ts, uts))
3694 return -EFAULT;
3695 }
3696
3697 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3698
3699 if (ret > 0 && uinfo) {
3700 if (copy_siginfo_to_user(uinfo, &info))
3701 ret = -EFAULT;
3702 }
3703
3704 return ret;
3705 }
3706 #endif
3707
3708 #ifdef CONFIG_COMPAT
3709 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3710 struct compat_siginfo __user *, uinfo,
3711 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3712 {
3713 sigset_t s;
3714 struct timespec64 t;
3715 kernel_siginfo_t info;
3716 long ret;
3717
3718 if (sigsetsize != sizeof(sigset_t))
3719 return -EINVAL;
3720
3721 if (get_compat_sigset(&s, uthese))
3722 return -EFAULT;
3723
3724 if (uts) {
3725 if (get_timespec64(&t, uts))
3726 return -EFAULT;
3727 }
3728
3729 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3730
3731 if (ret > 0 && uinfo) {
3732 if (copy_siginfo_to_user32(uinfo, &info))
3733 ret = -EFAULT;
3734 }
3735
3736 return ret;
3737 }
3738
3739 #ifdef CONFIG_COMPAT_32BIT_TIME
3740 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3741 struct compat_siginfo __user *, uinfo,
3742 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3743 {
3744 sigset_t s;
3745 struct timespec64 t;
3746 kernel_siginfo_t info;
3747 long ret;
3748
3749 if (sigsetsize != sizeof(sigset_t))
3750 return -EINVAL;
3751
3752 if (get_compat_sigset(&s, uthese))
3753 return -EFAULT;
3754
3755 if (uts) {
3756 if (get_old_timespec32(&t, uts))
3757 return -EFAULT;
3758 }
3759
3760 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3761
3762 if (ret > 0 && uinfo) {
3763 if (copy_siginfo_to_user32(uinfo, &info))
3764 ret = -EFAULT;
3765 }
3766
3767 return ret;
3768 }
3769 #endif
3770 #endif
3771
3772 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3773 {
3774 clear_siginfo(info);
3775 info->si_signo = sig;
3776 info->si_errno = 0;
3777 info->si_code = SI_USER;
3778 info->si_pid = task_tgid_vnr(current);
3779 info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3780 }
3781
3782 /**
3783 * sys_kill - send a signal to a process
3784 * @pid: the PID of the process
3785 * @sig: signal to be sent
3786 */
3787 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3788 {
3789 struct kernel_siginfo info;
3790
3791 prepare_kill_siginfo(sig, &info);
3792
3793 return kill_something_info(sig, &info, pid);
3794 }
3795
3796 /*
3797 * Verify that the signaler and signalee either are in the same pid namespace
3798 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3799 * namespace.
3800 */
3801 static bool access_pidfd_pidns(struct pid *pid)
3802 {
3803 struct pid_namespace *active = task_active_pid_ns(current);
3804 struct pid_namespace *p = ns_of_pid(pid);
3805
3806 for (;;) {
3807 if (!p)
3808 return false;
3809 if (p == active)
3810 break;
3811 p = p->parent;
3812 }
3813
3814 return true;
3815 }
3816
3817 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3818 siginfo_t __user *info)
3819 {
3820 #ifdef CONFIG_COMPAT
3821 /*
3822 * Avoid hooking up compat syscalls and instead handle necessary
3823 * conversions here. Note, this is a stop-gap measure and should not be
3824 * considered a generic solution.
3825 */
3826 if (in_compat_syscall())
3827 return copy_siginfo_from_user32(
3828 kinfo, (struct compat_siginfo __user *)info);
3829 #endif
3830 return copy_siginfo_from_user(kinfo, info);
3831 }
3832
3833 static struct pid *pidfd_to_pid(const struct file *file)
3834 {
3835 struct pid *pid;
3836
3837 pid = pidfd_pid(file);
3838 if (!IS_ERR(pid))
3839 return pid;
3840
3841 return tgid_pidfd_to_pid(file);
3842 }
3843
3844 /**
3845 * sys_pidfd_send_signal - Signal a process through a pidfd
3846 * @pidfd: file descriptor of the process
3847 * @sig: signal to send
3848 * @info: signal info
3849 * @flags: future flags
3850 *
3851 * The syscall currently only signals via PIDTYPE_PID which covers
3852 * kill(<positive-pid>, <signal>. It does not signal threads or process
3853 * groups.
3854 * In order to extend the syscall to threads and process groups the @flags
3855 * argument should be used. In essence, the @flags argument will determine
3856 * what is signaled and not the file descriptor itself. Put in other words,
3857 * grouping is a property of the flags argument not a property of the file
3858 * descriptor.
3859 *
3860 * Return: 0 on success, negative errno on failure
3861 */
3862 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3863 siginfo_t __user *, info, unsigned int, flags)
3864 {
3865 int ret;
3866 struct fd f;
3867 struct pid *pid;
3868 kernel_siginfo_t kinfo;
3869
3870 /* Enforce flags be set to 0 until we add an extension. */
3871 if (flags)
3872 return -EINVAL;
3873
3874 f = fdget(pidfd);
3875 if (!f.file)
3876 return -EBADF;
3877
3878 /* Is this a pidfd? */
3879 pid = pidfd_to_pid(f.file);
3880 if (IS_ERR(pid)) {
3881 ret = PTR_ERR(pid);
3882 goto err;
3883 }
3884
3885 ret = -EINVAL;
3886 if (!access_pidfd_pidns(pid))
3887 goto err;
3888
3889 if (info) {
3890 ret = copy_siginfo_from_user_any(&kinfo, info);
3891 if (unlikely(ret))
3892 goto err;
3893
3894 ret = -EINVAL;
3895 if (unlikely(sig != kinfo.si_signo))
3896 goto err;
3897
3898 /* Only allow sending arbitrary signals to yourself. */
3899 ret = -EPERM;
3900 if ((task_pid(current) != pid) &&
3901 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3902 goto err;
3903 } else {
3904 prepare_kill_siginfo(sig, &kinfo);
3905 }
3906
3907 ret = kill_pid_info(sig, &kinfo, pid);
3908
3909 err:
3910 fdput(f);
3911 return ret;
3912 }
3913
3914 static int
3915 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3916 {
3917 struct task_struct *p;
3918 int error = -ESRCH;
3919
3920 rcu_read_lock();
3921 p = find_task_by_vpid(pid);
3922 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3923 error = check_kill_permission(sig, info, p);
3924 /*
3925 * The null signal is a permissions and process existence
3926 * probe. No signal is actually delivered.
3927 */
3928 if (!error && sig) {
3929 error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3930 /*
3931 * If lock_task_sighand() failed we pretend the task
3932 * dies after receiving the signal. The window is tiny,
3933 * and the signal is private anyway.
3934 */
3935 if (unlikely(error == -ESRCH))
3936 error = 0;
3937 }
3938 }
3939 rcu_read_unlock();
3940
3941 return error;
3942 }
3943
3944 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3945 {
3946 struct kernel_siginfo info;
3947
3948 clear_siginfo(&info);
3949 info.si_signo = sig;
3950 info.si_errno = 0;
3951 info.si_code = SI_TKILL;
3952 info.si_pid = task_tgid_vnr(current);
3953 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3954
3955 return do_send_specific(tgid, pid, sig, &info);
3956 }
3957
3958 /**
3959 * sys_tgkill - send signal to one specific thread
3960 * @tgid: the thread group ID of the thread
3961 * @pid: the PID of the thread
3962 * @sig: signal to be sent
3963 *
3964 * This syscall also checks the @tgid and returns -ESRCH even if the PID
3965 * exists but it's not belonging to the target process anymore. This
3966 * method solves the problem of threads exiting and PIDs getting reused.
3967 */
3968 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3969 {
3970 /* This is only valid for single tasks */
3971 if (pid <= 0 || tgid <= 0)
3972 return -EINVAL;
3973
3974 return do_tkill(tgid, pid, sig);
3975 }
3976
3977 /**
3978 * sys_tkill - send signal to one specific task
3979 * @pid: the PID of the task
3980 * @sig: signal to be sent
3981 *
3982 * Send a signal to only one task, even if it's a CLONE_THREAD task.
3983 */
3984 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3985 {
3986 /* This is only valid for single tasks */
3987 if (pid <= 0)
3988 return -EINVAL;
3989
3990 return do_tkill(0, pid, sig);
3991 }
3992
3993 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3994 {
3995 /* Not even root can pretend to send signals from the kernel.
3996 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3997 */
3998 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3999 (task_pid_vnr(current) != pid))
4000 return -EPERM;
4001
4002 /* POSIX.1b doesn't mention process groups. */
4003 return kill_proc_info(sig, info, pid);
4004 }
4005
4006 /**
4007 * sys_rt_sigqueueinfo - send signal information to a signal
4008 * @pid: the PID of the thread
4009 * @sig: signal to be sent
4010 * @uinfo: signal info to be sent
4011 */
4012 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4013 siginfo_t __user *, uinfo)
4014 {
4015 kernel_siginfo_t info;
4016 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4017 if (unlikely(ret))
4018 return ret;
4019 return do_rt_sigqueueinfo(pid, sig, &info);
4020 }
4021
4022 #ifdef CONFIG_COMPAT
4023 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4024 compat_pid_t, pid,
4025 int, sig,
4026 struct compat_siginfo __user *, uinfo)
4027 {
4028 kernel_siginfo_t info;
4029 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4030 if (unlikely(ret))
4031 return ret;
4032 return do_rt_sigqueueinfo(pid, sig, &info);
4033 }
4034 #endif
4035
4036 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4037 {
4038 /* This is only valid for single tasks */
4039 if (pid <= 0 || tgid <= 0)
4040 return -EINVAL;
4041
4042 /* Not even root can pretend to send signals from the kernel.
4043 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4044 */
4045 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4046 (task_pid_vnr(current) != pid))
4047 return -EPERM;
4048
4049 return do_send_specific(tgid, pid, sig, info);
4050 }
4051
4052 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4053 siginfo_t __user *, uinfo)
4054 {
4055 kernel_siginfo_t info;
4056 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4057 if (unlikely(ret))
4058 return ret;
4059 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4060 }
4061
4062 #ifdef CONFIG_COMPAT
4063 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4064 compat_pid_t, tgid,
4065 compat_pid_t, pid,
4066 int, sig,
4067 struct compat_siginfo __user *, uinfo)
4068 {
4069 kernel_siginfo_t info;
4070 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4071 if (unlikely(ret))
4072 return ret;
4073 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4074 }
4075 #endif
4076
4077 /*
4078 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4079 */
4080 void kernel_sigaction(int sig, __sighandler_t action)
4081 {
4082 spin_lock_irq(&current->sighand->siglock);
4083 current->sighand->action[sig - 1].sa.sa_handler = action;
4084 if (action == SIG_IGN) {
4085 sigset_t mask;
4086
4087 sigemptyset(&mask);
4088 sigaddset(&mask, sig);
4089
4090 flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4091 flush_sigqueue_mask(&mask, &current->pending);
4092 recalc_sigpending();
4093 }
4094 spin_unlock_irq(&current->sighand->siglock);
4095 }
4096 EXPORT_SYMBOL(kernel_sigaction);
4097
4098 void __weak sigaction_compat_abi(struct k_sigaction *act,
4099 struct k_sigaction *oact)
4100 {
4101 }
4102
4103 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4104 {
4105 struct task_struct *p = current, *t;
4106 struct k_sigaction *k;
4107 sigset_t mask;
4108
4109 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4110 return -EINVAL;
4111
4112 k = &p->sighand->action[sig-1];
4113
4114 spin_lock_irq(&p->sighand->siglock);
4115 if (k->sa.sa_flags & SA_IMMUTABLE) {
4116 spin_unlock_irq(&p->sighand->siglock);
4117 return -EINVAL;
4118 }
4119 if (oact)
4120 *oact = *k;
4121
4122 /*
4123 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4124 * e.g. by having an architecture use the bit in their uapi.
4125 */
4126 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4127
4128 /*
4129 * Clear unknown flag bits in order to allow userspace to detect missing
4130 * support for flag bits and to allow the kernel to use non-uapi bits
4131 * internally.
4132 */
4133 if (act)
4134 act->sa.sa_flags &= UAPI_SA_FLAGS;
4135 if (oact)
4136 oact->sa.sa_flags &= UAPI_SA_FLAGS;
4137
4138 sigaction_compat_abi(act, oact);
4139
4140 if (act) {
4141 sigdelsetmask(&act->sa.sa_mask,
4142 sigmask(SIGKILL) | sigmask(SIGSTOP));
4143 *k = *act;
4144 /*
4145 * POSIX 3.3.1.3:
4146 * "Setting a signal action to SIG_IGN for a signal that is
4147 * pending shall cause the pending signal to be discarded,
4148 * whether or not it is blocked."
4149 *
4150 * "Setting a signal action to SIG_DFL for a signal that is
4151 * pending and whose default action is to ignore the signal
4152 * (for example, SIGCHLD), shall cause the pending signal to
4153 * be discarded, whether or not it is blocked"
4154 */
4155 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4156 sigemptyset(&mask);
4157 sigaddset(&mask, sig);
4158 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4159 for_each_thread(p, t)
4160 flush_sigqueue_mask(&mask, &t->pending);
4161 }
4162 }
4163
4164 spin_unlock_irq(&p->sighand->siglock);
4165 return 0;
4166 }
4167
4168 #ifdef CONFIG_DYNAMIC_SIGFRAME
4169 static inline void sigaltstack_lock(void)
4170 __acquires(&current->sighand->siglock)
4171 {
4172 spin_lock_irq(&current->sighand->siglock);
4173 }
4174
4175 static inline void sigaltstack_unlock(void)
4176 __releases(&current->sighand->siglock)
4177 {
4178 spin_unlock_irq(&current->sighand->siglock);
4179 }
4180 #else
4181 static inline void sigaltstack_lock(void) { }
4182 static inline void sigaltstack_unlock(void) { }
4183 #endif
4184
4185 static int
4186 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4187 size_t min_ss_size)
4188 {
4189 struct task_struct *t = current;
4190 int ret = 0;
4191
4192 if (oss) {
4193 memset(oss, 0, sizeof(stack_t));
4194 oss->ss_sp = (void __user *) t->sas_ss_sp;
4195 oss->ss_size = t->sas_ss_size;
4196 oss->ss_flags = sas_ss_flags(sp) |
4197 (current->sas_ss_flags & SS_FLAG_BITS);
4198 }
4199
4200 if (ss) {
4201 void __user *ss_sp = ss->ss_sp;
4202 size_t ss_size = ss->ss_size;
4203 unsigned ss_flags = ss->ss_flags;
4204 int ss_mode;
4205
4206 if (unlikely(on_sig_stack(sp)))
4207 return -EPERM;
4208
4209 ss_mode = ss_flags & ~SS_FLAG_BITS;
4210 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4211 ss_mode != 0))
4212 return -EINVAL;
4213
4214 /*
4215 * Return before taking any locks if no actual
4216 * sigaltstack changes were requested.
4217 */
4218 if (t->sas_ss_sp == (unsigned long)ss_sp &&
4219 t->sas_ss_size == ss_size &&
4220 t->sas_ss_flags == ss_flags)
4221 return 0;
4222
4223 sigaltstack_lock();
4224 if (ss_mode == SS_DISABLE) {
4225 ss_size = 0;
4226 ss_sp = NULL;
4227 } else {
4228 if (unlikely(ss_size < min_ss_size))
4229 ret = -ENOMEM;
4230 if (!sigaltstack_size_valid(ss_size))
4231 ret = -ENOMEM;
4232 }
4233 if (!ret) {
4234 t->sas_ss_sp = (unsigned long) ss_sp;
4235 t->sas_ss_size = ss_size;
4236 t->sas_ss_flags = ss_flags;
4237 }
4238 sigaltstack_unlock();
4239 }
4240 return ret;
4241 }
4242
4243 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4244 {
4245 stack_t new, old;
4246 int err;
4247 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4248 return -EFAULT;
4249 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4250 current_user_stack_pointer(),
4251 MINSIGSTKSZ);
4252 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4253 err = -EFAULT;
4254 return err;
4255 }
4256
4257 int restore_altstack(const stack_t __user *uss)
4258 {
4259 stack_t new;
4260 if (copy_from_user(&new, uss, sizeof(stack_t)))
4261 return -EFAULT;
4262 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4263 MINSIGSTKSZ);
4264 /* squash all but EFAULT for now */
4265 return 0;
4266 }
4267
4268 int __save_altstack(stack_t __user *uss, unsigned long sp)
4269 {
4270 struct task_struct *t = current;
4271 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4272 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4273 __put_user(t->sas_ss_size, &uss->ss_size);
4274 return err;
4275 }
4276
4277 #ifdef CONFIG_COMPAT
4278 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4279 compat_stack_t __user *uoss_ptr)
4280 {
4281 stack_t uss, uoss;
4282 int ret;
4283
4284 if (uss_ptr) {
4285 compat_stack_t uss32;
4286 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4287 return -EFAULT;
4288 uss.ss_sp = compat_ptr(uss32.ss_sp);
4289 uss.ss_flags = uss32.ss_flags;
4290 uss.ss_size = uss32.ss_size;
4291 }
4292 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4293 compat_user_stack_pointer(),
4294 COMPAT_MINSIGSTKSZ);
4295 if (ret >= 0 && uoss_ptr) {
4296 compat_stack_t old;
4297 memset(&old, 0, sizeof(old));
4298 old.ss_sp = ptr_to_compat(uoss.ss_sp);
4299 old.ss_flags = uoss.ss_flags;
4300 old.ss_size = uoss.ss_size;
4301 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4302 ret = -EFAULT;
4303 }
4304 return ret;
4305 }
4306
4307 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4308 const compat_stack_t __user *, uss_ptr,
4309 compat_stack_t __user *, uoss_ptr)
4310 {
4311 return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4312 }
4313
4314 int compat_restore_altstack(const compat_stack_t __user *uss)
4315 {
4316 int err = do_compat_sigaltstack(uss, NULL);
4317 /* squash all but -EFAULT for now */
4318 return err == -EFAULT ? err : 0;
4319 }
4320
4321 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4322 {
4323 int err;
4324 struct task_struct *t = current;
4325 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4326 &uss->ss_sp) |
4327 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4328 __put_user(t->sas_ss_size, &uss->ss_size);
4329 return err;
4330 }
4331 #endif
4332
4333 #ifdef __ARCH_WANT_SYS_SIGPENDING
4334
4335 /**
4336 * sys_sigpending - examine pending signals
4337 * @uset: where mask of pending signal is returned
4338 */
4339 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4340 {
4341 sigset_t set;
4342
4343 if (sizeof(old_sigset_t) > sizeof(*uset))
4344 return -EINVAL;
4345
4346 do_sigpending(&set);
4347
4348 if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4349 return -EFAULT;
4350
4351 return 0;
4352 }
4353
4354 #ifdef CONFIG_COMPAT
4355 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4356 {
4357 sigset_t set;
4358
4359 do_sigpending(&set);
4360
4361 return put_user(set.sig[0], set32);
4362 }
4363 #endif
4364
4365 #endif
4366
4367 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4368 /**
4369 * sys_sigprocmask - examine and change blocked signals
4370 * @how: whether to add, remove, or set signals
4371 * @nset: signals to add or remove (if non-null)
4372 * @oset: previous value of signal mask if non-null
4373 *
4374 * Some platforms have their own version with special arguments;
4375 * others support only sys_rt_sigprocmask.
4376 */
4377
4378 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4379 old_sigset_t __user *, oset)
4380 {
4381 old_sigset_t old_set, new_set;
4382 sigset_t new_blocked;
4383
4384 old_set = current->blocked.sig[0];
4385
4386 if (nset) {
4387 if (copy_from_user(&new_set, nset, sizeof(*nset)))
4388 return -EFAULT;
4389
4390 new_blocked = current->blocked;
4391
4392 switch (how) {
4393 case SIG_BLOCK:
4394 sigaddsetmask(&new_blocked, new_set);
4395 break;
4396 case SIG_UNBLOCK:
4397 sigdelsetmask(&new_blocked, new_set);
4398 break;
4399 case SIG_SETMASK:
4400 new_blocked.sig[0] = new_set;
4401 break;
4402 default:
4403 return -EINVAL;
4404 }
4405
4406 set_current_blocked(&new_blocked);
4407 }
4408
4409 if (oset) {
4410 if (copy_to_user(oset, &old_set, sizeof(*oset)))
4411 return -EFAULT;
4412 }
4413
4414 return 0;
4415 }
4416 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4417
4418 #ifndef CONFIG_ODD_RT_SIGACTION
4419 /**
4420 * sys_rt_sigaction - alter an action taken by a process
4421 * @sig: signal to be sent
4422 * @act: new sigaction
4423 * @oact: used to save the previous sigaction
4424 * @sigsetsize: size of sigset_t type
4425 */
4426 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4427 const struct sigaction __user *, act,
4428 struct sigaction __user *, oact,
4429 size_t, sigsetsize)
4430 {
4431 struct k_sigaction new_sa, old_sa;
4432 int ret;
4433
4434 /* XXX: Don't preclude handling different sized sigset_t's. */
4435 if (sigsetsize != sizeof(sigset_t))
4436 return -EINVAL;
4437
4438 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4439 return -EFAULT;
4440
4441 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4442 if (ret)
4443 return ret;
4444
4445 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4446 return -EFAULT;
4447
4448 return 0;
4449 }
4450 #ifdef CONFIG_COMPAT
4451 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4452 const struct compat_sigaction __user *, act,
4453 struct compat_sigaction __user *, oact,
4454 compat_size_t, sigsetsize)
4455 {
4456 struct k_sigaction new_ka, old_ka;
4457 #ifdef __ARCH_HAS_SA_RESTORER
4458 compat_uptr_t restorer;
4459 #endif
4460 int ret;
4461
4462 /* XXX: Don't preclude handling different sized sigset_t's. */
4463 if (sigsetsize != sizeof(compat_sigset_t))
4464 return -EINVAL;
4465
4466 if (act) {
4467 compat_uptr_t handler;
4468 ret = get_user(handler, &act->sa_handler);
4469 new_ka.sa.sa_handler = compat_ptr(handler);
4470 #ifdef __ARCH_HAS_SA_RESTORER
4471 ret |= get_user(restorer, &act->sa_restorer);
4472 new_ka.sa.sa_restorer = compat_ptr(restorer);
4473 #endif
4474 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4475 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4476 if (ret)
4477 return -EFAULT;
4478 }
4479
4480 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4481 if (!ret && oact) {
4482 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4483 &oact->sa_handler);
4484 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4485 sizeof(oact->sa_mask));
4486 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4487 #ifdef __ARCH_HAS_SA_RESTORER
4488 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4489 &oact->sa_restorer);
4490 #endif
4491 }
4492 return ret;
4493 }
4494 #endif
4495 #endif /* !CONFIG_ODD_RT_SIGACTION */
4496
4497 #ifdef CONFIG_OLD_SIGACTION
4498 SYSCALL_DEFINE3(sigaction, int, sig,
4499 const struct old_sigaction __user *, act,
4500 struct old_sigaction __user *, oact)
4501 {
4502 struct k_sigaction new_ka, old_ka;
4503 int ret;
4504
4505 if (act) {
4506 old_sigset_t mask;
4507 if (!access_ok(act, sizeof(*act)) ||
4508 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4509 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4510 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4511 __get_user(mask, &act->sa_mask))
4512 return -EFAULT;
4513 #ifdef __ARCH_HAS_KA_RESTORER
4514 new_ka.ka_restorer = NULL;
4515 #endif
4516 siginitset(&new_ka.sa.sa_mask, mask);
4517 }
4518
4519 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4520
4521 if (!ret && oact) {
4522 if (!access_ok(oact, sizeof(*oact)) ||
4523 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4524 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4525 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4526 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4527 return -EFAULT;
4528 }
4529
4530 return ret;
4531 }
4532 #endif
4533 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4534 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4535 const struct compat_old_sigaction __user *, act,
4536 struct compat_old_sigaction __user *, oact)
4537 {
4538 struct k_sigaction new_ka, old_ka;
4539 int ret;
4540 compat_old_sigset_t mask;
4541 compat_uptr_t handler, restorer;
4542
4543 if (act) {
4544 if (!access_ok(act, sizeof(*act)) ||
4545 __get_user(handler, &act->sa_handler) ||
4546 __get_user(restorer, &act->sa_restorer) ||
4547 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4548 __get_user(mask, &act->sa_mask))
4549 return -EFAULT;
4550
4551 #ifdef __ARCH_HAS_KA_RESTORER
4552 new_ka.ka_restorer = NULL;
4553 #endif
4554 new_ka.sa.sa_handler = compat_ptr(handler);
4555 new_ka.sa.sa_restorer = compat_ptr(restorer);
4556 siginitset(&new_ka.sa.sa_mask, mask);
4557 }
4558
4559 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4560
4561 if (!ret && oact) {
4562 if (!access_ok(oact, sizeof(*oact)) ||
4563 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4564 &oact->sa_handler) ||
4565 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4566 &oact->sa_restorer) ||
4567 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4568 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4569 return -EFAULT;
4570 }
4571 return ret;
4572 }
4573 #endif
4574
4575 #ifdef CONFIG_SGETMASK_SYSCALL
4576
4577 /*
4578 * For backwards compatibility. Functionality superseded by sigprocmask.
4579 */
4580 SYSCALL_DEFINE0(sgetmask)
4581 {
4582 /* SMP safe */
4583 return current->blocked.sig[0];
4584 }
4585
4586 SYSCALL_DEFINE1(ssetmask, int, newmask)
4587 {
4588 int old = current->blocked.sig[0];
4589 sigset_t newset;
4590
4591 siginitset(&newset, newmask);
4592 set_current_blocked(&newset);
4593
4594 return old;
4595 }
4596 #endif /* CONFIG_SGETMASK_SYSCALL */
4597
4598 #ifdef __ARCH_WANT_SYS_SIGNAL
4599 /*
4600 * For backwards compatibility. Functionality superseded by sigaction.
4601 */
4602 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4603 {
4604 struct k_sigaction new_sa, old_sa;
4605 int ret;
4606
4607 new_sa.sa.sa_handler = handler;
4608 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4609 sigemptyset(&new_sa.sa.sa_mask);
4610
4611 ret = do_sigaction(sig, &new_sa, &old_sa);
4612
4613 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4614 }
4615 #endif /* __ARCH_WANT_SYS_SIGNAL */
4616
4617 #ifdef __ARCH_WANT_SYS_PAUSE
4618
4619 SYSCALL_DEFINE0(pause)
4620 {
4621 while (!signal_pending(current)) {
4622 __set_current_state(TASK_INTERRUPTIBLE);
4623 schedule();
4624 }
4625 return -ERESTARTNOHAND;
4626 }
4627
4628 #endif
4629
4630 static int sigsuspend(sigset_t *set)
4631 {
4632 current->saved_sigmask = current->blocked;
4633 set_current_blocked(set);
4634
4635 while (!signal_pending(current)) {
4636 __set_current_state(TASK_INTERRUPTIBLE);
4637 schedule();
4638 }
4639 set_restore_sigmask();
4640 return -ERESTARTNOHAND;
4641 }
4642
4643 /**
4644 * sys_rt_sigsuspend - replace the signal mask for a value with the
4645 * @unewset value until a signal is received
4646 * @unewset: new signal mask value
4647 * @sigsetsize: size of sigset_t type
4648 */
4649 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4650 {
4651 sigset_t newset;
4652
4653 /* XXX: Don't preclude handling different sized sigset_t's. */
4654 if (sigsetsize != sizeof(sigset_t))
4655 return -EINVAL;
4656
4657 if (copy_from_user(&newset, unewset, sizeof(newset)))
4658 return -EFAULT;
4659 return sigsuspend(&newset);
4660 }
4661
4662 #ifdef CONFIG_COMPAT
4663 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4664 {
4665 sigset_t newset;
4666
4667 /* XXX: Don't preclude handling different sized sigset_t's. */
4668 if (sigsetsize != sizeof(sigset_t))
4669 return -EINVAL;
4670
4671 if (get_compat_sigset(&newset, unewset))
4672 return -EFAULT;
4673 return sigsuspend(&newset);
4674 }
4675 #endif
4676
4677 #ifdef CONFIG_OLD_SIGSUSPEND
4678 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4679 {
4680 sigset_t blocked;
4681 siginitset(&blocked, mask);
4682 return sigsuspend(&blocked);
4683 }
4684 #endif
4685 #ifdef CONFIG_OLD_SIGSUSPEND3
4686 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4687 {
4688 sigset_t blocked;
4689 siginitset(&blocked, mask);
4690 return sigsuspend(&blocked);
4691 }
4692 #endif
4693
4694 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4695 {
4696 return NULL;
4697 }
4698
4699 static inline void siginfo_buildtime_checks(void)
4700 {
4701 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4702
4703 /* Verify the offsets in the two siginfos match */
4704 #define CHECK_OFFSET(field) \
4705 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4706
4707 /* kill */
4708 CHECK_OFFSET(si_pid);
4709 CHECK_OFFSET(si_uid);
4710
4711 /* timer */
4712 CHECK_OFFSET(si_tid);
4713 CHECK_OFFSET(si_overrun);
4714 CHECK_OFFSET(si_value);
4715
4716 /* rt */
4717 CHECK_OFFSET(si_pid);
4718 CHECK_OFFSET(si_uid);
4719 CHECK_OFFSET(si_value);
4720
4721 /* sigchld */
4722 CHECK_OFFSET(si_pid);
4723 CHECK_OFFSET(si_uid);
4724 CHECK_OFFSET(si_status);
4725 CHECK_OFFSET(si_utime);
4726 CHECK_OFFSET(si_stime);
4727
4728 /* sigfault */
4729 CHECK_OFFSET(si_addr);
4730 CHECK_OFFSET(si_trapno);
4731 CHECK_OFFSET(si_addr_lsb);
4732 CHECK_OFFSET(si_lower);
4733 CHECK_OFFSET(si_upper);
4734 CHECK_OFFSET(si_pkey);
4735 CHECK_OFFSET(si_perf_data);
4736 CHECK_OFFSET(si_perf_type);
4737
4738 /* sigpoll */
4739 CHECK_OFFSET(si_band);
4740 CHECK_OFFSET(si_fd);
4741
4742 /* sigsys */
4743 CHECK_OFFSET(si_call_addr);
4744 CHECK_OFFSET(si_syscall);
4745 CHECK_OFFSET(si_arch);
4746 #undef CHECK_OFFSET
4747
4748 /* usb asyncio */
4749 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4750 offsetof(struct siginfo, si_addr));
4751 if (sizeof(int) == sizeof(void __user *)) {
4752 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4753 sizeof(void __user *));
4754 } else {
4755 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4756 sizeof_field(struct siginfo, si_uid)) !=
4757 sizeof(void __user *));
4758 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4759 offsetof(struct siginfo, si_uid));
4760 }
4761 #ifdef CONFIG_COMPAT
4762 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4763 offsetof(struct compat_siginfo, si_addr));
4764 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4765 sizeof(compat_uptr_t));
4766 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4767 sizeof_field(struct siginfo, si_pid));
4768 #endif
4769 }
4770
4771 void __init signals_init(void)
4772 {
4773 siginfo_buildtime_checks();
4774
4775 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4776 }
4777
4778 #ifdef CONFIG_KGDB_KDB
4779 #include <linux/kdb.h>
4780 /*
4781 * kdb_send_sig - Allows kdb to send signals without exposing
4782 * signal internals. This function checks if the required locks are
4783 * available before calling the main signal code, to avoid kdb
4784 * deadlocks.
4785 */
4786 void kdb_send_sig(struct task_struct *t, int sig)
4787 {
4788 static struct task_struct *kdb_prev_t;
4789 int new_t, ret;
4790 if (!spin_trylock(&t->sighand->siglock)) {
4791 kdb_printf("Can't do kill command now.\n"
4792 "The sigmask lock is held somewhere else in "
4793 "kernel, try again later\n");
4794 return;
4795 }
4796 new_t = kdb_prev_t != t;
4797 kdb_prev_t = t;
4798 if (!task_is_running(t) && new_t) {
4799 spin_unlock(&t->sighand->siglock);
4800 kdb_printf("Process is not RUNNING, sending a signal from "
4801 "kdb risks deadlock\n"
4802 "on the run queue locks. "
4803 "The signal has _not_ been sent.\n"
4804 "Reissue the kill command if you want to risk "
4805 "the deadlock.\n");
4806 return;
4807 }
4808 ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4809 spin_unlock(&t->sighand->siglock);
4810 if (ret)
4811 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4812 sig, t->pid);
4813 else
4814 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4815 }
4816 #endif /* CONFIG_KGDB_KDB */