]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/signal.c
Nuke duplicate header from sysctl.c
[mirror_ubuntu-artful-kernel.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/capability.h>
26 #include <linux/freezer.h>
27 #include <linux/pid_namespace.h>
28 #include <linux/nsproxy.h>
29
30 #include <asm/param.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
33 #include <asm/siginfo.h>
34 #include "audit.h" /* audit_signal_info() */
35
36 /*
37 * SLAB caches for signal bits.
38 */
39
40 static struct kmem_cache *sigqueue_cachep;
41
42
43 static int sig_ignored(struct task_struct *t, int sig)
44 {
45 void __user * handler;
46
47 /*
48 * Tracers always want to know about signals..
49 */
50 if (t->ptrace & PT_PTRACED)
51 return 0;
52
53 /*
54 * Blocked signals are never ignored, since the
55 * signal handler may change by the time it is
56 * unblocked.
57 */
58 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
59 return 0;
60
61 /* Is it explicitly or implicitly ignored? */
62 handler = t->sighand->action[sig-1].sa.sa_handler;
63 return handler == SIG_IGN ||
64 (handler == SIG_DFL && sig_kernel_ignore(sig));
65 }
66
67 /*
68 * Re-calculate pending state from the set of locally pending
69 * signals, globally pending signals, and blocked signals.
70 */
71 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
72 {
73 unsigned long ready;
74 long i;
75
76 switch (_NSIG_WORDS) {
77 default:
78 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
79 ready |= signal->sig[i] &~ blocked->sig[i];
80 break;
81
82 case 4: ready = signal->sig[3] &~ blocked->sig[3];
83 ready |= signal->sig[2] &~ blocked->sig[2];
84 ready |= signal->sig[1] &~ blocked->sig[1];
85 ready |= signal->sig[0] &~ blocked->sig[0];
86 break;
87
88 case 2: ready = signal->sig[1] &~ blocked->sig[1];
89 ready |= signal->sig[0] &~ blocked->sig[0];
90 break;
91
92 case 1: ready = signal->sig[0] &~ blocked->sig[0];
93 }
94 return ready != 0;
95 }
96
97 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
98
99 static int recalc_sigpending_tsk(struct task_struct *t)
100 {
101 if (t->signal->group_stop_count > 0 ||
102 PENDING(&t->pending, &t->blocked) ||
103 PENDING(&t->signal->shared_pending, &t->blocked)) {
104 set_tsk_thread_flag(t, TIF_SIGPENDING);
105 return 1;
106 }
107 /*
108 * We must never clear the flag in another thread, or in current
109 * when it's possible the current syscall is returning -ERESTART*.
110 * So we don't clear it here, and only callers who know they should do.
111 */
112 return 0;
113 }
114
115 /*
116 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
117 * This is superfluous when called on current, the wakeup is a harmless no-op.
118 */
119 void recalc_sigpending_and_wake(struct task_struct *t)
120 {
121 if (recalc_sigpending_tsk(t))
122 signal_wake_up(t, 0);
123 }
124
125 void recalc_sigpending(void)
126 {
127 if (!recalc_sigpending_tsk(current) && !freezing(current))
128 clear_thread_flag(TIF_SIGPENDING);
129
130 }
131
132 /* Given the mask, find the first available signal that should be serviced. */
133
134 int next_signal(struct sigpending *pending, sigset_t *mask)
135 {
136 unsigned long i, *s, *m, x;
137 int sig = 0;
138
139 s = pending->signal.sig;
140 m = mask->sig;
141 switch (_NSIG_WORDS) {
142 default:
143 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
144 if ((x = *s &~ *m) != 0) {
145 sig = ffz(~x) + i*_NSIG_BPW + 1;
146 break;
147 }
148 break;
149
150 case 2: if ((x = s[0] &~ m[0]) != 0)
151 sig = 1;
152 else if ((x = s[1] &~ m[1]) != 0)
153 sig = _NSIG_BPW + 1;
154 else
155 break;
156 sig += ffz(~x);
157 break;
158
159 case 1: if ((x = *s &~ *m) != 0)
160 sig = ffz(~x) + 1;
161 break;
162 }
163
164 return sig;
165 }
166
167 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
168 int override_rlimit)
169 {
170 struct sigqueue *q = NULL;
171 struct user_struct *user;
172
173 /*
174 * In order to avoid problems with "switch_user()", we want to make
175 * sure that the compiler doesn't re-load "t->user"
176 */
177 user = t->user;
178 barrier();
179 atomic_inc(&user->sigpending);
180 if (override_rlimit ||
181 atomic_read(&user->sigpending) <=
182 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
183 q = kmem_cache_alloc(sigqueue_cachep, flags);
184 if (unlikely(q == NULL)) {
185 atomic_dec(&user->sigpending);
186 } else {
187 INIT_LIST_HEAD(&q->list);
188 q->flags = 0;
189 q->user = get_uid(user);
190 }
191 return(q);
192 }
193
194 static void __sigqueue_free(struct sigqueue *q)
195 {
196 if (q->flags & SIGQUEUE_PREALLOC)
197 return;
198 atomic_dec(&q->user->sigpending);
199 free_uid(q->user);
200 kmem_cache_free(sigqueue_cachep, q);
201 }
202
203 void flush_sigqueue(struct sigpending *queue)
204 {
205 struct sigqueue *q;
206
207 sigemptyset(&queue->signal);
208 while (!list_empty(&queue->list)) {
209 q = list_entry(queue->list.next, struct sigqueue , list);
210 list_del_init(&q->list);
211 __sigqueue_free(q);
212 }
213 }
214
215 /*
216 * Flush all pending signals for a task.
217 */
218 void flush_signals(struct task_struct *t)
219 {
220 unsigned long flags;
221
222 spin_lock_irqsave(&t->sighand->siglock, flags);
223 clear_tsk_thread_flag(t,TIF_SIGPENDING);
224 flush_sigqueue(&t->pending);
225 flush_sigqueue(&t->signal->shared_pending);
226 spin_unlock_irqrestore(&t->sighand->siglock, flags);
227 }
228
229 void ignore_signals(struct task_struct *t)
230 {
231 int i;
232
233 for (i = 0; i < _NSIG; ++i)
234 t->sighand->action[i].sa.sa_handler = SIG_IGN;
235
236 flush_signals(t);
237 }
238
239 /*
240 * Flush all handlers for a task.
241 */
242
243 void
244 flush_signal_handlers(struct task_struct *t, int force_default)
245 {
246 int i;
247 struct k_sigaction *ka = &t->sighand->action[0];
248 for (i = _NSIG ; i != 0 ; i--) {
249 if (force_default || ka->sa.sa_handler != SIG_IGN)
250 ka->sa.sa_handler = SIG_DFL;
251 ka->sa.sa_flags = 0;
252 sigemptyset(&ka->sa.sa_mask);
253 ka++;
254 }
255 }
256
257 int unhandled_signal(struct task_struct *tsk, int sig)
258 {
259 if (is_global_init(tsk))
260 return 1;
261 if (tsk->ptrace & PT_PTRACED)
262 return 0;
263 return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) ||
264 (tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL);
265 }
266
267
268 /* Notify the system that a driver wants to block all signals for this
269 * process, and wants to be notified if any signals at all were to be
270 * sent/acted upon. If the notifier routine returns non-zero, then the
271 * signal will be acted upon after all. If the notifier routine returns 0,
272 * then then signal will be blocked. Only one block per process is
273 * allowed. priv is a pointer to private data that the notifier routine
274 * can use to determine if the signal should be blocked or not. */
275
276 void
277 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
278 {
279 unsigned long flags;
280
281 spin_lock_irqsave(&current->sighand->siglock, flags);
282 current->notifier_mask = mask;
283 current->notifier_data = priv;
284 current->notifier = notifier;
285 spin_unlock_irqrestore(&current->sighand->siglock, flags);
286 }
287
288 /* Notify the system that blocking has ended. */
289
290 void
291 unblock_all_signals(void)
292 {
293 unsigned long flags;
294
295 spin_lock_irqsave(&current->sighand->siglock, flags);
296 current->notifier = NULL;
297 current->notifier_data = NULL;
298 recalc_sigpending();
299 spin_unlock_irqrestore(&current->sighand->siglock, flags);
300 }
301
302 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
303 {
304 struct sigqueue *q, *first = NULL;
305 int still_pending = 0;
306
307 if (unlikely(!sigismember(&list->signal, sig)))
308 return 0;
309
310 /*
311 * Collect the siginfo appropriate to this signal. Check if
312 * there is another siginfo for the same signal.
313 */
314 list_for_each_entry(q, &list->list, list) {
315 if (q->info.si_signo == sig) {
316 if (first) {
317 still_pending = 1;
318 break;
319 }
320 first = q;
321 }
322 }
323 if (first) {
324 list_del_init(&first->list);
325 copy_siginfo(info, &first->info);
326 __sigqueue_free(first);
327 if (!still_pending)
328 sigdelset(&list->signal, sig);
329 } else {
330
331 /* Ok, it wasn't in the queue. This must be
332 a fast-pathed signal or we must have been
333 out of queue space. So zero out the info.
334 */
335 sigdelset(&list->signal, sig);
336 info->si_signo = sig;
337 info->si_errno = 0;
338 info->si_code = 0;
339 info->si_pid = 0;
340 info->si_uid = 0;
341 }
342 return 1;
343 }
344
345 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
346 siginfo_t *info)
347 {
348 int sig = next_signal(pending, mask);
349
350 if (sig) {
351 if (current->notifier) {
352 if (sigismember(current->notifier_mask, sig)) {
353 if (!(current->notifier)(current->notifier_data)) {
354 clear_thread_flag(TIF_SIGPENDING);
355 return 0;
356 }
357 }
358 }
359
360 if (!collect_signal(sig, pending, info))
361 sig = 0;
362 }
363
364 return sig;
365 }
366
367 /*
368 * Dequeue a signal and return the element to the caller, which is
369 * expected to free it.
370 *
371 * All callers have to hold the siglock.
372 */
373 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
374 {
375 int signr = 0;
376
377 /* We only dequeue private signals from ourselves, we don't let
378 * signalfd steal them
379 */
380 signr = __dequeue_signal(&tsk->pending, mask, info);
381 if (!signr) {
382 signr = __dequeue_signal(&tsk->signal->shared_pending,
383 mask, info);
384 /*
385 * itimer signal ?
386 *
387 * itimers are process shared and we restart periodic
388 * itimers in the signal delivery path to prevent DoS
389 * attacks in the high resolution timer case. This is
390 * compliant with the old way of self restarting
391 * itimers, as the SIGALRM is a legacy signal and only
392 * queued once. Changing the restart behaviour to
393 * restart the timer in the signal dequeue path is
394 * reducing the timer noise on heavy loaded !highres
395 * systems too.
396 */
397 if (unlikely(signr == SIGALRM)) {
398 struct hrtimer *tmr = &tsk->signal->real_timer;
399
400 if (!hrtimer_is_queued(tmr) &&
401 tsk->signal->it_real_incr.tv64 != 0) {
402 hrtimer_forward(tmr, tmr->base->get_time(),
403 tsk->signal->it_real_incr);
404 hrtimer_restart(tmr);
405 }
406 }
407 }
408 recalc_sigpending();
409 if (signr && unlikely(sig_kernel_stop(signr))) {
410 /*
411 * Set a marker that we have dequeued a stop signal. Our
412 * caller might release the siglock and then the pending
413 * stop signal it is about to process is no longer in the
414 * pending bitmasks, but must still be cleared by a SIGCONT
415 * (and overruled by a SIGKILL). So those cases clear this
416 * shared flag after we've set it. Note that this flag may
417 * remain set after the signal we return is ignored or
418 * handled. That doesn't matter because its only purpose
419 * is to alert stop-signal processing code when another
420 * processor has come along and cleared the flag.
421 */
422 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
423 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
424 }
425 if (signr &&
426 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
427 info->si_sys_private){
428 /*
429 * Release the siglock to ensure proper locking order
430 * of timer locks outside of siglocks. Note, we leave
431 * irqs disabled here, since the posix-timers code is
432 * about to disable them again anyway.
433 */
434 spin_unlock(&tsk->sighand->siglock);
435 do_schedule_next_timer(info);
436 spin_lock(&tsk->sighand->siglock);
437 }
438 return signr;
439 }
440
441 /*
442 * Tell a process that it has a new active signal..
443 *
444 * NOTE! we rely on the previous spin_lock to
445 * lock interrupts for us! We can only be called with
446 * "siglock" held, and the local interrupt must
447 * have been disabled when that got acquired!
448 *
449 * No need to set need_resched since signal event passing
450 * goes through ->blocked
451 */
452 void signal_wake_up(struct task_struct *t, int resume)
453 {
454 unsigned int mask;
455
456 set_tsk_thread_flag(t, TIF_SIGPENDING);
457
458 /*
459 * For SIGKILL, we want to wake it up in the stopped/traced/killable
460 * case. We don't check t->state here because there is a race with it
461 * executing another processor and just now entering stopped state.
462 * By using wake_up_state, we ensure the process will wake up and
463 * handle its death signal.
464 */
465 mask = TASK_INTERRUPTIBLE;
466 if (resume)
467 mask |= TASK_WAKEKILL;
468 if (!wake_up_state(t, mask))
469 kick_process(t);
470 }
471
472 /*
473 * Remove signals in mask from the pending set and queue.
474 * Returns 1 if any signals were found.
475 *
476 * All callers must be holding the siglock.
477 *
478 * This version takes a sigset mask and looks at all signals,
479 * not just those in the first mask word.
480 */
481 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
482 {
483 struct sigqueue *q, *n;
484 sigset_t m;
485
486 sigandsets(&m, mask, &s->signal);
487 if (sigisemptyset(&m))
488 return 0;
489
490 signandsets(&s->signal, &s->signal, mask);
491 list_for_each_entry_safe(q, n, &s->list, list) {
492 if (sigismember(mask, q->info.si_signo)) {
493 list_del_init(&q->list);
494 __sigqueue_free(q);
495 }
496 }
497 return 1;
498 }
499 /*
500 * Remove signals in mask from the pending set and queue.
501 * Returns 1 if any signals were found.
502 *
503 * All callers must be holding the siglock.
504 */
505 static int rm_from_queue(unsigned long mask, struct sigpending *s)
506 {
507 struct sigqueue *q, *n;
508
509 if (!sigtestsetmask(&s->signal, mask))
510 return 0;
511
512 sigdelsetmask(&s->signal, mask);
513 list_for_each_entry_safe(q, n, &s->list, list) {
514 if (q->info.si_signo < SIGRTMIN &&
515 (mask & sigmask(q->info.si_signo))) {
516 list_del_init(&q->list);
517 __sigqueue_free(q);
518 }
519 }
520 return 1;
521 }
522
523 /*
524 * Bad permissions for sending the signal
525 */
526 static int check_kill_permission(int sig, struct siginfo *info,
527 struct task_struct *t)
528 {
529 int error = -EINVAL;
530 if (!valid_signal(sig))
531 return error;
532
533 if (info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) {
534 error = audit_signal_info(sig, t); /* Let audit system see the signal */
535 if (error)
536 return error;
537 error = -EPERM;
538 if (((sig != SIGCONT) ||
539 (task_session_nr(current) != task_session_nr(t)))
540 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
541 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
542 && !capable(CAP_KILL))
543 return error;
544 }
545
546 return security_task_kill(t, info, sig, 0);
547 }
548
549 /* forward decl */
550 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
551
552 /*
553 * Handle magic process-wide effects of stop/continue signals.
554 * Unlike the signal actions, these happen immediately at signal-generation
555 * time regardless of blocking, ignoring, or handling. This does the
556 * actual continuing for SIGCONT, but not the actual stopping for stop
557 * signals. The process stop is done as a signal action for SIG_DFL.
558 */
559 static void handle_stop_signal(int sig, struct task_struct *p)
560 {
561 struct task_struct *t;
562
563 if (p->signal->flags & SIGNAL_GROUP_EXIT)
564 /*
565 * The process is in the middle of dying already.
566 */
567 return;
568
569 if (sig_kernel_stop(sig)) {
570 /*
571 * This is a stop signal. Remove SIGCONT from all queues.
572 */
573 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
574 t = p;
575 do {
576 rm_from_queue(sigmask(SIGCONT), &t->pending);
577 t = next_thread(t);
578 } while (t != p);
579 } else if (sig == SIGCONT) {
580 /*
581 * Remove all stop signals from all queues,
582 * and wake all threads.
583 */
584 if (unlikely(p->signal->group_stop_count > 0)) {
585 /*
586 * There was a group stop in progress. We'll
587 * pretend it finished before we got here. We are
588 * obliged to report it to the parent: if the
589 * SIGSTOP happened "after" this SIGCONT, then it
590 * would have cleared this pending SIGCONT. If it
591 * happened "before" this SIGCONT, then the parent
592 * got the SIGCHLD about the stop finishing before
593 * the continue happened. We do the notification
594 * now, and it's as if the stop had finished and
595 * the SIGCHLD was pending on entry to this kill.
596 */
597 p->signal->group_stop_count = 0;
598 p->signal->flags = SIGNAL_STOP_CONTINUED;
599 spin_unlock(&p->sighand->siglock);
600 do_notify_parent_cldstop(p, CLD_STOPPED);
601 spin_lock(&p->sighand->siglock);
602 }
603 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
604 t = p;
605 do {
606 unsigned int state;
607 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
608
609 /*
610 * If there is a handler for SIGCONT, we must make
611 * sure that no thread returns to user mode before
612 * we post the signal, in case it was the only
613 * thread eligible to run the signal handler--then
614 * it must not do anything between resuming and
615 * running the handler. With the TIF_SIGPENDING
616 * flag set, the thread will pause and acquire the
617 * siglock that we hold now and until we've queued
618 * the pending signal.
619 *
620 * Wake up the stopped thread _after_ setting
621 * TIF_SIGPENDING
622 */
623 state = __TASK_STOPPED;
624 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
625 set_tsk_thread_flag(t, TIF_SIGPENDING);
626 state |= TASK_INTERRUPTIBLE;
627 }
628 wake_up_state(t, state);
629
630 t = next_thread(t);
631 } while (t != p);
632
633 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
634 /*
635 * We were in fact stopped, and are now continued.
636 * Notify the parent with CLD_CONTINUED.
637 */
638 p->signal->flags = SIGNAL_STOP_CONTINUED;
639 p->signal->group_exit_code = 0;
640 spin_unlock(&p->sighand->siglock);
641 do_notify_parent_cldstop(p, CLD_CONTINUED);
642 spin_lock(&p->sighand->siglock);
643 } else {
644 /*
645 * We are not stopped, but there could be a stop
646 * signal in the middle of being processed after
647 * being removed from the queue. Clear that too.
648 */
649 p->signal->flags = 0;
650 }
651 } else if (sig == SIGKILL) {
652 /*
653 * Make sure that any pending stop signal already dequeued
654 * is undone by the wakeup for SIGKILL.
655 */
656 p->signal->flags = 0;
657 }
658 }
659
660 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
661 struct sigpending *signals)
662 {
663 struct sigqueue * q = NULL;
664 int ret = 0;
665
666 /*
667 * Deliver the signal to listening signalfds. This must be called
668 * with the sighand lock held.
669 */
670 signalfd_notify(t, sig);
671
672 /*
673 * fast-pathed signals for kernel-internal things like SIGSTOP
674 * or SIGKILL.
675 */
676 if (info == SEND_SIG_FORCED)
677 goto out_set;
678
679 /* Real-time signals must be queued if sent by sigqueue, or
680 some other real-time mechanism. It is implementation
681 defined whether kill() does so. We attempt to do so, on
682 the principle of least surprise, but since kill is not
683 allowed to fail with EAGAIN when low on memory we just
684 make sure at least one signal gets delivered and don't
685 pass on the info struct. */
686
687 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
688 (is_si_special(info) ||
689 info->si_code >= 0)));
690 if (q) {
691 list_add_tail(&q->list, &signals->list);
692 switch ((unsigned long) info) {
693 case (unsigned long) SEND_SIG_NOINFO:
694 q->info.si_signo = sig;
695 q->info.si_errno = 0;
696 q->info.si_code = SI_USER;
697 q->info.si_pid = task_pid_vnr(current);
698 q->info.si_uid = current->uid;
699 break;
700 case (unsigned long) SEND_SIG_PRIV:
701 q->info.si_signo = sig;
702 q->info.si_errno = 0;
703 q->info.si_code = SI_KERNEL;
704 q->info.si_pid = 0;
705 q->info.si_uid = 0;
706 break;
707 default:
708 copy_siginfo(&q->info, info);
709 break;
710 }
711 } else if (!is_si_special(info)) {
712 if (sig >= SIGRTMIN && info->si_code != SI_USER)
713 /*
714 * Queue overflow, abort. We may abort if the signal was rt
715 * and sent by user using something other than kill().
716 */
717 return -EAGAIN;
718 }
719
720 out_set:
721 sigaddset(&signals->signal, sig);
722 return ret;
723 }
724
725 #define LEGACY_QUEUE(sigptr, sig) \
726 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
727
728 int print_fatal_signals;
729
730 static void print_fatal_signal(struct pt_regs *regs, int signr)
731 {
732 printk("%s/%d: potentially unexpected fatal signal %d.\n",
733 current->comm, task_pid_nr(current), signr);
734
735 #if defined(__i386__) && !defined(__arch_um__)
736 printk("code at %08lx: ", regs->ip);
737 {
738 int i;
739 for (i = 0; i < 16; i++) {
740 unsigned char insn;
741
742 __get_user(insn, (unsigned char *)(regs->ip + i));
743 printk("%02x ", insn);
744 }
745 }
746 #endif
747 printk("\n");
748 show_regs(regs);
749 }
750
751 static int __init setup_print_fatal_signals(char *str)
752 {
753 get_option (&str, &print_fatal_signals);
754
755 return 1;
756 }
757
758 __setup("print-fatal-signals=", setup_print_fatal_signals);
759
760 static int
761 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
762 {
763 int ret = 0;
764
765 BUG_ON(!irqs_disabled());
766 assert_spin_locked(&t->sighand->siglock);
767
768 /* Short-circuit ignored signals. */
769 if (sig_ignored(t, sig))
770 goto out;
771
772 /* Support queueing exactly one non-rt signal, so that we
773 can get more detailed information about the cause of
774 the signal. */
775 if (LEGACY_QUEUE(&t->pending, sig))
776 goto out;
777
778 ret = send_signal(sig, info, t, &t->pending);
779 if (!ret && !sigismember(&t->blocked, sig))
780 signal_wake_up(t, sig == SIGKILL);
781 out:
782 return ret;
783 }
784
785 /*
786 * Force a signal that the process can't ignore: if necessary
787 * we unblock the signal and change any SIG_IGN to SIG_DFL.
788 *
789 * Note: If we unblock the signal, we always reset it to SIG_DFL,
790 * since we do not want to have a signal handler that was blocked
791 * be invoked when user space had explicitly blocked it.
792 *
793 * We don't want to have recursive SIGSEGV's etc, for example.
794 */
795 int
796 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
797 {
798 unsigned long int flags;
799 int ret, blocked, ignored;
800 struct k_sigaction *action;
801
802 spin_lock_irqsave(&t->sighand->siglock, flags);
803 action = &t->sighand->action[sig-1];
804 ignored = action->sa.sa_handler == SIG_IGN;
805 blocked = sigismember(&t->blocked, sig);
806 if (blocked || ignored) {
807 action->sa.sa_handler = SIG_DFL;
808 if (blocked) {
809 sigdelset(&t->blocked, sig);
810 recalc_sigpending_and_wake(t);
811 }
812 }
813 ret = specific_send_sig_info(sig, info, t);
814 spin_unlock_irqrestore(&t->sighand->siglock, flags);
815
816 return ret;
817 }
818
819 void
820 force_sig_specific(int sig, struct task_struct *t)
821 {
822 force_sig_info(sig, SEND_SIG_FORCED, t);
823 }
824
825 /*
826 * Test if P wants to take SIG. After we've checked all threads with this,
827 * it's equivalent to finding no threads not blocking SIG. Any threads not
828 * blocking SIG were ruled out because they are not running and already
829 * have pending signals. Such threads will dequeue from the shared queue
830 * as soon as they're available, so putting the signal on the shared queue
831 * will be equivalent to sending it to one such thread.
832 */
833 static inline int wants_signal(int sig, struct task_struct *p)
834 {
835 if (sigismember(&p->blocked, sig))
836 return 0;
837 if (p->flags & PF_EXITING)
838 return 0;
839 if (sig == SIGKILL)
840 return 1;
841 if (task_is_stopped_or_traced(p))
842 return 0;
843 return task_curr(p) || !signal_pending(p);
844 }
845
846 static void
847 __group_complete_signal(int sig, struct task_struct *p)
848 {
849 struct task_struct *t;
850
851 /*
852 * Now find a thread we can wake up to take the signal off the queue.
853 *
854 * If the main thread wants the signal, it gets first crack.
855 * Probably the least surprising to the average bear.
856 */
857 if (wants_signal(sig, p))
858 t = p;
859 else if (thread_group_empty(p))
860 /*
861 * There is just one thread and it does not need to be woken.
862 * It will dequeue unblocked signals before it runs again.
863 */
864 return;
865 else {
866 /*
867 * Otherwise try to find a suitable thread.
868 */
869 t = p->signal->curr_target;
870 if (t == NULL)
871 /* restart balancing at this thread */
872 t = p->signal->curr_target = p;
873
874 while (!wants_signal(sig, t)) {
875 t = next_thread(t);
876 if (t == p->signal->curr_target)
877 /*
878 * No thread needs to be woken.
879 * Any eligible threads will see
880 * the signal in the queue soon.
881 */
882 return;
883 }
884 p->signal->curr_target = t;
885 }
886
887 /*
888 * Found a killable thread. If the signal will be fatal,
889 * then start taking the whole group down immediately.
890 */
891 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
892 !sigismember(&t->real_blocked, sig) &&
893 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
894 /*
895 * This signal will be fatal to the whole group.
896 */
897 if (!sig_kernel_coredump(sig)) {
898 /*
899 * Start a group exit and wake everybody up.
900 * This way we don't have other threads
901 * running and doing things after a slower
902 * thread has the fatal signal pending.
903 */
904 p->signal->flags = SIGNAL_GROUP_EXIT;
905 p->signal->group_exit_code = sig;
906 p->signal->group_stop_count = 0;
907 t = p;
908 do {
909 sigaddset(&t->pending.signal, SIGKILL);
910 signal_wake_up(t, 1);
911 } while_each_thread(p, t);
912 return;
913 }
914 }
915
916 /*
917 * The signal is already in the shared-pending queue.
918 * Tell the chosen thread to wake up and dequeue it.
919 */
920 signal_wake_up(t, sig == SIGKILL);
921 return;
922 }
923
924 int
925 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
926 {
927 int ret = 0;
928
929 assert_spin_locked(&p->sighand->siglock);
930 handle_stop_signal(sig, p);
931
932 /* Short-circuit ignored signals. */
933 if (sig_ignored(p, sig))
934 return ret;
935
936 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
937 /* This is a non-RT signal and we already have one queued. */
938 return ret;
939
940 /*
941 * Put this signal on the shared-pending queue, or fail with EAGAIN.
942 * We always use the shared queue for process-wide signals,
943 * to avoid several races.
944 */
945 ret = send_signal(sig, info, p, &p->signal->shared_pending);
946 if (unlikely(ret))
947 return ret;
948
949 __group_complete_signal(sig, p);
950 return 0;
951 }
952
953 /*
954 * Nuke all other threads in the group.
955 */
956 void zap_other_threads(struct task_struct *p)
957 {
958 struct task_struct *t;
959
960 p->signal->group_stop_count = 0;
961
962 for (t = next_thread(p); t != p; t = next_thread(t)) {
963 /*
964 * Don't bother with already dead threads
965 */
966 if (t->exit_state)
967 continue;
968
969 /* SIGKILL will be handled before any pending SIGSTOP */
970 sigaddset(&t->pending.signal, SIGKILL);
971 signal_wake_up(t, 1);
972 }
973 }
974
975 int fastcall __fatal_signal_pending(struct task_struct *tsk)
976 {
977 return sigismember(&tsk->pending.signal, SIGKILL);
978 }
979 EXPORT_SYMBOL(__fatal_signal_pending);
980
981 /*
982 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
983 */
984 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
985 {
986 struct sighand_struct *sighand;
987
988 for (;;) {
989 sighand = rcu_dereference(tsk->sighand);
990 if (unlikely(sighand == NULL))
991 break;
992
993 spin_lock_irqsave(&sighand->siglock, *flags);
994 if (likely(sighand == tsk->sighand))
995 break;
996 spin_unlock_irqrestore(&sighand->siglock, *flags);
997 }
998
999 return sighand;
1000 }
1001
1002 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1003 {
1004 unsigned long flags;
1005 int ret;
1006
1007 ret = check_kill_permission(sig, info, p);
1008
1009 if (!ret && sig) {
1010 ret = -ESRCH;
1011 if (lock_task_sighand(p, &flags)) {
1012 ret = __group_send_sig_info(sig, info, p);
1013 unlock_task_sighand(p, &flags);
1014 }
1015 }
1016
1017 return ret;
1018 }
1019
1020 /*
1021 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1022 * control characters do (^C, ^Z etc)
1023 */
1024
1025 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1026 {
1027 struct task_struct *p = NULL;
1028 int retval, success;
1029
1030 success = 0;
1031 retval = -ESRCH;
1032 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1033 int err = group_send_sig_info(sig, info, p);
1034 success |= !err;
1035 retval = err;
1036 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1037 return success ? 0 : retval;
1038 }
1039
1040 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1041 {
1042 int error = -ESRCH;
1043 struct task_struct *p;
1044
1045 rcu_read_lock();
1046 if (unlikely(sig_needs_tasklist(sig)))
1047 read_lock(&tasklist_lock);
1048
1049 retry:
1050 p = pid_task(pid, PIDTYPE_PID);
1051 if (p) {
1052 error = group_send_sig_info(sig, info, p);
1053 if (unlikely(error == -ESRCH))
1054 /*
1055 * The task was unhashed in between, try again.
1056 * If it is dead, pid_task() will return NULL,
1057 * if we race with de_thread() it will find the
1058 * new leader.
1059 */
1060 goto retry;
1061 }
1062
1063 if (unlikely(sig_needs_tasklist(sig)))
1064 read_unlock(&tasklist_lock);
1065 rcu_read_unlock();
1066 return error;
1067 }
1068
1069 int
1070 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1071 {
1072 int error;
1073 rcu_read_lock();
1074 error = kill_pid_info(sig, info, find_vpid(pid));
1075 rcu_read_unlock();
1076 return error;
1077 }
1078
1079 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1080 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1081 uid_t uid, uid_t euid, u32 secid)
1082 {
1083 int ret = -EINVAL;
1084 struct task_struct *p;
1085
1086 if (!valid_signal(sig))
1087 return ret;
1088
1089 read_lock(&tasklist_lock);
1090 p = pid_task(pid, PIDTYPE_PID);
1091 if (!p) {
1092 ret = -ESRCH;
1093 goto out_unlock;
1094 }
1095 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1096 && (euid != p->suid) && (euid != p->uid)
1097 && (uid != p->suid) && (uid != p->uid)) {
1098 ret = -EPERM;
1099 goto out_unlock;
1100 }
1101 ret = security_task_kill(p, info, sig, secid);
1102 if (ret)
1103 goto out_unlock;
1104 if (sig && p->sighand) {
1105 unsigned long flags;
1106 spin_lock_irqsave(&p->sighand->siglock, flags);
1107 ret = __group_send_sig_info(sig, info, p);
1108 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1109 }
1110 out_unlock:
1111 read_unlock(&tasklist_lock);
1112 return ret;
1113 }
1114 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1115
1116 /*
1117 * kill_something_info() interprets pid in interesting ways just like kill(2).
1118 *
1119 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1120 * is probably wrong. Should make it like BSD or SYSV.
1121 */
1122
1123 static int kill_something_info(int sig, struct siginfo *info, int pid)
1124 {
1125 int ret;
1126
1127 if (pid > 0) {
1128 rcu_read_lock();
1129 ret = kill_pid_info(sig, info, find_vpid(pid));
1130 rcu_read_unlock();
1131 return ret;
1132 }
1133
1134 read_lock(&tasklist_lock);
1135 if (pid != -1) {
1136 ret = __kill_pgrp_info(sig, info,
1137 pid ? find_vpid(-pid) : task_pgrp(current));
1138 } else {
1139 int retval = 0, count = 0;
1140 struct task_struct * p;
1141
1142 for_each_process(p) {
1143 if (p->pid > 1 && !same_thread_group(p, current)) {
1144 int err = group_send_sig_info(sig, info, p);
1145 ++count;
1146 if (err != -EPERM)
1147 retval = err;
1148 }
1149 }
1150 ret = count ? retval : -ESRCH;
1151 }
1152 read_unlock(&tasklist_lock);
1153
1154 return ret;
1155 }
1156
1157 /*
1158 * These are for backward compatibility with the rest of the kernel source.
1159 */
1160
1161 /*
1162 * These two are the most common entry points. They send a signal
1163 * just to the specific thread.
1164 */
1165 int
1166 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1167 {
1168 int ret;
1169 unsigned long flags;
1170
1171 /*
1172 * Make sure legacy kernel users don't send in bad values
1173 * (normal paths check this in check_kill_permission).
1174 */
1175 if (!valid_signal(sig))
1176 return -EINVAL;
1177
1178 /*
1179 * We need the tasklist lock even for the specific
1180 * thread case (when we don't need to follow the group
1181 * lists) in order to avoid races with "p->sighand"
1182 * going away or changing from under us.
1183 */
1184 read_lock(&tasklist_lock);
1185 spin_lock_irqsave(&p->sighand->siglock, flags);
1186 ret = specific_send_sig_info(sig, info, p);
1187 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1188 read_unlock(&tasklist_lock);
1189 return ret;
1190 }
1191
1192 #define __si_special(priv) \
1193 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1194
1195 int
1196 send_sig(int sig, struct task_struct *p, int priv)
1197 {
1198 return send_sig_info(sig, __si_special(priv), p);
1199 }
1200
1201 void
1202 force_sig(int sig, struct task_struct *p)
1203 {
1204 force_sig_info(sig, SEND_SIG_PRIV, p);
1205 }
1206
1207 /*
1208 * When things go south during signal handling, we
1209 * will force a SIGSEGV. And if the signal that caused
1210 * the problem was already a SIGSEGV, we'll want to
1211 * make sure we don't even try to deliver the signal..
1212 */
1213 int
1214 force_sigsegv(int sig, struct task_struct *p)
1215 {
1216 if (sig == SIGSEGV) {
1217 unsigned long flags;
1218 spin_lock_irqsave(&p->sighand->siglock, flags);
1219 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1220 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1221 }
1222 force_sig(SIGSEGV, p);
1223 return 0;
1224 }
1225
1226 int kill_pgrp(struct pid *pid, int sig, int priv)
1227 {
1228 int ret;
1229
1230 read_lock(&tasklist_lock);
1231 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1232 read_unlock(&tasklist_lock);
1233
1234 return ret;
1235 }
1236 EXPORT_SYMBOL(kill_pgrp);
1237
1238 int kill_pid(struct pid *pid, int sig, int priv)
1239 {
1240 return kill_pid_info(sig, __si_special(priv), pid);
1241 }
1242 EXPORT_SYMBOL(kill_pid);
1243
1244 int
1245 kill_proc(pid_t pid, int sig, int priv)
1246 {
1247 int ret;
1248
1249 rcu_read_lock();
1250 ret = kill_pid_info(sig, __si_special(priv), find_pid(pid));
1251 rcu_read_unlock();
1252 return ret;
1253 }
1254
1255 /*
1256 * These functions support sending signals using preallocated sigqueue
1257 * structures. This is needed "because realtime applications cannot
1258 * afford to lose notifications of asynchronous events, like timer
1259 * expirations or I/O completions". In the case of Posix Timers
1260 * we allocate the sigqueue structure from the timer_create. If this
1261 * allocation fails we are able to report the failure to the application
1262 * with an EAGAIN error.
1263 */
1264
1265 struct sigqueue *sigqueue_alloc(void)
1266 {
1267 struct sigqueue *q;
1268
1269 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1270 q->flags |= SIGQUEUE_PREALLOC;
1271 return(q);
1272 }
1273
1274 void sigqueue_free(struct sigqueue *q)
1275 {
1276 unsigned long flags;
1277 spinlock_t *lock = &current->sighand->siglock;
1278
1279 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1280 /*
1281 * If the signal is still pending remove it from the
1282 * pending queue. We must hold ->siglock while testing
1283 * q->list to serialize with collect_signal().
1284 */
1285 spin_lock_irqsave(lock, flags);
1286 if (!list_empty(&q->list))
1287 list_del_init(&q->list);
1288 spin_unlock_irqrestore(lock, flags);
1289
1290 q->flags &= ~SIGQUEUE_PREALLOC;
1291 __sigqueue_free(q);
1292 }
1293
1294 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1295 {
1296 unsigned long flags;
1297 int ret = 0;
1298
1299 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1300
1301 /*
1302 * The rcu based delayed sighand destroy makes it possible to
1303 * run this without tasklist lock held. The task struct itself
1304 * cannot go away as create_timer did get_task_struct().
1305 *
1306 * We return -1, when the task is marked exiting, so
1307 * posix_timer_event can redirect it to the group leader
1308 */
1309 rcu_read_lock();
1310
1311 if (!likely(lock_task_sighand(p, &flags))) {
1312 ret = -1;
1313 goto out_err;
1314 }
1315
1316 if (unlikely(!list_empty(&q->list))) {
1317 /*
1318 * If an SI_TIMER entry is already queue just increment
1319 * the overrun count.
1320 */
1321 BUG_ON(q->info.si_code != SI_TIMER);
1322 q->info.si_overrun++;
1323 goto out;
1324 }
1325 /* Short-circuit ignored signals. */
1326 if (sig_ignored(p, sig)) {
1327 ret = 1;
1328 goto out;
1329 }
1330 /*
1331 * Deliver the signal to listening signalfds. This must be called
1332 * with the sighand lock held.
1333 */
1334 signalfd_notify(p, sig);
1335
1336 list_add_tail(&q->list, &p->pending.list);
1337 sigaddset(&p->pending.signal, sig);
1338 if (!sigismember(&p->blocked, sig))
1339 signal_wake_up(p, sig == SIGKILL);
1340
1341 out:
1342 unlock_task_sighand(p, &flags);
1343 out_err:
1344 rcu_read_unlock();
1345
1346 return ret;
1347 }
1348
1349 int
1350 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1351 {
1352 unsigned long flags;
1353 int ret = 0;
1354
1355 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1356
1357 read_lock(&tasklist_lock);
1358 /* Since it_lock is held, p->sighand cannot be NULL. */
1359 spin_lock_irqsave(&p->sighand->siglock, flags);
1360 handle_stop_signal(sig, p);
1361
1362 /* Short-circuit ignored signals. */
1363 if (sig_ignored(p, sig)) {
1364 ret = 1;
1365 goto out;
1366 }
1367
1368 if (unlikely(!list_empty(&q->list))) {
1369 /*
1370 * If an SI_TIMER entry is already queue just increment
1371 * the overrun count. Other uses should not try to
1372 * send the signal multiple times.
1373 */
1374 BUG_ON(q->info.si_code != SI_TIMER);
1375 q->info.si_overrun++;
1376 goto out;
1377 }
1378 /*
1379 * Deliver the signal to listening signalfds. This must be called
1380 * with the sighand lock held.
1381 */
1382 signalfd_notify(p, sig);
1383
1384 /*
1385 * Put this signal on the shared-pending queue.
1386 * We always use the shared queue for process-wide signals,
1387 * to avoid several races.
1388 */
1389 list_add_tail(&q->list, &p->signal->shared_pending.list);
1390 sigaddset(&p->signal->shared_pending.signal, sig);
1391
1392 __group_complete_signal(sig, p);
1393 out:
1394 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1395 read_unlock(&tasklist_lock);
1396 return ret;
1397 }
1398
1399 /*
1400 * Wake up any threads in the parent blocked in wait* syscalls.
1401 */
1402 static inline void __wake_up_parent(struct task_struct *p,
1403 struct task_struct *parent)
1404 {
1405 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1406 }
1407
1408 /*
1409 * Let a parent know about the death of a child.
1410 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1411 */
1412
1413 void do_notify_parent(struct task_struct *tsk, int sig)
1414 {
1415 struct siginfo info;
1416 unsigned long flags;
1417 struct sighand_struct *psig;
1418
1419 BUG_ON(sig == -1);
1420
1421 /* do_notify_parent_cldstop should have been called instead. */
1422 BUG_ON(task_is_stopped_or_traced(tsk));
1423
1424 BUG_ON(!tsk->ptrace &&
1425 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1426
1427 info.si_signo = sig;
1428 info.si_errno = 0;
1429 /*
1430 * we are under tasklist_lock here so our parent is tied to
1431 * us and cannot exit and release its namespace.
1432 *
1433 * the only it can is to switch its nsproxy with sys_unshare,
1434 * bu uncharing pid namespaces is not allowed, so we'll always
1435 * see relevant namespace
1436 *
1437 * write_lock() currently calls preempt_disable() which is the
1438 * same as rcu_read_lock(), but according to Oleg, this is not
1439 * correct to rely on this
1440 */
1441 rcu_read_lock();
1442 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1443 rcu_read_unlock();
1444
1445 info.si_uid = tsk->uid;
1446
1447 /* FIXME: find out whether or not this is supposed to be c*time. */
1448 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1449 tsk->signal->utime));
1450 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1451 tsk->signal->stime));
1452
1453 info.si_status = tsk->exit_code & 0x7f;
1454 if (tsk->exit_code & 0x80)
1455 info.si_code = CLD_DUMPED;
1456 else if (tsk->exit_code & 0x7f)
1457 info.si_code = CLD_KILLED;
1458 else {
1459 info.si_code = CLD_EXITED;
1460 info.si_status = tsk->exit_code >> 8;
1461 }
1462
1463 psig = tsk->parent->sighand;
1464 spin_lock_irqsave(&psig->siglock, flags);
1465 if (!tsk->ptrace && sig == SIGCHLD &&
1466 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1467 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1468 /*
1469 * We are exiting and our parent doesn't care. POSIX.1
1470 * defines special semantics for setting SIGCHLD to SIG_IGN
1471 * or setting the SA_NOCLDWAIT flag: we should be reaped
1472 * automatically and not left for our parent's wait4 call.
1473 * Rather than having the parent do it as a magic kind of
1474 * signal handler, we just set this to tell do_exit that we
1475 * can be cleaned up without becoming a zombie. Note that
1476 * we still call __wake_up_parent in this case, because a
1477 * blocked sys_wait4 might now return -ECHILD.
1478 *
1479 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1480 * is implementation-defined: we do (if you don't want
1481 * it, just use SIG_IGN instead).
1482 */
1483 tsk->exit_signal = -1;
1484 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1485 sig = 0;
1486 }
1487 if (valid_signal(sig) && sig > 0)
1488 __group_send_sig_info(sig, &info, tsk->parent);
1489 __wake_up_parent(tsk, tsk->parent);
1490 spin_unlock_irqrestore(&psig->siglock, flags);
1491 }
1492
1493 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1494 {
1495 struct siginfo info;
1496 unsigned long flags;
1497 struct task_struct *parent;
1498 struct sighand_struct *sighand;
1499
1500 if (tsk->ptrace & PT_PTRACED)
1501 parent = tsk->parent;
1502 else {
1503 tsk = tsk->group_leader;
1504 parent = tsk->real_parent;
1505 }
1506
1507 info.si_signo = SIGCHLD;
1508 info.si_errno = 0;
1509 /*
1510 * see comment in do_notify_parent() abot the following 3 lines
1511 */
1512 rcu_read_lock();
1513 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1514 rcu_read_unlock();
1515
1516 info.si_uid = tsk->uid;
1517
1518 /* FIXME: find out whether or not this is supposed to be c*time. */
1519 info.si_utime = cputime_to_jiffies(tsk->utime);
1520 info.si_stime = cputime_to_jiffies(tsk->stime);
1521
1522 info.si_code = why;
1523 switch (why) {
1524 case CLD_CONTINUED:
1525 info.si_status = SIGCONT;
1526 break;
1527 case CLD_STOPPED:
1528 info.si_status = tsk->signal->group_exit_code & 0x7f;
1529 break;
1530 case CLD_TRAPPED:
1531 info.si_status = tsk->exit_code & 0x7f;
1532 break;
1533 default:
1534 BUG();
1535 }
1536
1537 sighand = parent->sighand;
1538 spin_lock_irqsave(&sighand->siglock, flags);
1539 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1540 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1541 __group_send_sig_info(SIGCHLD, &info, parent);
1542 /*
1543 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1544 */
1545 __wake_up_parent(tsk, parent);
1546 spin_unlock_irqrestore(&sighand->siglock, flags);
1547 }
1548
1549 static inline int may_ptrace_stop(void)
1550 {
1551 if (!likely(current->ptrace & PT_PTRACED))
1552 return 0;
1553 /*
1554 * Are we in the middle of do_coredump?
1555 * If so and our tracer is also part of the coredump stopping
1556 * is a deadlock situation, and pointless because our tracer
1557 * is dead so don't allow us to stop.
1558 * If SIGKILL was already sent before the caller unlocked
1559 * ->siglock we must see ->core_waiters != 0. Otherwise it
1560 * is safe to enter schedule().
1561 */
1562 if (unlikely(current->mm->core_waiters) &&
1563 unlikely(current->mm == current->parent->mm))
1564 return 0;
1565
1566 return 1;
1567 }
1568
1569 /*
1570 * Return nonzero if there is a SIGKILL that should be waking us up.
1571 * Called with the siglock held.
1572 */
1573 static int sigkill_pending(struct task_struct *tsk)
1574 {
1575 return ((sigismember(&tsk->pending.signal, SIGKILL) ||
1576 sigismember(&tsk->signal->shared_pending.signal, SIGKILL)) &&
1577 !unlikely(sigismember(&tsk->blocked, SIGKILL)));
1578 }
1579
1580 /*
1581 * This must be called with current->sighand->siglock held.
1582 *
1583 * This should be the path for all ptrace stops.
1584 * We always set current->last_siginfo while stopped here.
1585 * That makes it a way to test a stopped process for
1586 * being ptrace-stopped vs being job-control-stopped.
1587 *
1588 * If we actually decide not to stop at all because the tracer
1589 * is gone, we keep current->exit_code unless clear_code.
1590 */
1591 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1592 {
1593 int killed = 0;
1594
1595 if (arch_ptrace_stop_needed(exit_code, info)) {
1596 /*
1597 * The arch code has something special to do before a
1598 * ptrace stop. This is allowed to block, e.g. for faults
1599 * on user stack pages. We can't keep the siglock while
1600 * calling arch_ptrace_stop, so we must release it now.
1601 * To preserve proper semantics, we must do this before
1602 * any signal bookkeeping like checking group_stop_count.
1603 * Meanwhile, a SIGKILL could come in before we retake the
1604 * siglock. That must prevent us from sleeping in TASK_TRACED.
1605 * So after regaining the lock, we must check for SIGKILL.
1606 */
1607 spin_unlock_irq(&current->sighand->siglock);
1608 arch_ptrace_stop(exit_code, info);
1609 spin_lock_irq(&current->sighand->siglock);
1610 killed = sigkill_pending(current);
1611 }
1612
1613 /*
1614 * If there is a group stop in progress,
1615 * we must participate in the bookkeeping.
1616 */
1617 if (current->signal->group_stop_count > 0)
1618 --current->signal->group_stop_count;
1619
1620 current->last_siginfo = info;
1621 current->exit_code = exit_code;
1622
1623 /* Let the debugger run. */
1624 __set_current_state(TASK_TRACED);
1625 spin_unlock_irq(&current->sighand->siglock);
1626 try_to_freeze();
1627 read_lock(&tasklist_lock);
1628 if (!unlikely(killed) && may_ptrace_stop()) {
1629 do_notify_parent_cldstop(current, CLD_TRAPPED);
1630 read_unlock(&tasklist_lock);
1631 schedule();
1632 } else {
1633 /*
1634 * By the time we got the lock, our tracer went away.
1635 * Don't drop the lock yet, another tracer may come.
1636 */
1637 __set_current_state(TASK_RUNNING);
1638 if (clear_code)
1639 current->exit_code = 0;
1640 read_unlock(&tasklist_lock);
1641 }
1642
1643 /*
1644 * We are back. Now reacquire the siglock before touching
1645 * last_siginfo, so that we are sure to have synchronized with
1646 * any signal-sending on another CPU that wants to examine it.
1647 */
1648 spin_lock_irq(&current->sighand->siglock);
1649 current->last_siginfo = NULL;
1650
1651 /*
1652 * Queued signals ignored us while we were stopped for tracing.
1653 * So check for any that we should take before resuming user mode.
1654 * This sets TIF_SIGPENDING, but never clears it.
1655 */
1656 recalc_sigpending_tsk(current);
1657 }
1658
1659 void ptrace_notify(int exit_code)
1660 {
1661 siginfo_t info;
1662
1663 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1664
1665 memset(&info, 0, sizeof info);
1666 info.si_signo = SIGTRAP;
1667 info.si_code = exit_code;
1668 info.si_pid = task_pid_vnr(current);
1669 info.si_uid = current->uid;
1670
1671 /* Let the debugger run. */
1672 spin_lock_irq(&current->sighand->siglock);
1673 ptrace_stop(exit_code, 1, &info);
1674 spin_unlock_irq(&current->sighand->siglock);
1675 }
1676
1677 static void
1678 finish_stop(int stop_count)
1679 {
1680 /*
1681 * If there are no other threads in the group, or if there is
1682 * a group stop in progress and we are the last to stop,
1683 * report to the parent. When ptraced, every thread reports itself.
1684 */
1685 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1686 read_lock(&tasklist_lock);
1687 do_notify_parent_cldstop(current, CLD_STOPPED);
1688 read_unlock(&tasklist_lock);
1689 }
1690
1691 do {
1692 schedule();
1693 } while (try_to_freeze());
1694 /*
1695 * Now we don't run again until continued.
1696 */
1697 current->exit_code = 0;
1698 }
1699
1700 /*
1701 * This performs the stopping for SIGSTOP and other stop signals.
1702 * We have to stop all threads in the thread group.
1703 * Returns nonzero if we've actually stopped and released the siglock.
1704 * Returns zero if we didn't stop and still hold the siglock.
1705 */
1706 static int do_signal_stop(int signr)
1707 {
1708 struct signal_struct *sig = current->signal;
1709 int stop_count;
1710
1711 if (sig->group_stop_count > 0) {
1712 /*
1713 * There is a group stop in progress. We don't need to
1714 * start another one.
1715 */
1716 stop_count = --sig->group_stop_count;
1717 } else {
1718 struct task_struct *t;
1719
1720 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1721 unlikely(sig->group_exit_task))
1722 return 0;
1723 /*
1724 * There is no group stop already in progress.
1725 * We must initiate one now.
1726 */
1727 sig->group_exit_code = signr;
1728
1729 stop_count = 0;
1730 for (t = next_thread(current); t != current; t = next_thread(t))
1731 /*
1732 * Setting state to TASK_STOPPED for a group
1733 * stop is always done with the siglock held,
1734 * so this check has no races.
1735 */
1736 if (!(t->flags & PF_EXITING) &&
1737 !task_is_stopped_or_traced(t)) {
1738 stop_count++;
1739 signal_wake_up(t, 0);
1740 }
1741 sig->group_stop_count = stop_count;
1742 }
1743
1744 if (stop_count == 0)
1745 sig->flags = SIGNAL_STOP_STOPPED;
1746 current->exit_code = sig->group_exit_code;
1747 __set_current_state(TASK_STOPPED);
1748
1749 spin_unlock_irq(&current->sighand->siglock);
1750 finish_stop(stop_count);
1751 return 1;
1752 }
1753
1754 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1755 struct pt_regs *regs, void *cookie)
1756 {
1757 sigset_t *mask = &current->blocked;
1758 int signr = 0;
1759
1760 try_to_freeze();
1761
1762 relock:
1763 spin_lock_irq(&current->sighand->siglock);
1764 for (;;) {
1765 struct k_sigaction *ka;
1766
1767 if (unlikely(current->signal->group_stop_count > 0) &&
1768 do_signal_stop(0))
1769 goto relock;
1770
1771 signr = dequeue_signal(current, mask, info);
1772
1773 if (!signr)
1774 break; /* will return 0 */
1775
1776 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1777 ptrace_signal_deliver(regs, cookie);
1778
1779 /* Let the debugger run. */
1780 ptrace_stop(signr, 0, info);
1781
1782 /* We're back. Did the debugger cancel the sig? */
1783 signr = current->exit_code;
1784 if (signr == 0)
1785 continue;
1786
1787 current->exit_code = 0;
1788
1789 /* Update the siginfo structure if the signal has
1790 changed. If the debugger wanted something
1791 specific in the siginfo structure then it should
1792 have updated *info via PTRACE_SETSIGINFO. */
1793 if (signr != info->si_signo) {
1794 info->si_signo = signr;
1795 info->si_errno = 0;
1796 info->si_code = SI_USER;
1797 info->si_pid = task_pid_vnr(current->parent);
1798 info->si_uid = current->parent->uid;
1799 }
1800
1801 /* If the (new) signal is now blocked, requeue it. */
1802 if (sigismember(&current->blocked, signr)) {
1803 specific_send_sig_info(signr, info, current);
1804 continue;
1805 }
1806 }
1807
1808 ka = &current->sighand->action[signr-1];
1809 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1810 continue;
1811 if (ka->sa.sa_handler != SIG_DFL) {
1812 /* Run the handler. */
1813 *return_ka = *ka;
1814
1815 if (ka->sa.sa_flags & SA_ONESHOT)
1816 ka->sa.sa_handler = SIG_DFL;
1817
1818 break; /* will return non-zero "signr" value */
1819 }
1820
1821 /*
1822 * Now we are doing the default action for this signal.
1823 */
1824 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1825 continue;
1826
1827 /*
1828 * Global init gets no signals it doesn't want.
1829 */
1830 if (is_global_init(current))
1831 continue;
1832
1833 if (sig_kernel_stop(signr)) {
1834 /*
1835 * The default action is to stop all threads in
1836 * the thread group. The job control signals
1837 * do nothing in an orphaned pgrp, but SIGSTOP
1838 * always works. Note that siglock needs to be
1839 * dropped during the call to is_orphaned_pgrp()
1840 * because of lock ordering with tasklist_lock.
1841 * This allows an intervening SIGCONT to be posted.
1842 * We need to check for that and bail out if necessary.
1843 */
1844 if (signr != SIGSTOP) {
1845 spin_unlock_irq(&current->sighand->siglock);
1846
1847 /* signals can be posted during this window */
1848
1849 if (is_current_pgrp_orphaned())
1850 goto relock;
1851
1852 spin_lock_irq(&current->sighand->siglock);
1853 }
1854
1855 if (likely(do_signal_stop(signr))) {
1856 /* It released the siglock. */
1857 goto relock;
1858 }
1859
1860 /*
1861 * We didn't actually stop, due to a race
1862 * with SIGCONT or something like that.
1863 */
1864 continue;
1865 }
1866
1867 spin_unlock_irq(&current->sighand->siglock);
1868
1869 /*
1870 * Anything else is fatal, maybe with a core dump.
1871 */
1872 current->flags |= PF_SIGNALED;
1873 if ((signr != SIGKILL) && print_fatal_signals)
1874 print_fatal_signal(regs, signr);
1875 if (sig_kernel_coredump(signr)) {
1876 /*
1877 * If it was able to dump core, this kills all
1878 * other threads in the group and synchronizes with
1879 * their demise. If we lost the race with another
1880 * thread getting here, it set group_exit_code
1881 * first and our do_group_exit call below will use
1882 * that value and ignore the one we pass it.
1883 */
1884 do_coredump((long)signr, signr, regs);
1885 }
1886
1887 /*
1888 * Death signals, no core dump.
1889 */
1890 do_group_exit(signr);
1891 /* NOTREACHED */
1892 }
1893 spin_unlock_irq(&current->sighand->siglock);
1894 return signr;
1895 }
1896
1897 void exit_signals(struct task_struct *tsk)
1898 {
1899 int group_stop = 0;
1900 struct task_struct *t;
1901
1902 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
1903 tsk->flags |= PF_EXITING;
1904 return;
1905 }
1906
1907 spin_lock_irq(&tsk->sighand->siglock);
1908 /*
1909 * From now this task is not visible for group-wide signals,
1910 * see wants_signal(), do_signal_stop().
1911 */
1912 tsk->flags |= PF_EXITING;
1913 if (!signal_pending(tsk))
1914 goto out;
1915
1916 /* It could be that __group_complete_signal() choose us to
1917 * notify about group-wide signal. Another thread should be
1918 * woken now to take the signal since we will not.
1919 */
1920 for (t = tsk; (t = next_thread(t)) != tsk; )
1921 if (!signal_pending(t) && !(t->flags & PF_EXITING))
1922 recalc_sigpending_and_wake(t);
1923
1924 if (unlikely(tsk->signal->group_stop_count) &&
1925 !--tsk->signal->group_stop_count) {
1926 tsk->signal->flags = SIGNAL_STOP_STOPPED;
1927 group_stop = 1;
1928 }
1929 out:
1930 spin_unlock_irq(&tsk->sighand->siglock);
1931
1932 if (unlikely(group_stop)) {
1933 read_lock(&tasklist_lock);
1934 do_notify_parent_cldstop(tsk, CLD_STOPPED);
1935 read_unlock(&tasklist_lock);
1936 }
1937 }
1938
1939 EXPORT_SYMBOL(recalc_sigpending);
1940 EXPORT_SYMBOL_GPL(dequeue_signal);
1941 EXPORT_SYMBOL(flush_signals);
1942 EXPORT_SYMBOL(force_sig);
1943 EXPORT_SYMBOL(kill_proc);
1944 EXPORT_SYMBOL(ptrace_notify);
1945 EXPORT_SYMBOL(send_sig);
1946 EXPORT_SYMBOL(send_sig_info);
1947 EXPORT_SYMBOL(sigprocmask);
1948 EXPORT_SYMBOL(block_all_signals);
1949 EXPORT_SYMBOL(unblock_all_signals);
1950
1951
1952 /*
1953 * System call entry points.
1954 */
1955
1956 asmlinkage long sys_restart_syscall(void)
1957 {
1958 struct restart_block *restart = &current_thread_info()->restart_block;
1959 return restart->fn(restart);
1960 }
1961
1962 long do_no_restart_syscall(struct restart_block *param)
1963 {
1964 return -EINTR;
1965 }
1966
1967 /*
1968 * We don't need to get the kernel lock - this is all local to this
1969 * particular thread.. (and that's good, because this is _heavily_
1970 * used by various programs)
1971 */
1972
1973 /*
1974 * This is also useful for kernel threads that want to temporarily
1975 * (or permanently) block certain signals.
1976 *
1977 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1978 * interface happily blocks "unblockable" signals like SIGKILL
1979 * and friends.
1980 */
1981 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1982 {
1983 int error;
1984
1985 spin_lock_irq(&current->sighand->siglock);
1986 if (oldset)
1987 *oldset = current->blocked;
1988
1989 error = 0;
1990 switch (how) {
1991 case SIG_BLOCK:
1992 sigorsets(&current->blocked, &current->blocked, set);
1993 break;
1994 case SIG_UNBLOCK:
1995 signandsets(&current->blocked, &current->blocked, set);
1996 break;
1997 case SIG_SETMASK:
1998 current->blocked = *set;
1999 break;
2000 default:
2001 error = -EINVAL;
2002 }
2003 recalc_sigpending();
2004 spin_unlock_irq(&current->sighand->siglock);
2005
2006 return error;
2007 }
2008
2009 asmlinkage long
2010 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2011 {
2012 int error = -EINVAL;
2013 sigset_t old_set, new_set;
2014
2015 /* XXX: Don't preclude handling different sized sigset_t's. */
2016 if (sigsetsize != sizeof(sigset_t))
2017 goto out;
2018
2019 if (set) {
2020 error = -EFAULT;
2021 if (copy_from_user(&new_set, set, sizeof(*set)))
2022 goto out;
2023 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2024
2025 error = sigprocmask(how, &new_set, &old_set);
2026 if (error)
2027 goto out;
2028 if (oset)
2029 goto set_old;
2030 } else if (oset) {
2031 spin_lock_irq(&current->sighand->siglock);
2032 old_set = current->blocked;
2033 spin_unlock_irq(&current->sighand->siglock);
2034
2035 set_old:
2036 error = -EFAULT;
2037 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2038 goto out;
2039 }
2040 error = 0;
2041 out:
2042 return error;
2043 }
2044
2045 long do_sigpending(void __user *set, unsigned long sigsetsize)
2046 {
2047 long error = -EINVAL;
2048 sigset_t pending;
2049
2050 if (sigsetsize > sizeof(sigset_t))
2051 goto out;
2052
2053 spin_lock_irq(&current->sighand->siglock);
2054 sigorsets(&pending, &current->pending.signal,
2055 &current->signal->shared_pending.signal);
2056 spin_unlock_irq(&current->sighand->siglock);
2057
2058 /* Outside the lock because only this thread touches it. */
2059 sigandsets(&pending, &current->blocked, &pending);
2060
2061 error = -EFAULT;
2062 if (!copy_to_user(set, &pending, sigsetsize))
2063 error = 0;
2064
2065 out:
2066 return error;
2067 }
2068
2069 asmlinkage long
2070 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2071 {
2072 return do_sigpending(set, sigsetsize);
2073 }
2074
2075 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2076
2077 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2078 {
2079 int err;
2080
2081 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2082 return -EFAULT;
2083 if (from->si_code < 0)
2084 return __copy_to_user(to, from, sizeof(siginfo_t))
2085 ? -EFAULT : 0;
2086 /*
2087 * If you change siginfo_t structure, please be sure
2088 * this code is fixed accordingly.
2089 * Please remember to update the signalfd_copyinfo() function
2090 * inside fs/signalfd.c too, in case siginfo_t changes.
2091 * It should never copy any pad contained in the structure
2092 * to avoid security leaks, but must copy the generic
2093 * 3 ints plus the relevant union member.
2094 */
2095 err = __put_user(from->si_signo, &to->si_signo);
2096 err |= __put_user(from->si_errno, &to->si_errno);
2097 err |= __put_user((short)from->si_code, &to->si_code);
2098 switch (from->si_code & __SI_MASK) {
2099 case __SI_KILL:
2100 err |= __put_user(from->si_pid, &to->si_pid);
2101 err |= __put_user(from->si_uid, &to->si_uid);
2102 break;
2103 case __SI_TIMER:
2104 err |= __put_user(from->si_tid, &to->si_tid);
2105 err |= __put_user(from->si_overrun, &to->si_overrun);
2106 err |= __put_user(from->si_ptr, &to->si_ptr);
2107 break;
2108 case __SI_POLL:
2109 err |= __put_user(from->si_band, &to->si_band);
2110 err |= __put_user(from->si_fd, &to->si_fd);
2111 break;
2112 case __SI_FAULT:
2113 err |= __put_user(from->si_addr, &to->si_addr);
2114 #ifdef __ARCH_SI_TRAPNO
2115 err |= __put_user(from->si_trapno, &to->si_trapno);
2116 #endif
2117 break;
2118 case __SI_CHLD:
2119 err |= __put_user(from->si_pid, &to->si_pid);
2120 err |= __put_user(from->si_uid, &to->si_uid);
2121 err |= __put_user(from->si_status, &to->si_status);
2122 err |= __put_user(from->si_utime, &to->si_utime);
2123 err |= __put_user(from->si_stime, &to->si_stime);
2124 break;
2125 case __SI_RT: /* This is not generated by the kernel as of now. */
2126 case __SI_MESGQ: /* But this is */
2127 err |= __put_user(from->si_pid, &to->si_pid);
2128 err |= __put_user(from->si_uid, &to->si_uid);
2129 err |= __put_user(from->si_ptr, &to->si_ptr);
2130 break;
2131 default: /* this is just in case for now ... */
2132 err |= __put_user(from->si_pid, &to->si_pid);
2133 err |= __put_user(from->si_uid, &to->si_uid);
2134 break;
2135 }
2136 return err;
2137 }
2138
2139 #endif
2140
2141 asmlinkage long
2142 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2143 siginfo_t __user *uinfo,
2144 const struct timespec __user *uts,
2145 size_t sigsetsize)
2146 {
2147 int ret, sig;
2148 sigset_t these;
2149 struct timespec ts;
2150 siginfo_t info;
2151 long timeout = 0;
2152
2153 /* XXX: Don't preclude handling different sized sigset_t's. */
2154 if (sigsetsize != sizeof(sigset_t))
2155 return -EINVAL;
2156
2157 if (copy_from_user(&these, uthese, sizeof(these)))
2158 return -EFAULT;
2159
2160 /*
2161 * Invert the set of allowed signals to get those we
2162 * want to block.
2163 */
2164 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2165 signotset(&these);
2166
2167 if (uts) {
2168 if (copy_from_user(&ts, uts, sizeof(ts)))
2169 return -EFAULT;
2170 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2171 || ts.tv_sec < 0)
2172 return -EINVAL;
2173 }
2174
2175 spin_lock_irq(&current->sighand->siglock);
2176 sig = dequeue_signal(current, &these, &info);
2177 if (!sig) {
2178 timeout = MAX_SCHEDULE_TIMEOUT;
2179 if (uts)
2180 timeout = (timespec_to_jiffies(&ts)
2181 + (ts.tv_sec || ts.tv_nsec));
2182
2183 if (timeout) {
2184 /* None ready -- temporarily unblock those we're
2185 * interested while we are sleeping in so that we'll
2186 * be awakened when they arrive. */
2187 current->real_blocked = current->blocked;
2188 sigandsets(&current->blocked, &current->blocked, &these);
2189 recalc_sigpending();
2190 spin_unlock_irq(&current->sighand->siglock);
2191
2192 timeout = schedule_timeout_interruptible(timeout);
2193
2194 spin_lock_irq(&current->sighand->siglock);
2195 sig = dequeue_signal(current, &these, &info);
2196 current->blocked = current->real_blocked;
2197 siginitset(&current->real_blocked, 0);
2198 recalc_sigpending();
2199 }
2200 }
2201 spin_unlock_irq(&current->sighand->siglock);
2202
2203 if (sig) {
2204 ret = sig;
2205 if (uinfo) {
2206 if (copy_siginfo_to_user(uinfo, &info))
2207 ret = -EFAULT;
2208 }
2209 } else {
2210 ret = -EAGAIN;
2211 if (timeout)
2212 ret = -EINTR;
2213 }
2214
2215 return ret;
2216 }
2217
2218 asmlinkage long
2219 sys_kill(int pid, int sig)
2220 {
2221 struct siginfo info;
2222
2223 info.si_signo = sig;
2224 info.si_errno = 0;
2225 info.si_code = SI_USER;
2226 info.si_pid = task_tgid_vnr(current);
2227 info.si_uid = current->uid;
2228
2229 return kill_something_info(sig, &info, pid);
2230 }
2231
2232 static int do_tkill(int tgid, int pid, int sig)
2233 {
2234 int error;
2235 struct siginfo info;
2236 struct task_struct *p;
2237
2238 error = -ESRCH;
2239 info.si_signo = sig;
2240 info.si_errno = 0;
2241 info.si_code = SI_TKILL;
2242 info.si_pid = task_tgid_vnr(current);
2243 info.si_uid = current->uid;
2244
2245 read_lock(&tasklist_lock);
2246 p = find_task_by_vpid(pid);
2247 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2248 error = check_kill_permission(sig, &info, p);
2249 /*
2250 * The null signal is a permissions and process existence
2251 * probe. No signal is actually delivered.
2252 */
2253 if (!error && sig && p->sighand) {
2254 spin_lock_irq(&p->sighand->siglock);
2255 handle_stop_signal(sig, p);
2256 error = specific_send_sig_info(sig, &info, p);
2257 spin_unlock_irq(&p->sighand->siglock);
2258 }
2259 }
2260 read_unlock(&tasklist_lock);
2261
2262 return error;
2263 }
2264
2265 /**
2266 * sys_tgkill - send signal to one specific thread
2267 * @tgid: the thread group ID of the thread
2268 * @pid: the PID of the thread
2269 * @sig: signal to be sent
2270 *
2271 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2272 * exists but it's not belonging to the target process anymore. This
2273 * method solves the problem of threads exiting and PIDs getting reused.
2274 */
2275 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2276 {
2277 /* This is only valid for single tasks */
2278 if (pid <= 0 || tgid <= 0)
2279 return -EINVAL;
2280
2281 return do_tkill(tgid, pid, sig);
2282 }
2283
2284 /*
2285 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2286 */
2287 asmlinkage long
2288 sys_tkill(int pid, int sig)
2289 {
2290 /* This is only valid for single tasks */
2291 if (pid <= 0)
2292 return -EINVAL;
2293
2294 return do_tkill(0, pid, sig);
2295 }
2296
2297 asmlinkage long
2298 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2299 {
2300 siginfo_t info;
2301
2302 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2303 return -EFAULT;
2304
2305 /* Not even root can pretend to send signals from the kernel.
2306 Nor can they impersonate a kill(), which adds source info. */
2307 if (info.si_code >= 0)
2308 return -EPERM;
2309 info.si_signo = sig;
2310
2311 /* POSIX.1b doesn't mention process groups. */
2312 return kill_proc_info(sig, &info, pid);
2313 }
2314
2315 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2316 {
2317 struct k_sigaction *k;
2318 sigset_t mask;
2319
2320 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2321 return -EINVAL;
2322
2323 k = &current->sighand->action[sig-1];
2324
2325 spin_lock_irq(&current->sighand->siglock);
2326 if (oact)
2327 *oact = *k;
2328
2329 if (act) {
2330 sigdelsetmask(&act->sa.sa_mask,
2331 sigmask(SIGKILL) | sigmask(SIGSTOP));
2332 *k = *act;
2333 /*
2334 * POSIX 3.3.1.3:
2335 * "Setting a signal action to SIG_IGN for a signal that is
2336 * pending shall cause the pending signal to be discarded,
2337 * whether or not it is blocked."
2338 *
2339 * "Setting a signal action to SIG_DFL for a signal that is
2340 * pending and whose default action is to ignore the signal
2341 * (for example, SIGCHLD), shall cause the pending signal to
2342 * be discarded, whether or not it is blocked"
2343 */
2344 if (act->sa.sa_handler == SIG_IGN ||
2345 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2346 struct task_struct *t = current;
2347 sigemptyset(&mask);
2348 sigaddset(&mask, sig);
2349 rm_from_queue_full(&mask, &t->signal->shared_pending);
2350 do {
2351 rm_from_queue_full(&mask, &t->pending);
2352 t = next_thread(t);
2353 } while (t != current);
2354 }
2355 }
2356
2357 spin_unlock_irq(&current->sighand->siglock);
2358 return 0;
2359 }
2360
2361 int
2362 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2363 {
2364 stack_t oss;
2365 int error;
2366
2367 if (uoss) {
2368 oss.ss_sp = (void __user *) current->sas_ss_sp;
2369 oss.ss_size = current->sas_ss_size;
2370 oss.ss_flags = sas_ss_flags(sp);
2371 }
2372
2373 if (uss) {
2374 void __user *ss_sp;
2375 size_t ss_size;
2376 int ss_flags;
2377
2378 error = -EFAULT;
2379 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2380 || __get_user(ss_sp, &uss->ss_sp)
2381 || __get_user(ss_flags, &uss->ss_flags)
2382 || __get_user(ss_size, &uss->ss_size))
2383 goto out;
2384
2385 error = -EPERM;
2386 if (on_sig_stack(sp))
2387 goto out;
2388
2389 error = -EINVAL;
2390 /*
2391 *
2392 * Note - this code used to test ss_flags incorrectly
2393 * old code may have been written using ss_flags==0
2394 * to mean ss_flags==SS_ONSTACK (as this was the only
2395 * way that worked) - this fix preserves that older
2396 * mechanism
2397 */
2398 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2399 goto out;
2400
2401 if (ss_flags == SS_DISABLE) {
2402 ss_size = 0;
2403 ss_sp = NULL;
2404 } else {
2405 error = -ENOMEM;
2406 if (ss_size < MINSIGSTKSZ)
2407 goto out;
2408 }
2409
2410 current->sas_ss_sp = (unsigned long) ss_sp;
2411 current->sas_ss_size = ss_size;
2412 }
2413
2414 if (uoss) {
2415 error = -EFAULT;
2416 if (copy_to_user(uoss, &oss, sizeof(oss)))
2417 goto out;
2418 }
2419
2420 error = 0;
2421 out:
2422 return error;
2423 }
2424
2425 #ifdef __ARCH_WANT_SYS_SIGPENDING
2426
2427 asmlinkage long
2428 sys_sigpending(old_sigset_t __user *set)
2429 {
2430 return do_sigpending(set, sizeof(*set));
2431 }
2432
2433 #endif
2434
2435 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2436 /* Some platforms have their own version with special arguments others
2437 support only sys_rt_sigprocmask. */
2438
2439 asmlinkage long
2440 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2441 {
2442 int error;
2443 old_sigset_t old_set, new_set;
2444
2445 if (set) {
2446 error = -EFAULT;
2447 if (copy_from_user(&new_set, set, sizeof(*set)))
2448 goto out;
2449 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2450
2451 spin_lock_irq(&current->sighand->siglock);
2452 old_set = current->blocked.sig[0];
2453
2454 error = 0;
2455 switch (how) {
2456 default:
2457 error = -EINVAL;
2458 break;
2459 case SIG_BLOCK:
2460 sigaddsetmask(&current->blocked, new_set);
2461 break;
2462 case SIG_UNBLOCK:
2463 sigdelsetmask(&current->blocked, new_set);
2464 break;
2465 case SIG_SETMASK:
2466 current->blocked.sig[0] = new_set;
2467 break;
2468 }
2469
2470 recalc_sigpending();
2471 spin_unlock_irq(&current->sighand->siglock);
2472 if (error)
2473 goto out;
2474 if (oset)
2475 goto set_old;
2476 } else if (oset) {
2477 old_set = current->blocked.sig[0];
2478 set_old:
2479 error = -EFAULT;
2480 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2481 goto out;
2482 }
2483 error = 0;
2484 out:
2485 return error;
2486 }
2487 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2488
2489 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2490 asmlinkage long
2491 sys_rt_sigaction(int sig,
2492 const struct sigaction __user *act,
2493 struct sigaction __user *oact,
2494 size_t sigsetsize)
2495 {
2496 struct k_sigaction new_sa, old_sa;
2497 int ret = -EINVAL;
2498
2499 /* XXX: Don't preclude handling different sized sigset_t's. */
2500 if (sigsetsize != sizeof(sigset_t))
2501 goto out;
2502
2503 if (act) {
2504 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2505 return -EFAULT;
2506 }
2507
2508 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2509
2510 if (!ret && oact) {
2511 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2512 return -EFAULT;
2513 }
2514 out:
2515 return ret;
2516 }
2517 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2518
2519 #ifdef __ARCH_WANT_SYS_SGETMASK
2520
2521 /*
2522 * For backwards compatibility. Functionality superseded by sigprocmask.
2523 */
2524 asmlinkage long
2525 sys_sgetmask(void)
2526 {
2527 /* SMP safe */
2528 return current->blocked.sig[0];
2529 }
2530
2531 asmlinkage long
2532 sys_ssetmask(int newmask)
2533 {
2534 int old;
2535
2536 spin_lock_irq(&current->sighand->siglock);
2537 old = current->blocked.sig[0];
2538
2539 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2540 sigmask(SIGSTOP)));
2541 recalc_sigpending();
2542 spin_unlock_irq(&current->sighand->siglock);
2543
2544 return old;
2545 }
2546 #endif /* __ARCH_WANT_SGETMASK */
2547
2548 #ifdef __ARCH_WANT_SYS_SIGNAL
2549 /*
2550 * For backwards compatibility. Functionality superseded by sigaction.
2551 */
2552 asmlinkage unsigned long
2553 sys_signal(int sig, __sighandler_t handler)
2554 {
2555 struct k_sigaction new_sa, old_sa;
2556 int ret;
2557
2558 new_sa.sa.sa_handler = handler;
2559 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2560 sigemptyset(&new_sa.sa.sa_mask);
2561
2562 ret = do_sigaction(sig, &new_sa, &old_sa);
2563
2564 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2565 }
2566 #endif /* __ARCH_WANT_SYS_SIGNAL */
2567
2568 #ifdef __ARCH_WANT_SYS_PAUSE
2569
2570 asmlinkage long
2571 sys_pause(void)
2572 {
2573 current->state = TASK_INTERRUPTIBLE;
2574 schedule();
2575 return -ERESTARTNOHAND;
2576 }
2577
2578 #endif
2579
2580 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2581 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2582 {
2583 sigset_t newset;
2584
2585 /* XXX: Don't preclude handling different sized sigset_t's. */
2586 if (sigsetsize != sizeof(sigset_t))
2587 return -EINVAL;
2588
2589 if (copy_from_user(&newset, unewset, sizeof(newset)))
2590 return -EFAULT;
2591 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2592
2593 spin_lock_irq(&current->sighand->siglock);
2594 current->saved_sigmask = current->blocked;
2595 current->blocked = newset;
2596 recalc_sigpending();
2597 spin_unlock_irq(&current->sighand->siglock);
2598
2599 current->state = TASK_INTERRUPTIBLE;
2600 schedule();
2601 set_thread_flag(TIF_RESTORE_SIGMASK);
2602 return -ERESTARTNOHAND;
2603 }
2604 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2605
2606 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2607 {
2608 return NULL;
2609 }
2610
2611 void __init signals_init(void)
2612 {
2613 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2614 }