]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - kernel/signal.c
printk: fix return value of printk.devkmsg __setup handler
[mirror_ubuntu-focal-kernel.git] / kernel / signal.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/signal.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 *
9 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
10 * Changes to use preallocated sigqueue structures
11 * to allow signals to be sent reliably.
12 */
13
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/tracehook.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/livepatch.h>
47 #include <linux/cgroup.h>
48 #include <linux/audit.h>
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/signal.h>
52
53 #include <asm/param.h>
54 #include <linux/uaccess.h>
55 #include <asm/unistd.h>
56 #include <asm/siginfo.h>
57 #include <asm/cacheflush.h>
58
59 /*
60 * SLAB caches for signal bits.
61 */
62
63 static struct kmem_cache *sigqueue_cachep;
64
65 int print_fatal_signals __read_mostly;
66
67 static void __user *sig_handler(struct task_struct *t, int sig)
68 {
69 return t->sighand->action[sig - 1].sa.sa_handler;
70 }
71
72 static inline bool sig_handler_ignored(void __user *handler, int sig)
73 {
74 /* Is it explicitly or implicitly ignored? */
75 return handler == SIG_IGN ||
76 (handler == SIG_DFL && sig_kernel_ignore(sig));
77 }
78
79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
80 {
81 void __user *handler;
82
83 handler = sig_handler(t, sig);
84
85 /* SIGKILL and SIGSTOP may not be sent to the global init */
86 if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
87 return true;
88
89 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
90 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
91 return true;
92
93 /* Only allow kernel generated signals to this kthread */
94 if (unlikely((t->flags & PF_KTHREAD) &&
95 (handler == SIG_KTHREAD_KERNEL) && !force))
96 return true;
97
98 return sig_handler_ignored(handler, sig);
99 }
100
101 static bool sig_ignored(struct task_struct *t, int sig, bool force)
102 {
103 /*
104 * Blocked signals are never ignored, since the
105 * signal handler may change by the time it is
106 * unblocked.
107 */
108 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
109 return false;
110
111 /*
112 * Tracers may want to know about even ignored signal unless it
113 * is SIGKILL which can't be reported anyway but can be ignored
114 * by SIGNAL_UNKILLABLE task.
115 */
116 if (t->ptrace && sig != SIGKILL)
117 return false;
118
119 return sig_task_ignored(t, sig, force);
120 }
121
122 /*
123 * Re-calculate pending state from the set of locally pending
124 * signals, globally pending signals, and blocked signals.
125 */
126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
127 {
128 unsigned long ready;
129 long i;
130
131 switch (_NSIG_WORDS) {
132 default:
133 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
134 ready |= signal->sig[i] &~ blocked->sig[i];
135 break;
136
137 case 4: ready = signal->sig[3] &~ blocked->sig[3];
138 ready |= signal->sig[2] &~ blocked->sig[2];
139 ready |= signal->sig[1] &~ blocked->sig[1];
140 ready |= signal->sig[0] &~ blocked->sig[0];
141 break;
142
143 case 2: ready = signal->sig[1] &~ blocked->sig[1];
144 ready |= signal->sig[0] &~ blocked->sig[0];
145 break;
146
147 case 1: ready = signal->sig[0] &~ blocked->sig[0];
148 }
149 return ready != 0;
150 }
151
152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
153
154 static bool recalc_sigpending_tsk(struct task_struct *t)
155 {
156 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
157 PENDING(&t->pending, &t->blocked) ||
158 PENDING(&t->signal->shared_pending, &t->blocked) ||
159 cgroup_task_frozen(t)) {
160 set_tsk_thread_flag(t, TIF_SIGPENDING);
161 return true;
162 }
163
164 /*
165 * We must never clear the flag in another thread, or in current
166 * when it's possible the current syscall is returning -ERESTART*.
167 * So we don't clear it here, and only callers who know they should do.
168 */
169 return false;
170 }
171
172 /*
173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
174 * This is superfluous when called on current, the wakeup is a harmless no-op.
175 */
176 void recalc_sigpending_and_wake(struct task_struct *t)
177 {
178 if (recalc_sigpending_tsk(t))
179 signal_wake_up(t, 0);
180 }
181
182 void recalc_sigpending(void)
183 {
184 if (!recalc_sigpending_tsk(current) && !freezing(current) &&
185 !klp_patch_pending(current))
186 clear_thread_flag(TIF_SIGPENDING);
187
188 }
189 EXPORT_SYMBOL(recalc_sigpending);
190
191 void calculate_sigpending(void)
192 {
193 /* Have any signals or users of TIF_SIGPENDING been delayed
194 * until after fork?
195 */
196 spin_lock_irq(&current->sighand->siglock);
197 set_tsk_thread_flag(current, TIF_SIGPENDING);
198 recalc_sigpending();
199 spin_unlock_irq(&current->sighand->siglock);
200 }
201
202 /* Given the mask, find the first available signal that should be serviced. */
203
204 #define SYNCHRONOUS_MASK \
205 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
206 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
207
208 int next_signal(struct sigpending *pending, sigset_t *mask)
209 {
210 unsigned long i, *s, *m, x;
211 int sig = 0;
212
213 s = pending->signal.sig;
214 m = mask->sig;
215
216 /*
217 * Handle the first word specially: it contains the
218 * synchronous signals that need to be dequeued first.
219 */
220 x = *s &~ *m;
221 if (x) {
222 if (x & SYNCHRONOUS_MASK)
223 x &= SYNCHRONOUS_MASK;
224 sig = ffz(~x) + 1;
225 return sig;
226 }
227
228 switch (_NSIG_WORDS) {
229 default:
230 for (i = 1; i < _NSIG_WORDS; ++i) {
231 x = *++s &~ *++m;
232 if (!x)
233 continue;
234 sig = ffz(~x) + i*_NSIG_BPW + 1;
235 break;
236 }
237 break;
238
239 case 2:
240 x = s[1] &~ m[1];
241 if (!x)
242 break;
243 sig = ffz(~x) + _NSIG_BPW + 1;
244 break;
245
246 case 1:
247 /* Nothing to do */
248 break;
249 }
250
251 return sig;
252 }
253
254 static inline void print_dropped_signal(int sig)
255 {
256 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
257
258 if (!print_fatal_signals)
259 return;
260
261 if (!__ratelimit(&ratelimit_state))
262 return;
263
264 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
265 current->comm, current->pid, sig);
266 }
267
268 /**
269 * task_set_jobctl_pending - set jobctl pending bits
270 * @task: target task
271 * @mask: pending bits to set
272 *
273 * Clear @mask from @task->jobctl. @mask must be subset of
274 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
275 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
276 * cleared. If @task is already being killed or exiting, this function
277 * becomes noop.
278 *
279 * CONTEXT:
280 * Must be called with @task->sighand->siglock held.
281 *
282 * RETURNS:
283 * %true if @mask is set, %false if made noop because @task was dying.
284 */
285 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
286 {
287 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
288 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
289 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
290
291 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
292 return false;
293
294 if (mask & JOBCTL_STOP_SIGMASK)
295 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
296
297 task->jobctl |= mask;
298 return true;
299 }
300
301 /**
302 * task_clear_jobctl_trapping - clear jobctl trapping bit
303 * @task: target task
304 *
305 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
306 * Clear it and wake up the ptracer. Note that we don't need any further
307 * locking. @task->siglock guarantees that @task->parent points to the
308 * ptracer.
309 *
310 * CONTEXT:
311 * Must be called with @task->sighand->siglock held.
312 */
313 void task_clear_jobctl_trapping(struct task_struct *task)
314 {
315 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
316 task->jobctl &= ~JOBCTL_TRAPPING;
317 smp_mb(); /* advised by wake_up_bit() */
318 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
319 }
320 }
321
322 /**
323 * task_clear_jobctl_pending - clear jobctl pending bits
324 * @task: target task
325 * @mask: pending bits to clear
326 *
327 * Clear @mask from @task->jobctl. @mask must be subset of
328 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
329 * STOP bits are cleared together.
330 *
331 * If clearing of @mask leaves no stop or trap pending, this function calls
332 * task_clear_jobctl_trapping().
333 *
334 * CONTEXT:
335 * Must be called with @task->sighand->siglock held.
336 */
337 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
338 {
339 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
340
341 if (mask & JOBCTL_STOP_PENDING)
342 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
343
344 task->jobctl &= ~mask;
345
346 if (!(task->jobctl & JOBCTL_PENDING_MASK))
347 task_clear_jobctl_trapping(task);
348 }
349
350 /**
351 * task_participate_group_stop - participate in a group stop
352 * @task: task participating in a group stop
353 *
354 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
355 * Group stop states are cleared and the group stop count is consumed if
356 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
357 * stop, the appropriate `SIGNAL_*` flags are set.
358 *
359 * CONTEXT:
360 * Must be called with @task->sighand->siglock held.
361 *
362 * RETURNS:
363 * %true if group stop completion should be notified to the parent, %false
364 * otherwise.
365 */
366 static bool task_participate_group_stop(struct task_struct *task)
367 {
368 struct signal_struct *sig = task->signal;
369 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
370
371 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
372
373 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
374
375 if (!consume)
376 return false;
377
378 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
379 sig->group_stop_count--;
380
381 /*
382 * Tell the caller to notify completion iff we are entering into a
383 * fresh group stop. Read comment in do_signal_stop() for details.
384 */
385 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
386 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
387 return true;
388 }
389 return false;
390 }
391
392 void task_join_group_stop(struct task_struct *task)
393 {
394 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
395 struct signal_struct *sig = current->signal;
396
397 if (sig->group_stop_count) {
398 sig->group_stop_count++;
399 mask |= JOBCTL_STOP_CONSUME;
400 } else if (!(sig->flags & SIGNAL_STOP_STOPPED))
401 return;
402
403 /* Have the new thread join an on-going signal group stop */
404 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
405 }
406
407 /*
408 * allocate a new signal queue record
409 * - this may be called without locks if and only if t == current, otherwise an
410 * appropriate lock must be held to stop the target task from exiting
411 */
412 static struct sigqueue *
413 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
414 {
415 struct sigqueue *q = NULL;
416 struct user_struct *user;
417 int sigpending;
418
419 /*
420 * Protect access to @t credentials. This can go away when all
421 * callers hold rcu read lock.
422 *
423 * NOTE! A pending signal will hold on to the user refcount,
424 * and we get/put the refcount only when the sigpending count
425 * changes from/to zero.
426 */
427 rcu_read_lock();
428 user = __task_cred(t)->user;
429 sigpending = atomic_inc_return(&user->sigpending);
430 if (sigpending == 1)
431 get_uid(user);
432 rcu_read_unlock();
433
434 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
435 q = kmem_cache_alloc(sigqueue_cachep, flags);
436 } else {
437 print_dropped_signal(sig);
438 }
439
440 if (unlikely(q == NULL)) {
441 if (atomic_dec_and_test(&user->sigpending))
442 free_uid(user);
443 } else {
444 INIT_LIST_HEAD(&q->list);
445 q->flags = 0;
446 q->user = user;
447 }
448
449 return q;
450 }
451
452 static void __sigqueue_free(struct sigqueue *q)
453 {
454 if (q->flags & SIGQUEUE_PREALLOC)
455 return;
456 if (atomic_dec_and_test(&q->user->sigpending))
457 free_uid(q->user);
458 kmem_cache_free(sigqueue_cachep, q);
459 }
460
461 void flush_sigqueue(struct sigpending *queue)
462 {
463 struct sigqueue *q;
464
465 sigemptyset(&queue->signal);
466 while (!list_empty(&queue->list)) {
467 q = list_entry(queue->list.next, struct sigqueue , list);
468 list_del_init(&q->list);
469 __sigqueue_free(q);
470 }
471 }
472
473 /*
474 * Flush all pending signals for this kthread.
475 */
476 void flush_signals(struct task_struct *t)
477 {
478 unsigned long flags;
479
480 spin_lock_irqsave(&t->sighand->siglock, flags);
481 clear_tsk_thread_flag(t, TIF_SIGPENDING);
482 flush_sigqueue(&t->pending);
483 flush_sigqueue(&t->signal->shared_pending);
484 spin_unlock_irqrestore(&t->sighand->siglock, flags);
485 }
486 EXPORT_SYMBOL(flush_signals);
487
488 #ifdef CONFIG_POSIX_TIMERS
489 static void __flush_itimer_signals(struct sigpending *pending)
490 {
491 sigset_t signal, retain;
492 struct sigqueue *q, *n;
493
494 signal = pending->signal;
495 sigemptyset(&retain);
496
497 list_for_each_entry_safe(q, n, &pending->list, list) {
498 int sig = q->info.si_signo;
499
500 if (likely(q->info.si_code != SI_TIMER)) {
501 sigaddset(&retain, sig);
502 } else {
503 sigdelset(&signal, sig);
504 list_del_init(&q->list);
505 __sigqueue_free(q);
506 }
507 }
508
509 sigorsets(&pending->signal, &signal, &retain);
510 }
511
512 void flush_itimer_signals(void)
513 {
514 struct task_struct *tsk = current;
515 unsigned long flags;
516
517 spin_lock_irqsave(&tsk->sighand->siglock, flags);
518 __flush_itimer_signals(&tsk->pending);
519 __flush_itimer_signals(&tsk->signal->shared_pending);
520 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
521 }
522 #endif
523
524 void ignore_signals(struct task_struct *t)
525 {
526 int i;
527
528 for (i = 0; i < _NSIG; ++i)
529 t->sighand->action[i].sa.sa_handler = SIG_IGN;
530
531 flush_signals(t);
532 }
533
534 /*
535 * Flush all handlers for a task.
536 */
537
538 void
539 flush_signal_handlers(struct task_struct *t, int force_default)
540 {
541 int i;
542 struct k_sigaction *ka = &t->sighand->action[0];
543 for (i = _NSIG ; i != 0 ; i--) {
544 if (force_default || ka->sa.sa_handler != SIG_IGN)
545 ka->sa.sa_handler = SIG_DFL;
546 ka->sa.sa_flags = 0;
547 #ifdef __ARCH_HAS_SA_RESTORER
548 ka->sa.sa_restorer = NULL;
549 #endif
550 sigemptyset(&ka->sa.sa_mask);
551 ka++;
552 }
553 }
554
555 bool unhandled_signal(struct task_struct *tsk, int sig)
556 {
557 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
558 if (is_global_init(tsk))
559 return true;
560
561 if (handler != SIG_IGN && handler != SIG_DFL)
562 return false;
563
564 /* if ptraced, let the tracer determine */
565 return !tsk->ptrace;
566 }
567
568 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
569 bool *resched_timer)
570 {
571 struct sigqueue *q, *first = NULL;
572
573 /*
574 * Collect the siginfo appropriate to this signal. Check if
575 * there is another siginfo for the same signal.
576 */
577 list_for_each_entry(q, &list->list, list) {
578 if (q->info.si_signo == sig) {
579 if (first)
580 goto still_pending;
581 first = q;
582 }
583 }
584
585 sigdelset(&list->signal, sig);
586
587 if (first) {
588 still_pending:
589 list_del_init(&first->list);
590 copy_siginfo(info, &first->info);
591
592 *resched_timer =
593 (first->flags & SIGQUEUE_PREALLOC) &&
594 (info->si_code == SI_TIMER) &&
595 (info->si_sys_private);
596
597 __sigqueue_free(first);
598 } else {
599 /*
600 * Ok, it wasn't in the queue. This must be
601 * a fast-pathed signal or we must have been
602 * out of queue space. So zero out the info.
603 */
604 clear_siginfo(info);
605 info->si_signo = sig;
606 info->si_errno = 0;
607 info->si_code = SI_USER;
608 info->si_pid = 0;
609 info->si_uid = 0;
610 }
611 }
612
613 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
614 kernel_siginfo_t *info, bool *resched_timer)
615 {
616 int sig = next_signal(pending, mask);
617
618 if (sig)
619 collect_signal(sig, pending, info, resched_timer);
620 return sig;
621 }
622
623 /*
624 * Dequeue a signal and return the element to the caller, which is
625 * expected to free it.
626 *
627 * All callers have to hold the siglock.
628 */
629 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
630 {
631 bool resched_timer = false;
632 int signr;
633
634 /* We only dequeue private signals from ourselves, we don't let
635 * signalfd steal them
636 */
637 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
638 if (!signr) {
639 signr = __dequeue_signal(&tsk->signal->shared_pending,
640 mask, info, &resched_timer);
641 #ifdef CONFIG_POSIX_TIMERS
642 /*
643 * itimer signal ?
644 *
645 * itimers are process shared and we restart periodic
646 * itimers in the signal delivery path to prevent DoS
647 * attacks in the high resolution timer case. This is
648 * compliant with the old way of self-restarting
649 * itimers, as the SIGALRM is a legacy signal and only
650 * queued once. Changing the restart behaviour to
651 * restart the timer in the signal dequeue path is
652 * reducing the timer noise on heavy loaded !highres
653 * systems too.
654 */
655 if (unlikely(signr == SIGALRM)) {
656 struct hrtimer *tmr = &tsk->signal->real_timer;
657
658 if (!hrtimer_is_queued(tmr) &&
659 tsk->signal->it_real_incr != 0) {
660 hrtimer_forward(tmr, tmr->base->get_time(),
661 tsk->signal->it_real_incr);
662 hrtimer_restart(tmr);
663 }
664 }
665 #endif
666 }
667
668 recalc_sigpending();
669 if (!signr)
670 return 0;
671
672 if (unlikely(sig_kernel_stop(signr))) {
673 /*
674 * Set a marker that we have dequeued a stop signal. Our
675 * caller might release the siglock and then the pending
676 * stop signal it is about to process is no longer in the
677 * pending bitmasks, but must still be cleared by a SIGCONT
678 * (and overruled by a SIGKILL). So those cases clear this
679 * shared flag after we've set it. Note that this flag may
680 * remain set after the signal we return is ignored or
681 * handled. That doesn't matter because its only purpose
682 * is to alert stop-signal processing code when another
683 * processor has come along and cleared the flag.
684 */
685 current->jobctl |= JOBCTL_STOP_DEQUEUED;
686 }
687 #ifdef CONFIG_POSIX_TIMERS
688 if (resched_timer) {
689 /*
690 * Release the siglock to ensure proper locking order
691 * of timer locks outside of siglocks. Note, we leave
692 * irqs disabled here, since the posix-timers code is
693 * about to disable them again anyway.
694 */
695 spin_unlock(&tsk->sighand->siglock);
696 posixtimer_rearm(info);
697 spin_lock(&tsk->sighand->siglock);
698
699 /* Don't expose the si_sys_private value to userspace */
700 info->si_sys_private = 0;
701 }
702 #endif
703 return signr;
704 }
705 EXPORT_SYMBOL_GPL(dequeue_signal);
706
707 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
708 {
709 struct task_struct *tsk = current;
710 struct sigpending *pending = &tsk->pending;
711 struct sigqueue *q, *sync = NULL;
712
713 /*
714 * Might a synchronous signal be in the queue?
715 */
716 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
717 return 0;
718
719 /*
720 * Return the first synchronous signal in the queue.
721 */
722 list_for_each_entry(q, &pending->list, list) {
723 /* Synchronous signals have a postive si_code */
724 if ((q->info.si_code > SI_USER) &&
725 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
726 sync = q;
727 goto next;
728 }
729 }
730 return 0;
731 next:
732 /*
733 * Check if there is another siginfo for the same signal.
734 */
735 list_for_each_entry_continue(q, &pending->list, list) {
736 if (q->info.si_signo == sync->info.si_signo)
737 goto still_pending;
738 }
739
740 sigdelset(&pending->signal, sync->info.si_signo);
741 recalc_sigpending();
742 still_pending:
743 list_del_init(&sync->list);
744 copy_siginfo(info, &sync->info);
745 __sigqueue_free(sync);
746 return info->si_signo;
747 }
748
749 /*
750 * Tell a process that it has a new active signal..
751 *
752 * NOTE! we rely on the previous spin_lock to
753 * lock interrupts for us! We can only be called with
754 * "siglock" held, and the local interrupt must
755 * have been disabled when that got acquired!
756 *
757 * No need to set need_resched since signal event passing
758 * goes through ->blocked
759 */
760 void signal_wake_up_state(struct task_struct *t, unsigned int state)
761 {
762 set_tsk_thread_flag(t, TIF_SIGPENDING);
763 /*
764 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
765 * case. We don't check t->state here because there is a race with it
766 * executing another processor and just now entering stopped state.
767 * By using wake_up_state, we ensure the process will wake up and
768 * handle its death signal.
769 */
770 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
771 kick_process(t);
772 }
773
774 /*
775 * Remove signals in mask from the pending set and queue.
776 * Returns 1 if any signals were found.
777 *
778 * All callers must be holding the siglock.
779 */
780 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
781 {
782 struct sigqueue *q, *n;
783 sigset_t m;
784
785 sigandsets(&m, mask, &s->signal);
786 if (sigisemptyset(&m))
787 return;
788
789 sigandnsets(&s->signal, &s->signal, mask);
790 list_for_each_entry_safe(q, n, &s->list, list) {
791 if (sigismember(mask, q->info.si_signo)) {
792 list_del_init(&q->list);
793 __sigqueue_free(q);
794 }
795 }
796 }
797
798 static inline int is_si_special(const struct kernel_siginfo *info)
799 {
800 return info <= SEND_SIG_PRIV;
801 }
802
803 static inline bool si_fromuser(const struct kernel_siginfo *info)
804 {
805 return info == SEND_SIG_NOINFO ||
806 (!is_si_special(info) && SI_FROMUSER(info));
807 }
808
809 /*
810 * called with RCU read lock from check_kill_permission()
811 */
812 static bool kill_ok_by_cred(struct task_struct *t)
813 {
814 const struct cred *cred = current_cred();
815 const struct cred *tcred = __task_cred(t);
816
817 return uid_eq(cred->euid, tcred->suid) ||
818 uid_eq(cred->euid, tcred->uid) ||
819 uid_eq(cred->uid, tcred->suid) ||
820 uid_eq(cred->uid, tcred->uid) ||
821 ns_capable(tcred->user_ns, CAP_KILL);
822 }
823
824 /*
825 * Bad permissions for sending the signal
826 * - the caller must hold the RCU read lock
827 */
828 static int check_kill_permission(int sig, struct kernel_siginfo *info,
829 struct task_struct *t)
830 {
831 struct pid *sid;
832 int error;
833
834 if (!valid_signal(sig))
835 return -EINVAL;
836
837 if (!si_fromuser(info))
838 return 0;
839
840 error = audit_signal_info(sig, t); /* Let audit system see the signal */
841 if (error)
842 return error;
843
844 if (!same_thread_group(current, t) &&
845 !kill_ok_by_cred(t)) {
846 switch (sig) {
847 case SIGCONT:
848 sid = task_session(t);
849 /*
850 * We don't return the error if sid == NULL. The
851 * task was unhashed, the caller must notice this.
852 */
853 if (!sid || sid == task_session(current))
854 break;
855 /* fall through */
856 default:
857 return -EPERM;
858 }
859 }
860
861 return security_task_kill(t, info, sig, NULL);
862 }
863
864 /**
865 * ptrace_trap_notify - schedule trap to notify ptracer
866 * @t: tracee wanting to notify tracer
867 *
868 * This function schedules sticky ptrace trap which is cleared on the next
869 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
870 * ptracer.
871 *
872 * If @t is running, STOP trap will be taken. If trapped for STOP and
873 * ptracer is listening for events, tracee is woken up so that it can
874 * re-trap for the new event. If trapped otherwise, STOP trap will be
875 * eventually taken without returning to userland after the existing traps
876 * are finished by PTRACE_CONT.
877 *
878 * CONTEXT:
879 * Must be called with @task->sighand->siglock held.
880 */
881 static void ptrace_trap_notify(struct task_struct *t)
882 {
883 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
884 assert_spin_locked(&t->sighand->siglock);
885
886 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
887 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
888 }
889
890 /*
891 * Handle magic process-wide effects of stop/continue signals. Unlike
892 * the signal actions, these happen immediately at signal-generation
893 * time regardless of blocking, ignoring, or handling. This does the
894 * actual continuing for SIGCONT, but not the actual stopping for stop
895 * signals. The process stop is done as a signal action for SIG_DFL.
896 *
897 * Returns true if the signal should be actually delivered, otherwise
898 * it should be dropped.
899 */
900 static bool prepare_signal(int sig, struct task_struct *p, bool force)
901 {
902 struct signal_struct *signal = p->signal;
903 struct task_struct *t;
904 sigset_t flush;
905
906 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
907 if (!(signal->flags & SIGNAL_GROUP_EXIT))
908 return sig == SIGKILL;
909 /*
910 * The process is in the middle of dying, nothing to do.
911 */
912 } else if (sig_kernel_stop(sig)) {
913 /*
914 * This is a stop signal. Remove SIGCONT from all queues.
915 */
916 siginitset(&flush, sigmask(SIGCONT));
917 flush_sigqueue_mask(&flush, &signal->shared_pending);
918 for_each_thread(p, t)
919 flush_sigqueue_mask(&flush, &t->pending);
920 } else if (sig == SIGCONT) {
921 unsigned int why;
922 /*
923 * Remove all stop signals from all queues, wake all threads.
924 */
925 siginitset(&flush, SIG_KERNEL_STOP_MASK);
926 flush_sigqueue_mask(&flush, &signal->shared_pending);
927 for_each_thread(p, t) {
928 flush_sigqueue_mask(&flush, &t->pending);
929 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
930 if (likely(!(t->ptrace & PT_SEIZED)))
931 wake_up_state(t, __TASK_STOPPED);
932 else
933 ptrace_trap_notify(t);
934 }
935
936 /*
937 * Notify the parent with CLD_CONTINUED if we were stopped.
938 *
939 * If we were in the middle of a group stop, we pretend it
940 * was already finished, and then continued. Since SIGCHLD
941 * doesn't queue we report only CLD_STOPPED, as if the next
942 * CLD_CONTINUED was dropped.
943 */
944 why = 0;
945 if (signal->flags & SIGNAL_STOP_STOPPED)
946 why |= SIGNAL_CLD_CONTINUED;
947 else if (signal->group_stop_count)
948 why |= SIGNAL_CLD_STOPPED;
949
950 if (why) {
951 /*
952 * The first thread which returns from do_signal_stop()
953 * will take ->siglock, notice SIGNAL_CLD_MASK, and
954 * notify its parent. See get_signal().
955 */
956 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
957 signal->group_stop_count = 0;
958 signal->group_exit_code = 0;
959 }
960 }
961
962 return !sig_ignored(p, sig, force);
963 }
964
965 /*
966 * Test if P wants to take SIG. After we've checked all threads with this,
967 * it's equivalent to finding no threads not blocking SIG. Any threads not
968 * blocking SIG were ruled out because they are not running and already
969 * have pending signals. Such threads will dequeue from the shared queue
970 * as soon as they're available, so putting the signal on the shared queue
971 * will be equivalent to sending it to one such thread.
972 */
973 static inline bool wants_signal(int sig, struct task_struct *p)
974 {
975 if (sigismember(&p->blocked, sig))
976 return false;
977
978 if (p->flags & PF_EXITING)
979 return false;
980
981 if (sig == SIGKILL)
982 return true;
983
984 if (task_is_stopped_or_traced(p))
985 return false;
986
987 return task_curr(p) || !signal_pending(p);
988 }
989
990 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
991 {
992 struct signal_struct *signal = p->signal;
993 struct task_struct *t;
994
995 /*
996 * Now find a thread we can wake up to take the signal off the queue.
997 *
998 * If the main thread wants the signal, it gets first crack.
999 * Probably the least surprising to the average bear.
1000 */
1001 if (wants_signal(sig, p))
1002 t = p;
1003 else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1004 /*
1005 * There is just one thread and it does not need to be woken.
1006 * It will dequeue unblocked signals before it runs again.
1007 */
1008 return;
1009 else {
1010 /*
1011 * Otherwise try to find a suitable thread.
1012 */
1013 t = signal->curr_target;
1014 while (!wants_signal(sig, t)) {
1015 t = next_thread(t);
1016 if (t == signal->curr_target)
1017 /*
1018 * No thread needs to be woken.
1019 * Any eligible threads will see
1020 * the signal in the queue soon.
1021 */
1022 return;
1023 }
1024 signal->curr_target = t;
1025 }
1026
1027 /*
1028 * Found a killable thread. If the signal will be fatal,
1029 * then start taking the whole group down immediately.
1030 */
1031 if (sig_fatal(p, sig) &&
1032 !(signal->flags & SIGNAL_GROUP_EXIT) &&
1033 !sigismember(&t->real_blocked, sig) &&
1034 (sig == SIGKILL || !p->ptrace)) {
1035 /*
1036 * This signal will be fatal to the whole group.
1037 */
1038 if (!sig_kernel_coredump(sig)) {
1039 /*
1040 * Start a group exit and wake everybody up.
1041 * This way we don't have other threads
1042 * running and doing things after a slower
1043 * thread has the fatal signal pending.
1044 */
1045 signal->flags = SIGNAL_GROUP_EXIT;
1046 signal->group_exit_code = sig;
1047 signal->group_stop_count = 0;
1048 t = p;
1049 do {
1050 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1051 sigaddset(&t->pending.signal, SIGKILL);
1052 signal_wake_up(t, 1);
1053 } while_each_thread(p, t);
1054 return;
1055 }
1056 }
1057
1058 /*
1059 * The signal is already in the shared-pending queue.
1060 * Tell the chosen thread to wake up and dequeue it.
1061 */
1062 signal_wake_up(t, sig == SIGKILL);
1063 return;
1064 }
1065
1066 static inline bool legacy_queue(struct sigpending *signals, int sig)
1067 {
1068 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1069 }
1070
1071 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1072 enum pid_type type, bool force)
1073 {
1074 struct sigpending *pending;
1075 struct sigqueue *q;
1076 int override_rlimit;
1077 int ret = 0, result;
1078
1079 assert_spin_locked(&t->sighand->siglock);
1080
1081 result = TRACE_SIGNAL_IGNORED;
1082 if (!prepare_signal(sig, t, force))
1083 goto ret;
1084
1085 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1086 /*
1087 * Short-circuit ignored signals and support queuing
1088 * exactly one non-rt signal, so that we can get more
1089 * detailed information about the cause of the signal.
1090 */
1091 result = TRACE_SIGNAL_ALREADY_PENDING;
1092 if (legacy_queue(pending, sig))
1093 goto ret;
1094
1095 result = TRACE_SIGNAL_DELIVERED;
1096 /*
1097 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1098 */
1099 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1100 goto out_set;
1101
1102 /*
1103 * Real-time signals must be queued if sent by sigqueue, or
1104 * some other real-time mechanism. It is implementation
1105 * defined whether kill() does so. We attempt to do so, on
1106 * the principle of least surprise, but since kill is not
1107 * allowed to fail with EAGAIN when low on memory we just
1108 * make sure at least one signal gets delivered and don't
1109 * pass on the info struct.
1110 */
1111 if (sig < SIGRTMIN)
1112 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1113 else
1114 override_rlimit = 0;
1115
1116 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1117 if (q) {
1118 list_add_tail(&q->list, &pending->list);
1119 switch ((unsigned long) info) {
1120 case (unsigned long) SEND_SIG_NOINFO:
1121 clear_siginfo(&q->info);
1122 q->info.si_signo = sig;
1123 q->info.si_errno = 0;
1124 q->info.si_code = SI_USER;
1125 q->info.si_pid = task_tgid_nr_ns(current,
1126 task_active_pid_ns(t));
1127 rcu_read_lock();
1128 q->info.si_uid =
1129 from_kuid_munged(task_cred_xxx(t, user_ns),
1130 current_uid());
1131 rcu_read_unlock();
1132 break;
1133 case (unsigned long) SEND_SIG_PRIV:
1134 clear_siginfo(&q->info);
1135 q->info.si_signo = sig;
1136 q->info.si_errno = 0;
1137 q->info.si_code = SI_KERNEL;
1138 q->info.si_pid = 0;
1139 q->info.si_uid = 0;
1140 break;
1141 default:
1142 copy_siginfo(&q->info, info);
1143 break;
1144 }
1145 } else if (!is_si_special(info) &&
1146 sig >= SIGRTMIN && info->si_code != SI_USER) {
1147 /*
1148 * Queue overflow, abort. We may abort if the
1149 * signal was rt and sent by user using something
1150 * other than kill().
1151 */
1152 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1153 ret = -EAGAIN;
1154 goto ret;
1155 } else {
1156 /*
1157 * This is a silent loss of information. We still
1158 * send the signal, but the *info bits are lost.
1159 */
1160 result = TRACE_SIGNAL_LOSE_INFO;
1161 }
1162
1163 out_set:
1164 signalfd_notify(t, sig);
1165 sigaddset(&pending->signal, sig);
1166
1167 /* Let multiprocess signals appear after on-going forks */
1168 if (type > PIDTYPE_TGID) {
1169 struct multiprocess_signals *delayed;
1170 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1171 sigset_t *signal = &delayed->signal;
1172 /* Can't queue both a stop and a continue signal */
1173 if (sig == SIGCONT)
1174 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1175 else if (sig_kernel_stop(sig))
1176 sigdelset(signal, SIGCONT);
1177 sigaddset(signal, sig);
1178 }
1179 }
1180
1181 complete_signal(sig, t, type);
1182 ret:
1183 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1184 return ret;
1185 }
1186
1187 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1188 {
1189 bool ret = false;
1190 switch (siginfo_layout(info->si_signo, info->si_code)) {
1191 case SIL_KILL:
1192 case SIL_CHLD:
1193 case SIL_RT:
1194 ret = true;
1195 break;
1196 case SIL_TIMER:
1197 case SIL_POLL:
1198 case SIL_FAULT:
1199 case SIL_FAULT_MCEERR:
1200 case SIL_FAULT_BNDERR:
1201 case SIL_FAULT_PKUERR:
1202 case SIL_SYS:
1203 ret = false;
1204 break;
1205 }
1206 return ret;
1207 }
1208
1209 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1210 enum pid_type type)
1211 {
1212 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1213 bool force = false;
1214
1215 if (info == SEND_SIG_NOINFO) {
1216 /* Force if sent from an ancestor pid namespace */
1217 force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1218 } else if (info == SEND_SIG_PRIV) {
1219 /* Don't ignore kernel generated signals */
1220 force = true;
1221 } else if (has_si_pid_and_uid(info)) {
1222 /* SIGKILL and SIGSTOP is special or has ids */
1223 struct user_namespace *t_user_ns;
1224
1225 rcu_read_lock();
1226 t_user_ns = task_cred_xxx(t, user_ns);
1227 if (current_user_ns() != t_user_ns) {
1228 kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1229 info->si_uid = from_kuid_munged(t_user_ns, uid);
1230 }
1231 rcu_read_unlock();
1232
1233 /* A kernel generated signal? */
1234 force = (info->si_code == SI_KERNEL);
1235
1236 /* From an ancestor pid namespace? */
1237 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1238 info->si_pid = 0;
1239 force = true;
1240 }
1241 }
1242 return __send_signal(sig, info, t, type, force);
1243 }
1244
1245 static void print_fatal_signal(int signr)
1246 {
1247 struct pt_regs *regs = signal_pt_regs();
1248 pr_info("potentially unexpected fatal signal %d.\n", signr);
1249
1250 #if defined(__i386__) && !defined(__arch_um__)
1251 pr_info("code at %08lx: ", regs->ip);
1252 {
1253 int i;
1254 for (i = 0; i < 16; i++) {
1255 unsigned char insn;
1256
1257 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1258 break;
1259 pr_cont("%02x ", insn);
1260 }
1261 }
1262 pr_cont("\n");
1263 #endif
1264 preempt_disable();
1265 show_regs(regs);
1266 preempt_enable();
1267 }
1268
1269 static int __init setup_print_fatal_signals(char *str)
1270 {
1271 get_option (&str, &print_fatal_signals);
1272
1273 return 1;
1274 }
1275
1276 __setup("print-fatal-signals=", setup_print_fatal_signals);
1277
1278 int
1279 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1280 {
1281 return send_signal(sig, info, p, PIDTYPE_TGID);
1282 }
1283
1284 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1285 enum pid_type type)
1286 {
1287 unsigned long flags;
1288 int ret = -ESRCH;
1289
1290 if (lock_task_sighand(p, &flags)) {
1291 ret = send_signal(sig, info, p, type);
1292 unlock_task_sighand(p, &flags);
1293 }
1294
1295 return ret;
1296 }
1297
1298 /*
1299 * Force a signal that the process can't ignore: if necessary
1300 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1301 *
1302 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1303 * since we do not want to have a signal handler that was blocked
1304 * be invoked when user space had explicitly blocked it.
1305 *
1306 * We don't want to have recursive SIGSEGV's etc, for example,
1307 * that is why we also clear SIGNAL_UNKILLABLE.
1308 */
1309 static int
1310 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
1311 {
1312 unsigned long int flags;
1313 int ret, blocked, ignored;
1314 struct k_sigaction *action;
1315 int sig = info->si_signo;
1316
1317 spin_lock_irqsave(&t->sighand->siglock, flags);
1318 action = &t->sighand->action[sig-1];
1319 ignored = action->sa.sa_handler == SIG_IGN;
1320 blocked = sigismember(&t->blocked, sig);
1321 if (blocked || ignored) {
1322 action->sa.sa_handler = SIG_DFL;
1323 if (blocked) {
1324 sigdelset(&t->blocked, sig);
1325 recalc_sigpending_and_wake(t);
1326 }
1327 }
1328 /*
1329 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1330 * debugging to leave init killable.
1331 */
1332 if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1333 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1334 ret = send_signal(sig, info, t, PIDTYPE_PID);
1335 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1336
1337 return ret;
1338 }
1339
1340 int force_sig_info(struct kernel_siginfo *info)
1341 {
1342 return force_sig_info_to_task(info, current);
1343 }
1344
1345 /*
1346 * Nuke all other threads in the group.
1347 */
1348 int zap_other_threads(struct task_struct *p)
1349 {
1350 struct task_struct *t = p;
1351 int count = 0;
1352
1353 p->signal->group_stop_count = 0;
1354
1355 while_each_thread(p, t) {
1356 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1357 count++;
1358
1359 /* Don't bother with already dead threads */
1360 if (t->exit_state)
1361 continue;
1362 sigaddset(&t->pending.signal, SIGKILL);
1363 signal_wake_up(t, 1);
1364 }
1365
1366 return count;
1367 }
1368
1369 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1370 unsigned long *flags)
1371 {
1372 struct sighand_struct *sighand;
1373
1374 rcu_read_lock();
1375 for (;;) {
1376 sighand = rcu_dereference(tsk->sighand);
1377 if (unlikely(sighand == NULL))
1378 break;
1379
1380 /*
1381 * This sighand can be already freed and even reused, but
1382 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1383 * initializes ->siglock: this slab can't go away, it has
1384 * the same object type, ->siglock can't be reinitialized.
1385 *
1386 * We need to ensure that tsk->sighand is still the same
1387 * after we take the lock, we can race with de_thread() or
1388 * __exit_signal(). In the latter case the next iteration
1389 * must see ->sighand == NULL.
1390 */
1391 spin_lock_irqsave(&sighand->siglock, *flags);
1392 if (likely(sighand == tsk->sighand))
1393 break;
1394 spin_unlock_irqrestore(&sighand->siglock, *flags);
1395 }
1396 rcu_read_unlock();
1397
1398 return sighand;
1399 }
1400
1401 /*
1402 * send signal info to all the members of a group
1403 */
1404 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1405 struct task_struct *p, enum pid_type type)
1406 {
1407 int ret;
1408
1409 rcu_read_lock();
1410 ret = check_kill_permission(sig, info, p);
1411 rcu_read_unlock();
1412
1413 if (!ret && sig)
1414 ret = do_send_sig_info(sig, info, p, type);
1415
1416 return ret;
1417 }
1418
1419 /*
1420 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1421 * control characters do (^C, ^Z etc)
1422 * - the caller must hold at least a readlock on tasklist_lock
1423 */
1424 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1425 {
1426 struct task_struct *p = NULL;
1427 int retval, success;
1428
1429 success = 0;
1430 retval = -ESRCH;
1431 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1432 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1433 success |= !err;
1434 retval = err;
1435 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1436 return success ? 0 : retval;
1437 }
1438
1439 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1440 {
1441 int error = -ESRCH;
1442 struct task_struct *p;
1443
1444 for (;;) {
1445 rcu_read_lock();
1446 p = pid_task(pid, PIDTYPE_PID);
1447 if (p)
1448 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1449 rcu_read_unlock();
1450 if (likely(!p || error != -ESRCH))
1451 return error;
1452
1453 /*
1454 * The task was unhashed in between, try again. If it
1455 * is dead, pid_task() will return NULL, if we race with
1456 * de_thread() it will find the new leader.
1457 */
1458 }
1459 }
1460
1461 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1462 {
1463 int error;
1464 rcu_read_lock();
1465 error = kill_pid_info(sig, info, find_vpid(pid));
1466 rcu_read_unlock();
1467 return error;
1468 }
1469
1470 static inline bool kill_as_cred_perm(const struct cred *cred,
1471 struct task_struct *target)
1472 {
1473 const struct cred *pcred = __task_cred(target);
1474
1475 return uid_eq(cred->euid, pcred->suid) ||
1476 uid_eq(cred->euid, pcred->uid) ||
1477 uid_eq(cred->uid, pcred->suid) ||
1478 uid_eq(cred->uid, pcred->uid);
1479 }
1480
1481 /*
1482 * The usb asyncio usage of siginfo is wrong. The glibc support
1483 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1484 * AKA after the generic fields:
1485 * kernel_pid_t si_pid;
1486 * kernel_uid32_t si_uid;
1487 * sigval_t si_value;
1488 *
1489 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1490 * after the generic fields is:
1491 * void __user *si_addr;
1492 *
1493 * This is a practical problem when there is a 64bit big endian kernel
1494 * and a 32bit userspace. As the 32bit address will encoded in the low
1495 * 32bits of the pointer. Those low 32bits will be stored at higher
1496 * address than appear in a 32 bit pointer. So userspace will not
1497 * see the address it was expecting for it's completions.
1498 *
1499 * There is nothing in the encoding that can allow
1500 * copy_siginfo_to_user32 to detect this confusion of formats, so
1501 * handle this by requiring the caller of kill_pid_usb_asyncio to
1502 * notice when this situration takes place and to store the 32bit
1503 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1504 * parameter.
1505 */
1506 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1507 struct pid *pid, const struct cred *cred)
1508 {
1509 struct kernel_siginfo info;
1510 struct task_struct *p;
1511 unsigned long flags;
1512 int ret = -EINVAL;
1513
1514 if (!valid_signal(sig))
1515 return ret;
1516
1517 clear_siginfo(&info);
1518 info.si_signo = sig;
1519 info.si_errno = errno;
1520 info.si_code = SI_ASYNCIO;
1521 *((sigval_t *)&info.si_pid) = addr;
1522
1523 rcu_read_lock();
1524 p = pid_task(pid, PIDTYPE_PID);
1525 if (!p) {
1526 ret = -ESRCH;
1527 goto out_unlock;
1528 }
1529 if (!kill_as_cred_perm(cred, p)) {
1530 ret = -EPERM;
1531 goto out_unlock;
1532 }
1533 ret = security_task_kill(p, &info, sig, cred);
1534 if (ret)
1535 goto out_unlock;
1536
1537 if (sig) {
1538 if (lock_task_sighand(p, &flags)) {
1539 ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1540 unlock_task_sighand(p, &flags);
1541 } else
1542 ret = -ESRCH;
1543 }
1544 out_unlock:
1545 rcu_read_unlock();
1546 return ret;
1547 }
1548 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1549
1550 /*
1551 * kill_something_info() interprets pid in interesting ways just like kill(2).
1552 *
1553 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1554 * is probably wrong. Should make it like BSD or SYSV.
1555 */
1556
1557 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1558 {
1559 int ret;
1560
1561 if (pid > 0) {
1562 rcu_read_lock();
1563 ret = kill_pid_info(sig, info, find_vpid(pid));
1564 rcu_read_unlock();
1565 return ret;
1566 }
1567
1568 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1569 if (pid == INT_MIN)
1570 return -ESRCH;
1571
1572 read_lock(&tasklist_lock);
1573 if (pid != -1) {
1574 ret = __kill_pgrp_info(sig, info,
1575 pid ? find_vpid(-pid) : task_pgrp(current));
1576 } else {
1577 int retval = 0, count = 0;
1578 struct task_struct * p;
1579
1580 for_each_process(p) {
1581 if (task_pid_vnr(p) > 1 &&
1582 !same_thread_group(p, current)) {
1583 int err = group_send_sig_info(sig, info, p,
1584 PIDTYPE_MAX);
1585 ++count;
1586 if (err != -EPERM)
1587 retval = err;
1588 }
1589 }
1590 ret = count ? retval : -ESRCH;
1591 }
1592 read_unlock(&tasklist_lock);
1593
1594 return ret;
1595 }
1596
1597 /*
1598 * These are for backward compatibility with the rest of the kernel source.
1599 */
1600
1601 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1602 {
1603 /*
1604 * Make sure legacy kernel users don't send in bad values
1605 * (normal paths check this in check_kill_permission).
1606 */
1607 if (!valid_signal(sig))
1608 return -EINVAL;
1609
1610 return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1611 }
1612 EXPORT_SYMBOL(send_sig_info);
1613
1614 #define __si_special(priv) \
1615 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1616
1617 int
1618 send_sig(int sig, struct task_struct *p, int priv)
1619 {
1620 return send_sig_info(sig, __si_special(priv), p);
1621 }
1622 EXPORT_SYMBOL(send_sig);
1623
1624 void force_sig(int sig)
1625 {
1626 struct kernel_siginfo info;
1627
1628 clear_siginfo(&info);
1629 info.si_signo = sig;
1630 info.si_errno = 0;
1631 info.si_code = SI_KERNEL;
1632 info.si_pid = 0;
1633 info.si_uid = 0;
1634 force_sig_info(&info);
1635 }
1636 EXPORT_SYMBOL(force_sig);
1637
1638 /*
1639 * When things go south during signal handling, we
1640 * will force a SIGSEGV. And if the signal that caused
1641 * the problem was already a SIGSEGV, we'll want to
1642 * make sure we don't even try to deliver the signal..
1643 */
1644 void force_sigsegv(int sig)
1645 {
1646 struct task_struct *p = current;
1647
1648 if (sig == SIGSEGV) {
1649 unsigned long flags;
1650 spin_lock_irqsave(&p->sighand->siglock, flags);
1651 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1652 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1653 }
1654 force_sig(SIGSEGV);
1655 }
1656
1657 int force_sig_fault_to_task(int sig, int code, void __user *addr
1658 ___ARCH_SI_TRAPNO(int trapno)
1659 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1660 , struct task_struct *t)
1661 {
1662 struct kernel_siginfo info;
1663
1664 clear_siginfo(&info);
1665 info.si_signo = sig;
1666 info.si_errno = 0;
1667 info.si_code = code;
1668 info.si_addr = addr;
1669 #ifdef __ARCH_SI_TRAPNO
1670 info.si_trapno = trapno;
1671 #endif
1672 #ifdef __ia64__
1673 info.si_imm = imm;
1674 info.si_flags = flags;
1675 info.si_isr = isr;
1676 #endif
1677 return force_sig_info_to_task(&info, t);
1678 }
1679
1680 int force_sig_fault(int sig, int code, void __user *addr
1681 ___ARCH_SI_TRAPNO(int trapno)
1682 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1683 {
1684 return force_sig_fault_to_task(sig, code, addr
1685 ___ARCH_SI_TRAPNO(trapno)
1686 ___ARCH_SI_IA64(imm, flags, isr), current);
1687 }
1688
1689 int send_sig_fault(int sig, int code, void __user *addr
1690 ___ARCH_SI_TRAPNO(int trapno)
1691 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1692 , struct task_struct *t)
1693 {
1694 struct kernel_siginfo info;
1695
1696 clear_siginfo(&info);
1697 info.si_signo = sig;
1698 info.si_errno = 0;
1699 info.si_code = code;
1700 info.si_addr = addr;
1701 #ifdef __ARCH_SI_TRAPNO
1702 info.si_trapno = trapno;
1703 #endif
1704 #ifdef __ia64__
1705 info.si_imm = imm;
1706 info.si_flags = flags;
1707 info.si_isr = isr;
1708 #endif
1709 return send_sig_info(info.si_signo, &info, t);
1710 }
1711
1712 int force_sig_mceerr(int code, void __user *addr, short lsb)
1713 {
1714 struct kernel_siginfo info;
1715
1716 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1717 clear_siginfo(&info);
1718 info.si_signo = SIGBUS;
1719 info.si_errno = 0;
1720 info.si_code = code;
1721 info.si_addr = addr;
1722 info.si_addr_lsb = lsb;
1723 return force_sig_info(&info);
1724 }
1725
1726 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1727 {
1728 struct kernel_siginfo info;
1729
1730 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1731 clear_siginfo(&info);
1732 info.si_signo = SIGBUS;
1733 info.si_errno = 0;
1734 info.si_code = code;
1735 info.si_addr = addr;
1736 info.si_addr_lsb = lsb;
1737 return send_sig_info(info.si_signo, &info, t);
1738 }
1739 EXPORT_SYMBOL(send_sig_mceerr);
1740
1741 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1742 {
1743 struct kernel_siginfo info;
1744
1745 clear_siginfo(&info);
1746 info.si_signo = SIGSEGV;
1747 info.si_errno = 0;
1748 info.si_code = SEGV_BNDERR;
1749 info.si_addr = addr;
1750 info.si_lower = lower;
1751 info.si_upper = upper;
1752 return force_sig_info(&info);
1753 }
1754
1755 #ifdef SEGV_PKUERR
1756 int force_sig_pkuerr(void __user *addr, u32 pkey)
1757 {
1758 struct kernel_siginfo info;
1759
1760 clear_siginfo(&info);
1761 info.si_signo = SIGSEGV;
1762 info.si_errno = 0;
1763 info.si_code = SEGV_PKUERR;
1764 info.si_addr = addr;
1765 info.si_pkey = pkey;
1766 return force_sig_info(&info);
1767 }
1768 #endif
1769
1770 /* For the crazy architectures that include trap information in
1771 * the errno field, instead of an actual errno value.
1772 */
1773 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1774 {
1775 struct kernel_siginfo info;
1776
1777 clear_siginfo(&info);
1778 info.si_signo = SIGTRAP;
1779 info.si_errno = errno;
1780 info.si_code = TRAP_HWBKPT;
1781 info.si_addr = addr;
1782 return force_sig_info(&info);
1783 }
1784
1785 int kill_pgrp(struct pid *pid, int sig, int priv)
1786 {
1787 int ret;
1788
1789 read_lock(&tasklist_lock);
1790 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1791 read_unlock(&tasklist_lock);
1792
1793 return ret;
1794 }
1795 EXPORT_SYMBOL(kill_pgrp);
1796
1797 int kill_pid(struct pid *pid, int sig, int priv)
1798 {
1799 return kill_pid_info(sig, __si_special(priv), pid);
1800 }
1801 EXPORT_SYMBOL(kill_pid);
1802
1803 /*
1804 * These functions support sending signals using preallocated sigqueue
1805 * structures. This is needed "because realtime applications cannot
1806 * afford to lose notifications of asynchronous events, like timer
1807 * expirations or I/O completions". In the case of POSIX Timers
1808 * we allocate the sigqueue structure from the timer_create. If this
1809 * allocation fails we are able to report the failure to the application
1810 * with an EAGAIN error.
1811 */
1812 struct sigqueue *sigqueue_alloc(void)
1813 {
1814 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1815
1816 if (q)
1817 q->flags |= SIGQUEUE_PREALLOC;
1818
1819 return q;
1820 }
1821
1822 void sigqueue_free(struct sigqueue *q)
1823 {
1824 unsigned long flags;
1825 spinlock_t *lock = &current->sighand->siglock;
1826
1827 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1828 /*
1829 * We must hold ->siglock while testing q->list
1830 * to serialize with collect_signal() or with
1831 * __exit_signal()->flush_sigqueue().
1832 */
1833 spin_lock_irqsave(lock, flags);
1834 q->flags &= ~SIGQUEUE_PREALLOC;
1835 /*
1836 * If it is queued it will be freed when dequeued,
1837 * like the "regular" sigqueue.
1838 */
1839 if (!list_empty(&q->list))
1840 q = NULL;
1841 spin_unlock_irqrestore(lock, flags);
1842
1843 if (q)
1844 __sigqueue_free(q);
1845 }
1846
1847 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1848 {
1849 int sig = q->info.si_signo;
1850 struct sigpending *pending;
1851 struct task_struct *t;
1852 unsigned long flags;
1853 int ret, result;
1854
1855 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1856
1857 ret = -1;
1858 rcu_read_lock();
1859 t = pid_task(pid, type);
1860 if (!t || !likely(lock_task_sighand(t, &flags)))
1861 goto ret;
1862
1863 ret = 1; /* the signal is ignored */
1864 result = TRACE_SIGNAL_IGNORED;
1865 if (!prepare_signal(sig, t, false))
1866 goto out;
1867
1868 ret = 0;
1869 if (unlikely(!list_empty(&q->list))) {
1870 /*
1871 * If an SI_TIMER entry is already queue just increment
1872 * the overrun count.
1873 */
1874 BUG_ON(q->info.si_code != SI_TIMER);
1875 q->info.si_overrun++;
1876 result = TRACE_SIGNAL_ALREADY_PENDING;
1877 goto out;
1878 }
1879 q->info.si_overrun = 0;
1880
1881 signalfd_notify(t, sig);
1882 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1883 list_add_tail(&q->list, &pending->list);
1884 sigaddset(&pending->signal, sig);
1885 complete_signal(sig, t, type);
1886 result = TRACE_SIGNAL_DELIVERED;
1887 out:
1888 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1889 unlock_task_sighand(t, &flags);
1890 ret:
1891 rcu_read_unlock();
1892 return ret;
1893 }
1894
1895 static void do_notify_pidfd(struct task_struct *task)
1896 {
1897 struct pid *pid;
1898
1899 WARN_ON(task->exit_state == 0);
1900 pid = task_pid(task);
1901 wake_up_all(&pid->wait_pidfd);
1902 }
1903
1904 /*
1905 * Let a parent know about the death of a child.
1906 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1907 *
1908 * Returns true if our parent ignored us and so we've switched to
1909 * self-reaping.
1910 */
1911 bool do_notify_parent(struct task_struct *tsk, int sig)
1912 {
1913 struct kernel_siginfo info;
1914 unsigned long flags;
1915 struct sighand_struct *psig;
1916 bool autoreap = false;
1917 u64 utime, stime;
1918
1919 BUG_ON(sig == -1);
1920
1921 /* do_notify_parent_cldstop should have been called instead. */
1922 BUG_ON(task_is_stopped_or_traced(tsk));
1923
1924 BUG_ON(!tsk->ptrace &&
1925 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1926
1927 /* Wake up all pidfd waiters */
1928 do_notify_pidfd(tsk);
1929
1930 if (sig != SIGCHLD) {
1931 /*
1932 * This is only possible if parent == real_parent.
1933 * Check if it has changed security domain.
1934 */
1935 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
1936 sig = SIGCHLD;
1937 }
1938
1939 clear_siginfo(&info);
1940 info.si_signo = sig;
1941 info.si_errno = 0;
1942 /*
1943 * We are under tasklist_lock here so our parent is tied to
1944 * us and cannot change.
1945 *
1946 * task_active_pid_ns will always return the same pid namespace
1947 * until a task passes through release_task.
1948 *
1949 * write_lock() currently calls preempt_disable() which is the
1950 * same as rcu_read_lock(), but according to Oleg, this is not
1951 * correct to rely on this
1952 */
1953 rcu_read_lock();
1954 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1955 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1956 task_uid(tsk));
1957 rcu_read_unlock();
1958
1959 task_cputime(tsk, &utime, &stime);
1960 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1961 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1962
1963 info.si_status = tsk->exit_code & 0x7f;
1964 if (tsk->exit_code & 0x80)
1965 info.si_code = CLD_DUMPED;
1966 else if (tsk->exit_code & 0x7f)
1967 info.si_code = CLD_KILLED;
1968 else {
1969 info.si_code = CLD_EXITED;
1970 info.si_status = tsk->exit_code >> 8;
1971 }
1972
1973 psig = tsk->parent->sighand;
1974 spin_lock_irqsave(&psig->siglock, flags);
1975 if (!tsk->ptrace && sig == SIGCHLD &&
1976 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1977 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1978 /*
1979 * We are exiting and our parent doesn't care. POSIX.1
1980 * defines special semantics for setting SIGCHLD to SIG_IGN
1981 * or setting the SA_NOCLDWAIT flag: we should be reaped
1982 * automatically and not left for our parent's wait4 call.
1983 * Rather than having the parent do it as a magic kind of
1984 * signal handler, we just set this to tell do_exit that we
1985 * can be cleaned up without becoming a zombie. Note that
1986 * we still call __wake_up_parent in this case, because a
1987 * blocked sys_wait4 might now return -ECHILD.
1988 *
1989 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1990 * is implementation-defined: we do (if you don't want
1991 * it, just use SIG_IGN instead).
1992 */
1993 autoreap = true;
1994 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1995 sig = 0;
1996 }
1997 /*
1998 * Send with __send_signal as si_pid and si_uid are in the
1999 * parent's namespaces.
2000 */
2001 if (valid_signal(sig) && sig)
2002 __send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2003 __wake_up_parent(tsk, tsk->parent);
2004 spin_unlock_irqrestore(&psig->siglock, flags);
2005
2006 return autoreap;
2007 }
2008
2009 /**
2010 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2011 * @tsk: task reporting the state change
2012 * @for_ptracer: the notification is for ptracer
2013 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2014 *
2015 * Notify @tsk's parent that the stopped/continued state has changed. If
2016 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2017 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2018 *
2019 * CONTEXT:
2020 * Must be called with tasklist_lock at least read locked.
2021 */
2022 static void do_notify_parent_cldstop(struct task_struct *tsk,
2023 bool for_ptracer, int why)
2024 {
2025 struct kernel_siginfo info;
2026 unsigned long flags;
2027 struct task_struct *parent;
2028 struct sighand_struct *sighand;
2029 u64 utime, stime;
2030
2031 if (for_ptracer) {
2032 parent = tsk->parent;
2033 } else {
2034 tsk = tsk->group_leader;
2035 parent = tsk->real_parent;
2036 }
2037
2038 clear_siginfo(&info);
2039 info.si_signo = SIGCHLD;
2040 info.si_errno = 0;
2041 /*
2042 * see comment in do_notify_parent() about the following 4 lines
2043 */
2044 rcu_read_lock();
2045 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2046 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2047 rcu_read_unlock();
2048
2049 task_cputime(tsk, &utime, &stime);
2050 info.si_utime = nsec_to_clock_t(utime);
2051 info.si_stime = nsec_to_clock_t(stime);
2052
2053 info.si_code = why;
2054 switch (why) {
2055 case CLD_CONTINUED:
2056 info.si_status = SIGCONT;
2057 break;
2058 case CLD_STOPPED:
2059 info.si_status = tsk->signal->group_exit_code & 0x7f;
2060 break;
2061 case CLD_TRAPPED:
2062 info.si_status = tsk->exit_code & 0x7f;
2063 break;
2064 default:
2065 BUG();
2066 }
2067
2068 sighand = parent->sighand;
2069 spin_lock_irqsave(&sighand->siglock, flags);
2070 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2071 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2072 __group_send_sig_info(SIGCHLD, &info, parent);
2073 /*
2074 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2075 */
2076 __wake_up_parent(tsk, parent);
2077 spin_unlock_irqrestore(&sighand->siglock, flags);
2078 }
2079
2080 static inline bool may_ptrace_stop(void)
2081 {
2082 if (!likely(current->ptrace))
2083 return false;
2084 /*
2085 * Are we in the middle of do_coredump?
2086 * If so and our tracer is also part of the coredump stopping
2087 * is a deadlock situation, and pointless because our tracer
2088 * is dead so don't allow us to stop.
2089 * If SIGKILL was already sent before the caller unlocked
2090 * ->siglock we must see ->core_state != NULL. Otherwise it
2091 * is safe to enter schedule().
2092 *
2093 * This is almost outdated, a task with the pending SIGKILL can't
2094 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2095 * after SIGKILL was already dequeued.
2096 */
2097 if (unlikely(current->mm->core_state) &&
2098 unlikely(current->mm == current->parent->mm))
2099 return false;
2100
2101 return true;
2102 }
2103
2104
2105 /*
2106 * This must be called with current->sighand->siglock held.
2107 *
2108 * This should be the path for all ptrace stops.
2109 * We always set current->last_siginfo while stopped here.
2110 * That makes it a way to test a stopped process for
2111 * being ptrace-stopped vs being job-control-stopped.
2112 *
2113 * If we actually decide not to stop at all because the tracer
2114 * is gone, we keep current->exit_code unless clear_code.
2115 */
2116 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2117 __releases(&current->sighand->siglock)
2118 __acquires(&current->sighand->siglock)
2119 {
2120 bool gstop_done = false;
2121
2122 if (arch_ptrace_stop_needed(exit_code, info)) {
2123 /*
2124 * The arch code has something special to do before a
2125 * ptrace stop. This is allowed to block, e.g. for faults
2126 * on user stack pages. We can't keep the siglock while
2127 * calling arch_ptrace_stop, so we must release it now.
2128 * To preserve proper semantics, we must do this before
2129 * any signal bookkeeping like checking group_stop_count.
2130 */
2131 spin_unlock_irq(&current->sighand->siglock);
2132 arch_ptrace_stop(exit_code, info);
2133 spin_lock_irq(&current->sighand->siglock);
2134 }
2135
2136 /*
2137 * schedule() will not sleep if there is a pending signal that
2138 * can awaken the task.
2139 */
2140 set_special_state(TASK_TRACED);
2141
2142 /*
2143 * We're committing to trapping. TRACED should be visible before
2144 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2145 * Also, transition to TRACED and updates to ->jobctl should be
2146 * atomic with respect to siglock and should be done after the arch
2147 * hook as siglock is released and regrabbed across it.
2148 *
2149 * TRACER TRACEE
2150 *
2151 * ptrace_attach()
2152 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
2153 * do_wait()
2154 * set_current_state() smp_wmb();
2155 * ptrace_do_wait()
2156 * wait_task_stopped()
2157 * task_stopped_code()
2158 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
2159 */
2160 smp_wmb();
2161
2162 current->last_siginfo = info;
2163 current->exit_code = exit_code;
2164
2165 /*
2166 * If @why is CLD_STOPPED, we're trapping to participate in a group
2167 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
2168 * across siglock relocks since INTERRUPT was scheduled, PENDING
2169 * could be clear now. We act as if SIGCONT is received after
2170 * TASK_TRACED is entered - ignore it.
2171 */
2172 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2173 gstop_done = task_participate_group_stop(current);
2174
2175 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2176 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2177 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2178 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2179
2180 /* entering a trap, clear TRAPPING */
2181 task_clear_jobctl_trapping(current);
2182
2183 spin_unlock_irq(&current->sighand->siglock);
2184 read_lock(&tasklist_lock);
2185 if (may_ptrace_stop()) {
2186 /*
2187 * Notify parents of the stop.
2188 *
2189 * While ptraced, there are two parents - the ptracer and
2190 * the real_parent of the group_leader. The ptracer should
2191 * know about every stop while the real parent is only
2192 * interested in the completion of group stop. The states
2193 * for the two don't interact with each other. Notify
2194 * separately unless they're gonna be duplicates.
2195 */
2196 do_notify_parent_cldstop(current, true, why);
2197 if (gstop_done && ptrace_reparented(current))
2198 do_notify_parent_cldstop(current, false, why);
2199
2200 /*
2201 * Don't want to allow preemption here, because
2202 * sys_ptrace() needs this task to be inactive.
2203 *
2204 * XXX: implement read_unlock_no_resched().
2205 */
2206 preempt_disable();
2207 read_unlock(&tasklist_lock);
2208 cgroup_enter_frozen();
2209 preempt_enable_no_resched();
2210 freezable_schedule();
2211 cgroup_leave_frozen(true);
2212 } else {
2213 /*
2214 * By the time we got the lock, our tracer went away.
2215 * Don't drop the lock yet, another tracer may come.
2216 *
2217 * If @gstop_done, the ptracer went away between group stop
2218 * completion and here. During detach, it would have set
2219 * JOBCTL_STOP_PENDING on us and we'll re-enter
2220 * TASK_STOPPED in do_signal_stop() on return, so notifying
2221 * the real parent of the group stop completion is enough.
2222 */
2223 if (gstop_done)
2224 do_notify_parent_cldstop(current, false, why);
2225
2226 /* tasklist protects us from ptrace_freeze_traced() */
2227 __set_current_state(TASK_RUNNING);
2228 if (clear_code)
2229 current->exit_code = 0;
2230 read_unlock(&tasklist_lock);
2231 }
2232
2233 /*
2234 * We are back. Now reacquire the siglock before touching
2235 * last_siginfo, so that we are sure to have synchronized with
2236 * any signal-sending on another CPU that wants to examine it.
2237 */
2238 spin_lock_irq(&current->sighand->siglock);
2239 current->last_siginfo = NULL;
2240
2241 /* LISTENING can be set only during STOP traps, clear it */
2242 current->jobctl &= ~JOBCTL_LISTENING;
2243
2244 /*
2245 * Queued signals ignored us while we were stopped for tracing.
2246 * So check for any that we should take before resuming user mode.
2247 * This sets TIF_SIGPENDING, but never clears it.
2248 */
2249 recalc_sigpending_tsk(current);
2250 }
2251
2252 static void ptrace_do_notify(int signr, int exit_code, int why)
2253 {
2254 kernel_siginfo_t info;
2255
2256 clear_siginfo(&info);
2257 info.si_signo = signr;
2258 info.si_code = exit_code;
2259 info.si_pid = task_pid_vnr(current);
2260 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2261
2262 /* Let the debugger run. */
2263 ptrace_stop(exit_code, why, 1, &info);
2264 }
2265
2266 void ptrace_notify(int exit_code)
2267 {
2268 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2269 if (unlikely(current->task_works))
2270 task_work_run();
2271
2272 spin_lock_irq(&current->sighand->siglock);
2273 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2274 spin_unlock_irq(&current->sighand->siglock);
2275 }
2276
2277 /**
2278 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2279 * @signr: signr causing group stop if initiating
2280 *
2281 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2282 * and participate in it. If already set, participate in the existing
2283 * group stop. If participated in a group stop (and thus slept), %true is
2284 * returned with siglock released.
2285 *
2286 * If ptraced, this function doesn't handle stop itself. Instead,
2287 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2288 * untouched. The caller must ensure that INTERRUPT trap handling takes
2289 * places afterwards.
2290 *
2291 * CONTEXT:
2292 * Must be called with @current->sighand->siglock held, which is released
2293 * on %true return.
2294 *
2295 * RETURNS:
2296 * %false if group stop is already cancelled or ptrace trap is scheduled.
2297 * %true if participated in group stop.
2298 */
2299 static bool do_signal_stop(int signr)
2300 __releases(&current->sighand->siglock)
2301 {
2302 struct signal_struct *sig = current->signal;
2303
2304 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2305 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2306 struct task_struct *t;
2307
2308 /* signr will be recorded in task->jobctl for retries */
2309 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2310
2311 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2312 unlikely(signal_group_exit(sig)))
2313 return false;
2314 /*
2315 * There is no group stop already in progress. We must
2316 * initiate one now.
2317 *
2318 * While ptraced, a task may be resumed while group stop is
2319 * still in effect and then receive a stop signal and
2320 * initiate another group stop. This deviates from the
2321 * usual behavior as two consecutive stop signals can't
2322 * cause two group stops when !ptraced. That is why we
2323 * also check !task_is_stopped(t) below.
2324 *
2325 * The condition can be distinguished by testing whether
2326 * SIGNAL_STOP_STOPPED is already set. Don't generate
2327 * group_exit_code in such case.
2328 *
2329 * This is not necessary for SIGNAL_STOP_CONTINUED because
2330 * an intervening stop signal is required to cause two
2331 * continued events regardless of ptrace.
2332 */
2333 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2334 sig->group_exit_code = signr;
2335
2336 sig->group_stop_count = 0;
2337
2338 if (task_set_jobctl_pending(current, signr | gstop))
2339 sig->group_stop_count++;
2340
2341 t = current;
2342 while_each_thread(current, t) {
2343 /*
2344 * Setting state to TASK_STOPPED for a group
2345 * stop is always done with the siglock held,
2346 * so this check has no races.
2347 */
2348 if (!task_is_stopped(t) &&
2349 task_set_jobctl_pending(t, signr | gstop)) {
2350 sig->group_stop_count++;
2351 if (likely(!(t->ptrace & PT_SEIZED)))
2352 signal_wake_up(t, 0);
2353 else
2354 ptrace_trap_notify(t);
2355 }
2356 }
2357 }
2358
2359 if (likely(!current->ptrace)) {
2360 int notify = 0;
2361
2362 /*
2363 * If there are no other threads in the group, or if there
2364 * is a group stop in progress and we are the last to stop,
2365 * report to the parent.
2366 */
2367 if (task_participate_group_stop(current))
2368 notify = CLD_STOPPED;
2369
2370 set_special_state(TASK_STOPPED);
2371 spin_unlock_irq(&current->sighand->siglock);
2372
2373 /*
2374 * Notify the parent of the group stop completion. Because
2375 * we're not holding either the siglock or tasklist_lock
2376 * here, ptracer may attach inbetween; however, this is for
2377 * group stop and should always be delivered to the real
2378 * parent of the group leader. The new ptracer will get
2379 * its notification when this task transitions into
2380 * TASK_TRACED.
2381 */
2382 if (notify) {
2383 read_lock(&tasklist_lock);
2384 do_notify_parent_cldstop(current, false, notify);
2385 read_unlock(&tasklist_lock);
2386 }
2387
2388 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2389 cgroup_enter_frozen();
2390 freezable_schedule();
2391 return true;
2392 } else {
2393 /*
2394 * While ptraced, group stop is handled by STOP trap.
2395 * Schedule it and let the caller deal with it.
2396 */
2397 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2398 return false;
2399 }
2400 }
2401
2402 /**
2403 * do_jobctl_trap - take care of ptrace jobctl traps
2404 *
2405 * When PT_SEIZED, it's used for both group stop and explicit
2406 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2407 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2408 * the stop signal; otherwise, %SIGTRAP.
2409 *
2410 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2411 * number as exit_code and no siginfo.
2412 *
2413 * CONTEXT:
2414 * Must be called with @current->sighand->siglock held, which may be
2415 * released and re-acquired before returning with intervening sleep.
2416 */
2417 static void do_jobctl_trap(void)
2418 {
2419 struct signal_struct *signal = current->signal;
2420 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2421
2422 if (current->ptrace & PT_SEIZED) {
2423 if (!signal->group_stop_count &&
2424 !(signal->flags & SIGNAL_STOP_STOPPED))
2425 signr = SIGTRAP;
2426 WARN_ON_ONCE(!signr);
2427 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2428 CLD_STOPPED);
2429 } else {
2430 WARN_ON_ONCE(!signr);
2431 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2432 current->exit_code = 0;
2433 }
2434 }
2435
2436 /**
2437 * do_freezer_trap - handle the freezer jobctl trap
2438 *
2439 * Puts the task into frozen state, if only the task is not about to quit.
2440 * In this case it drops JOBCTL_TRAP_FREEZE.
2441 *
2442 * CONTEXT:
2443 * Must be called with @current->sighand->siglock held,
2444 * which is always released before returning.
2445 */
2446 static void do_freezer_trap(void)
2447 __releases(&current->sighand->siglock)
2448 {
2449 /*
2450 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2451 * let's make another loop to give it a chance to be handled.
2452 * In any case, we'll return back.
2453 */
2454 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2455 JOBCTL_TRAP_FREEZE) {
2456 spin_unlock_irq(&current->sighand->siglock);
2457 return;
2458 }
2459
2460 /*
2461 * Now we're sure that there is no pending fatal signal and no
2462 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2463 * immediately (if there is a non-fatal signal pending), and
2464 * put the task into sleep.
2465 */
2466 __set_current_state(TASK_INTERRUPTIBLE);
2467 clear_thread_flag(TIF_SIGPENDING);
2468 spin_unlock_irq(&current->sighand->siglock);
2469 cgroup_enter_frozen();
2470 freezable_schedule();
2471 }
2472
2473 static int ptrace_signal(int signr, kernel_siginfo_t *info)
2474 {
2475 /*
2476 * We do not check sig_kernel_stop(signr) but set this marker
2477 * unconditionally because we do not know whether debugger will
2478 * change signr. This flag has no meaning unless we are going
2479 * to stop after return from ptrace_stop(). In this case it will
2480 * be checked in do_signal_stop(), we should only stop if it was
2481 * not cleared by SIGCONT while we were sleeping. See also the
2482 * comment in dequeue_signal().
2483 */
2484 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2485 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2486
2487 /* We're back. Did the debugger cancel the sig? */
2488 signr = current->exit_code;
2489 if (signr == 0)
2490 return signr;
2491
2492 current->exit_code = 0;
2493
2494 /*
2495 * Update the siginfo structure if the signal has
2496 * changed. If the debugger wanted something
2497 * specific in the siginfo structure then it should
2498 * have updated *info via PTRACE_SETSIGINFO.
2499 */
2500 if (signr != info->si_signo) {
2501 clear_siginfo(info);
2502 info->si_signo = signr;
2503 info->si_errno = 0;
2504 info->si_code = SI_USER;
2505 rcu_read_lock();
2506 info->si_pid = task_pid_vnr(current->parent);
2507 info->si_uid = from_kuid_munged(current_user_ns(),
2508 task_uid(current->parent));
2509 rcu_read_unlock();
2510 }
2511
2512 /* If the (new) signal is now blocked, requeue it. */
2513 if (sigismember(&current->blocked, signr)) {
2514 send_signal(signr, info, current, PIDTYPE_PID);
2515 signr = 0;
2516 }
2517
2518 return signr;
2519 }
2520
2521 bool get_signal(struct ksignal *ksig)
2522 {
2523 struct sighand_struct *sighand = current->sighand;
2524 struct signal_struct *signal = current->signal;
2525 int signr;
2526
2527 if (unlikely(current->task_works))
2528 task_work_run();
2529
2530 if (unlikely(uprobe_deny_signal()))
2531 return false;
2532
2533 /*
2534 * Do this once, we can't return to user-mode if freezing() == T.
2535 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2536 * thus do not need another check after return.
2537 */
2538 try_to_freeze();
2539
2540 relock:
2541 spin_lock_irq(&sighand->siglock);
2542 /*
2543 * Every stopped thread goes here after wakeup. Check to see if
2544 * we should notify the parent, prepare_signal(SIGCONT) encodes
2545 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2546 */
2547 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2548 int why;
2549
2550 if (signal->flags & SIGNAL_CLD_CONTINUED)
2551 why = CLD_CONTINUED;
2552 else
2553 why = CLD_STOPPED;
2554
2555 signal->flags &= ~SIGNAL_CLD_MASK;
2556
2557 spin_unlock_irq(&sighand->siglock);
2558
2559 /*
2560 * Notify the parent that we're continuing. This event is
2561 * always per-process and doesn't make whole lot of sense
2562 * for ptracers, who shouldn't consume the state via
2563 * wait(2) either, but, for backward compatibility, notify
2564 * the ptracer of the group leader too unless it's gonna be
2565 * a duplicate.
2566 */
2567 read_lock(&tasklist_lock);
2568 do_notify_parent_cldstop(current, false, why);
2569
2570 if (ptrace_reparented(current->group_leader))
2571 do_notify_parent_cldstop(current->group_leader,
2572 true, why);
2573 read_unlock(&tasklist_lock);
2574
2575 goto relock;
2576 }
2577
2578 /* Has this task already been marked for death? */
2579 if (signal_group_exit(signal)) {
2580 ksig->info.si_signo = signr = SIGKILL;
2581 sigdelset(&current->pending.signal, SIGKILL);
2582 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2583 &sighand->action[SIGKILL - 1]);
2584 recalc_sigpending();
2585 goto fatal;
2586 }
2587
2588 for (;;) {
2589 struct k_sigaction *ka;
2590
2591 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2592 do_signal_stop(0))
2593 goto relock;
2594
2595 if (unlikely(current->jobctl &
2596 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2597 if (current->jobctl & JOBCTL_TRAP_MASK) {
2598 do_jobctl_trap();
2599 spin_unlock_irq(&sighand->siglock);
2600 } else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2601 do_freezer_trap();
2602
2603 goto relock;
2604 }
2605
2606 /*
2607 * If the task is leaving the frozen state, let's update
2608 * cgroup counters and reset the frozen bit.
2609 */
2610 if (unlikely(cgroup_task_frozen(current))) {
2611 spin_unlock_irq(&sighand->siglock);
2612 cgroup_leave_frozen(false);
2613 goto relock;
2614 }
2615
2616 /*
2617 * Signals generated by the execution of an instruction
2618 * need to be delivered before any other pending signals
2619 * so that the instruction pointer in the signal stack
2620 * frame points to the faulting instruction.
2621 */
2622 signr = dequeue_synchronous_signal(&ksig->info);
2623 if (!signr)
2624 signr = dequeue_signal(current, &current->blocked, &ksig->info);
2625
2626 if (!signr)
2627 break; /* will return 0 */
2628
2629 if (unlikely(current->ptrace) && signr != SIGKILL) {
2630 signr = ptrace_signal(signr, &ksig->info);
2631 if (!signr)
2632 continue;
2633 }
2634
2635 ka = &sighand->action[signr-1];
2636
2637 /* Trace actually delivered signals. */
2638 trace_signal_deliver(signr, &ksig->info, ka);
2639
2640 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2641 continue;
2642 if (ka->sa.sa_handler != SIG_DFL) {
2643 /* Run the handler. */
2644 ksig->ka = *ka;
2645
2646 if (ka->sa.sa_flags & SA_ONESHOT)
2647 ka->sa.sa_handler = SIG_DFL;
2648
2649 break; /* will return non-zero "signr" value */
2650 }
2651
2652 /*
2653 * Now we are doing the default action for this signal.
2654 */
2655 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2656 continue;
2657
2658 /*
2659 * Global init gets no signals it doesn't want.
2660 * Container-init gets no signals it doesn't want from same
2661 * container.
2662 *
2663 * Note that if global/container-init sees a sig_kernel_only()
2664 * signal here, the signal must have been generated internally
2665 * or must have come from an ancestor namespace. In either
2666 * case, the signal cannot be dropped.
2667 */
2668 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2669 !sig_kernel_only(signr))
2670 continue;
2671
2672 if (sig_kernel_stop(signr)) {
2673 /*
2674 * The default action is to stop all threads in
2675 * the thread group. The job control signals
2676 * do nothing in an orphaned pgrp, but SIGSTOP
2677 * always works. Note that siglock needs to be
2678 * dropped during the call to is_orphaned_pgrp()
2679 * because of lock ordering with tasklist_lock.
2680 * This allows an intervening SIGCONT to be posted.
2681 * We need to check for that and bail out if necessary.
2682 */
2683 if (signr != SIGSTOP) {
2684 spin_unlock_irq(&sighand->siglock);
2685
2686 /* signals can be posted during this window */
2687
2688 if (is_current_pgrp_orphaned())
2689 goto relock;
2690
2691 spin_lock_irq(&sighand->siglock);
2692 }
2693
2694 if (likely(do_signal_stop(ksig->info.si_signo))) {
2695 /* It released the siglock. */
2696 goto relock;
2697 }
2698
2699 /*
2700 * We didn't actually stop, due to a race
2701 * with SIGCONT or something like that.
2702 */
2703 continue;
2704 }
2705
2706 fatal:
2707 spin_unlock_irq(&sighand->siglock);
2708 if (unlikely(cgroup_task_frozen(current)))
2709 cgroup_leave_frozen(true);
2710
2711 /*
2712 * Anything else is fatal, maybe with a core dump.
2713 */
2714 current->flags |= PF_SIGNALED;
2715
2716 if (sig_kernel_coredump(signr)) {
2717 if (print_fatal_signals)
2718 print_fatal_signal(ksig->info.si_signo);
2719 proc_coredump_connector(current);
2720 /*
2721 * If it was able to dump core, this kills all
2722 * other threads in the group and synchronizes with
2723 * their demise. If we lost the race with another
2724 * thread getting here, it set group_exit_code
2725 * first and our do_group_exit call below will use
2726 * that value and ignore the one we pass it.
2727 */
2728 do_coredump(&ksig->info);
2729 }
2730
2731 /*
2732 * Death signals, no core dump.
2733 */
2734 do_group_exit(ksig->info.si_signo);
2735 /* NOTREACHED */
2736 }
2737 spin_unlock_irq(&sighand->siglock);
2738
2739 ksig->sig = signr;
2740 return ksig->sig > 0;
2741 }
2742
2743 /**
2744 * signal_delivered -
2745 * @ksig: kernel signal struct
2746 * @stepping: nonzero if debugger single-step or block-step in use
2747 *
2748 * This function should be called when a signal has successfully been
2749 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2750 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2751 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2752 */
2753 static void signal_delivered(struct ksignal *ksig, int stepping)
2754 {
2755 sigset_t blocked;
2756
2757 /* A signal was successfully delivered, and the
2758 saved sigmask was stored on the signal frame,
2759 and will be restored by sigreturn. So we can
2760 simply clear the restore sigmask flag. */
2761 clear_restore_sigmask();
2762
2763 sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2764 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2765 sigaddset(&blocked, ksig->sig);
2766 set_current_blocked(&blocked);
2767 tracehook_signal_handler(stepping);
2768 }
2769
2770 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2771 {
2772 if (failed)
2773 force_sigsegv(ksig->sig);
2774 else
2775 signal_delivered(ksig, stepping);
2776 }
2777
2778 /*
2779 * It could be that complete_signal() picked us to notify about the
2780 * group-wide signal. Other threads should be notified now to take
2781 * the shared signals in @which since we will not.
2782 */
2783 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2784 {
2785 sigset_t retarget;
2786 struct task_struct *t;
2787
2788 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2789 if (sigisemptyset(&retarget))
2790 return;
2791
2792 t = tsk;
2793 while_each_thread(tsk, t) {
2794 if (t->flags & PF_EXITING)
2795 continue;
2796
2797 if (!has_pending_signals(&retarget, &t->blocked))
2798 continue;
2799 /* Remove the signals this thread can handle. */
2800 sigandsets(&retarget, &retarget, &t->blocked);
2801
2802 if (!signal_pending(t))
2803 signal_wake_up(t, 0);
2804
2805 if (sigisemptyset(&retarget))
2806 break;
2807 }
2808 }
2809
2810 void exit_signals(struct task_struct *tsk)
2811 {
2812 int group_stop = 0;
2813 sigset_t unblocked;
2814
2815 /*
2816 * @tsk is about to have PF_EXITING set - lock out users which
2817 * expect stable threadgroup.
2818 */
2819 cgroup_threadgroup_change_begin(tsk);
2820
2821 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2822 tsk->flags |= PF_EXITING;
2823 cgroup_threadgroup_change_end(tsk);
2824 return;
2825 }
2826
2827 spin_lock_irq(&tsk->sighand->siglock);
2828 /*
2829 * From now this task is not visible for group-wide signals,
2830 * see wants_signal(), do_signal_stop().
2831 */
2832 tsk->flags |= PF_EXITING;
2833
2834 cgroup_threadgroup_change_end(tsk);
2835
2836 if (!signal_pending(tsk))
2837 goto out;
2838
2839 unblocked = tsk->blocked;
2840 signotset(&unblocked);
2841 retarget_shared_pending(tsk, &unblocked);
2842
2843 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2844 task_participate_group_stop(tsk))
2845 group_stop = CLD_STOPPED;
2846 out:
2847 spin_unlock_irq(&tsk->sighand->siglock);
2848
2849 /*
2850 * If group stop has completed, deliver the notification. This
2851 * should always go to the real parent of the group leader.
2852 */
2853 if (unlikely(group_stop)) {
2854 read_lock(&tasklist_lock);
2855 do_notify_parent_cldstop(tsk, false, group_stop);
2856 read_unlock(&tasklist_lock);
2857 }
2858 }
2859
2860 /*
2861 * System call entry points.
2862 */
2863
2864 /**
2865 * sys_restart_syscall - restart a system call
2866 */
2867 SYSCALL_DEFINE0(restart_syscall)
2868 {
2869 struct restart_block *restart = &current->restart_block;
2870 return restart->fn(restart);
2871 }
2872
2873 long do_no_restart_syscall(struct restart_block *param)
2874 {
2875 return -EINTR;
2876 }
2877
2878 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2879 {
2880 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2881 sigset_t newblocked;
2882 /* A set of now blocked but previously unblocked signals. */
2883 sigandnsets(&newblocked, newset, &current->blocked);
2884 retarget_shared_pending(tsk, &newblocked);
2885 }
2886 tsk->blocked = *newset;
2887 recalc_sigpending();
2888 }
2889
2890 /**
2891 * set_current_blocked - change current->blocked mask
2892 * @newset: new mask
2893 *
2894 * It is wrong to change ->blocked directly, this helper should be used
2895 * to ensure the process can't miss a shared signal we are going to block.
2896 */
2897 void set_current_blocked(sigset_t *newset)
2898 {
2899 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2900 __set_current_blocked(newset);
2901 }
2902
2903 void __set_current_blocked(const sigset_t *newset)
2904 {
2905 struct task_struct *tsk = current;
2906
2907 /*
2908 * In case the signal mask hasn't changed, there is nothing we need
2909 * to do. The current->blocked shouldn't be modified by other task.
2910 */
2911 if (sigequalsets(&tsk->blocked, newset))
2912 return;
2913
2914 spin_lock_irq(&tsk->sighand->siglock);
2915 __set_task_blocked(tsk, newset);
2916 spin_unlock_irq(&tsk->sighand->siglock);
2917 }
2918
2919 /*
2920 * This is also useful for kernel threads that want to temporarily
2921 * (or permanently) block certain signals.
2922 *
2923 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2924 * interface happily blocks "unblockable" signals like SIGKILL
2925 * and friends.
2926 */
2927 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2928 {
2929 struct task_struct *tsk = current;
2930 sigset_t newset;
2931
2932 /* Lockless, only current can change ->blocked, never from irq */
2933 if (oldset)
2934 *oldset = tsk->blocked;
2935
2936 switch (how) {
2937 case SIG_BLOCK:
2938 sigorsets(&newset, &tsk->blocked, set);
2939 break;
2940 case SIG_UNBLOCK:
2941 sigandnsets(&newset, &tsk->blocked, set);
2942 break;
2943 case SIG_SETMASK:
2944 newset = *set;
2945 break;
2946 default:
2947 return -EINVAL;
2948 }
2949
2950 __set_current_blocked(&newset);
2951 return 0;
2952 }
2953 EXPORT_SYMBOL(sigprocmask);
2954
2955 /*
2956 * The api helps set app-provided sigmasks.
2957 *
2958 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2959 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
2960 *
2961 * Note that it does set_restore_sigmask() in advance, so it must be always
2962 * paired with restore_saved_sigmask_unless() before return from syscall.
2963 */
2964 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
2965 {
2966 sigset_t kmask;
2967
2968 if (!umask)
2969 return 0;
2970 if (sigsetsize != sizeof(sigset_t))
2971 return -EINVAL;
2972 if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
2973 return -EFAULT;
2974
2975 set_restore_sigmask();
2976 current->saved_sigmask = current->blocked;
2977 set_current_blocked(&kmask);
2978
2979 return 0;
2980 }
2981
2982 #ifdef CONFIG_COMPAT
2983 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
2984 size_t sigsetsize)
2985 {
2986 sigset_t kmask;
2987
2988 if (!umask)
2989 return 0;
2990 if (sigsetsize != sizeof(compat_sigset_t))
2991 return -EINVAL;
2992 if (get_compat_sigset(&kmask, umask))
2993 return -EFAULT;
2994
2995 set_restore_sigmask();
2996 current->saved_sigmask = current->blocked;
2997 set_current_blocked(&kmask);
2998
2999 return 0;
3000 }
3001 #endif
3002
3003 /**
3004 * sys_rt_sigprocmask - change the list of currently blocked signals
3005 * @how: whether to add, remove, or set signals
3006 * @nset: stores pending signals
3007 * @oset: previous value of signal mask if non-null
3008 * @sigsetsize: size of sigset_t type
3009 */
3010 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3011 sigset_t __user *, oset, size_t, sigsetsize)
3012 {
3013 sigset_t old_set, new_set;
3014 int error;
3015
3016 /* XXX: Don't preclude handling different sized sigset_t's. */
3017 if (sigsetsize != sizeof(sigset_t))
3018 return -EINVAL;
3019
3020 old_set = current->blocked;
3021
3022 if (nset) {
3023 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3024 return -EFAULT;
3025 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3026
3027 error = sigprocmask(how, &new_set, NULL);
3028 if (error)
3029 return error;
3030 }
3031
3032 if (oset) {
3033 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3034 return -EFAULT;
3035 }
3036
3037 return 0;
3038 }
3039
3040 #ifdef CONFIG_COMPAT
3041 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3042 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3043 {
3044 sigset_t old_set = current->blocked;
3045
3046 /* XXX: Don't preclude handling different sized sigset_t's. */
3047 if (sigsetsize != sizeof(sigset_t))
3048 return -EINVAL;
3049
3050 if (nset) {
3051 sigset_t new_set;
3052 int error;
3053 if (get_compat_sigset(&new_set, nset))
3054 return -EFAULT;
3055 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3056
3057 error = sigprocmask(how, &new_set, NULL);
3058 if (error)
3059 return error;
3060 }
3061 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3062 }
3063 #endif
3064
3065 static void do_sigpending(sigset_t *set)
3066 {
3067 spin_lock_irq(&current->sighand->siglock);
3068 sigorsets(set, &current->pending.signal,
3069 &current->signal->shared_pending.signal);
3070 spin_unlock_irq(&current->sighand->siglock);
3071
3072 /* Outside the lock because only this thread touches it. */
3073 sigandsets(set, &current->blocked, set);
3074 }
3075
3076 /**
3077 * sys_rt_sigpending - examine a pending signal that has been raised
3078 * while blocked
3079 * @uset: stores pending signals
3080 * @sigsetsize: size of sigset_t type or larger
3081 */
3082 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3083 {
3084 sigset_t set;
3085
3086 if (sigsetsize > sizeof(*uset))
3087 return -EINVAL;
3088
3089 do_sigpending(&set);
3090
3091 if (copy_to_user(uset, &set, sigsetsize))
3092 return -EFAULT;
3093
3094 return 0;
3095 }
3096
3097 #ifdef CONFIG_COMPAT
3098 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3099 compat_size_t, sigsetsize)
3100 {
3101 sigset_t set;
3102
3103 if (sigsetsize > sizeof(*uset))
3104 return -EINVAL;
3105
3106 do_sigpending(&set);
3107
3108 return put_compat_sigset(uset, &set, sigsetsize);
3109 }
3110 #endif
3111
3112 static const struct {
3113 unsigned char limit, layout;
3114 } sig_sicodes[] = {
3115 [SIGILL] = { NSIGILL, SIL_FAULT },
3116 [SIGFPE] = { NSIGFPE, SIL_FAULT },
3117 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3118 [SIGBUS] = { NSIGBUS, SIL_FAULT },
3119 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3120 #if defined(SIGEMT)
3121 [SIGEMT] = { NSIGEMT, SIL_FAULT },
3122 #endif
3123 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3124 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
3125 [SIGSYS] = { NSIGSYS, SIL_SYS },
3126 };
3127
3128 static bool known_siginfo_layout(unsigned sig, int si_code)
3129 {
3130 if (si_code == SI_KERNEL)
3131 return true;
3132 else if ((si_code > SI_USER)) {
3133 if (sig_specific_sicodes(sig)) {
3134 if (si_code <= sig_sicodes[sig].limit)
3135 return true;
3136 }
3137 else if (si_code <= NSIGPOLL)
3138 return true;
3139 }
3140 else if (si_code >= SI_DETHREAD)
3141 return true;
3142 else if (si_code == SI_ASYNCNL)
3143 return true;
3144 return false;
3145 }
3146
3147 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3148 {
3149 enum siginfo_layout layout = SIL_KILL;
3150 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3151 if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3152 (si_code <= sig_sicodes[sig].limit)) {
3153 layout = sig_sicodes[sig].layout;
3154 /* Handle the exceptions */
3155 if ((sig == SIGBUS) &&
3156 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3157 layout = SIL_FAULT_MCEERR;
3158 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3159 layout = SIL_FAULT_BNDERR;
3160 #ifdef SEGV_PKUERR
3161 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3162 layout = SIL_FAULT_PKUERR;
3163 #endif
3164 }
3165 else if (si_code <= NSIGPOLL)
3166 layout = SIL_POLL;
3167 } else {
3168 if (si_code == SI_TIMER)
3169 layout = SIL_TIMER;
3170 else if (si_code == SI_SIGIO)
3171 layout = SIL_POLL;
3172 else if (si_code < 0)
3173 layout = SIL_RT;
3174 }
3175 return layout;
3176 }
3177
3178 static inline char __user *si_expansion(const siginfo_t __user *info)
3179 {
3180 return ((char __user *)info) + sizeof(struct kernel_siginfo);
3181 }
3182
3183 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3184 {
3185 char __user *expansion = si_expansion(to);
3186 if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3187 return -EFAULT;
3188 if (clear_user(expansion, SI_EXPANSION_SIZE))
3189 return -EFAULT;
3190 return 0;
3191 }
3192
3193 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3194 const siginfo_t __user *from)
3195 {
3196 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3197 char __user *expansion = si_expansion(from);
3198 char buf[SI_EXPANSION_SIZE];
3199 int i;
3200 /*
3201 * An unknown si_code might need more than
3202 * sizeof(struct kernel_siginfo) bytes. Verify all of the
3203 * extra bytes are 0. This guarantees copy_siginfo_to_user
3204 * will return this data to userspace exactly.
3205 */
3206 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3207 return -EFAULT;
3208 for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3209 if (buf[i] != 0)
3210 return -E2BIG;
3211 }
3212 }
3213 return 0;
3214 }
3215
3216 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3217 const siginfo_t __user *from)
3218 {
3219 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3220 return -EFAULT;
3221 to->si_signo = signo;
3222 return post_copy_siginfo_from_user(to, from);
3223 }
3224
3225 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3226 {
3227 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3228 return -EFAULT;
3229 return post_copy_siginfo_from_user(to, from);
3230 }
3231
3232 #ifdef CONFIG_COMPAT
3233 int copy_siginfo_to_user32(struct compat_siginfo __user *to,
3234 const struct kernel_siginfo *from)
3235 #if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
3236 {
3237 return __copy_siginfo_to_user32(to, from, in_x32_syscall());
3238 }
3239 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3240 const struct kernel_siginfo *from, bool x32_ABI)
3241 #endif
3242 {
3243 struct compat_siginfo new;
3244 memset(&new, 0, sizeof(new));
3245
3246 new.si_signo = from->si_signo;
3247 new.si_errno = from->si_errno;
3248 new.si_code = from->si_code;
3249 switch(siginfo_layout(from->si_signo, from->si_code)) {
3250 case SIL_KILL:
3251 new.si_pid = from->si_pid;
3252 new.si_uid = from->si_uid;
3253 break;
3254 case SIL_TIMER:
3255 new.si_tid = from->si_tid;
3256 new.si_overrun = from->si_overrun;
3257 new.si_int = from->si_int;
3258 break;
3259 case SIL_POLL:
3260 new.si_band = from->si_band;
3261 new.si_fd = from->si_fd;
3262 break;
3263 case SIL_FAULT:
3264 new.si_addr = ptr_to_compat(from->si_addr);
3265 #ifdef __ARCH_SI_TRAPNO
3266 new.si_trapno = from->si_trapno;
3267 #endif
3268 break;
3269 case SIL_FAULT_MCEERR:
3270 new.si_addr = ptr_to_compat(from->si_addr);
3271 #ifdef __ARCH_SI_TRAPNO
3272 new.si_trapno = from->si_trapno;
3273 #endif
3274 new.si_addr_lsb = from->si_addr_lsb;
3275 break;
3276 case SIL_FAULT_BNDERR:
3277 new.si_addr = ptr_to_compat(from->si_addr);
3278 #ifdef __ARCH_SI_TRAPNO
3279 new.si_trapno = from->si_trapno;
3280 #endif
3281 new.si_lower = ptr_to_compat(from->si_lower);
3282 new.si_upper = ptr_to_compat(from->si_upper);
3283 break;
3284 case SIL_FAULT_PKUERR:
3285 new.si_addr = ptr_to_compat(from->si_addr);
3286 #ifdef __ARCH_SI_TRAPNO
3287 new.si_trapno = from->si_trapno;
3288 #endif
3289 new.si_pkey = from->si_pkey;
3290 break;
3291 case SIL_CHLD:
3292 new.si_pid = from->si_pid;
3293 new.si_uid = from->si_uid;
3294 new.si_status = from->si_status;
3295 #ifdef CONFIG_X86_X32_ABI
3296 if (x32_ABI) {
3297 new._sifields._sigchld_x32._utime = from->si_utime;
3298 new._sifields._sigchld_x32._stime = from->si_stime;
3299 } else
3300 #endif
3301 {
3302 new.si_utime = from->si_utime;
3303 new.si_stime = from->si_stime;
3304 }
3305 break;
3306 case SIL_RT:
3307 new.si_pid = from->si_pid;
3308 new.si_uid = from->si_uid;
3309 new.si_int = from->si_int;
3310 break;
3311 case SIL_SYS:
3312 new.si_call_addr = ptr_to_compat(from->si_call_addr);
3313 new.si_syscall = from->si_syscall;
3314 new.si_arch = from->si_arch;
3315 break;
3316 }
3317
3318 if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3319 return -EFAULT;
3320
3321 return 0;
3322 }
3323
3324 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3325 const struct compat_siginfo *from)
3326 {
3327 clear_siginfo(to);
3328 to->si_signo = from->si_signo;
3329 to->si_errno = from->si_errno;
3330 to->si_code = from->si_code;
3331 switch(siginfo_layout(from->si_signo, from->si_code)) {
3332 case SIL_KILL:
3333 to->si_pid = from->si_pid;
3334 to->si_uid = from->si_uid;
3335 break;
3336 case SIL_TIMER:
3337 to->si_tid = from->si_tid;
3338 to->si_overrun = from->si_overrun;
3339 to->si_int = from->si_int;
3340 break;
3341 case SIL_POLL:
3342 to->si_band = from->si_band;
3343 to->si_fd = from->si_fd;
3344 break;
3345 case SIL_FAULT:
3346 to->si_addr = compat_ptr(from->si_addr);
3347 #ifdef __ARCH_SI_TRAPNO
3348 to->si_trapno = from->si_trapno;
3349 #endif
3350 break;
3351 case SIL_FAULT_MCEERR:
3352 to->si_addr = compat_ptr(from->si_addr);
3353 #ifdef __ARCH_SI_TRAPNO
3354 to->si_trapno = from->si_trapno;
3355 #endif
3356 to->si_addr_lsb = from->si_addr_lsb;
3357 break;
3358 case SIL_FAULT_BNDERR:
3359 to->si_addr = compat_ptr(from->si_addr);
3360 #ifdef __ARCH_SI_TRAPNO
3361 to->si_trapno = from->si_trapno;
3362 #endif
3363 to->si_lower = compat_ptr(from->si_lower);
3364 to->si_upper = compat_ptr(from->si_upper);
3365 break;
3366 case SIL_FAULT_PKUERR:
3367 to->si_addr = compat_ptr(from->si_addr);
3368 #ifdef __ARCH_SI_TRAPNO
3369 to->si_trapno = from->si_trapno;
3370 #endif
3371 to->si_pkey = from->si_pkey;
3372 break;
3373 case SIL_CHLD:
3374 to->si_pid = from->si_pid;
3375 to->si_uid = from->si_uid;
3376 to->si_status = from->si_status;
3377 #ifdef CONFIG_X86_X32_ABI
3378 if (in_x32_syscall()) {
3379 to->si_utime = from->_sifields._sigchld_x32._utime;
3380 to->si_stime = from->_sifields._sigchld_x32._stime;
3381 } else
3382 #endif
3383 {
3384 to->si_utime = from->si_utime;
3385 to->si_stime = from->si_stime;
3386 }
3387 break;
3388 case SIL_RT:
3389 to->si_pid = from->si_pid;
3390 to->si_uid = from->si_uid;
3391 to->si_int = from->si_int;
3392 break;
3393 case SIL_SYS:
3394 to->si_call_addr = compat_ptr(from->si_call_addr);
3395 to->si_syscall = from->si_syscall;
3396 to->si_arch = from->si_arch;
3397 break;
3398 }
3399 return 0;
3400 }
3401
3402 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3403 const struct compat_siginfo __user *ufrom)
3404 {
3405 struct compat_siginfo from;
3406
3407 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3408 return -EFAULT;
3409
3410 from.si_signo = signo;
3411 return post_copy_siginfo_from_user32(to, &from);
3412 }
3413
3414 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3415 const struct compat_siginfo __user *ufrom)
3416 {
3417 struct compat_siginfo from;
3418
3419 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3420 return -EFAULT;
3421
3422 return post_copy_siginfo_from_user32(to, &from);
3423 }
3424 #endif /* CONFIG_COMPAT */
3425
3426 /**
3427 * do_sigtimedwait - wait for queued signals specified in @which
3428 * @which: queued signals to wait for
3429 * @info: if non-null, the signal's siginfo is returned here
3430 * @ts: upper bound on process time suspension
3431 */
3432 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3433 const struct timespec64 *ts)
3434 {
3435 ktime_t *to = NULL, timeout = KTIME_MAX;
3436 struct task_struct *tsk = current;
3437 sigset_t mask = *which;
3438 int sig, ret = 0;
3439
3440 if (ts) {
3441 if (!timespec64_valid(ts))
3442 return -EINVAL;
3443 timeout = timespec64_to_ktime(*ts);
3444 to = &timeout;
3445 }
3446
3447 /*
3448 * Invert the set of allowed signals to get those we want to block.
3449 */
3450 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3451 signotset(&mask);
3452
3453 spin_lock_irq(&tsk->sighand->siglock);
3454 sig = dequeue_signal(tsk, &mask, info);
3455 if (!sig && timeout) {
3456 /*
3457 * None ready, temporarily unblock those we're interested
3458 * while we are sleeping in so that we'll be awakened when
3459 * they arrive. Unblocking is always fine, we can avoid
3460 * set_current_blocked().
3461 */
3462 tsk->real_blocked = tsk->blocked;
3463 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3464 recalc_sigpending();
3465 spin_unlock_irq(&tsk->sighand->siglock);
3466
3467 __set_current_state(TASK_INTERRUPTIBLE);
3468 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3469 HRTIMER_MODE_REL);
3470 spin_lock_irq(&tsk->sighand->siglock);
3471 __set_task_blocked(tsk, &tsk->real_blocked);
3472 sigemptyset(&tsk->real_blocked);
3473 sig = dequeue_signal(tsk, &mask, info);
3474 }
3475 spin_unlock_irq(&tsk->sighand->siglock);
3476
3477 if (sig)
3478 return sig;
3479 return ret ? -EINTR : -EAGAIN;
3480 }
3481
3482 /**
3483 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3484 * in @uthese
3485 * @uthese: queued signals to wait for
3486 * @uinfo: if non-null, the signal's siginfo is returned here
3487 * @uts: upper bound on process time suspension
3488 * @sigsetsize: size of sigset_t type
3489 */
3490 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3491 siginfo_t __user *, uinfo,
3492 const struct __kernel_timespec __user *, uts,
3493 size_t, sigsetsize)
3494 {
3495 sigset_t these;
3496 struct timespec64 ts;
3497 kernel_siginfo_t info;
3498 int ret;
3499
3500 /* XXX: Don't preclude handling different sized sigset_t's. */
3501 if (sigsetsize != sizeof(sigset_t))
3502 return -EINVAL;
3503
3504 if (copy_from_user(&these, uthese, sizeof(these)))
3505 return -EFAULT;
3506
3507 if (uts) {
3508 if (get_timespec64(&ts, uts))
3509 return -EFAULT;
3510 }
3511
3512 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3513
3514 if (ret > 0 && uinfo) {
3515 if (copy_siginfo_to_user(uinfo, &info))
3516 ret = -EFAULT;
3517 }
3518
3519 return ret;
3520 }
3521
3522 #ifdef CONFIG_COMPAT_32BIT_TIME
3523 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3524 siginfo_t __user *, uinfo,
3525 const struct old_timespec32 __user *, uts,
3526 size_t, sigsetsize)
3527 {
3528 sigset_t these;
3529 struct timespec64 ts;
3530 kernel_siginfo_t info;
3531 int ret;
3532
3533 if (sigsetsize != sizeof(sigset_t))
3534 return -EINVAL;
3535
3536 if (copy_from_user(&these, uthese, sizeof(these)))
3537 return -EFAULT;
3538
3539 if (uts) {
3540 if (get_old_timespec32(&ts, uts))
3541 return -EFAULT;
3542 }
3543
3544 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3545
3546 if (ret > 0 && uinfo) {
3547 if (copy_siginfo_to_user(uinfo, &info))
3548 ret = -EFAULT;
3549 }
3550
3551 return ret;
3552 }
3553 #endif
3554
3555 #ifdef CONFIG_COMPAT
3556 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3557 struct compat_siginfo __user *, uinfo,
3558 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3559 {
3560 sigset_t s;
3561 struct timespec64 t;
3562 kernel_siginfo_t info;
3563 long ret;
3564
3565 if (sigsetsize != sizeof(sigset_t))
3566 return -EINVAL;
3567
3568 if (get_compat_sigset(&s, uthese))
3569 return -EFAULT;
3570
3571 if (uts) {
3572 if (get_timespec64(&t, uts))
3573 return -EFAULT;
3574 }
3575
3576 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3577
3578 if (ret > 0 && uinfo) {
3579 if (copy_siginfo_to_user32(uinfo, &info))
3580 ret = -EFAULT;
3581 }
3582
3583 return ret;
3584 }
3585
3586 #ifdef CONFIG_COMPAT_32BIT_TIME
3587 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3588 struct compat_siginfo __user *, uinfo,
3589 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3590 {
3591 sigset_t s;
3592 struct timespec64 t;
3593 kernel_siginfo_t info;
3594 long ret;
3595
3596 if (sigsetsize != sizeof(sigset_t))
3597 return -EINVAL;
3598
3599 if (get_compat_sigset(&s, uthese))
3600 return -EFAULT;
3601
3602 if (uts) {
3603 if (get_old_timespec32(&t, uts))
3604 return -EFAULT;
3605 }
3606
3607 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3608
3609 if (ret > 0 && uinfo) {
3610 if (copy_siginfo_to_user32(uinfo, &info))
3611 ret = -EFAULT;
3612 }
3613
3614 return ret;
3615 }
3616 #endif
3617 #endif
3618
3619 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3620 {
3621 clear_siginfo(info);
3622 info->si_signo = sig;
3623 info->si_errno = 0;
3624 info->si_code = SI_USER;
3625 info->si_pid = task_tgid_vnr(current);
3626 info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3627 }
3628
3629 /**
3630 * sys_kill - send a signal to a process
3631 * @pid: the PID of the process
3632 * @sig: signal to be sent
3633 */
3634 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3635 {
3636 struct kernel_siginfo info;
3637
3638 prepare_kill_siginfo(sig, &info);
3639
3640 return kill_something_info(sig, &info, pid);
3641 }
3642
3643 /*
3644 * Verify that the signaler and signalee either are in the same pid namespace
3645 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3646 * namespace.
3647 */
3648 static bool access_pidfd_pidns(struct pid *pid)
3649 {
3650 struct pid_namespace *active = task_active_pid_ns(current);
3651 struct pid_namespace *p = ns_of_pid(pid);
3652
3653 for (;;) {
3654 if (!p)
3655 return false;
3656 if (p == active)
3657 break;
3658 p = p->parent;
3659 }
3660
3661 return true;
3662 }
3663
3664 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info)
3665 {
3666 #ifdef CONFIG_COMPAT
3667 /*
3668 * Avoid hooking up compat syscalls and instead handle necessary
3669 * conversions here. Note, this is a stop-gap measure and should not be
3670 * considered a generic solution.
3671 */
3672 if (in_compat_syscall())
3673 return copy_siginfo_from_user32(
3674 kinfo, (struct compat_siginfo __user *)info);
3675 #endif
3676 return copy_siginfo_from_user(kinfo, info);
3677 }
3678
3679 static struct pid *pidfd_to_pid(const struct file *file)
3680 {
3681 struct pid *pid;
3682
3683 pid = pidfd_pid(file);
3684 if (!IS_ERR(pid))
3685 return pid;
3686
3687 return tgid_pidfd_to_pid(file);
3688 }
3689
3690 /**
3691 * sys_pidfd_send_signal - Signal a process through a pidfd
3692 * @pidfd: file descriptor of the process
3693 * @sig: signal to send
3694 * @info: signal info
3695 * @flags: future flags
3696 *
3697 * The syscall currently only signals via PIDTYPE_PID which covers
3698 * kill(<positive-pid>, <signal>. It does not signal threads or process
3699 * groups.
3700 * In order to extend the syscall to threads and process groups the @flags
3701 * argument should be used. In essence, the @flags argument will determine
3702 * what is signaled and not the file descriptor itself. Put in other words,
3703 * grouping is a property of the flags argument not a property of the file
3704 * descriptor.
3705 *
3706 * Return: 0 on success, negative errno on failure
3707 */
3708 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3709 siginfo_t __user *, info, unsigned int, flags)
3710 {
3711 int ret;
3712 struct fd f;
3713 struct pid *pid;
3714 kernel_siginfo_t kinfo;
3715
3716 /* Enforce flags be set to 0 until we add an extension. */
3717 if (flags)
3718 return -EINVAL;
3719
3720 f = fdget(pidfd);
3721 if (!f.file)
3722 return -EBADF;
3723
3724 /* Is this a pidfd? */
3725 pid = pidfd_to_pid(f.file);
3726 if (IS_ERR(pid)) {
3727 ret = PTR_ERR(pid);
3728 goto err;
3729 }
3730
3731 ret = -EINVAL;
3732 if (!access_pidfd_pidns(pid))
3733 goto err;
3734
3735 if (info) {
3736 ret = copy_siginfo_from_user_any(&kinfo, info);
3737 if (unlikely(ret))
3738 goto err;
3739
3740 ret = -EINVAL;
3741 if (unlikely(sig != kinfo.si_signo))
3742 goto err;
3743
3744 /* Only allow sending arbitrary signals to yourself. */
3745 ret = -EPERM;
3746 if ((task_pid(current) != pid) &&
3747 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3748 goto err;
3749 } else {
3750 prepare_kill_siginfo(sig, &kinfo);
3751 }
3752
3753 ret = kill_pid_info(sig, &kinfo, pid);
3754
3755 err:
3756 fdput(f);
3757 return ret;
3758 }
3759
3760 static int
3761 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3762 {
3763 struct task_struct *p;
3764 int error = -ESRCH;
3765
3766 rcu_read_lock();
3767 p = find_task_by_vpid(pid);
3768 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3769 error = check_kill_permission(sig, info, p);
3770 /*
3771 * The null signal is a permissions and process existence
3772 * probe. No signal is actually delivered.
3773 */
3774 if (!error && sig) {
3775 error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3776 /*
3777 * If lock_task_sighand() failed we pretend the task
3778 * dies after receiving the signal. The window is tiny,
3779 * and the signal is private anyway.
3780 */
3781 if (unlikely(error == -ESRCH))
3782 error = 0;
3783 }
3784 }
3785 rcu_read_unlock();
3786
3787 return error;
3788 }
3789
3790 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3791 {
3792 struct kernel_siginfo info;
3793
3794 clear_siginfo(&info);
3795 info.si_signo = sig;
3796 info.si_errno = 0;
3797 info.si_code = SI_TKILL;
3798 info.si_pid = task_tgid_vnr(current);
3799 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3800
3801 return do_send_specific(tgid, pid, sig, &info);
3802 }
3803
3804 /**
3805 * sys_tgkill - send signal to one specific thread
3806 * @tgid: the thread group ID of the thread
3807 * @pid: the PID of the thread
3808 * @sig: signal to be sent
3809 *
3810 * This syscall also checks the @tgid and returns -ESRCH even if the PID
3811 * exists but it's not belonging to the target process anymore. This
3812 * method solves the problem of threads exiting and PIDs getting reused.
3813 */
3814 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3815 {
3816 /* This is only valid for single tasks */
3817 if (pid <= 0 || tgid <= 0)
3818 return -EINVAL;
3819
3820 return do_tkill(tgid, pid, sig);
3821 }
3822
3823 /**
3824 * sys_tkill - send signal to one specific task
3825 * @pid: the PID of the task
3826 * @sig: signal to be sent
3827 *
3828 * Send a signal to only one task, even if it's a CLONE_THREAD task.
3829 */
3830 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3831 {
3832 /* This is only valid for single tasks */
3833 if (pid <= 0)
3834 return -EINVAL;
3835
3836 return do_tkill(0, pid, sig);
3837 }
3838
3839 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3840 {
3841 /* Not even root can pretend to send signals from the kernel.
3842 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3843 */
3844 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3845 (task_pid_vnr(current) != pid))
3846 return -EPERM;
3847
3848 /* POSIX.1b doesn't mention process groups. */
3849 return kill_proc_info(sig, info, pid);
3850 }
3851
3852 /**
3853 * sys_rt_sigqueueinfo - send signal information to a signal
3854 * @pid: the PID of the thread
3855 * @sig: signal to be sent
3856 * @uinfo: signal info to be sent
3857 */
3858 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3859 siginfo_t __user *, uinfo)
3860 {
3861 kernel_siginfo_t info;
3862 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3863 if (unlikely(ret))
3864 return ret;
3865 return do_rt_sigqueueinfo(pid, sig, &info);
3866 }
3867
3868 #ifdef CONFIG_COMPAT
3869 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3870 compat_pid_t, pid,
3871 int, sig,
3872 struct compat_siginfo __user *, uinfo)
3873 {
3874 kernel_siginfo_t info;
3875 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3876 if (unlikely(ret))
3877 return ret;
3878 return do_rt_sigqueueinfo(pid, sig, &info);
3879 }
3880 #endif
3881
3882 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3883 {
3884 /* This is only valid for single tasks */
3885 if (pid <= 0 || tgid <= 0)
3886 return -EINVAL;
3887
3888 /* Not even root can pretend to send signals from the kernel.
3889 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3890 */
3891 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3892 (task_pid_vnr(current) != pid))
3893 return -EPERM;
3894
3895 return do_send_specific(tgid, pid, sig, info);
3896 }
3897
3898 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3899 siginfo_t __user *, uinfo)
3900 {
3901 kernel_siginfo_t info;
3902 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3903 if (unlikely(ret))
3904 return ret;
3905 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3906 }
3907
3908 #ifdef CONFIG_COMPAT
3909 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3910 compat_pid_t, tgid,
3911 compat_pid_t, pid,
3912 int, sig,
3913 struct compat_siginfo __user *, uinfo)
3914 {
3915 kernel_siginfo_t info;
3916 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3917 if (unlikely(ret))
3918 return ret;
3919 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3920 }
3921 #endif
3922
3923 /*
3924 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3925 */
3926 void kernel_sigaction(int sig, __sighandler_t action)
3927 {
3928 spin_lock_irq(&current->sighand->siglock);
3929 current->sighand->action[sig - 1].sa.sa_handler = action;
3930 if (action == SIG_IGN) {
3931 sigset_t mask;
3932
3933 sigemptyset(&mask);
3934 sigaddset(&mask, sig);
3935
3936 flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3937 flush_sigqueue_mask(&mask, &current->pending);
3938 recalc_sigpending();
3939 }
3940 spin_unlock_irq(&current->sighand->siglock);
3941 }
3942 EXPORT_SYMBOL(kernel_sigaction);
3943
3944 void __weak sigaction_compat_abi(struct k_sigaction *act,
3945 struct k_sigaction *oact)
3946 {
3947 }
3948
3949 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3950 {
3951 struct task_struct *p = current, *t;
3952 struct k_sigaction *k;
3953 sigset_t mask;
3954
3955 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3956 return -EINVAL;
3957
3958 k = &p->sighand->action[sig-1];
3959
3960 spin_lock_irq(&p->sighand->siglock);
3961 if (oact)
3962 *oact = *k;
3963
3964 sigaction_compat_abi(act, oact);
3965
3966 if (act) {
3967 sigdelsetmask(&act->sa.sa_mask,
3968 sigmask(SIGKILL) | sigmask(SIGSTOP));
3969 *k = *act;
3970 /*
3971 * POSIX 3.3.1.3:
3972 * "Setting a signal action to SIG_IGN for a signal that is
3973 * pending shall cause the pending signal to be discarded,
3974 * whether or not it is blocked."
3975 *
3976 * "Setting a signal action to SIG_DFL for a signal that is
3977 * pending and whose default action is to ignore the signal
3978 * (for example, SIGCHLD), shall cause the pending signal to
3979 * be discarded, whether or not it is blocked"
3980 */
3981 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3982 sigemptyset(&mask);
3983 sigaddset(&mask, sig);
3984 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3985 for_each_thread(p, t)
3986 flush_sigqueue_mask(&mask, &t->pending);
3987 }
3988 }
3989
3990 spin_unlock_irq(&p->sighand->siglock);
3991 return 0;
3992 }
3993
3994 static int
3995 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
3996 size_t min_ss_size)
3997 {
3998 struct task_struct *t = current;
3999
4000 if (oss) {
4001 memset(oss, 0, sizeof(stack_t));
4002 oss->ss_sp = (void __user *) t->sas_ss_sp;
4003 oss->ss_size = t->sas_ss_size;
4004 oss->ss_flags = sas_ss_flags(sp) |
4005 (current->sas_ss_flags & SS_FLAG_BITS);
4006 }
4007
4008 if (ss) {
4009 void __user *ss_sp = ss->ss_sp;
4010 size_t ss_size = ss->ss_size;
4011 unsigned ss_flags = ss->ss_flags;
4012 int ss_mode;
4013
4014 if (unlikely(on_sig_stack(sp)))
4015 return -EPERM;
4016
4017 ss_mode = ss_flags & ~SS_FLAG_BITS;
4018 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4019 ss_mode != 0))
4020 return -EINVAL;
4021
4022 if (ss_mode == SS_DISABLE) {
4023 ss_size = 0;
4024 ss_sp = NULL;
4025 } else {
4026 if (unlikely(ss_size < min_ss_size))
4027 return -ENOMEM;
4028 }
4029
4030 t->sas_ss_sp = (unsigned long) ss_sp;
4031 t->sas_ss_size = ss_size;
4032 t->sas_ss_flags = ss_flags;
4033 }
4034 return 0;
4035 }
4036
4037 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4038 {
4039 stack_t new, old;
4040 int err;
4041 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4042 return -EFAULT;
4043 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4044 current_user_stack_pointer(),
4045 MINSIGSTKSZ);
4046 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4047 err = -EFAULT;
4048 return err;
4049 }
4050
4051 int restore_altstack(const stack_t __user *uss)
4052 {
4053 stack_t new;
4054 if (copy_from_user(&new, uss, sizeof(stack_t)))
4055 return -EFAULT;
4056 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4057 MINSIGSTKSZ);
4058 /* squash all but EFAULT for now */
4059 return 0;
4060 }
4061
4062 int __save_altstack(stack_t __user *uss, unsigned long sp)
4063 {
4064 struct task_struct *t = current;
4065 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4066 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4067 __put_user(t->sas_ss_size, &uss->ss_size);
4068 if (err)
4069 return err;
4070 if (t->sas_ss_flags & SS_AUTODISARM)
4071 sas_ss_reset(t);
4072 return 0;
4073 }
4074
4075 #ifdef CONFIG_COMPAT
4076 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4077 compat_stack_t __user *uoss_ptr)
4078 {
4079 stack_t uss, uoss;
4080 int ret;
4081
4082 if (uss_ptr) {
4083 compat_stack_t uss32;
4084 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4085 return -EFAULT;
4086 uss.ss_sp = compat_ptr(uss32.ss_sp);
4087 uss.ss_flags = uss32.ss_flags;
4088 uss.ss_size = uss32.ss_size;
4089 }
4090 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4091 compat_user_stack_pointer(),
4092 COMPAT_MINSIGSTKSZ);
4093 if (ret >= 0 && uoss_ptr) {
4094 compat_stack_t old;
4095 memset(&old, 0, sizeof(old));
4096 old.ss_sp = ptr_to_compat(uoss.ss_sp);
4097 old.ss_flags = uoss.ss_flags;
4098 old.ss_size = uoss.ss_size;
4099 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4100 ret = -EFAULT;
4101 }
4102 return ret;
4103 }
4104
4105 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4106 const compat_stack_t __user *, uss_ptr,
4107 compat_stack_t __user *, uoss_ptr)
4108 {
4109 return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4110 }
4111
4112 int compat_restore_altstack(const compat_stack_t __user *uss)
4113 {
4114 int err = do_compat_sigaltstack(uss, NULL);
4115 /* squash all but -EFAULT for now */
4116 return err == -EFAULT ? err : 0;
4117 }
4118
4119 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4120 {
4121 int err;
4122 struct task_struct *t = current;
4123 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4124 &uss->ss_sp) |
4125 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4126 __put_user(t->sas_ss_size, &uss->ss_size);
4127 if (err)
4128 return err;
4129 if (t->sas_ss_flags & SS_AUTODISARM)
4130 sas_ss_reset(t);
4131 return 0;
4132 }
4133 #endif
4134
4135 #ifdef __ARCH_WANT_SYS_SIGPENDING
4136
4137 /**
4138 * sys_sigpending - examine pending signals
4139 * @uset: where mask of pending signal is returned
4140 */
4141 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4142 {
4143 sigset_t set;
4144
4145 if (sizeof(old_sigset_t) > sizeof(*uset))
4146 return -EINVAL;
4147
4148 do_sigpending(&set);
4149
4150 if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4151 return -EFAULT;
4152
4153 return 0;
4154 }
4155
4156 #ifdef CONFIG_COMPAT
4157 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4158 {
4159 sigset_t set;
4160
4161 do_sigpending(&set);
4162
4163 return put_user(set.sig[0], set32);
4164 }
4165 #endif
4166
4167 #endif
4168
4169 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4170 /**
4171 * sys_sigprocmask - examine and change blocked signals
4172 * @how: whether to add, remove, or set signals
4173 * @nset: signals to add or remove (if non-null)
4174 * @oset: previous value of signal mask if non-null
4175 *
4176 * Some platforms have their own version with special arguments;
4177 * others support only sys_rt_sigprocmask.
4178 */
4179
4180 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4181 old_sigset_t __user *, oset)
4182 {
4183 old_sigset_t old_set, new_set;
4184 sigset_t new_blocked;
4185
4186 old_set = current->blocked.sig[0];
4187
4188 if (nset) {
4189 if (copy_from_user(&new_set, nset, sizeof(*nset)))
4190 return -EFAULT;
4191
4192 new_blocked = current->blocked;
4193
4194 switch (how) {
4195 case SIG_BLOCK:
4196 sigaddsetmask(&new_blocked, new_set);
4197 break;
4198 case SIG_UNBLOCK:
4199 sigdelsetmask(&new_blocked, new_set);
4200 break;
4201 case SIG_SETMASK:
4202 new_blocked.sig[0] = new_set;
4203 break;
4204 default:
4205 return -EINVAL;
4206 }
4207
4208 set_current_blocked(&new_blocked);
4209 }
4210
4211 if (oset) {
4212 if (copy_to_user(oset, &old_set, sizeof(*oset)))
4213 return -EFAULT;
4214 }
4215
4216 return 0;
4217 }
4218 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4219
4220 #ifndef CONFIG_ODD_RT_SIGACTION
4221 /**
4222 * sys_rt_sigaction - alter an action taken by a process
4223 * @sig: signal to be sent
4224 * @act: new sigaction
4225 * @oact: used to save the previous sigaction
4226 * @sigsetsize: size of sigset_t type
4227 */
4228 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4229 const struct sigaction __user *, act,
4230 struct sigaction __user *, oact,
4231 size_t, sigsetsize)
4232 {
4233 struct k_sigaction new_sa, old_sa;
4234 int ret;
4235
4236 /* XXX: Don't preclude handling different sized sigset_t's. */
4237 if (sigsetsize != sizeof(sigset_t))
4238 return -EINVAL;
4239
4240 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4241 return -EFAULT;
4242
4243 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4244 if (ret)
4245 return ret;
4246
4247 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4248 return -EFAULT;
4249
4250 return 0;
4251 }
4252 #ifdef CONFIG_COMPAT
4253 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4254 const struct compat_sigaction __user *, act,
4255 struct compat_sigaction __user *, oact,
4256 compat_size_t, sigsetsize)
4257 {
4258 struct k_sigaction new_ka, old_ka;
4259 #ifdef __ARCH_HAS_SA_RESTORER
4260 compat_uptr_t restorer;
4261 #endif
4262 int ret;
4263
4264 /* XXX: Don't preclude handling different sized sigset_t's. */
4265 if (sigsetsize != sizeof(compat_sigset_t))
4266 return -EINVAL;
4267
4268 if (act) {
4269 compat_uptr_t handler;
4270 ret = get_user(handler, &act->sa_handler);
4271 new_ka.sa.sa_handler = compat_ptr(handler);
4272 #ifdef __ARCH_HAS_SA_RESTORER
4273 ret |= get_user(restorer, &act->sa_restorer);
4274 new_ka.sa.sa_restorer = compat_ptr(restorer);
4275 #endif
4276 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4277 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4278 if (ret)
4279 return -EFAULT;
4280 }
4281
4282 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4283 if (!ret && oact) {
4284 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4285 &oact->sa_handler);
4286 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4287 sizeof(oact->sa_mask));
4288 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4289 #ifdef __ARCH_HAS_SA_RESTORER
4290 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4291 &oact->sa_restorer);
4292 #endif
4293 }
4294 return ret;
4295 }
4296 #endif
4297 #endif /* !CONFIG_ODD_RT_SIGACTION */
4298
4299 #ifdef CONFIG_OLD_SIGACTION
4300 SYSCALL_DEFINE3(sigaction, int, sig,
4301 const struct old_sigaction __user *, act,
4302 struct old_sigaction __user *, oact)
4303 {
4304 struct k_sigaction new_ka, old_ka;
4305 int ret;
4306
4307 if (act) {
4308 old_sigset_t mask;
4309 if (!access_ok(act, sizeof(*act)) ||
4310 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4311 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4312 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4313 __get_user(mask, &act->sa_mask))
4314 return -EFAULT;
4315 #ifdef __ARCH_HAS_KA_RESTORER
4316 new_ka.ka_restorer = NULL;
4317 #endif
4318 siginitset(&new_ka.sa.sa_mask, mask);
4319 }
4320
4321 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4322
4323 if (!ret && oact) {
4324 if (!access_ok(oact, sizeof(*oact)) ||
4325 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4326 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4327 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4328 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4329 return -EFAULT;
4330 }
4331
4332 return ret;
4333 }
4334 #endif
4335 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4336 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4337 const struct compat_old_sigaction __user *, act,
4338 struct compat_old_sigaction __user *, oact)
4339 {
4340 struct k_sigaction new_ka, old_ka;
4341 int ret;
4342 compat_old_sigset_t mask;
4343 compat_uptr_t handler, restorer;
4344
4345 if (act) {
4346 if (!access_ok(act, sizeof(*act)) ||
4347 __get_user(handler, &act->sa_handler) ||
4348 __get_user(restorer, &act->sa_restorer) ||
4349 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4350 __get_user(mask, &act->sa_mask))
4351 return -EFAULT;
4352
4353 #ifdef __ARCH_HAS_KA_RESTORER
4354 new_ka.ka_restorer = NULL;
4355 #endif
4356 new_ka.sa.sa_handler = compat_ptr(handler);
4357 new_ka.sa.sa_restorer = compat_ptr(restorer);
4358 siginitset(&new_ka.sa.sa_mask, mask);
4359 }
4360
4361 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4362
4363 if (!ret && oact) {
4364 if (!access_ok(oact, sizeof(*oact)) ||
4365 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4366 &oact->sa_handler) ||
4367 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4368 &oact->sa_restorer) ||
4369 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4370 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4371 return -EFAULT;
4372 }
4373 return ret;
4374 }
4375 #endif
4376
4377 #ifdef CONFIG_SGETMASK_SYSCALL
4378
4379 /*
4380 * For backwards compatibility. Functionality superseded by sigprocmask.
4381 */
4382 SYSCALL_DEFINE0(sgetmask)
4383 {
4384 /* SMP safe */
4385 return current->blocked.sig[0];
4386 }
4387
4388 SYSCALL_DEFINE1(ssetmask, int, newmask)
4389 {
4390 int old = current->blocked.sig[0];
4391 sigset_t newset;
4392
4393 siginitset(&newset, newmask);
4394 set_current_blocked(&newset);
4395
4396 return old;
4397 }
4398 #endif /* CONFIG_SGETMASK_SYSCALL */
4399
4400 #ifdef __ARCH_WANT_SYS_SIGNAL
4401 /*
4402 * For backwards compatibility. Functionality superseded by sigaction.
4403 */
4404 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4405 {
4406 struct k_sigaction new_sa, old_sa;
4407 int ret;
4408
4409 new_sa.sa.sa_handler = handler;
4410 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4411 sigemptyset(&new_sa.sa.sa_mask);
4412
4413 ret = do_sigaction(sig, &new_sa, &old_sa);
4414
4415 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4416 }
4417 #endif /* __ARCH_WANT_SYS_SIGNAL */
4418
4419 #ifdef __ARCH_WANT_SYS_PAUSE
4420
4421 SYSCALL_DEFINE0(pause)
4422 {
4423 while (!signal_pending(current)) {
4424 __set_current_state(TASK_INTERRUPTIBLE);
4425 schedule();
4426 }
4427 return -ERESTARTNOHAND;
4428 }
4429
4430 #endif
4431
4432 static int sigsuspend(sigset_t *set)
4433 {
4434 current->saved_sigmask = current->blocked;
4435 set_current_blocked(set);
4436
4437 while (!signal_pending(current)) {
4438 __set_current_state(TASK_INTERRUPTIBLE);
4439 schedule();
4440 }
4441 set_restore_sigmask();
4442 return -ERESTARTNOHAND;
4443 }
4444
4445 /**
4446 * sys_rt_sigsuspend - replace the signal mask for a value with the
4447 * @unewset value until a signal is received
4448 * @unewset: new signal mask value
4449 * @sigsetsize: size of sigset_t type
4450 */
4451 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4452 {
4453 sigset_t newset;
4454
4455 /* XXX: Don't preclude handling different sized sigset_t's. */
4456 if (sigsetsize != sizeof(sigset_t))
4457 return -EINVAL;
4458
4459 if (copy_from_user(&newset, unewset, sizeof(newset)))
4460 return -EFAULT;
4461 return sigsuspend(&newset);
4462 }
4463
4464 #ifdef CONFIG_COMPAT
4465 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4466 {
4467 sigset_t newset;
4468
4469 /* XXX: Don't preclude handling different sized sigset_t's. */
4470 if (sigsetsize != sizeof(sigset_t))
4471 return -EINVAL;
4472
4473 if (get_compat_sigset(&newset, unewset))
4474 return -EFAULT;
4475 return sigsuspend(&newset);
4476 }
4477 #endif
4478
4479 #ifdef CONFIG_OLD_SIGSUSPEND
4480 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4481 {
4482 sigset_t blocked;
4483 siginitset(&blocked, mask);
4484 return sigsuspend(&blocked);
4485 }
4486 #endif
4487 #ifdef CONFIG_OLD_SIGSUSPEND3
4488 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4489 {
4490 sigset_t blocked;
4491 siginitset(&blocked, mask);
4492 return sigsuspend(&blocked);
4493 }
4494 #endif
4495
4496 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4497 {
4498 return NULL;
4499 }
4500
4501 static inline void siginfo_buildtime_checks(void)
4502 {
4503 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4504
4505 /* Verify the offsets in the two siginfos match */
4506 #define CHECK_OFFSET(field) \
4507 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4508
4509 /* kill */
4510 CHECK_OFFSET(si_pid);
4511 CHECK_OFFSET(si_uid);
4512
4513 /* timer */
4514 CHECK_OFFSET(si_tid);
4515 CHECK_OFFSET(si_overrun);
4516 CHECK_OFFSET(si_value);
4517
4518 /* rt */
4519 CHECK_OFFSET(si_pid);
4520 CHECK_OFFSET(si_uid);
4521 CHECK_OFFSET(si_value);
4522
4523 /* sigchld */
4524 CHECK_OFFSET(si_pid);
4525 CHECK_OFFSET(si_uid);
4526 CHECK_OFFSET(si_status);
4527 CHECK_OFFSET(si_utime);
4528 CHECK_OFFSET(si_stime);
4529
4530 /* sigfault */
4531 CHECK_OFFSET(si_addr);
4532 CHECK_OFFSET(si_addr_lsb);
4533 CHECK_OFFSET(si_lower);
4534 CHECK_OFFSET(si_upper);
4535 CHECK_OFFSET(si_pkey);
4536
4537 /* sigpoll */
4538 CHECK_OFFSET(si_band);
4539 CHECK_OFFSET(si_fd);
4540
4541 /* sigsys */
4542 CHECK_OFFSET(si_call_addr);
4543 CHECK_OFFSET(si_syscall);
4544 CHECK_OFFSET(si_arch);
4545 #undef CHECK_OFFSET
4546
4547 /* usb asyncio */
4548 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4549 offsetof(struct siginfo, si_addr));
4550 if (sizeof(int) == sizeof(void __user *)) {
4551 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4552 sizeof(void __user *));
4553 } else {
4554 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4555 sizeof_field(struct siginfo, si_uid)) !=
4556 sizeof(void __user *));
4557 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4558 offsetof(struct siginfo, si_uid));
4559 }
4560 #ifdef CONFIG_COMPAT
4561 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4562 offsetof(struct compat_siginfo, si_addr));
4563 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4564 sizeof(compat_uptr_t));
4565 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4566 sizeof_field(struct siginfo, si_pid));
4567 #endif
4568 }
4569
4570 void __init signals_init(void)
4571 {
4572 siginfo_buildtime_checks();
4573
4574 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4575 }
4576
4577 #ifdef CONFIG_KGDB_KDB
4578 #include <linux/kdb.h>
4579 /*
4580 * kdb_send_sig - Allows kdb to send signals without exposing
4581 * signal internals. This function checks if the required locks are
4582 * available before calling the main signal code, to avoid kdb
4583 * deadlocks.
4584 */
4585 void kdb_send_sig(struct task_struct *t, int sig)
4586 {
4587 static struct task_struct *kdb_prev_t;
4588 int new_t, ret;
4589 if (!spin_trylock(&t->sighand->siglock)) {
4590 kdb_printf("Can't do kill command now.\n"
4591 "The sigmask lock is held somewhere else in "
4592 "kernel, try again later\n");
4593 return;
4594 }
4595 new_t = kdb_prev_t != t;
4596 kdb_prev_t = t;
4597 if (t->state != TASK_RUNNING && new_t) {
4598 spin_unlock(&t->sighand->siglock);
4599 kdb_printf("Process is not RUNNING, sending a signal from "
4600 "kdb risks deadlock\n"
4601 "on the run queue locks. "
4602 "The signal has _not_ been sent.\n"
4603 "Reissue the kill command if you want to risk "
4604 "the deadlock.\n");
4605 return;
4606 }
4607 ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4608 spin_unlock(&t->sighand->siglock);
4609 if (ret)
4610 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4611 sig, t->pid);
4612 else
4613 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4614 }
4615 #endif /* CONFIG_KGDB_KDB */