]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/signal.c
signals: kill force_sig_specific()
[mirror_ubuntu-kernels.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/ratelimit.h>
26 #include <linux/tracehook.h>
27 #include <linux/capability.h>
28 #include <linux/freezer.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/nsproxy.h>
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/signal.h>
33
34 #include <asm/param.h>
35 #include <asm/uaccess.h>
36 #include <asm/unistd.h>
37 #include <asm/siginfo.h>
38 #include "audit.h" /* audit_signal_info() */
39
40 /*
41 * SLAB caches for signal bits.
42 */
43
44 static struct kmem_cache *sigqueue_cachep;
45
46 int print_fatal_signals __read_mostly;
47
48 static void __user *sig_handler(struct task_struct *t, int sig)
49 {
50 return t->sighand->action[sig - 1].sa.sa_handler;
51 }
52
53 static int sig_handler_ignored(void __user *handler, int sig)
54 {
55 /* Is it explicitly or implicitly ignored? */
56 return handler == SIG_IGN ||
57 (handler == SIG_DFL && sig_kernel_ignore(sig));
58 }
59
60 static int sig_task_ignored(struct task_struct *t, int sig,
61 int from_ancestor_ns)
62 {
63 void __user *handler;
64
65 handler = sig_handler(t, sig);
66
67 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
68 handler == SIG_DFL && !from_ancestor_ns)
69 return 1;
70
71 return sig_handler_ignored(handler, sig);
72 }
73
74 static int sig_ignored(struct task_struct *t, int sig, int from_ancestor_ns)
75 {
76 /*
77 * Blocked signals are never ignored, since the
78 * signal handler may change by the time it is
79 * unblocked.
80 */
81 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
82 return 0;
83
84 if (!sig_task_ignored(t, sig, from_ancestor_ns))
85 return 0;
86
87 /*
88 * Tracers may want to know about even ignored signals.
89 */
90 return !tracehook_consider_ignored_signal(t, sig);
91 }
92
93 /*
94 * Re-calculate pending state from the set of locally pending
95 * signals, globally pending signals, and blocked signals.
96 */
97 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
98 {
99 unsigned long ready;
100 long i;
101
102 switch (_NSIG_WORDS) {
103 default:
104 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
105 ready |= signal->sig[i] &~ blocked->sig[i];
106 break;
107
108 case 4: ready = signal->sig[3] &~ blocked->sig[3];
109 ready |= signal->sig[2] &~ blocked->sig[2];
110 ready |= signal->sig[1] &~ blocked->sig[1];
111 ready |= signal->sig[0] &~ blocked->sig[0];
112 break;
113
114 case 2: ready = signal->sig[1] &~ blocked->sig[1];
115 ready |= signal->sig[0] &~ blocked->sig[0];
116 break;
117
118 case 1: ready = signal->sig[0] &~ blocked->sig[0];
119 }
120 return ready != 0;
121 }
122
123 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
124
125 static int recalc_sigpending_tsk(struct task_struct *t)
126 {
127 if (t->signal->group_stop_count > 0 ||
128 PENDING(&t->pending, &t->blocked) ||
129 PENDING(&t->signal->shared_pending, &t->blocked)) {
130 set_tsk_thread_flag(t, TIF_SIGPENDING);
131 return 1;
132 }
133 /*
134 * We must never clear the flag in another thread, or in current
135 * when it's possible the current syscall is returning -ERESTART*.
136 * So we don't clear it here, and only callers who know they should do.
137 */
138 return 0;
139 }
140
141 /*
142 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
143 * This is superfluous when called on current, the wakeup is a harmless no-op.
144 */
145 void recalc_sigpending_and_wake(struct task_struct *t)
146 {
147 if (recalc_sigpending_tsk(t))
148 signal_wake_up(t, 0);
149 }
150
151 void recalc_sigpending(void)
152 {
153 if (unlikely(tracehook_force_sigpending()))
154 set_thread_flag(TIF_SIGPENDING);
155 else if (!recalc_sigpending_tsk(current) && !freezing(current))
156 clear_thread_flag(TIF_SIGPENDING);
157
158 }
159
160 /* Given the mask, find the first available signal that should be serviced. */
161
162 int next_signal(struct sigpending *pending, sigset_t *mask)
163 {
164 unsigned long i, *s, *m, x;
165 int sig = 0;
166
167 s = pending->signal.sig;
168 m = mask->sig;
169 switch (_NSIG_WORDS) {
170 default:
171 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
172 if ((x = *s &~ *m) != 0) {
173 sig = ffz(~x) + i*_NSIG_BPW + 1;
174 break;
175 }
176 break;
177
178 case 2: if ((x = s[0] &~ m[0]) != 0)
179 sig = 1;
180 else if ((x = s[1] &~ m[1]) != 0)
181 sig = _NSIG_BPW + 1;
182 else
183 break;
184 sig += ffz(~x);
185 break;
186
187 case 1: if ((x = *s &~ *m) != 0)
188 sig = ffz(~x) + 1;
189 break;
190 }
191
192 return sig;
193 }
194
195 static inline void print_dropped_signal(int sig)
196 {
197 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
198
199 if (!print_fatal_signals)
200 return;
201
202 if (!__ratelimit(&ratelimit_state))
203 return;
204
205 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
206 current->comm, current->pid, sig);
207 }
208
209 /*
210 * allocate a new signal queue record
211 * - this may be called without locks if and only if t == current, otherwise an
212 * appopriate lock must be held to stop the target task from exiting
213 */
214 static struct sigqueue *
215 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
216 {
217 struct sigqueue *q = NULL;
218 struct user_struct *user;
219
220 /*
221 * We won't get problems with the target's UID changing under us
222 * because changing it requires RCU be used, and if t != current, the
223 * caller must be holding the RCU readlock (by way of a spinlock) and
224 * we use RCU protection here
225 */
226 user = get_uid(__task_cred(t)->user);
227 atomic_inc(&user->sigpending);
228
229 if (override_rlimit ||
230 atomic_read(&user->sigpending) <=
231 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur) {
232 q = kmem_cache_alloc(sigqueue_cachep, flags);
233 } else {
234 print_dropped_signal(sig);
235 }
236
237 if (unlikely(q == NULL)) {
238 atomic_dec(&user->sigpending);
239 free_uid(user);
240 } else {
241 INIT_LIST_HEAD(&q->list);
242 q->flags = 0;
243 q->user = user;
244 }
245
246 return q;
247 }
248
249 static void __sigqueue_free(struct sigqueue *q)
250 {
251 if (q->flags & SIGQUEUE_PREALLOC)
252 return;
253 atomic_dec(&q->user->sigpending);
254 free_uid(q->user);
255 kmem_cache_free(sigqueue_cachep, q);
256 }
257
258 void flush_sigqueue(struct sigpending *queue)
259 {
260 struct sigqueue *q;
261
262 sigemptyset(&queue->signal);
263 while (!list_empty(&queue->list)) {
264 q = list_entry(queue->list.next, struct sigqueue , list);
265 list_del_init(&q->list);
266 __sigqueue_free(q);
267 }
268 }
269
270 /*
271 * Flush all pending signals for a task.
272 */
273 void __flush_signals(struct task_struct *t)
274 {
275 clear_tsk_thread_flag(t, TIF_SIGPENDING);
276 flush_sigqueue(&t->pending);
277 flush_sigqueue(&t->signal->shared_pending);
278 }
279
280 void flush_signals(struct task_struct *t)
281 {
282 unsigned long flags;
283
284 spin_lock_irqsave(&t->sighand->siglock, flags);
285 __flush_signals(t);
286 spin_unlock_irqrestore(&t->sighand->siglock, flags);
287 }
288
289 static void __flush_itimer_signals(struct sigpending *pending)
290 {
291 sigset_t signal, retain;
292 struct sigqueue *q, *n;
293
294 signal = pending->signal;
295 sigemptyset(&retain);
296
297 list_for_each_entry_safe(q, n, &pending->list, list) {
298 int sig = q->info.si_signo;
299
300 if (likely(q->info.si_code != SI_TIMER)) {
301 sigaddset(&retain, sig);
302 } else {
303 sigdelset(&signal, sig);
304 list_del_init(&q->list);
305 __sigqueue_free(q);
306 }
307 }
308
309 sigorsets(&pending->signal, &signal, &retain);
310 }
311
312 void flush_itimer_signals(void)
313 {
314 struct task_struct *tsk = current;
315 unsigned long flags;
316
317 spin_lock_irqsave(&tsk->sighand->siglock, flags);
318 __flush_itimer_signals(&tsk->pending);
319 __flush_itimer_signals(&tsk->signal->shared_pending);
320 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
321 }
322
323 void ignore_signals(struct task_struct *t)
324 {
325 int i;
326
327 for (i = 0; i < _NSIG; ++i)
328 t->sighand->action[i].sa.sa_handler = SIG_IGN;
329
330 flush_signals(t);
331 }
332
333 /*
334 * Flush all handlers for a task.
335 */
336
337 void
338 flush_signal_handlers(struct task_struct *t, int force_default)
339 {
340 int i;
341 struct k_sigaction *ka = &t->sighand->action[0];
342 for (i = _NSIG ; i != 0 ; i--) {
343 if (force_default || ka->sa.sa_handler != SIG_IGN)
344 ka->sa.sa_handler = SIG_DFL;
345 ka->sa.sa_flags = 0;
346 sigemptyset(&ka->sa.sa_mask);
347 ka++;
348 }
349 }
350
351 int unhandled_signal(struct task_struct *tsk, int sig)
352 {
353 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
354 if (is_global_init(tsk))
355 return 1;
356 if (handler != SIG_IGN && handler != SIG_DFL)
357 return 0;
358 return !tracehook_consider_fatal_signal(tsk, sig);
359 }
360
361
362 /* Notify the system that a driver wants to block all signals for this
363 * process, and wants to be notified if any signals at all were to be
364 * sent/acted upon. If the notifier routine returns non-zero, then the
365 * signal will be acted upon after all. If the notifier routine returns 0,
366 * then then signal will be blocked. Only one block per process is
367 * allowed. priv is a pointer to private data that the notifier routine
368 * can use to determine if the signal should be blocked or not. */
369
370 void
371 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
372 {
373 unsigned long flags;
374
375 spin_lock_irqsave(&current->sighand->siglock, flags);
376 current->notifier_mask = mask;
377 current->notifier_data = priv;
378 current->notifier = notifier;
379 spin_unlock_irqrestore(&current->sighand->siglock, flags);
380 }
381
382 /* Notify the system that blocking has ended. */
383
384 void
385 unblock_all_signals(void)
386 {
387 unsigned long flags;
388
389 spin_lock_irqsave(&current->sighand->siglock, flags);
390 current->notifier = NULL;
391 current->notifier_data = NULL;
392 recalc_sigpending();
393 spin_unlock_irqrestore(&current->sighand->siglock, flags);
394 }
395
396 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
397 {
398 struct sigqueue *q, *first = NULL;
399
400 /*
401 * Collect the siginfo appropriate to this signal. Check if
402 * there is another siginfo for the same signal.
403 */
404 list_for_each_entry(q, &list->list, list) {
405 if (q->info.si_signo == sig) {
406 if (first)
407 goto still_pending;
408 first = q;
409 }
410 }
411
412 sigdelset(&list->signal, sig);
413
414 if (first) {
415 still_pending:
416 list_del_init(&first->list);
417 copy_siginfo(info, &first->info);
418 __sigqueue_free(first);
419 } else {
420 /* Ok, it wasn't in the queue. This must be
421 a fast-pathed signal or we must have been
422 out of queue space. So zero out the info.
423 */
424 info->si_signo = sig;
425 info->si_errno = 0;
426 info->si_code = SI_USER;
427 info->si_pid = 0;
428 info->si_uid = 0;
429 }
430 }
431
432 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
433 siginfo_t *info)
434 {
435 int sig = next_signal(pending, mask);
436
437 if (sig) {
438 if (current->notifier) {
439 if (sigismember(current->notifier_mask, sig)) {
440 if (!(current->notifier)(current->notifier_data)) {
441 clear_thread_flag(TIF_SIGPENDING);
442 return 0;
443 }
444 }
445 }
446
447 collect_signal(sig, pending, info);
448 }
449
450 return sig;
451 }
452
453 /*
454 * Dequeue a signal and return the element to the caller, which is
455 * expected to free it.
456 *
457 * All callers have to hold the siglock.
458 */
459 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
460 {
461 int signr;
462
463 /* We only dequeue private signals from ourselves, we don't let
464 * signalfd steal them
465 */
466 signr = __dequeue_signal(&tsk->pending, mask, info);
467 if (!signr) {
468 signr = __dequeue_signal(&tsk->signal->shared_pending,
469 mask, info);
470 /*
471 * itimer signal ?
472 *
473 * itimers are process shared and we restart periodic
474 * itimers in the signal delivery path to prevent DoS
475 * attacks in the high resolution timer case. This is
476 * compliant with the old way of self restarting
477 * itimers, as the SIGALRM is a legacy signal and only
478 * queued once. Changing the restart behaviour to
479 * restart the timer in the signal dequeue path is
480 * reducing the timer noise on heavy loaded !highres
481 * systems too.
482 */
483 if (unlikely(signr == SIGALRM)) {
484 struct hrtimer *tmr = &tsk->signal->real_timer;
485
486 if (!hrtimer_is_queued(tmr) &&
487 tsk->signal->it_real_incr.tv64 != 0) {
488 hrtimer_forward(tmr, tmr->base->get_time(),
489 tsk->signal->it_real_incr);
490 hrtimer_restart(tmr);
491 }
492 }
493 }
494
495 recalc_sigpending();
496 if (!signr)
497 return 0;
498
499 if (unlikely(sig_kernel_stop(signr))) {
500 /*
501 * Set a marker that we have dequeued a stop signal. Our
502 * caller might release the siglock and then the pending
503 * stop signal it is about to process is no longer in the
504 * pending bitmasks, but must still be cleared by a SIGCONT
505 * (and overruled by a SIGKILL). So those cases clear this
506 * shared flag after we've set it. Note that this flag may
507 * remain set after the signal we return is ignored or
508 * handled. That doesn't matter because its only purpose
509 * is to alert stop-signal processing code when another
510 * processor has come along and cleared the flag.
511 */
512 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
513 }
514 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
515 /*
516 * Release the siglock to ensure proper locking order
517 * of timer locks outside of siglocks. Note, we leave
518 * irqs disabled here, since the posix-timers code is
519 * about to disable them again anyway.
520 */
521 spin_unlock(&tsk->sighand->siglock);
522 do_schedule_next_timer(info);
523 spin_lock(&tsk->sighand->siglock);
524 }
525 return signr;
526 }
527
528 /*
529 * Tell a process that it has a new active signal..
530 *
531 * NOTE! we rely on the previous spin_lock to
532 * lock interrupts for us! We can only be called with
533 * "siglock" held, and the local interrupt must
534 * have been disabled when that got acquired!
535 *
536 * No need to set need_resched since signal event passing
537 * goes through ->blocked
538 */
539 void signal_wake_up(struct task_struct *t, int resume)
540 {
541 unsigned int mask;
542
543 set_tsk_thread_flag(t, TIF_SIGPENDING);
544
545 /*
546 * For SIGKILL, we want to wake it up in the stopped/traced/killable
547 * case. We don't check t->state here because there is a race with it
548 * executing another processor and just now entering stopped state.
549 * By using wake_up_state, we ensure the process will wake up and
550 * handle its death signal.
551 */
552 mask = TASK_INTERRUPTIBLE;
553 if (resume)
554 mask |= TASK_WAKEKILL;
555 if (!wake_up_state(t, mask))
556 kick_process(t);
557 }
558
559 /*
560 * Remove signals in mask from the pending set and queue.
561 * Returns 1 if any signals were found.
562 *
563 * All callers must be holding the siglock.
564 *
565 * This version takes a sigset mask and looks at all signals,
566 * not just those in the first mask word.
567 */
568 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
569 {
570 struct sigqueue *q, *n;
571 sigset_t m;
572
573 sigandsets(&m, mask, &s->signal);
574 if (sigisemptyset(&m))
575 return 0;
576
577 signandsets(&s->signal, &s->signal, mask);
578 list_for_each_entry_safe(q, n, &s->list, list) {
579 if (sigismember(mask, q->info.si_signo)) {
580 list_del_init(&q->list);
581 __sigqueue_free(q);
582 }
583 }
584 return 1;
585 }
586 /*
587 * Remove signals in mask from the pending set and queue.
588 * Returns 1 if any signals were found.
589 *
590 * All callers must be holding the siglock.
591 */
592 static int rm_from_queue(unsigned long mask, struct sigpending *s)
593 {
594 struct sigqueue *q, *n;
595
596 if (!sigtestsetmask(&s->signal, mask))
597 return 0;
598
599 sigdelsetmask(&s->signal, mask);
600 list_for_each_entry_safe(q, n, &s->list, list) {
601 if (q->info.si_signo < SIGRTMIN &&
602 (mask & sigmask(q->info.si_signo))) {
603 list_del_init(&q->list);
604 __sigqueue_free(q);
605 }
606 }
607 return 1;
608 }
609
610 static inline int is_si_special(const struct siginfo *info)
611 {
612 return info <= SEND_SIG_FORCED;
613 }
614
615 static inline bool si_fromuser(const struct siginfo *info)
616 {
617 return info == SEND_SIG_NOINFO ||
618 (!is_si_special(info) && SI_FROMUSER(info));
619 }
620
621 /*
622 * Bad permissions for sending the signal
623 * - the caller must hold at least the RCU read lock
624 */
625 static int check_kill_permission(int sig, struct siginfo *info,
626 struct task_struct *t)
627 {
628 const struct cred *cred = current_cred(), *tcred;
629 struct pid *sid;
630 int error;
631
632 if (!valid_signal(sig))
633 return -EINVAL;
634
635 if (!si_fromuser(info))
636 return 0;
637
638 error = audit_signal_info(sig, t); /* Let audit system see the signal */
639 if (error)
640 return error;
641
642 tcred = __task_cred(t);
643 if ((cred->euid ^ tcred->suid) &&
644 (cred->euid ^ tcred->uid) &&
645 (cred->uid ^ tcred->suid) &&
646 (cred->uid ^ tcred->uid) &&
647 !capable(CAP_KILL)) {
648 switch (sig) {
649 case SIGCONT:
650 sid = task_session(t);
651 /*
652 * We don't return the error if sid == NULL. The
653 * task was unhashed, the caller must notice this.
654 */
655 if (!sid || sid == task_session(current))
656 break;
657 default:
658 return -EPERM;
659 }
660 }
661
662 return security_task_kill(t, info, sig, 0);
663 }
664
665 /*
666 * Handle magic process-wide effects of stop/continue signals. Unlike
667 * the signal actions, these happen immediately at signal-generation
668 * time regardless of blocking, ignoring, or handling. This does the
669 * actual continuing for SIGCONT, but not the actual stopping for stop
670 * signals. The process stop is done as a signal action for SIG_DFL.
671 *
672 * Returns true if the signal should be actually delivered, otherwise
673 * it should be dropped.
674 */
675 static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns)
676 {
677 struct signal_struct *signal = p->signal;
678 struct task_struct *t;
679
680 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
681 /*
682 * The process is in the middle of dying, nothing to do.
683 */
684 } else if (sig_kernel_stop(sig)) {
685 /*
686 * This is a stop signal. Remove SIGCONT from all queues.
687 */
688 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
689 t = p;
690 do {
691 rm_from_queue(sigmask(SIGCONT), &t->pending);
692 } while_each_thread(p, t);
693 } else if (sig == SIGCONT) {
694 unsigned int why;
695 /*
696 * Remove all stop signals from all queues,
697 * and wake all threads.
698 */
699 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
700 t = p;
701 do {
702 unsigned int state;
703 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
704 /*
705 * If there is a handler for SIGCONT, we must make
706 * sure that no thread returns to user mode before
707 * we post the signal, in case it was the only
708 * thread eligible to run the signal handler--then
709 * it must not do anything between resuming and
710 * running the handler. With the TIF_SIGPENDING
711 * flag set, the thread will pause and acquire the
712 * siglock that we hold now and until we've queued
713 * the pending signal.
714 *
715 * Wake up the stopped thread _after_ setting
716 * TIF_SIGPENDING
717 */
718 state = __TASK_STOPPED;
719 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
720 set_tsk_thread_flag(t, TIF_SIGPENDING);
721 state |= TASK_INTERRUPTIBLE;
722 }
723 wake_up_state(t, state);
724 } while_each_thread(p, t);
725
726 /*
727 * Notify the parent with CLD_CONTINUED if we were stopped.
728 *
729 * If we were in the middle of a group stop, we pretend it
730 * was already finished, and then continued. Since SIGCHLD
731 * doesn't queue we report only CLD_STOPPED, as if the next
732 * CLD_CONTINUED was dropped.
733 */
734 why = 0;
735 if (signal->flags & SIGNAL_STOP_STOPPED)
736 why |= SIGNAL_CLD_CONTINUED;
737 else if (signal->group_stop_count)
738 why |= SIGNAL_CLD_STOPPED;
739
740 if (why) {
741 /*
742 * The first thread which returns from do_signal_stop()
743 * will take ->siglock, notice SIGNAL_CLD_MASK, and
744 * notify its parent. See get_signal_to_deliver().
745 */
746 signal->flags = why | SIGNAL_STOP_CONTINUED;
747 signal->group_stop_count = 0;
748 signal->group_exit_code = 0;
749 } else {
750 /*
751 * We are not stopped, but there could be a stop
752 * signal in the middle of being processed after
753 * being removed from the queue. Clear that too.
754 */
755 signal->flags &= ~SIGNAL_STOP_DEQUEUED;
756 }
757 }
758
759 return !sig_ignored(p, sig, from_ancestor_ns);
760 }
761
762 /*
763 * Test if P wants to take SIG. After we've checked all threads with this,
764 * it's equivalent to finding no threads not blocking SIG. Any threads not
765 * blocking SIG were ruled out because they are not running and already
766 * have pending signals. Such threads will dequeue from the shared queue
767 * as soon as they're available, so putting the signal on the shared queue
768 * will be equivalent to sending it to one such thread.
769 */
770 static inline int wants_signal(int sig, struct task_struct *p)
771 {
772 if (sigismember(&p->blocked, sig))
773 return 0;
774 if (p->flags & PF_EXITING)
775 return 0;
776 if (sig == SIGKILL)
777 return 1;
778 if (task_is_stopped_or_traced(p))
779 return 0;
780 return task_curr(p) || !signal_pending(p);
781 }
782
783 static void complete_signal(int sig, struct task_struct *p, int group)
784 {
785 struct signal_struct *signal = p->signal;
786 struct task_struct *t;
787
788 /*
789 * Now find a thread we can wake up to take the signal off the queue.
790 *
791 * If the main thread wants the signal, it gets first crack.
792 * Probably the least surprising to the average bear.
793 */
794 if (wants_signal(sig, p))
795 t = p;
796 else if (!group || thread_group_empty(p))
797 /*
798 * There is just one thread and it does not need to be woken.
799 * It will dequeue unblocked signals before it runs again.
800 */
801 return;
802 else {
803 /*
804 * Otherwise try to find a suitable thread.
805 */
806 t = signal->curr_target;
807 while (!wants_signal(sig, t)) {
808 t = next_thread(t);
809 if (t == signal->curr_target)
810 /*
811 * No thread needs to be woken.
812 * Any eligible threads will see
813 * the signal in the queue soon.
814 */
815 return;
816 }
817 signal->curr_target = t;
818 }
819
820 /*
821 * Found a killable thread. If the signal will be fatal,
822 * then start taking the whole group down immediately.
823 */
824 if (sig_fatal(p, sig) &&
825 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
826 !sigismember(&t->real_blocked, sig) &&
827 (sig == SIGKILL ||
828 !tracehook_consider_fatal_signal(t, sig))) {
829 /*
830 * This signal will be fatal to the whole group.
831 */
832 if (!sig_kernel_coredump(sig)) {
833 /*
834 * Start a group exit and wake everybody up.
835 * This way we don't have other threads
836 * running and doing things after a slower
837 * thread has the fatal signal pending.
838 */
839 signal->flags = SIGNAL_GROUP_EXIT;
840 signal->group_exit_code = sig;
841 signal->group_stop_count = 0;
842 t = p;
843 do {
844 sigaddset(&t->pending.signal, SIGKILL);
845 signal_wake_up(t, 1);
846 } while_each_thread(p, t);
847 return;
848 }
849 }
850
851 /*
852 * The signal is already in the shared-pending queue.
853 * Tell the chosen thread to wake up and dequeue it.
854 */
855 signal_wake_up(t, sig == SIGKILL);
856 return;
857 }
858
859 static inline int legacy_queue(struct sigpending *signals, int sig)
860 {
861 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
862 }
863
864 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
865 int group, int from_ancestor_ns)
866 {
867 struct sigpending *pending;
868 struct sigqueue *q;
869 int override_rlimit;
870
871 trace_signal_generate(sig, info, t);
872
873 assert_spin_locked(&t->sighand->siglock);
874
875 if (!prepare_signal(sig, t, from_ancestor_ns))
876 return 0;
877
878 pending = group ? &t->signal->shared_pending : &t->pending;
879 /*
880 * Short-circuit ignored signals and support queuing
881 * exactly one non-rt signal, so that we can get more
882 * detailed information about the cause of the signal.
883 */
884 if (legacy_queue(pending, sig))
885 return 0;
886 /*
887 * fast-pathed signals for kernel-internal things like SIGSTOP
888 * or SIGKILL.
889 */
890 if (info == SEND_SIG_FORCED)
891 goto out_set;
892
893 /* Real-time signals must be queued if sent by sigqueue, or
894 some other real-time mechanism. It is implementation
895 defined whether kill() does so. We attempt to do so, on
896 the principle of least surprise, but since kill is not
897 allowed to fail with EAGAIN when low on memory we just
898 make sure at least one signal gets delivered and don't
899 pass on the info struct. */
900
901 if (sig < SIGRTMIN)
902 override_rlimit = (is_si_special(info) || info->si_code >= 0);
903 else
904 override_rlimit = 0;
905
906 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
907 override_rlimit);
908 if (q) {
909 list_add_tail(&q->list, &pending->list);
910 switch ((unsigned long) info) {
911 case (unsigned long) SEND_SIG_NOINFO:
912 q->info.si_signo = sig;
913 q->info.si_errno = 0;
914 q->info.si_code = SI_USER;
915 q->info.si_pid = task_tgid_nr_ns(current,
916 task_active_pid_ns(t));
917 q->info.si_uid = current_uid();
918 break;
919 case (unsigned long) SEND_SIG_PRIV:
920 q->info.si_signo = sig;
921 q->info.si_errno = 0;
922 q->info.si_code = SI_KERNEL;
923 q->info.si_pid = 0;
924 q->info.si_uid = 0;
925 break;
926 default:
927 copy_siginfo(&q->info, info);
928 if (from_ancestor_ns)
929 q->info.si_pid = 0;
930 break;
931 }
932 } else if (!is_si_special(info)) {
933 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
934 /*
935 * Queue overflow, abort. We may abort if the
936 * signal was rt and sent by user using something
937 * other than kill().
938 */
939 trace_signal_overflow_fail(sig, group, info);
940 return -EAGAIN;
941 } else {
942 /*
943 * This is a silent loss of information. We still
944 * send the signal, but the *info bits are lost.
945 */
946 trace_signal_lose_info(sig, group, info);
947 }
948 }
949
950 out_set:
951 signalfd_notify(t, sig);
952 sigaddset(&pending->signal, sig);
953 complete_signal(sig, t, group);
954 return 0;
955 }
956
957 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
958 int group)
959 {
960 int from_ancestor_ns = 0;
961
962 #ifdef CONFIG_PID_NS
963 from_ancestor_ns = si_fromuser(info) &&
964 !task_pid_nr_ns(current, task_active_pid_ns(t));
965 #endif
966
967 return __send_signal(sig, info, t, group, from_ancestor_ns);
968 }
969
970 static void print_fatal_signal(struct pt_regs *regs, int signr)
971 {
972 printk("%s/%d: potentially unexpected fatal signal %d.\n",
973 current->comm, task_pid_nr(current), signr);
974
975 #if defined(__i386__) && !defined(__arch_um__)
976 printk("code at %08lx: ", regs->ip);
977 {
978 int i;
979 for (i = 0; i < 16; i++) {
980 unsigned char insn;
981
982 __get_user(insn, (unsigned char *)(regs->ip + i));
983 printk("%02x ", insn);
984 }
985 }
986 #endif
987 printk("\n");
988 preempt_disable();
989 show_regs(regs);
990 preempt_enable();
991 }
992
993 static int __init setup_print_fatal_signals(char *str)
994 {
995 get_option (&str, &print_fatal_signals);
996
997 return 1;
998 }
999
1000 __setup("print-fatal-signals=", setup_print_fatal_signals);
1001
1002 int
1003 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1004 {
1005 return send_signal(sig, info, p, 1);
1006 }
1007
1008 static int
1009 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1010 {
1011 return send_signal(sig, info, t, 0);
1012 }
1013
1014 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1015 bool group)
1016 {
1017 unsigned long flags;
1018 int ret = -ESRCH;
1019
1020 if (lock_task_sighand(p, &flags)) {
1021 ret = send_signal(sig, info, p, group);
1022 unlock_task_sighand(p, &flags);
1023 }
1024
1025 return ret;
1026 }
1027
1028 /*
1029 * Force a signal that the process can't ignore: if necessary
1030 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1031 *
1032 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1033 * since we do not want to have a signal handler that was blocked
1034 * be invoked when user space had explicitly blocked it.
1035 *
1036 * We don't want to have recursive SIGSEGV's etc, for example,
1037 * that is why we also clear SIGNAL_UNKILLABLE.
1038 */
1039 int
1040 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1041 {
1042 unsigned long int flags;
1043 int ret, blocked, ignored;
1044 struct k_sigaction *action;
1045
1046 spin_lock_irqsave(&t->sighand->siglock, flags);
1047 action = &t->sighand->action[sig-1];
1048 ignored = action->sa.sa_handler == SIG_IGN;
1049 blocked = sigismember(&t->blocked, sig);
1050 if (blocked || ignored) {
1051 action->sa.sa_handler = SIG_DFL;
1052 if (blocked) {
1053 sigdelset(&t->blocked, sig);
1054 recalc_sigpending_and_wake(t);
1055 }
1056 }
1057 if (action->sa.sa_handler == SIG_DFL)
1058 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1059 ret = specific_send_sig_info(sig, info, t);
1060 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1061
1062 return ret;
1063 }
1064
1065 /*
1066 * Nuke all other threads in the group.
1067 */
1068 void zap_other_threads(struct task_struct *p)
1069 {
1070 struct task_struct *t;
1071
1072 p->signal->group_stop_count = 0;
1073
1074 for (t = next_thread(p); t != p; t = next_thread(t)) {
1075 /*
1076 * Don't bother with already dead threads
1077 */
1078 if (t->exit_state)
1079 continue;
1080
1081 /* SIGKILL will be handled before any pending SIGSTOP */
1082 sigaddset(&t->pending.signal, SIGKILL);
1083 signal_wake_up(t, 1);
1084 }
1085 }
1086
1087 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1088 {
1089 struct sighand_struct *sighand;
1090
1091 rcu_read_lock();
1092 for (;;) {
1093 sighand = rcu_dereference(tsk->sighand);
1094 if (unlikely(sighand == NULL))
1095 break;
1096
1097 spin_lock_irqsave(&sighand->siglock, *flags);
1098 if (likely(sighand == tsk->sighand))
1099 break;
1100 spin_unlock_irqrestore(&sighand->siglock, *flags);
1101 }
1102 rcu_read_unlock();
1103
1104 return sighand;
1105 }
1106
1107 /*
1108 * send signal info to all the members of a group
1109 * - the caller must hold the RCU read lock at least
1110 */
1111 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1112 {
1113 int ret = check_kill_permission(sig, info, p);
1114
1115 if (!ret && sig)
1116 ret = do_send_sig_info(sig, info, p, true);
1117
1118 return ret;
1119 }
1120
1121 /*
1122 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1123 * control characters do (^C, ^Z etc)
1124 * - the caller must hold at least a readlock on tasklist_lock
1125 */
1126 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1127 {
1128 struct task_struct *p = NULL;
1129 int retval, success;
1130
1131 success = 0;
1132 retval = -ESRCH;
1133 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1134 int err = group_send_sig_info(sig, info, p);
1135 success |= !err;
1136 retval = err;
1137 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1138 return success ? 0 : retval;
1139 }
1140
1141 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1142 {
1143 int error = -ESRCH;
1144 struct task_struct *p;
1145
1146 rcu_read_lock();
1147 retry:
1148 p = pid_task(pid, PIDTYPE_PID);
1149 if (p) {
1150 error = group_send_sig_info(sig, info, p);
1151 if (unlikely(error == -ESRCH))
1152 /*
1153 * The task was unhashed in between, try again.
1154 * If it is dead, pid_task() will return NULL,
1155 * if we race with de_thread() it will find the
1156 * new leader.
1157 */
1158 goto retry;
1159 }
1160 rcu_read_unlock();
1161
1162 return error;
1163 }
1164
1165 int
1166 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1167 {
1168 int error;
1169 rcu_read_lock();
1170 error = kill_pid_info(sig, info, find_vpid(pid));
1171 rcu_read_unlock();
1172 return error;
1173 }
1174
1175 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1176 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1177 uid_t uid, uid_t euid, u32 secid)
1178 {
1179 int ret = -EINVAL;
1180 struct task_struct *p;
1181 const struct cred *pcred;
1182
1183 if (!valid_signal(sig))
1184 return ret;
1185
1186 read_lock(&tasklist_lock);
1187 p = pid_task(pid, PIDTYPE_PID);
1188 if (!p) {
1189 ret = -ESRCH;
1190 goto out_unlock;
1191 }
1192 pcred = __task_cred(p);
1193 if (si_fromuser(info) &&
1194 euid != pcred->suid && euid != pcred->uid &&
1195 uid != pcred->suid && uid != pcred->uid) {
1196 ret = -EPERM;
1197 goto out_unlock;
1198 }
1199 ret = security_task_kill(p, info, sig, secid);
1200 if (ret)
1201 goto out_unlock;
1202 if (sig && p->sighand) {
1203 unsigned long flags;
1204 spin_lock_irqsave(&p->sighand->siglock, flags);
1205 ret = __send_signal(sig, info, p, 1, 0);
1206 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1207 }
1208 out_unlock:
1209 read_unlock(&tasklist_lock);
1210 return ret;
1211 }
1212 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1213
1214 /*
1215 * kill_something_info() interprets pid in interesting ways just like kill(2).
1216 *
1217 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1218 * is probably wrong. Should make it like BSD or SYSV.
1219 */
1220
1221 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1222 {
1223 int ret;
1224
1225 if (pid > 0) {
1226 rcu_read_lock();
1227 ret = kill_pid_info(sig, info, find_vpid(pid));
1228 rcu_read_unlock();
1229 return ret;
1230 }
1231
1232 read_lock(&tasklist_lock);
1233 if (pid != -1) {
1234 ret = __kill_pgrp_info(sig, info,
1235 pid ? find_vpid(-pid) : task_pgrp(current));
1236 } else {
1237 int retval = 0, count = 0;
1238 struct task_struct * p;
1239
1240 for_each_process(p) {
1241 if (task_pid_vnr(p) > 1 &&
1242 !same_thread_group(p, current)) {
1243 int err = group_send_sig_info(sig, info, p);
1244 ++count;
1245 if (err != -EPERM)
1246 retval = err;
1247 }
1248 }
1249 ret = count ? retval : -ESRCH;
1250 }
1251 read_unlock(&tasklist_lock);
1252
1253 return ret;
1254 }
1255
1256 /*
1257 * These are for backward compatibility with the rest of the kernel source.
1258 */
1259
1260 int
1261 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1262 {
1263 /*
1264 * Make sure legacy kernel users don't send in bad values
1265 * (normal paths check this in check_kill_permission).
1266 */
1267 if (!valid_signal(sig))
1268 return -EINVAL;
1269
1270 return do_send_sig_info(sig, info, p, false);
1271 }
1272
1273 #define __si_special(priv) \
1274 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1275
1276 int
1277 send_sig(int sig, struct task_struct *p, int priv)
1278 {
1279 return send_sig_info(sig, __si_special(priv), p);
1280 }
1281
1282 void
1283 force_sig(int sig, struct task_struct *p)
1284 {
1285 force_sig_info(sig, SEND_SIG_PRIV, p);
1286 }
1287
1288 /*
1289 * When things go south during signal handling, we
1290 * will force a SIGSEGV. And if the signal that caused
1291 * the problem was already a SIGSEGV, we'll want to
1292 * make sure we don't even try to deliver the signal..
1293 */
1294 int
1295 force_sigsegv(int sig, struct task_struct *p)
1296 {
1297 if (sig == SIGSEGV) {
1298 unsigned long flags;
1299 spin_lock_irqsave(&p->sighand->siglock, flags);
1300 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1301 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1302 }
1303 force_sig(SIGSEGV, p);
1304 return 0;
1305 }
1306
1307 int kill_pgrp(struct pid *pid, int sig, int priv)
1308 {
1309 int ret;
1310
1311 read_lock(&tasklist_lock);
1312 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1313 read_unlock(&tasklist_lock);
1314
1315 return ret;
1316 }
1317 EXPORT_SYMBOL(kill_pgrp);
1318
1319 int kill_pid(struct pid *pid, int sig, int priv)
1320 {
1321 return kill_pid_info(sig, __si_special(priv), pid);
1322 }
1323 EXPORT_SYMBOL(kill_pid);
1324
1325 /*
1326 * These functions support sending signals using preallocated sigqueue
1327 * structures. This is needed "because realtime applications cannot
1328 * afford to lose notifications of asynchronous events, like timer
1329 * expirations or I/O completions". In the case of Posix Timers
1330 * we allocate the sigqueue structure from the timer_create. If this
1331 * allocation fails we are able to report the failure to the application
1332 * with an EAGAIN error.
1333 */
1334 struct sigqueue *sigqueue_alloc(void)
1335 {
1336 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1337
1338 if (q)
1339 q->flags |= SIGQUEUE_PREALLOC;
1340
1341 return q;
1342 }
1343
1344 void sigqueue_free(struct sigqueue *q)
1345 {
1346 unsigned long flags;
1347 spinlock_t *lock = &current->sighand->siglock;
1348
1349 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1350 /*
1351 * We must hold ->siglock while testing q->list
1352 * to serialize with collect_signal() or with
1353 * __exit_signal()->flush_sigqueue().
1354 */
1355 spin_lock_irqsave(lock, flags);
1356 q->flags &= ~SIGQUEUE_PREALLOC;
1357 /*
1358 * If it is queued it will be freed when dequeued,
1359 * like the "regular" sigqueue.
1360 */
1361 if (!list_empty(&q->list))
1362 q = NULL;
1363 spin_unlock_irqrestore(lock, flags);
1364
1365 if (q)
1366 __sigqueue_free(q);
1367 }
1368
1369 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1370 {
1371 int sig = q->info.si_signo;
1372 struct sigpending *pending;
1373 unsigned long flags;
1374 int ret;
1375
1376 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1377
1378 ret = -1;
1379 if (!likely(lock_task_sighand(t, &flags)))
1380 goto ret;
1381
1382 ret = 1; /* the signal is ignored */
1383 if (!prepare_signal(sig, t, 0))
1384 goto out;
1385
1386 ret = 0;
1387 if (unlikely(!list_empty(&q->list))) {
1388 /*
1389 * If an SI_TIMER entry is already queue just increment
1390 * the overrun count.
1391 */
1392 BUG_ON(q->info.si_code != SI_TIMER);
1393 q->info.si_overrun++;
1394 goto out;
1395 }
1396 q->info.si_overrun = 0;
1397
1398 signalfd_notify(t, sig);
1399 pending = group ? &t->signal->shared_pending : &t->pending;
1400 list_add_tail(&q->list, &pending->list);
1401 sigaddset(&pending->signal, sig);
1402 complete_signal(sig, t, group);
1403 out:
1404 unlock_task_sighand(t, &flags);
1405 ret:
1406 return ret;
1407 }
1408
1409 /*
1410 * Let a parent know about the death of a child.
1411 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1412 *
1413 * Returns -1 if our parent ignored us and so we've switched to
1414 * self-reaping, or else @sig.
1415 */
1416 int do_notify_parent(struct task_struct *tsk, int sig)
1417 {
1418 struct siginfo info;
1419 unsigned long flags;
1420 struct sighand_struct *psig;
1421 int ret = sig;
1422
1423 BUG_ON(sig == -1);
1424
1425 /* do_notify_parent_cldstop should have been called instead. */
1426 BUG_ON(task_is_stopped_or_traced(tsk));
1427
1428 BUG_ON(!task_ptrace(tsk) &&
1429 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1430
1431 info.si_signo = sig;
1432 info.si_errno = 0;
1433 /*
1434 * we are under tasklist_lock here so our parent is tied to
1435 * us and cannot exit and release its namespace.
1436 *
1437 * the only it can is to switch its nsproxy with sys_unshare,
1438 * bu uncharing pid namespaces is not allowed, so we'll always
1439 * see relevant namespace
1440 *
1441 * write_lock() currently calls preempt_disable() which is the
1442 * same as rcu_read_lock(), but according to Oleg, this is not
1443 * correct to rely on this
1444 */
1445 rcu_read_lock();
1446 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1447 info.si_uid = __task_cred(tsk)->uid;
1448 rcu_read_unlock();
1449
1450 info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime,
1451 tsk->signal->utime));
1452 info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime,
1453 tsk->signal->stime));
1454
1455 info.si_status = tsk->exit_code & 0x7f;
1456 if (tsk->exit_code & 0x80)
1457 info.si_code = CLD_DUMPED;
1458 else if (tsk->exit_code & 0x7f)
1459 info.si_code = CLD_KILLED;
1460 else {
1461 info.si_code = CLD_EXITED;
1462 info.si_status = tsk->exit_code >> 8;
1463 }
1464
1465 psig = tsk->parent->sighand;
1466 spin_lock_irqsave(&psig->siglock, flags);
1467 if (!task_ptrace(tsk) && sig == SIGCHLD &&
1468 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1469 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1470 /*
1471 * We are exiting and our parent doesn't care. POSIX.1
1472 * defines special semantics for setting SIGCHLD to SIG_IGN
1473 * or setting the SA_NOCLDWAIT flag: we should be reaped
1474 * automatically and not left for our parent's wait4 call.
1475 * Rather than having the parent do it as a magic kind of
1476 * signal handler, we just set this to tell do_exit that we
1477 * can be cleaned up without becoming a zombie. Note that
1478 * we still call __wake_up_parent in this case, because a
1479 * blocked sys_wait4 might now return -ECHILD.
1480 *
1481 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1482 * is implementation-defined: we do (if you don't want
1483 * it, just use SIG_IGN instead).
1484 */
1485 ret = tsk->exit_signal = -1;
1486 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1487 sig = -1;
1488 }
1489 if (valid_signal(sig) && sig > 0)
1490 __group_send_sig_info(sig, &info, tsk->parent);
1491 __wake_up_parent(tsk, tsk->parent);
1492 spin_unlock_irqrestore(&psig->siglock, flags);
1493
1494 return ret;
1495 }
1496
1497 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1498 {
1499 struct siginfo info;
1500 unsigned long flags;
1501 struct task_struct *parent;
1502 struct sighand_struct *sighand;
1503
1504 if (task_ptrace(tsk))
1505 parent = tsk->parent;
1506 else {
1507 tsk = tsk->group_leader;
1508 parent = tsk->real_parent;
1509 }
1510
1511 info.si_signo = SIGCHLD;
1512 info.si_errno = 0;
1513 /*
1514 * see comment in do_notify_parent() abot the following 3 lines
1515 */
1516 rcu_read_lock();
1517 info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1518 info.si_uid = __task_cred(tsk)->uid;
1519 rcu_read_unlock();
1520
1521 info.si_utime = cputime_to_clock_t(tsk->utime);
1522 info.si_stime = cputime_to_clock_t(tsk->stime);
1523
1524 info.si_code = why;
1525 switch (why) {
1526 case CLD_CONTINUED:
1527 info.si_status = SIGCONT;
1528 break;
1529 case CLD_STOPPED:
1530 info.si_status = tsk->signal->group_exit_code & 0x7f;
1531 break;
1532 case CLD_TRAPPED:
1533 info.si_status = tsk->exit_code & 0x7f;
1534 break;
1535 default:
1536 BUG();
1537 }
1538
1539 sighand = parent->sighand;
1540 spin_lock_irqsave(&sighand->siglock, flags);
1541 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1542 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1543 __group_send_sig_info(SIGCHLD, &info, parent);
1544 /*
1545 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1546 */
1547 __wake_up_parent(tsk, parent);
1548 spin_unlock_irqrestore(&sighand->siglock, flags);
1549 }
1550
1551 static inline int may_ptrace_stop(void)
1552 {
1553 if (!likely(task_ptrace(current)))
1554 return 0;
1555 /*
1556 * Are we in the middle of do_coredump?
1557 * If so and our tracer is also part of the coredump stopping
1558 * is a deadlock situation, and pointless because our tracer
1559 * is dead so don't allow us to stop.
1560 * If SIGKILL was already sent before the caller unlocked
1561 * ->siglock we must see ->core_state != NULL. Otherwise it
1562 * is safe to enter schedule().
1563 */
1564 if (unlikely(current->mm->core_state) &&
1565 unlikely(current->mm == current->parent->mm))
1566 return 0;
1567
1568 return 1;
1569 }
1570
1571 /*
1572 * Return nonzero if there is a SIGKILL that should be waking us up.
1573 * Called with the siglock held.
1574 */
1575 static int sigkill_pending(struct task_struct *tsk)
1576 {
1577 return sigismember(&tsk->pending.signal, SIGKILL) ||
1578 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1579 }
1580
1581 /*
1582 * This must be called with current->sighand->siglock held.
1583 *
1584 * This should be the path for all ptrace stops.
1585 * We always set current->last_siginfo while stopped here.
1586 * That makes it a way to test a stopped process for
1587 * being ptrace-stopped vs being job-control-stopped.
1588 *
1589 * If we actually decide not to stop at all because the tracer
1590 * is gone, we keep current->exit_code unless clear_code.
1591 */
1592 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1593 {
1594 if (arch_ptrace_stop_needed(exit_code, info)) {
1595 /*
1596 * The arch code has something special to do before a
1597 * ptrace stop. This is allowed to block, e.g. for faults
1598 * on user stack pages. We can't keep the siglock while
1599 * calling arch_ptrace_stop, so we must release it now.
1600 * To preserve proper semantics, we must do this before
1601 * any signal bookkeeping like checking group_stop_count.
1602 * Meanwhile, a SIGKILL could come in before we retake the
1603 * siglock. That must prevent us from sleeping in TASK_TRACED.
1604 * So after regaining the lock, we must check for SIGKILL.
1605 */
1606 spin_unlock_irq(&current->sighand->siglock);
1607 arch_ptrace_stop(exit_code, info);
1608 spin_lock_irq(&current->sighand->siglock);
1609 if (sigkill_pending(current))
1610 return;
1611 }
1612
1613 /*
1614 * If there is a group stop in progress,
1615 * we must participate in the bookkeeping.
1616 */
1617 if (current->signal->group_stop_count > 0)
1618 --current->signal->group_stop_count;
1619
1620 current->last_siginfo = info;
1621 current->exit_code = exit_code;
1622
1623 /* Let the debugger run. */
1624 __set_current_state(TASK_TRACED);
1625 spin_unlock_irq(&current->sighand->siglock);
1626 read_lock(&tasklist_lock);
1627 if (may_ptrace_stop()) {
1628 do_notify_parent_cldstop(current, CLD_TRAPPED);
1629 /*
1630 * Don't want to allow preemption here, because
1631 * sys_ptrace() needs this task to be inactive.
1632 *
1633 * XXX: implement read_unlock_no_resched().
1634 */
1635 preempt_disable();
1636 read_unlock(&tasklist_lock);
1637 preempt_enable_no_resched();
1638 schedule();
1639 } else {
1640 /*
1641 * By the time we got the lock, our tracer went away.
1642 * Don't drop the lock yet, another tracer may come.
1643 */
1644 __set_current_state(TASK_RUNNING);
1645 if (clear_code)
1646 current->exit_code = 0;
1647 read_unlock(&tasklist_lock);
1648 }
1649
1650 /*
1651 * While in TASK_TRACED, we were considered "frozen enough".
1652 * Now that we woke up, it's crucial if we're supposed to be
1653 * frozen that we freeze now before running anything substantial.
1654 */
1655 try_to_freeze();
1656
1657 /*
1658 * We are back. Now reacquire the siglock before touching
1659 * last_siginfo, so that we are sure to have synchronized with
1660 * any signal-sending on another CPU that wants to examine it.
1661 */
1662 spin_lock_irq(&current->sighand->siglock);
1663 current->last_siginfo = NULL;
1664
1665 /*
1666 * Queued signals ignored us while we were stopped for tracing.
1667 * So check for any that we should take before resuming user mode.
1668 * This sets TIF_SIGPENDING, but never clears it.
1669 */
1670 recalc_sigpending_tsk(current);
1671 }
1672
1673 void ptrace_notify(int exit_code)
1674 {
1675 siginfo_t info;
1676
1677 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1678
1679 memset(&info, 0, sizeof info);
1680 info.si_signo = SIGTRAP;
1681 info.si_code = exit_code;
1682 info.si_pid = task_pid_vnr(current);
1683 info.si_uid = current_uid();
1684
1685 /* Let the debugger run. */
1686 spin_lock_irq(&current->sighand->siglock);
1687 ptrace_stop(exit_code, 1, &info);
1688 spin_unlock_irq(&current->sighand->siglock);
1689 }
1690
1691 /*
1692 * This performs the stopping for SIGSTOP and other stop signals.
1693 * We have to stop all threads in the thread group.
1694 * Returns nonzero if we've actually stopped and released the siglock.
1695 * Returns zero if we didn't stop and still hold the siglock.
1696 */
1697 static int do_signal_stop(int signr)
1698 {
1699 struct signal_struct *sig = current->signal;
1700 int notify;
1701
1702 if (!sig->group_stop_count) {
1703 struct task_struct *t;
1704
1705 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1706 unlikely(signal_group_exit(sig)))
1707 return 0;
1708 /*
1709 * There is no group stop already in progress.
1710 * We must initiate one now.
1711 */
1712 sig->group_exit_code = signr;
1713
1714 sig->group_stop_count = 1;
1715 for (t = next_thread(current); t != current; t = next_thread(t))
1716 /*
1717 * Setting state to TASK_STOPPED for a group
1718 * stop is always done with the siglock held,
1719 * so this check has no races.
1720 */
1721 if (!(t->flags & PF_EXITING) &&
1722 !task_is_stopped_or_traced(t)) {
1723 sig->group_stop_count++;
1724 signal_wake_up(t, 0);
1725 }
1726 }
1727 /*
1728 * If there are no other threads in the group, or if there is
1729 * a group stop in progress and we are the last to stop, report
1730 * to the parent. When ptraced, every thread reports itself.
1731 */
1732 notify = sig->group_stop_count == 1 ? CLD_STOPPED : 0;
1733 notify = tracehook_notify_jctl(notify, CLD_STOPPED);
1734 /*
1735 * tracehook_notify_jctl() can drop and reacquire siglock, so
1736 * we keep ->group_stop_count != 0 before the call. If SIGCONT
1737 * or SIGKILL comes in between ->group_stop_count == 0.
1738 */
1739 if (sig->group_stop_count) {
1740 if (!--sig->group_stop_count)
1741 sig->flags = SIGNAL_STOP_STOPPED;
1742 current->exit_code = sig->group_exit_code;
1743 __set_current_state(TASK_STOPPED);
1744 }
1745 spin_unlock_irq(&current->sighand->siglock);
1746
1747 if (notify) {
1748 read_lock(&tasklist_lock);
1749 do_notify_parent_cldstop(current, notify);
1750 read_unlock(&tasklist_lock);
1751 }
1752
1753 /* Now we don't run again until woken by SIGCONT or SIGKILL */
1754 do {
1755 schedule();
1756 } while (try_to_freeze());
1757
1758 tracehook_finish_jctl();
1759 current->exit_code = 0;
1760
1761 return 1;
1762 }
1763
1764 static int ptrace_signal(int signr, siginfo_t *info,
1765 struct pt_regs *regs, void *cookie)
1766 {
1767 if (!task_ptrace(current))
1768 return signr;
1769
1770 ptrace_signal_deliver(regs, cookie);
1771
1772 /* Let the debugger run. */
1773 ptrace_stop(signr, 0, info);
1774
1775 /* We're back. Did the debugger cancel the sig? */
1776 signr = current->exit_code;
1777 if (signr == 0)
1778 return signr;
1779
1780 current->exit_code = 0;
1781
1782 /* Update the siginfo structure if the signal has
1783 changed. If the debugger wanted something
1784 specific in the siginfo structure then it should
1785 have updated *info via PTRACE_SETSIGINFO. */
1786 if (signr != info->si_signo) {
1787 info->si_signo = signr;
1788 info->si_errno = 0;
1789 info->si_code = SI_USER;
1790 info->si_pid = task_pid_vnr(current->parent);
1791 info->si_uid = task_uid(current->parent);
1792 }
1793
1794 /* If the (new) signal is now blocked, requeue it. */
1795 if (sigismember(&current->blocked, signr)) {
1796 specific_send_sig_info(signr, info, current);
1797 signr = 0;
1798 }
1799
1800 return signr;
1801 }
1802
1803 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1804 struct pt_regs *regs, void *cookie)
1805 {
1806 struct sighand_struct *sighand = current->sighand;
1807 struct signal_struct *signal = current->signal;
1808 int signr;
1809
1810 relock:
1811 /*
1812 * We'll jump back here after any time we were stopped in TASK_STOPPED.
1813 * While in TASK_STOPPED, we were considered "frozen enough".
1814 * Now that we woke up, it's crucial if we're supposed to be
1815 * frozen that we freeze now before running anything substantial.
1816 */
1817 try_to_freeze();
1818
1819 spin_lock_irq(&sighand->siglock);
1820 /*
1821 * Every stopped thread goes here after wakeup. Check to see if
1822 * we should notify the parent, prepare_signal(SIGCONT) encodes
1823 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
1824 */
1825 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
1826 int why = (signal->flags & SIGNAL_STOP_CONTINUED)
1827 ? CLD_CONTINUED : CLD_STOPPED;
1828 signal->flags &= ~SIGNAL_CLD_MASK;
1829
1830 why = tracehook_notify_jctl(why, CLD_CONTINUED);
1831 spin_unlock_irq(&sighand->siglock);
1832
1833 if (why) {
1834 read_lock(&tasklist_lock);
1835 do_notify_parent_cldstop(current->group_leader, why);
1836 read_unlock(&tasklist_lock);
1837 }
1838 goto relock;
1839 }
1840
1841 for (;;) {
1842 struct k_sigaction *ka;
1843
1844 if (unlikely(signal->group_stop_count > 0) &&
1845 do_signal_stop(0))
1846 goto relock;
1847
1848 /*
1849 * Tracing can induce an artifical signal and choose sigaction.
1850 * The return value in @signr determines the default action,
1851 * but @info->si_signo is the signal number we will report.
1852 */
1853 signr = tracehook_get_signal(current, regs, info, return_ka);
1854 if (unlikely(signr < 0))
1855 goto relock;
1856 if (unlikely(signr != 0))
1857 ka = return_ka;
1858 else {
1859 signr = dequeue_signal(current, &current->blocked,
1860 info);
1861
1862 if (!signr)
1863 break; /* will return 0 */
1864
1865 if (signr != SIGKILL) {
1866 signr = ptrace_signal(signr, info,
1867 regs, cookie);
1868 if (!signr)
1869 continue;
1870 }
1871
1872 ka = &sighand->action[signr-1];
1873 }
1874
1875 /* Trace actually delivered signals. */
1876 trace_signal_deliver(signr, info, ka);
1877
1878 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1879 continue;
1880 if (ka->sa.sa_handler != SIG_DFL) {
1881 /* Run the handler. */
1882 *return_ka = *ka;
1883
1884 if (ka->sa.sa_flags & SA_ONESHOT)
1885 ka->sa.sa_handler = SIG_DFL;
1886
1887 break; /* will return non-zero "signr" value */
1888 }
1889
1890 /*
1891 * Now we are doing the default action for this signal.
1892 */
1893 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1894 continue;
1895
1896 /*
1897 * Global init gets no signals it doesn't want.
1898 * Container-init gets no signals it doesn't want from same
1899 * container.
1900 *
1901 * Note that if global/container-init sees a sig_kernel_only()
1902 * signal here, the signal must have been generated internally
1903 * or must have come from an ancestor namespace. In either
1904 * case, the signal cannot be dropped.
1905 */
1906 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
1907 !sig_kernel_only(signr))
1908 continue;
1909
1910 if (sig_kernel_stop(signr)) {
1911 /*
1912 * The default action is to stop all threads in
1913 * the thread group. The job control signals
1914 * do nothing in an orphaned pgrp, but SIGSTOP
1915 * always works. Note that siglock needs to be
1916 * dropped during the call to is_orphaned_pgrp()
1917 * because of lock ordering with tasklist_lock.
1918 * This allows an intervening SIGCONT to be posted.
1919 * We need to check for that and bail out if necessary.
1920 */
1921 if (signr != SIGSTOP) {
1922 spin_unlock_irq(&sighand->siglock);
1923
1924 /* signals can be posted during this window */
1925
1926 if (is_current_pgrp_orphaned())
1927 goto relock;
1928
1929 spin_lock_irq(&sighand->siglock);
1930 }
1931
1932 if (likely(do_signal_stop(info->si_signo))) {
1933 /* It released the siglock. */
1934 goto relock;
1935 }
1936
1937 /*
1938 * We didn't actually stop, due to a race
1939 * with SIGCONT or something like that.
1940 */
1941 continue;
1942 }
1943
1944 spin_unlock_irq(&sighand->siglock);
1945
1946 /*
1947 * Anything else is fatal, maybe with a core dump.
1948 */
1949 current->flags |= PF_SIGNALED;
1950
1951 if (sig_kernel_coredump(signr)) {
1952 if (print_fatal_signals)
1953 print_fatal_signal(regs, info->si_signo);
1954 /*
1955 * If it was able to dump core, this kills all
1956 * other threads in the group and synchronizes with
1957 * their demise. If we lost the race with another
1958 * thread getting here, it set group_exit_code
1959 * first and our do_group_exit call below will use
1960 * that value and ignore the one we pass it.
1961 */
1962 do_coredump(info->si_signo, info->si_signo, regs);
1963 }
1964
1965 /*
1966 * Death signals, no core dump.
1967 */
1968 do_group_exit(info->si_signo);
1969 /* NOTREACHED */
1970 }
1971 spin_unlock_irq(&sighand->siglock);
1972 return signr;
1973 }
1974
1975 void exit_signals(struct task_struct *tsk)
1976 {
1977 int group_stop = 0;
1978 struct task_struct *t;
1979
1980 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
1981 tsk->flags |= PF_EXITING;
1982 return;
1983 }
1984
1985 spin_lock_irq(&tsk->sighand->siglock);
1986 /*
1987 * From now this task is not visible for group-wide signals,
1988 * see wants_signal(), do_signal_stop().
1989 */
1990 tsk->flags |= PF_EXITING;
1991 if (!signal_pending(tsk))
1992 goto out;
1993
1994 /* It could be that __group_complete_signal() choose us to
1995 * notify about group-wide signal. Another thread should be
1996 * woken now to take the signal since we will not.
1997 */
1998 for (t = tsk; (t = next_thread(t)) != tsk; )
1999 if (!signal_pending(t) && !(t->flags & PF_EXITING))
2000 recalc_sigpending_and_wake(t);
2001
2002 if (unlikely(tsk->signal->group_stop_count) &&
2003 !--tsk->signal->group_stop_count) {
2004 tsk->signal->flags = SIGNAL_STOP_STOPPED;
2005 group_stop = tracehook_notify_jctl(CLD_STOPPED, CLD_STOPPED);
2006 }
2007 out:
2008 spin_unlock_irq(&tsk->sighand->siglock);
2009
2010 if (unlikely(group_stop)) {
2011 read_lock(&tasklist_lock);
2012 do_notify_parent_cldstop(tsk, group_stop);
2013 read_unlock(&tasklist_lock);
2014 }
2015 }
2016
2017 EXPORT_SYMBOL(recalc_sigpending);
2018 EXPORT_SYMBOL_GPL(dequeue_signal);
2019 EXPORT_SYMBOL(flush_signals);
2020 EXPORT_SYMBOL(force_sig);
2021 EXPORT_SYMBOL(send_sig);
2022 EXPORT_SYMBOL(send_sig_info);
2023 EXPORT_SYMBOL(sigprocmask);
2024 EXPORT_SYMBOL(block_all_signals);
2025 EXPORT_SYMBOL(unblock_all_signals);
2026
2027
2028 /*
2029 * System call entry points.
2030 */
2031
2032 SYSCALL_DEFINE0(restart_syscall)
2033 {
2034 struct restart_block *restart = &current_thread_info()->restart_block;
2035 return restart->fn(restart);
2036 }
2037
2038 long do_no_restart_syscall(struct restart_block *param)
2039 {
2040 return -EINTR;
2041 }
2042
2043 /*
2044 * We don't need to get the kernel lock - this is all local to this
2045 * particular thread.. (and that's good, because this is _heavily_
2046 * used by various programs)
2047 */
2048
2049 /*
2050 * This is also useful for kernel threads that want to temporarily
2051 * (or permanently) block certain signals.
2052 *
2053 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2054 * interface happily blocks "unblockable" signals like SIGKILL
2055 * and friends.
2056 */
2057 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2058 {
2059 int error;
2060
2061 spin_lock_irq(&current->sighand->siglock);
2062 if (oldset)
2063 *oldset = current->blocked;
2064
2065 error = 0;
2066 switch (how) {
2067 case SIG_BLOCK:
2068 sigorsets(&current->blocked, &current->blocked, set);
2069 break;
2070 case SIG_UNBLOCK:
2071 signandsets(&current->blocked, &current->blocked, set);
2072 break;
2073 case SIG_SETMASK:
2074 current->blocked = *set;
2075 break;
2076 default:
2077 error = -EINVAL;
2078 }
2079 recalc_sigpending();
2080 spin_unlock_irq(&current->sighand->siglock);
2081
2082 return error;
2083 }
2084
2085 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, set,
2086 sigset_t __user *, oset, size_t, sigsetsize)
2087 {
2088 int error = -EINVAL;
2089 sigset_t old_set, new_set;
2090
2091 /* XXX: Don't preclude handling different sized sigset_t's. */
2092 if (sigsetsize != sizeof(sigset_t))
2093 goto out;
2094
2095 if (set) {
2096 error = -EFAULT;
2097 if (copy_from_user(&new_set, set, sizeof(*set)))
2098 goto out;
2099 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2100
2101 error = sigprocmask(how, &new_set, &old_set);
2102 if (error)
2103 goto out;
2104 if (oset)
2105 goto set_old;
2106 } else if (oset) {
2107 spin_lock_irq(&current->sighand->siglock);
2108 old_set = current->blocked;
2109 spin_unlock_irq(&current->sighand->siglock);
2110
2111 set_old:
2112 error = -EFAULT;
2113 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2114 goto out;
2115 }
2116 error = 0;
2117 out:
2118 return error;
2119 }
2120
2121 long do_sigpending(void __user *set, unsigned long sigsetsize)
2122 {
2123 long error = -EINVAL;
2124 sigset_t pending;
2125
2126 if (sigsetsize > sizeof(sigset_t))
2127 goto out;
2128
2129 spin_lock_irq(&current->sighand->siglock);
2130 sigorsets(&pending, &current->pending.signal,
2131 &current->signal->shared_pending.signal);
2132 spin_unlock_irq(&current->sighand->siglock);
2133
2134 /* Outside the lock because only this thread touches it. */
2135 sigandsets(&pending, &current->blocked, &pending);
2136
2137 error = -EFAULT;
2138 if (!copy_to_user(set, &pending, sigsetsize))
2139 error = 0;
2140
2141 out:
2142 return error;
2143 }
2144
2145 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2146 {
2147 return do_sigpending(set, sigsetsize);
2148 }
2149
2150 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2151
2152 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2153 {
2154 int err;
2155
2156 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2157 return -EFAULT;
2158 if (from->si_code < 0)
2159 return __copy_to_user(to, from, sizeof(siginfo_t))
2160 ? -EFAULT : 0;
2161 /*
2162 * If you change siginfo_t structure, please be sure
2163 * this code is fixed accordingly.
2164 * Please remember to update the signalfd_copyinfo() function
2165 * inside fs/signalfd.c too, in case siginfo_t changes.
2166 * It should never copy any pad contained in the structure
2167 * to avoid security leaks, but must copy the generic
2168 * 3 ints plus the relevant union member.
2169 */
2170 err = __put_user(from->si_signo, &to->si_signo);
2171 err |= __put_user(from->si_errno, &to->si_errno);
2172 err |= __put_user((short)from->si_code, &to->si_code);
2173 switch (from->si_code & __SI_MASK) {
2174 case __SI_KILL:
2175 err |= __put_user(from->si_pid, &to->si_pid);
2176 err |= __put_user(from->si_uid, &to->si_uid);
2177 break;
2178 case __SI_TIMER:
2179 err |= __put_user(from->si_tid, &to->si_tid);
2180 err |= __put_user(from->si_overrun, &to->si_overrun);
2181 err |= __put_user(from->si_ptr, &to->si_ptr);
2182 break;
2183 case __SI_POLL:
2184 err |= __put_user(from->si_band, &to->si_band);
2185 err |= __put_user(from->si_fd, &to->si_fd);
2186 break;
2187 case __SI_FAULT:
2188 err |= __put_user(from->si_addr, &to->si_addr);
2189 #ifdef __ARCH_SI_TRAPNO
2190 err |= __put_user(from->si_trapno, &to->si_trapno);
2191 #endif
2192 break;
2193 case __SI_CHLD:
2194 err |= __put_user(from->si_pid, &to->si_pid);
2195 err |= __put_user(from->si_uid, &to->si_uid);
2196 err |= __put_user(from->si_status, &to->si_status);
2197 err |= __put_user(from->si_utime, &to->si_utime);
2198 err |= __put_user(from->si_stime, &to->si_stime);
2199 break;
2200 case __SI_RT: /* This is not generated by the kernel as of now. */
2201 case __SI_MESGQ: /* But this is */
2202 err |= __put_user(from->si_pid, &to->si_pid);
2203 err |= __put_user(from->si_uid, &to->si_uid);
2204 err |= __put_user(from->si_ptr, &to->si_ptr);
2205 break;
2206 default: /* this is just in case for now ... */
2207 err |= __put_user(from->si_pid, &to->si_pid);
2208 err |= __put_user(from->si_uid, &to->si_uid);
2209 break;
2210 }
2211 return err;
2212 }
2213
2214 #endif
2215
2216 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2217 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2218 size_t, sigsetsize)
2219 {
2220 int ret, sig;
2221 sigset_t these;
2222 struct timespec ts;
2223 siginfo_t info;
2224 long timeout = 0;
2225
2226 /* XXX: Don't preclude handling different sized sigset_t's. */
2227 if (sigsetsize != sizeof(sigset_t))
2228 return -EINVAL;
2229
2230 if (copy_from_user(&these, uthese, sizeof(these)))
2231 return -EFAULT;
2232
2233 /*
2234 * Invert the set of allowed signals to get those we
2235 * want to block.
2236 */
2237 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2238 signotset(&these);
2239
2240 if (uts) {
2241 if (copy_from_user(&ts, uts, sizeof(ts)))
2242 return -EFAULT;
2243 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2244 || ts.tv_sec < 0)
2245 return -EINVAL;
2246 }
2247
2248 spin_lock_irq(&current->sighand->siglock);
2249 sig = dequeue_signal(current, &these, &info);
2250 if (!sig) {
2251 timeout = MAX_SCHEDULE_TIMEOUT;
2252 if (uts)
2253 timeout = (timespec_to_jiffies(&ts)
2254 + (ts.tv_sec || ts.tv_nsec));
2255
2256 if (timeout) {
2257 /* None ready -- temporarily unblock those we're
2258 * interested while we are sleeping in so that we'll
2259 * be awakened when they arrive. */
2260 current->real_blocked = current->blocked;
2261 sigandsets(&current->blocked, &current->blocked, &these);
2262 recalc_sigpending();
2263 spin_unlock_irq(&current->sighand->siglock);
2264
2265 timeout = schedule_timeout_interruptible(timeout);
2266
2267 spin_lock_irq(&current->sighand->siglock);
2268 sig = dequeue_signal(current, &these, &info);
2269 current->blocked = current->real_blocked;
2270 siginitset(&current->real_blocked, 0);
2271 recalc_sigpending();
2272 }
2273 }
2274 spin_unlock_irq(&current->sighand->siglock);
2275
2276 if (sig) {
2277 ret = sig;
2278 if (uinfo) {
2279 if (copy_siginfo_to_user(uinfo, &info))
2280 ret = -EFAULT;
2281 }
2282 } else {
2283 ret = -EAGAIN;
2284 if (timeout)
2285 ret = -EINTR;
2286 }
2287
2288 return ret;
2289 }
2290
2291 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2292 {
2293 struct siginfo info;
2294
2295 info.si_signo = sig;
2296 info.si_errno = 0;
2297 info.si_code = SI_USER;
2298 info.si_pid = task_tgid_vnr(current);
2299 info.si_uid = current_uid();
2300
2301 return kill_something_info(sig, &info, pid);
2302 }
2303
2304 static int
2305 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2306 {
2307 struct task_struct *p;
2308 int error = -ESRCH;
2309
2310 rcu_read_lock();
2311 p = find_task_by_vpid(pid);
2312 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2313 error = check_kill_permission(sig, info, p);
2314 /*
2315 * The null signal is a permissions and process existence
2316 * probe. No signal is actually delivered.
2317 */
2318 if (!error && sig) {
2319 error = do_send_sig_info(sig, info, p, false);
2320 /*
2321 * If lock_task_sighand() failed we pretend the task
2322 * dies after receiving the signal. The window is tiny,
2323 * and the signal is private anyway.
2324 */
2325 if (unlikely(error == -ESRCH))
2326 error = 0;
2327 }
2328 }
2329 rcu_read_unlock();
2330
2331 return error;
2332 }
2333
2334 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2335 {
2336 struct siginfo info;
2337
2338 info.si_signo = sig;
2339 info.si_errno = 0;
2340 info.si_code = SI_TKILL;
2341 info.si_pid = task_tgid_vnr(current);
2342 info.si_uid = current_uid();
2343
2344 return do_send_specific(tgid, pid, sig, &info);
2345 }
2346
2347 /**
2348 * sys_tgkill - send signal to one specific thread
2349 * @tgid: the thread group ID of the thread
2350 * @pid: the PID of the thread
2351 * @sig: signal to be sent
2352 *
2353 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2354 * exists but it's not belonging to the target process anymore. This
2355 * method solves the problem of threads exiting and PIDs getting reused.
2356 */
2357 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2358 {
2359 /* This is only valid for single tasks */
2360 if (pid <= 0 || tgid <= 0)
2361 return -EINVAL;
2362
2363 return do_tkill(tgid, pid, sig);
2364 }
2365
2366 /*
2367 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2368 */
2369 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2370 {
2371 /* This is only valid for single tasks */
2372 if (pid <= 0)
2373 return -EINVAL;
2374
2375 return do_tkill(0, pid, sig);
2376 }
2377
2378 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2379 siginfo_t __user *, uinfo)
2380 {
2381 siginfo_t info;
2382
2383 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2384 return -EFAULT;
2385
2386 /* Not even root can pretend to send signals from the kernel.
2387 Nor can they impersonate a kill(), which adds source info. */
2388 if (info.si_code >= 0)
2389 return -EPERM;
2390 info.si_signo = sig;
2391
2392 /* POSIX.1b doesn't mention process groups. */
2393 return kill_proc_info(sig, &info, pid);
2394 }
2395
2396 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2397 {
2398 /* This is only valid for single tasks */
2399 if (pid <= 0 || tgid <= 0)
2400 return -EINVAL;
2401
2402 /* Not even root can pretend to send signals from the kernel.
2403 Nor can they impersonate a kill(), which adds source info. */
2404 if (info->si_code >= 0)
2405 return -EPERM;
2406 info->si_signo = sig;
2407
2408 return do_send_specific(tgid, pid, sig, info);
2409 }
2410
2411 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2412 siginfo_t __user *, uinfo)
2413 {
2414 siginfo_t info;
2415
2416 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2417 return -EFAULT;
2418
2419 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2420 }
2421
2422 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2423 {
2424 struct task_struct *t = current;
2425 struct k_sigaction *k;
2426 sigset_t mask;
2427
2428 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2429 return -EINVAL;
2430
2431 k = &t->sighand->action[sig-1];
2432
2433 spin_lock_irq(&current->sighand->siglock);
2434 if (oact)
2435 *oact = *k;
2436
2437 if (act) {
2438 sigdelsetmask(&act->sa.sa_mask,
2439 sigmask(SIGKILL) | sigmask(SIGSTOP));
2440 *k = *act;
2441 /*
2442 * POSIX 3.3.1.3:
2443 * "Setting a signal action to SIG_IGN for a signal that is
2444 * pending shall cause the pending signal to be discarded,
2445 * whether or not it is blocked."
2446 *
2447 * "Setting a signal action to SIG_DFL for a signal that is
2448 * pending and whose default action is to ignore the signal
2449 * (for example, SIGCHLD), shall cause the pending signal to
2450 * be discarded, whether or not it is blocked"
2451 */
2452 if (sig_handler_ignored(sig_handler(t, sig), sig)) {
2453 sigemptyset(&mask);
2454 sigaddset(&mask, sig);
2455 rm_from_queue_full(&mask, &t->signal->shared_pending);
2456 do {
2457 rm_from_queue_full(&mask, &t->pending);
2458 t = next_thread(t);
2459 } while (t != current);
2460 }
2461 }
2462
2463 spin_unlock_irq(&current->sighand->siglock);
2464 return 0;
2465 }
2466
2467 int
2468 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2469 {
2470 stack_t oss;
2471 int error;
2472
2473 oss.ss_sp = (void __user *) current->sas_ss_sp;
2474 oss.ss_size = current->sas_ss_size;
2475 oss.ss_flags = sas_ss_flags(sp);
2476
2477 if (uss) {
2478 void __user *ss_sp;
2479 size_t ss_size;
2480 int ss_flags;
2481
2482 error = -EFAULT;
2483 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
2484 goto out;
2485 error = __get_user(ss_sp, &uss->ss_sp) |
2486 __get_user(ss_flags, &uss->ss_flags) |
2487 __get_user(ss_size, &uss->ss_size);
2488 if (error)
2489 goto out;
2490
2491 error = -EPERM;
2492 if (on_sig_stack(sp))
2493 goto out;
2494
2495 error = -EINVAL;
2496 /*
2497 *
2498 * Note - this code used to test ss_flags incorrectly
2499 * old code may have been written using ss_flags==0
2500 * to mean ss_flags==SS_ONSTACK (as this was the only
2501 * way that worked) - this fix preserves that older
2502 * mechanism
2503 */
2504 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2505 goto out;
2506
2507 if (ss_flags == SS_DISABLE) {
2508 ss_size = 0;
2509 ss_sp = NULL;
2510 } else {
2511 error = -ENOMEM;
2512 if (ss_size < MINSIGSTKSZ)
2513 goto out;
2514 }
2515
2516 current->sas_ss_sp = (unsigned long) ss_sp;
2517 current->sas_ss_size = ss_size;
2518 }
2519
2520 error = 0;
2521 if (uoss) {
2522 error = -EFAULT;
2523 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
2524 goto out;
2525 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
2526 __put_user(oss.ss_size, &uoss->ss_size) |
2527 __put_user(oss.ss_flags, &uoss->ss_flags);
2528 }
2529
2530 out:
2531 return error;
2532 }
2533
2534 #ifdef __ARCH_WANT_SYS_SIGPENDING
2535
2536 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
2537 {
2538 return do_sigpending(set, sizeof(*set));
2539 }
2540
2541 #endif
2542
2543 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2544 /* Some platforms have their own version with special arguments others
2545 support only sys_rt_sigprocmask. */
2546
2547 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, set,
2548 old_sigset_t __user *, oset)
2549 {
2550 int error;
2551 old_sigset_t old_set, new_set;
2552
2553 if (set) {
2554 error = -EFAULT;
2555 if (copy_from_user(&new_set, set, sizeof(*set)))
2556 goto out;
2557 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2558
2559 spin_lock_irq(&current->sighand->siglock);
2560 old_set = current->blocked.sig[0];
2561
2562 error = 0;
2563 switch (how) {
2564 default:
2565 error = -EINVAL;
2566 break;
2567 case SIG_BLOCK:
2568 sigaddsetmask(&current->blocked, new_set);
2569 break;
2570 case SIG_UNBLOCK:
2571 sigdelsetmask(&current->blocked, new_set);
2572 break;
2573 case SIG_SETMASK:
2574 current->blocked.sig[0] = new_set;
2575 break;
2576 }
2577
2578 recalc_sigpending();
2579 spin_unlock_irq(&current->sighand->siglock);
2580 if (error)
2581 goto out;
2582 if (oset)
2583 goto set_old;
2584 } else if (oset) {
2585 old_set = current->blocked.sig[0];
2586 set_old:
2587 error = -EFAULT;
2588 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2589 goto out;
2590 }
2591 error = 0;
2592 out:
2593 return error;
2594 }
2595 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2596
2597 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2598 SYSCALL_DEFINE4(rt_sigaction, int, sig,
2599 const struct sigaction __user *, act,
2600 struct sigaction __user *, oact,
2601 size_t, sigsetsize)
2602 {
2603 struct k_sigaction new_sa, old_sa;
2604 int ret = -EINVAL;
2605
2606 /* XXX: Don't preclude handling different sized sigset_t's. */
2607 if (sigsetsize != sizeof(sigset_t))
2608 goto out;
2609
2610 if (act) {
2611 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2612 return -EFAULT;
2613 }
2614
2615 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2616
2617 if (!ret && oact) {
2618 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2619 return -EFAULT;
2620 }
2621 out:
2622 return ret;
2623 }
2624 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2625
2626 #ifdef __ARCH_WANT_SYS_SGETMASK
2627
2628 /*
2629 * For backwards compatibility. Functionality superseded by sigprocmask.
2630 */
2631 SYSCALL_DEFINE0(sgetmask)
2632 {
2633 /* SMP safe */
2634 return current->blocked.sig[0];
2635 }
2636
2637 SYSCALL_DEFINE1(ssetmask, int, newmask)
2638 {
2639 int old;
2640
2641 spin_lock_irq(&current->sighand->siglock);
2642 old = current->blocked.sig[0];
2643
2644 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2645 sigmask(SIGSTOP)));
2646 recalc_sigpending();
2647 spin_unlock_irq(&current->sighand->siglock);
2648
2649 return old;
2650 }
2651 #endif /* __ARCH_WANT_SGETMASK */
2652
2653 #ifdef __ARCH_WANT_SYS_SIGNAL
2654 /*
2655 * For backwards compatibility. Functionality superseded by sigaction.
2656 */
2657 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
2658 {
2659 struct k_sigaction new_sa, old_sa;
2660 int ret;
2661
2662 new_sa.sa.sa_handler = handler;
2663 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2664 sigemptyset(&new_sa.sa.sa_mask);
2665
2666 ret = do_sigaction(sig, &new_sa, &old_sa);
2667
2668 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2669 }
2670 #endif /* __ARCH_WANT_SYS_SIGNAL */
2671
2672 #ifdef __ARCH_WANT_SYS_PAUSE
2673
2674 SYSCALL_DEFINE0(pause)
2675 {
2676 current->state = TASK_INTERRUPTIBLE;
2677 schedule();
2678 return -ERESTARTNOHAND;
2679 }
2680
2681 #endif
2682
2683 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2684 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
2685 {
2686 sigset_t newset;
2687
2688 /* XXX: Don't preclude handling different sized sigset_t's. */
2689 if (sigsetsize != sizeof(sigset_t))
2690 return -EINVAL;
2691
2692 if (copy_from_user(&newset, unewset, sizeof(newset)))
2693 return -EFAULT;
2694 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2695
2696 spin_lock_irq(&current->sighand->siglock);
2697 current->saved_sigmask = current->blocked;
2698 current->blocked = newset;
2699 recalc_sigpending();
2700 spin_unlock_irq(&current->sighand->siglock);
2701
2702 current->state = TASK_INTERRUPTIBLE;
2703 schedule();
2704 set_restore_sigmask();
2705 return -ERESTARTNOHAND;
2706 }
2707 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2708
2709 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2710 {
2711 return NULL;
2712 }
2713
2714 void __init signals_init(void)
2715 {
2716 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2717 }