]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - kernel/signal.c
Merge branches 'acpi-apei', 'acpi-processor', 'acpi-tables', 'acpi-pci' and 'acpi...
[mirror_ubuntu-focal-kernel.git] / kernel / signal.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/signal.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 *
9 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
10 * Changes to use preallocated sigqueue structures
11 * to allow signals to be sent reliably.
12 */
13
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/tracehook.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/livepatch.h>
47 #include <linux/cgroup.h>
48 #include <linux/audit.h>
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/signal.h>
52
53 #include <asm/param.h>
54 #include <linux/uaccess.h>
55 #include <asm/unistd.h>
56 #include <asm/siginfo.h>
57 #include <asm/cacheflush.h>
58
59 /*
60 * SLAB caches for signal bits.
61 */
62
63 static struct kmem_cache *sigqueue_cachep;
64
65 int print_fatal_signals __read_mostly;
66
67 static void __user *sig_handler(struct task_struct *t, int sig)
68 {
69 return t->sighand->action[sig - 1].sa.sa_handler;
70 }
71
72 static inline bool sig_handler_ignored(void __user *handler, int sig)
73 {
74 /* Is it explicitly or implicitly ignored? */
75 return handler == SIG_IGN ||
76 (handler == SIG_DFL && sig_kernel_ignore(sig));
77 }
78
79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
80 {
81 void __user *handler;
82
83 handler = sig_handler(t, sig);
84
85 /* SIGKILL and SIGSTOP may not be sent to the global init */
86 if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
87 return true;
88
89 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
90 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
91 return true;
92
93 /* Only allow kernel generated signals to this kthread */
94 if (unlikely((t->flags & PF_KTHREAD) &&
95 (handler == SIG_KTHREAD_KERNEL) && !force))
96 return true;
97
98 return sig_handler_ignored(handler, sig);
99 }
100
101 static bool sig_ignored(struct task_struct *t, int sig, bool force)
102 {
103 /*
104 * Blocked signals are never ignored, since the
105 * signal handler may change by the time it is
106 * unblocked.
107 */
108 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
109 return false;
110
111 /*
112 * Tracers may want to know about even ignored signal unless it
113 * is SIGKILL which can't be reported anyway but can be ignored
114 * by SIGNAL_UNKILLABLE task.
115 */
116 if (t->ptrace && sig != SIGKILL)
117 return false;
118
119 return sig_task_ignored(t, sig, force);
120 }
121
122 /*
123 * Re-calculate pending state from the set of locally pending
124 * signals, globally pending signals, and blocked signals.
125 */
126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
127 {
128 unsigned long ready;
129 long i;
130
131 switch (_NSIG_WORDS) {
132 default:
133 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
134 ready |= signal->sig[i] &~ blocked->sig[i];
135 break;
136
137 case 4: ready = signal->sig[3] &~ blocked->sig[3];
138 ready |= signal->sig[2] &~ blocked->sig[2];
139 ready |= signal->sig[1] &~ blocked->sig[1];
140 ready |= signal->sig[0] &~ blocked->sig[0];
141 break;
142
143 case 2: ready = signal->sig[1] &~ blocked->sig[1];
144 ready |= signal->sig[0] &~ blocked->sig[0];
145 break;
146
147 case 1: ready = signal->sig[0] &~ blocked->sig[0];
148 }
149 return ready != 0;
150 }
151
152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
153
154 static bool recalc_sigpending_tsk(struct task_struct *t)
155 {
156 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
157 PENDING(&t->pending, &t->blocked) ||
158 PENDING(&t->signal->shared_pending, &t->blocked) ||
159 cgroup_task_frozen(t)) {
160 set_tsk_thread_flag(t, TIF_SIGPENDING);
161 return true;
162 }
163
164 /*
165 * We must never clear the flag in another thread, or in current
166 * when it's possible the current syscall is returning -ERESTART*.
167 * So we don't clear it here, and only callers who know they should do.
168 */
169 return false;
170 }
171
172 /*
173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
174 * This is superfluous when called on current, the wakeup is a harmless no-op.
175 */
176 void recalc_sigpending_and_wake(struct task_struct *t)
177 {
178 if (recalc_sigpending_tsk(t))
179 signal_wake_up(t, 0);
180 }
181
182 void recalc_sigpending(void)
183 {
184 if (!recalc_sigpending_tsk(current) && !freezing(current) &&
185 !klp_patch_pending(current))
186 clear_thread_flag(TIF_SIGPENDING);
187
188 }
189 EXPORT_SYMBOL(recalc_sigpending);
190
191 void calculate_sigpending(void)
192 {
193 /* Have any signals or users of TIF_SIGPENDING been delayed
194 * until after fork?
195 */
196 spin_lock_irq(&current->sighand->siglock);
197 set_tsk_thread_flag(current, TIF_SIGPENDING);
198 recalc_sigpending();
199 spin_unlock_irq(&current->sighand->siglock);
200 }
201
202 /* Given the mask, find the first available signal that should be serviced. */
203
204 #define SYNCHRONOUS_MASK \
205 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
206 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
207
208 int next_signal(struct sigpending *pending, sigset_t *mask)
209 {
210 unsigned long i, *s, *m, x;
211 int sig = 0;
212
213 s = pending->signal.sig;
214 m = mask->sig;
215
216 /*
217 * Handle the first word specially: it contains the
218 * synchronous signals that need to be dequeued first.
219 */
220 x = *s &~ *m;
221 if (x) {
222 if (x & SYNCHRONOUS_MASK)
223 x &= SYNCHRONOUS_MASK;
224 sig = ffz(~x) + 1;
225 return sig;
226 }
227
228 switch (_NSIG_WORDS) {
229 default:
230 for (i = 1; i < _NSIG_WORDS; ++i) {
231 x = *++s &~ *++m;
232 if (!x)
233 continue;
234 sig = ffz(~x) + i*_NSIG_BPW + 1;
235 break;
236 }
237 break;
238
239 case 2:
240 x = s[1] &~ m[1];
241 if (!x)
242 break;
243 sig = ffz(~x) + _NSIG_BPW + 1;
244 break;
245
246 case 1:
247 /* Nothing to do */
248 break;
249 }
250
251 return sig;
252 }
253
254 static inline void print_dropped_signal(int sig)
255 {
256 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
257
258 if (!print_fatal_signals)
259 return;
260
261 if (!__ratelimit(&ratelimit_state))
262 return;
263
264 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
265 current->comm, current->pid, sig);
266 }
267
268 /**
269 * task_set_jobctl_pending - set jobctl pending bits
270 * @task: target task
271 * @mask: pending bits to set
272 *
273 * Clear @mask from @task->jobctl. @mask must be subset of
274 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
275 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
276 * cleared. If @task is already being killed or exiting, this function
277 * becomes noop.
278 *
279 * CONTEXT:
280 * Must be called with @task->sighand->siglock held.
281 *
282 * RETURNS:
283 * %true if @mask is set, %false if made noop because @task was dying.
284 */
285 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
286 {
287 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
288 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
289 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
290
291 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
292 return false;
293
294 if (mask & JOBCTL_STOP_SIGMASK)
295 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
296
297 task->jobctl |= mask;
298 return true;
299 }
300
301 /**
302 * task_clear_jobctl_trapping - clear jobctl trapping bit
303 * @task: target task
304 *
305 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
306 * Clear it and wake up the ptracer. Note that we don't need any further
307 * locking. @task->siglock guarantees that @task->parent points to the
308 * ptracer.
309 *
310 * CONTEXT:
311 * Must be called with @task->sighand->siglock held.
312 */
313 void task_clear_jobctl_trapping(struct task_struct *task)
314 {
315 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
316 task->jobctl &= ~JOBCTL_TRAPPING;
317 smp_mb(); /* advised by wake_up_bit() */
318 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
319 }
320 }
321
322 /**
323 * task_clear_jobctl_pending - clear jobctl pending bits
324 * @task: target task
325 * @mask: pending bits to clear
326 *
327 * Clear @mask from @task->jobctl. @mask must be subset of
328 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
329 * STOP bits are cleared together.
330 *
331 * If clearing of @mask leaves no stop or trap pending, this function calls
332 * task_clear_jobctl_trapping().
333 *
334 * CONTEXT:
335 * Must be called with @task->sighand->siglock held.
336 */
337 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
338 {
339 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
340
341 if (mask & JOBCTL_STOP_PENDING)
342 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
343
344 task->jobctl &= ~mask;
345
346 if (!(task->jobctl & JOBCTL_PENDING_MASK))
347 task_clear_jobctl_trapping(task);
348 }
349
350 /**
351 * task_participate_group_stop - participate in a group stop
352 * @task: task participating in a group stop
353 *
354 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
355 * Group stop states are cleared and the group stop count is consumed if
356 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
357 * stop, the appropriate `SIGNAL_*` flags are set.
358 *
359 * CONTEXT:
360 * Must be called with @task->sighand->siglock held.
361 *
362 * RETURNS:
363 * %true if group stop completion should be notified to the parent, %false
364 * otherwise.
365 */
366 static bool task_participate_group_stop(struct task_struct *task)
367 {
368 struct signal_struct *sig = task->signal;
369 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
370
371 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
372
373 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
374
375 if (!consume)
376 return false;
377
378 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
379 sig->group_stop_count--;
380
381 /*
382 * Tell the caller to notify completion iff we are entering into a
383 * fresh group stop. Read comment in do_signal_stop() for details.
384 */
385 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
386 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
387 return true;
388 }
389 return false;
390 }
391
392 void task_join_group_stop(struct task_struct *task)
393 {
394 /* Have the new thread join an on-going signal group stop */
395 unsigned long jobctl = current->jobctl;
396 if (jobctl & JOBCTL_STOP_PENDING) {
397 struct signal_struct *sig = current->signal;
398 unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK;
399 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
400 if (task_set_jobctl_pending(task, signr | gstop)) {
401 sig->group_stop_count++;
402 }
403 }
404 }
405
406 /*
407 * allocate a new signal queue record
408 * - this may be called without locks if and only if t == current, otherwise an
409 * appropriate lock must be held to stop the target task from exiting
410 */
411 static struct sigqueue *
412 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
413 {
414 struct sigqueue *q = NULL;
415 struct user_struct *user;
416
417 /*
418 * Protect access to @t credentials. This can go away when all
419 * callers hold rcu read lock.
420 */
421 rcu_read_lock();
422 user = get_uid(__task_cred(t)->user);
423 atomic_inc(&user->sigpending);
424 rcu_read_unlock();
425
426 if (override_rlimit ||
427 atomic_read(&user->sigpending) <=
428 task_rlimit(t, RLIMIT_SIGPENDING)) {
429 q = kmem_cache_alloc(sigqueue_cachep, flags);
430 } else {
431 print_dropped_signal(sig);
432 }
433
434 if (unlikely(q == NULL)) {
435 atomic_dec(&user->sigpending);
436 free_uid(user);
437 } else {
438 INIT_LIST_HEAD(&q->list);
439 q->flags = 0;
440 q->user = user;
441 }
442
443 return q;
444 }
445
446 static void __sigqueue_free(struct sigqueue *q)
447 {
448 if (q->flags & SIGQUEUE_PREALLOC)
449 return;
450 atomic_dec(&q->user->sigpending);
451 free_uid(q->user);
452 kmem_cache_free(sigqueue_cachep, q);
453 }
454
455 void flush_sigqueue(struct sigpending *queue)
456 {
457 struct sigqueue *q;
458
459 sigemptyset(&queue->signal);
460 while (!list_empty(&queue->list)) {
461 q = list_entry(queue->list.next, struct sigqueue , list);
462 list_del_init(&q->list);
463 __sigqueue_free(q);
464 }
465 }
466
467 /*
468 * Flush all pending signals for this kthread.
469 */
470 void flush_signals(struct task_struct *t)
471 {
472 unsigned long flags;
473
474 spin_lock_irqsave(&t->sighand->siglock, flags);
475 clear_tsk_thread_flag(t, TIF_SIGPENDING);
476 flush_sigqueue(&t->pending);
477 flush_sigqueue(&t->signal->shared_pending);
478 spin_unlock_irqrestore(&t->sighand->siglock, flags);
479 }
480 EXPORT_SYMBOL(flush_signals);
481
482 #ifdef CONFIG_POSIX_TIMERS
483 static void __flush_itimer_signals(struct sigpending *pending)
484 {
485 sigset_t signal, retain;
486 struct sigqueue *q, *n;
487
488 signal = pending->signal;
489 sigemptyset(&retain);
490
491 list_for_each_entry_safe(q, n, &pending->list, list) {
492 int sig = q->info.si_signo;
493
494 if (likely(q->info.si_code != SI_TIMER)) {
495 sigaddset(&retain, sig);
496 } else {
497 sigdelset(&signal, sig);
498 list_del_init(&q->list);
499 __sigqueue_free(q);
500 }
501 }
502
503 sigorsets(&pending->signal, &signal, &retain);
504 }
505
506 void flush_itimer_signals(void)
507 {
508 struct task_struct *tsk = current;
509 unsigned long flags;
510
511 spin_lock_irqsave(&tsk->sighand->siglock, flags);
512 __flush_itimer_signals(&tsk->pending);
513 __flush_itimer_signals(&tsk->signal->shared_pending);
514 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
515 }
516 #endif
517
518 void ignore_signals(struct task_struct *t)
519 {
520 int i;
521
522 for (i = 0; i < _NSIG; ++i)
523 t->sighand->action[i].sa.sa_handler = SIG_IGN;
524
525 flush_signals(t);
526 }
527
528 /*
529 * Flush all handlers for a task.
530 */
531
532 void
533 flush_signal_handlers(struct task_struct *t, int force_default)
534 {
535 int i;
536 struct k_sigaction *ka = &t->sighand->action[0];
537 for (i = _NSIG ; i != 0 ; i--) {
538 if (force_default || ka->sa.sa_handler != SIG_IGN)
539 ka->sa.sa_handler = SIG_DFL;
540 ka->sa.sa_flags = 0;
541 #ifdef __ARCH_HAS_SA_RESTORER
542 ka->sa.sa_restorer = NULL;
543 #endif
544 sigemptyset(&ka->sa.sa_mask);
545 ka++;
546 }
547 }
548
549 bool unhandled_signal(struct task_struct *tsk, int sig)
550 {
551 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
552 if (is_global_init(tsk))
553 return true;
554
555 if (handler != SIG_IGN && handler != SIG_DFL)
556 return false;
557
558 /* if ptraced, let the tracer determine */
559 return !tsk->ptrace;
560 }
561
562 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
563 bool *resched_timer)
564 {
565 struct sigqueue *q, *first = NULL;
566
567 /*
568 * Collect the siginfo appropriate to this signal. Check if
569 * there is another siginfo for the same signal.
570 */
571 list_for_each_entry(q, &list->list, list) {
572 if (q->info.si_signo == sig) {
573 if (first)
574 goto still_pending;
575 first = q;
576 }
577 }
578
579 sigdelset(&list->signal, sig);
580
581 if (first) {
582 still_pending:
583 list_del_init(&first->list);
584 copy_siginfo(info, &first->info);
585
586 *resched_timer =
587 (first->flags & SIGQUEUE_PREALLOC) &&
588 (info->si_code == SI_TIMER) &&
589 (info->si_sys_private);
590
591 __sigqueue_free(first);
592 } else {
593 /*
594 * Ok, it wasn't in the queue. This must be
595 * a fast-pathed signal or we must have been
596 * out of queue space. So zero out the info.
597 */
598 clear_siginfo(info);
599 info->si_signo = sig;
600 info->si_errno = 0;
601 info->si_code = SI_USER;
602 info->si_pid = 0;
603 info->si_uid = 0;
604 }
605 }
606
607 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
608 kernel_siginfo_t *info, bool *resched_timer)
609 {
610 int sig = next_signal(pending, mask);
611
612 if (sig)
613 collect_signal(sig, pending, info, resched_timer);
614 return sig;
615 }
616
617 /*
618 * Dequeue a signal and return the element to the caller, which is
619 * expected to free it.
620 *
621 * All callers have to hold the siglock.
622 */
623 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
624 {
625 bool resched_timer = false;
626 int signr;
627
628 /* We only dequeue private signals from ourselves, we don't let
629 * signalfd steal them
630 */
631 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
632 if (!signr) {
633 signr = __dequeue_signal(&tsk->signal->shared_pending,
634 mask, info, &resched_timer);
635 #ifdef CONFIG_POSIX_TIMERS
636 /*
637 * itimer signal ?
638 *
639 * itimers are process shared and we restart periodic
640 * itimers in the signal delivery path to prevent DoS
641 * attacks in the high resolution timer case. This is
642 * compliant with the old way of self-restarting
643 * itimers, as the SIGALRM is a legacy signal and only
644 * queued once. Changing the restart behaviour to
645 * restart the timer in the signal dequeue path is
646 * reducing the timer noise on heavy loaded !highres
647 * systems too.
648 */
649 if (unlikely(signr == SIGALRM)) {
650 struct hrtimer *tmr = &tsk->signal->real_timer;
651
652 if (!hrtimer_is_queued(tmr) &&
653 tsk->signal->it_real_incr != 0) {
654 hrtimer_forward(tmr, tmr->base->get_time(),
655 tsk->signal->it_real_incr);
656 hrtimer_restart(tmr);
657 }
658 }
659 #endif
660 }
661
662 recalc_sigpending();
663 if (!signr)
664 return 0;
665
666 if (unlikely(sig_kernel_stop(signr))) {
667 /*
668 * Set a marker that we have dequeued a stop signal. Our
669 * caller might release the siglock and then the pending
670 * stop signal it is about to process is no longer in the
671 * pending bitmasks, but must still be cleared by a SIGCONT
672 * (and overruled by a SIGKILL). So those cases clear this
673 * shared flag after we've set it. Note that this flag may
674 * remain set after the signal we return is ignored or
675 * handled. That doesn't matter because its only purpose
676 * is to alert stop-signal processing code when another
677 * processor has come along and cleared the flag.
678 */
679 current->jobctl |= JOBCTL_STOP_DEQUEUED;
680 }
681 #ifdef CONFIG_POSIX_TIMERS
682 if (resched_timer) {
683 /*
684 * Release the siglock to ensure proper locking order
685 * of timer locks outside of siglocks. Note, we leave
686 * irqs disabled here, since the posix-timers code is
687 * about to disable them again anyway.
688 */
689 spin_unlock(&tsk->sighand->siglock);
690 posixtimer_rearm(info);
691 spin_lock(&tsk->sighand->siglock);
692
693 /* Don't expose the si_sys_private value to userspace */
694 info->si_sys_private = 0;
695 }
696 #endif
697 return signr;
698 }
699 EXPORT_SYMBOL_GPL(dequeue_signal);
700
701 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
702 {
703 struct task_struct *tsk = current;
704 struct sigpending *pending = &tsk->pending;
705 struct sigqueue *q, *sync = NULL;
706
707 /*
708 * Might a synchronous signal be in the queue?
709 */
710 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
711 return 0;
712
713 /*
714 * Return the first synchronous signal in the queue.
715 */
716 list_for_each_entry(q, &pending->list, list) {
717 /* Synchronous signals have a postive si_code */
718 if ((q->info.si_code > SI_USER) &&
719 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
720 sync = q;
721 goto next;
722 }
723 }
724 return 0;
725 next:
726 /*
727 * Check if there is another siginfo for the same signal.
728 */
729 list_for_each_entry_continue(q, &pending->list, list) {
730 if (q->info.si_signo == sync->info.si_signo)
731 goto still_pending;
732 }
733
734 sigdelset(&pending->signal, sync->info.si_signo);
735 recalc_sigpending();
736 still_pending:
737 list_del_init(&sync->list);
738 copy_siginfo(info, &sync->info);
739 __sigqueue_free(sync);
740 return info->si_signo;
741 }
742
743 /*
744 * Tell a process that it has a new active signal..
745 *
746 * NOTE! we rely on the previous spin_lock to
747 * lock interrupts for us! We can only be called with
748 * "siglock" held, and the local interrupt must
749 * have been disabled when that got acquired!
750 *
751 * No need to set need_resched since signal event passing
752 * goes through ->blocked
753 */
754 void signal_wake_up_state(struct task_struct *t, unsigned int state)
755 {
756 set_tsk_thread_flag(t, TIF_SIGPENDING);
757 /*
758 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
759 * case. We don't check t->state here because there is a race with it
760 * executing another processor and just now entering stopped state.
761 * By using wake_up_state, we ensure the process will wake up and
762 * handle its death signal.
763 */
764 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
765 kick_process(t);
766 }
767
768 /*
769 * Remove signals in mask from the pending set and queue.
770 * Returns 1 if any signals were found.
771 *
772 * All callers must be holding the siglock.
773 */
774 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
775 {
776 struct sigqueue *q, *n;
777 sigset_t m;
778
779 sigandsets(&m, mask, &s->signal);
780 if (sigisemptyset(&m))
781 return;
782
783 sigandnsets(&s->signal, &s->signal, mask);
784 list_for_each_entry_safe(q, n, &s->list, list) {
785 if (sigismember(mask, q->info.si_signo)) {
786 list_del_init(&q->list);
787 __sigqueue_free(q);
788 }
789 }
790 }
791
792 static inline int is_si_special(const struct kernel_siginfo *info)
793 {
794 return info <= SEND_SIG_PRIV;
795 }
796
797 static inline bool si_fromuser(const struct kernel_siginfo *info)
798 {
799 return info == SEND_SIG_NOINFO ||
800 (!is_si_special(info) && SI_FROMUSER(info));
801 }
802
803 /*
804 * called with RCU read lock from check_kill_permission()
805 */
806 static bool kill_ok_by_cred(struct task_struct *t)
807 {
808 const struct cred *cred = current_cred();
809 const struct cred *tcred = __task_cred(t);
810
811 return uid_eq(cred->euid, tcred->suid) ||
812 uid_eq(cred->euid, tcred->uid) ||
813 uid_eq(cred->uid, tcred->suid) ||
814 uid_eq(cred->uid, tcred->uid) ||
815 ns_capable(tcred->user_ns, CAP_KILL);
816 }
817
818 /*
819 * Bad permissions for sending the signal
820 * - the caller must hold the RCU read lock
821 */
822 static int check_kill_permission(int sig, struct kernel_siginfo *info,
823 struct task_struct *t)
824 {
825 struct pid *sid;
826 int error;
827
828 if (!valid_signal(sig))
829 return -EINVAL;
830
831 if (!si_fromuser(info))
832 return 0;
833
834 error = audit_signal_info(sig, t); /* Let audit system see the signal */
835 if (error)
836 return error;
837
838 if (!same_thread_group(current, t) &&
839 !kill_ok_by_cred(t)) {
840 switch (sig) {
841 case SIGCONT:
842 sid = task_session(t);
843 /*
844 * We don't return the error if sid == NULL. The
845 * task was unhashed, the caller must notice this.
846 */
847 if (!sid || sid == task_session(current))
848 break;
849 /* fall through */
850 default:
851 return -EPERM;
852 }
853 }
854
855 return security_task_kill(t, info, sig, NULL);
856 }
857
858 /**
859 * ptrace_trap_notify - schedule trap to notify ptracer
860 * @t: tracee wanting to notify tracer
861 *
862 * This function schedules sticky ptrace trap which is cleared on the next
863 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
864 * ptracer.
865 *
866 * If @t is running, STOP trap will be taken. If trapped for STOP and
867 * ptracer is listening for events, tracee is woken up so that it can
868 * re-trap for the new event. If trapped otherwise, STOP trap will be
869 * eventually taken without returning to userland after the existing traps
870 * are finished by PTRACE_CONT.
871 *
872 * CONTEXT:
873 * Must be called with @task->sighand->siglock held.
874 */
875 static void ptrace_trap_notify(struct task_struct *t)
876 {
877 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
878 assert_spin_locked(&t->sighand->siglock);
879
880 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
881 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
882 }
883
884 /*
885 * Handle magic process-wide effects of stop/continue signals. Unlike
886 * the signal actions, these happen immediately at signal-generation
887 * time regardless of blocking, ignoring, or handling. This does the
888 * actual continuing for SIGCONT, but not the actual stopping for stop
889 * signals. The process stop is done as a signal action for SIG_DFL.
890 *
891 * Returns true if the signal should be actually delivered, otherwise
892 * it should be dropped.
893 */
894 static bool prepare_signal(int sig, struct task_struct *p, bool force)
895 {
896 struct signal_struct *signal = p->signal;
897 struct task_struct *t;
898 sigset_t flush;
899
900 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
901 if (!(signal->flags & SIGNAL_GROUP_EXIT))
902 return sig == SIGKILL;
903 /*
904 * The process is in the middle of dying, nothing to do.
905 */
906 } else if (sig_kernel_stop(sig)) {
907 /*
908 * This is a stop signal. Remove SIGCONT from all queues.
909 */
910 siginitset(&flush, sigmask(SIGCONT));
911 flush_sigqueue_mask(&flush, &signal->shared_pending);
912 for_each_thread(p, t)
913 flush_sigqueue_mask(&flush, &t->pending);
914 } else if (sig == SIGCONT) {
915 unsigned int why;
916 /*
917 * Remove all stop signals from all queues, wake all threads.
918 */
919 siginitset(&flush, SIG_KERNEL_STOP_MASK);
920 flush_sigqueue_mask(&flush, &signal->shared_pending);
921 for_each_thread(p, t) {
922 flush_sigqueue_mask(&flush, &t->pending);
923 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
924 if (likely(!(t->ptrace & PT_SEIZED)))
925 wake_up_state(t, __TASK_STOPPED);
926 else
927 ptrace_trap_notify(t);
928 }
929
930 /*
931 * Notify the parent with CLD_CONTINUED if we were stopped.
932 *
933 * If we were in the middle of a group stop, we pretend it
934 * was already finished, and then continued. Since SIGCHLD
935 * doesn't queue we report only CLD_STOPPED, as if the next
936 * CLD_CONTINUED was dropped.
937 */
938 why = 0;
939 if (signal->flags & SIGNAL_STOP_STOPPED)
940 why |= SIGNAL_CLD_CONTINUED;
941 else if (signal->group_stop_count)
942 why |= SIGNAL_CLD_STOPPED;
943
944 if (why) {
945 /*
946 * The first thread which returns from do_signal_stop()
947 * will take ->siglock, notice SIGNAL_CLD_MASK, and
948 * notify its parent. See get_signal().
949 */
950 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
951 signal->group_stop_count = 0;
952 signal->group_exit_code = 0;
953 }
954 }
955
956 return !sig_ignored(p, sig, force);
957 }
958
959 /*
960 * Test if P wants to take SIG. After we've checked all threads with this,
961 * it's equivalent to finding no threads not blocking SIG. Any threads not
962 * blocking SIG were ruled out because they are not running and already
963 * have pending signals. Such threads will dequeue from the shared queue
964 * as soon as they're available, so putting the signal on the shared queue
965 * will be equivalent to sending it to one such thread.
966 */
967 static inline bool wants_signal(int sig, struct task_struct *p)
968 {
969 if (sigismember(&p->blocked, sig))
970 return false;
971
972 if (p->flags & PF_EXITING)
973 return false;
974
975 if (sig == SIGKILL)
976 return true;
977
978 if (task_is_stopped_or_traced(p))
979 return false;
980
981 return task_curr(p) || !signal_pending(p);
982 }
983
984 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
985 {
986 struct signal_struct *signal = p->signal;
987 struct task_struct *t;
988
989 /*
990 * Now find a thread we can wake up to take the signal off the queue.
991 *
992 * If the main thread wants the signal, it gets first crack.
993 * Probably the least surprising to the average bear.
994 */
995 if (wants_signal(sig, p))
996 t = p;
997 else if ((type == PIDTYPE_PID) || thread_group_empty(p))
998 /*
999 * There is just one thread and it does not need to be woken.
1000 * It will dequeue unblocked signals before it runs again.
1001 */
1002 return;
1003 else {
1004 /*
1005 * Otherwise try to find a suitable thread.
1006 */
1007 t = signal->curr_target;
1008 while (!wants_signal(sig, t)) {
1009 t = next_thread(t);
1010 if (t == signal->curr_target)
1011 /*
1012 * No thread needs to be woken.
1013 * Any eligible threads will see
1014 * the signal in the queue soon.
1015 */
1016 return;
1017 }
1018 signal->curr_target = t;
1019 }
1020
1021 /*
1022 * Found a killable thread. If the signal will be fatal,
1023 * then start taking the whole group down immediately.
1024 */
1025 if (sig_fatal(p, sig) &&
1026 !(signal->flags & SIGNAL_GROUP_EXIT) &&
1027 !sigismember(&t->real_blocked, sig) &&
1028 (sig == SIGKILL || !p->ptrace)) {
1029 /*
1030 * This signal will be fatal to the whole group.
1031 */
1032 if (!sig_kernel_coredump(sig)) {
1033 /*
1034 * Start a group exit and wake everybody up.
1035 * This way we don't have other threads
1036 * running and doing things after a slower
1037 * thread has the fatal signal pending.
1038 */
1039 signal->flags = SIGNAL_GROUP_EXIT;
1040 signal->group_exit_code = sig;
1041 signal->group_stop_count = 0;
1042 t = p;
1043 do {
1044 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1045 sigaddset(&t->pending.signal, SIGKILL);
1046 signal_wake_up(t, 1);
1047 } while_each_thread(p, t);
1048 return;
1049 }
1050 }
1051
1052 /*
1053 * The signal is already in the shared-pending queue.
1054 * Tell the chosen thread to wake up and dequeue it.
1055 */
1056 signal_wake_up(t, sig == SIGKILL);
1057 return;
1058 }
1059
1060 static inline bool legacy_queue(struct sigpending *signals, int sig)
1061 {
1062 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1063 }
1064
1065 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1066 enum pid_type type, bool force)
1067 {
1068 struct sigpending *pending;
1069 struct sigqueue *q;
1070 int override_rlimit;
1071 int ret = 0, result;
1072
1073 assert_spin_locked(&t->sighand->siglock);
1074
1075 result = TRACE_SIGNAL_IGNORED;
1076 if (!prepare_signal(sig, t, force))
1077 goto ret;
1078
1079 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1080 /*
1081 * Short-circuit ignored signals and support queuing
1082 * exactly one non-rt signal, so that we can get more
1083 * detailed information about the cause of the signal.
1084 */
1085 result = TRACE_SIGNAL_ALREADY_PENDING;
1086 if (legacy_queue(pending, sig))
1087 goto ret;
1088
1089 result = TRACE_SIGNAL_DELIVERED;
1090 /*
1091 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1092 */
1093 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1094 goto out_set;
1095
1096 /*
1097 * Real-time signals must be queued if sent by sigqueue, or
1098 * some other real-time mechanism. It is implementation
1099 * defined whether kill() does so. We attempt to do so, on
1100 * the principle of least surprise, but since kill is not
1101 * allowed to fail with EAGAIN when low on memory we just
1102 * make sure at least one signal gets delivered and don't
1103 * pass on the info struct.
1104 */
1105 if (sig < SIGRTMIN)
1106 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1107 else
1108 override_rlimit = 0;
1109
1110 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1111 if (q) {
1112 list_add_tail(&q->list, &pending->list);
1113 switch ((unsigned long) info) {
1114 case (unsigned long) SEND_SIG_NOINFO:
1115 clear_siginfo(&q->info);
1116 q->info.si_signo = sig;
1117 q->info.si_errno = 0;
1118 q->info.si_code = SI_USER;
1119 q->info.si_pid = task_tgid_nr_ns(current,
1120 task_active_pid_ns(t));
1121 rcu_read_lock();
1122 q->info.si_uid =
1123 from_kuid_munged(task_cred_xxx(t, user_ns),
1124 current_uid());
1125 rcu_read_unlock();
1126 break;
1127 case (unsigned long) SEND_SIG_PRIV:
1128 clear_siginfo(&q->info);
1129 q->info.si_signo = sig;
1130 q->info.si_errno = 0;
1131 q->info.si_code = SI_KERNEL;
1132 q->info.si_pid = 0;
1133 q->info.si_uid = 0;
1134 break;
1135 default:
1136 copy_siginfo(&q->info, info);
1137 break;
1138 }
1139 } else if (!is_si_special(info) &&
1140 sig >= SIGRTMIN && info->si_code != SI_USER) {
1141 /*
1142 * Queue overflow, abort. We may abort if the
1143 * signal was rt and sent by user using something
1144 * other than kill().
1145 */
1146 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1147 ret = -EAGAIN;
1148 goto ret;
1149 } else {
1150 /*
1151 * This is a silent loss of information. We still
1152 * send the signal, but the *info bits are lost.
1153 */
1154 result = TRACE_SIGNAL_LOSE_INFO;
1155 }
1156
1157 out_set:
1158 signalfd_notify(t, sig);
1159 sigaddset(&pending->signal, sig);
1160
1161 /* Let multiprocess signals appear after on-going forks */
1162 if (type > PIDTYPE_TGID) {
1163 struct multiprocess_signals *delayed;
1164 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1165 sigset_t *signal = &delayed->signal;
1166 /* Can't queue both a stop and a continue signal */
1167 if (sig == SIGCONT)
1168 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1169 else if (sig_kernel_stop(sig))
1170 sigdelset(signal, SIGCONT);
1171 sigaddset(signal, sig);
1172 }
1173 }
1174
1175 complete_signal(sig, t, type);
1176 ret:
1177 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1178 return ret;
1179 }
1180
1181 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1182 {
1183 bool ret = false;
1184 switch (siginfo_layout(info->si_signo, info->si_code)) {
1185 case SIL_KILL:
1186 case SIL_CHLD:
1187 case SIL_RT:
1188 ret = true;
1189 break;
1190 case SIL_TIMER:
1191 case SIL_POLL:
1192 case SIL_FAULT:
1193 case SIL_FAULT_MCEERR:
1194 case SIL_FAULT_BNDERR:
1195 case SIL_FAULT_PKUERR:
1196 case SIL_SYS:
1197 ret = false;
1198 break;
1199 }
1200 return ret;
1201 }
1202
1203 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1204 enum pid_type type)
1205 {
1206 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1207 bool force = false;
1208
1209 if (info == SEND_SIG_NOINFO) {
1210 /* Force if sent from an ancestor pid namespace */
1211 force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1212 } else if (info == SEND_SIG_PRIV) {
1213 /* Don't ignore kernel generated signals */
1214 force = true;
1215 } else if (has_si_pid_and_uid(info)) {
1216 /* SIGKILL and SIGSTOP is special or has ids */
1217 struct user_namespace *t_user_ns;
1218
1219 rcu_read_lock();
1220 t_user_ns = task_cred_xxx(t, user_ns);
1221 if (current_user_ns() != t_user_ns) {
1222 kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1223 info->si_uid = from_kuid_munged(t_user_ns, uid);
1224 }
1225 rcu_read_unlock();
1226
1227 /* A kernel generated signal? */
1228 force = (info->si_code == SI_KERNEL);
1229
1230 /* From an ancestor pid namespace? */
1231 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1232 info->si_pid = 0;
1233 force = true;
1234 }
1235 }
1236 return __send_signal(sig, info, t, type, force);
1237 }
1238
1239 static void print_fatal_signal(int signr)
1240 {
1241 struct pt_regs *regs = signal_pt_regs();
1242 pr_info("potentially unexpected fatal signal %d.\n", signr);
1243
1244 #if defined(__i386__) && !defined(__arch_um__)
1245 pr_info("code at %08lx: ", regs->ip);
1246 {
1247 int i;
1248 for (i = 0; i < 16; i++) {
1249 unsigned char insn;
1250
1251 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1252 break;
1253 pr_cont("%02x ", insn);
1254 }
1255 }
1256 pr_cont("\n");
1257 #endif
1258 preempt_disable();
1259 show_regs(regs);
1260 preempt_enable();
1261 }
1262
1263 static int __init setup_print_fatal_signals(char *str)
1264 {
1265 get_option (&str, &print_fatal_signals);
1266
1267 return 1;
1268 }
1269
1270 __setup("print-fatal-signals=", setup_print_fatal_signals);
1271
1272 int
1273 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1274 {
1275 return send_signal(sig, info, p, PIDTYPE_TGID);
1276 }
1277
1278 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1279 enum pid_type type)
1280 {
1281 unsigned long flags;
1282 int ret = -ESRCH;
1283
1284 if (lock_task_sighand(p, &flags)) {
1285 ret = send_signal(sig, info, p, type);
1286 unlock_task_sighand(p, &flags);
1287 }
1288
1289 return ret;
1290 }
1291
1292 /*
1293 * Force a signal that the process can't ignore: if necessary
1294 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1295 *
1296 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1297 * since we do not want to have a signal handler that was blocked
1298 * be invoked when user space had explicitly blocked it.
1299 *
1300 * We don't want to have recursive SIGSEGV's etc, for example,
1301 * that is why we also clear SIGNAL_UNKILLABLE.
1302 */
1303 static int
1304 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
1305 {
1306 unsigned long int flags;
1307 int ret, blocked, ignored;
1308 struct k_sigaction *action;
1309 int sig = info->si_signo;
1310
1311 spin_lock_irqsave(&t->sighand->siglock, flags);
1312 action = &t->sighand->action[sig-1];
1313 ignored = action->sa.sa_handler == SIG_IGN;
1314 blocked = sigismember(&t->blocked, sig);
1315 if (blocked || ignored) {
1316 action->sa.sa_handler = SIG_DFL;
1317 if (blocked) {
1318 sigdelset(&t->blocked, sig);
1319 recalc_sigpending_and_wake(t);
1320 }
1321 }
1322 /*
1323 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1324 * debugging to leave init killable.
1325 */
1326 if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1327 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1328 ret = send_signal(sig, info, t, PIDTYPE_PID);
1329 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1330
1331 return ret;
1332 }
1333
1334 int force_sig_info(struct kernel_siginfo *info)
1335 {
1336 return force_sig_info_to_task(info, current);
1337 }
1338
1339 /*
1340 * Nuke all other threads in the group.
1341 */
1342 int zap_other_threads(struct task_struct *p)
1343 {
1344 struct task_struct *t = p;
1345 int count = 0;
1346
1347 p->signal->group_stop_count = 0;
1348
1349 while_each_thread(p, t) {
1350 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1351 count++;
1352
1353 /* Don't bother with already dead threads */
1354 if (t->exit_state)
1355 continue;
1356 sigaddset(&t->pending.signal, SIGKILL);
1357 signal_wake_up(t, 1);
1358 }
1359
1360 return count;
1361 }
1362
1363 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1364 unsigned long *flags)
1365 {
1366 struct sighand_struct *sighand;
1367
1368 rcu_read_lock();
1369 for (;;) {
1370 sighand = rcu_dereference(tsk->sighand);
1371 if (unlikely(sighand == NULL))
1372 break;
1373
1374 /*
1375 * This sighand can be already freed and even reused, but
1376 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1377 * initializes ->siglock: this slab can't go away, it has
1378 * the same object type, ->siglock can't be reinitialized.
1379 *
1380 * We need to ensure that tsk->sighand is still the same
1381 * after we take the lock, we can race with de_thread() or
1382 * __exit_signal(). In the latter case the next iteration
1383 * must see ->sighand == NULL.
1384 */
1385 spin_lock_irqsave(&sighand->siglock, *flags);
1386 if (likely(sighand == tsk->sighand))
1387 break;
1388 spin_unlock_irqrestore(&sighand->siglock, *flags);
1389 }
1390 rcu_read_unlock();
1391
1392 return sighand;
1393 }
1394
1395 /*
1396 * send signal info to all the members of a group
1397 */
1398 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1399 struct task_struct *p, enum pid_type type)
1400 {
1401 int ret;
1402
1403 rcu_read_lock();
1404 ret = check_kill_permission(sig, info, p);
1405 rcu_read_unlock();
1406
1407 if (!ret && sig)
1408 ret = do_send_sig_info(sig, info, p, type);
1409
1410 return ret;
1411 }
1412
1413 /*
1414 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1415 * control characters do (^C, ^Z etc)
1416 * - the caller must hold at least a readlock on tasklist_lock
1417 */
1418 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1419 {
1420 struct task_struct *p = NULL;
1421 int retval, success;
1422
1423 success = 0;
1424 retval = -ESRCH;
1425 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1426 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1427 success |= !err;
1428 retval = err;
1429 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1430 return success ? 0 : retval;
1431 }
1432
1433 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1434 {
1435 int error = -ESRCH;
1436 struct task_struct *p;
1437
1438 for (;;) {
1439 rcu_read_lock();
1440 p = pid_task(pid, PIDTYPE_PID);
1441 if (p)
1442 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1443 rcu_read_unlock();
1444 if (likely(!p || error != -ESRCH))
1445 return error;
1446
1447 /*
1448 * The task was unhashed in between, try again. If it
1449 * is dead, pid_task() will return NULL, if we race with
1450 * de_thread() it will find the new leader.
1451 */
1452 }
1453 }
1454
1455 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1456 {
1457 int error;
1458 rcu_read_lock();
1459 error = kill_pid_info(sig, info, find_vpid(pid));
1460 rcu_read_unlock();
1461 return error;
1462 }
1463
1464 static inline bool kill_as_cred_perm(const struct cred *cred,
1465 struct task_struct *target)
1466 {
1467 const struct cred *pcred = __task_cred(target);
1468
1469 return uid_eq(cred->euid, pcred->suid) ||
1470 uid_eq(cred->euid, pcred->uid) ||
1471 uid_eq(cred->uid, pcred->suid) ||
1472 uid_eq(cred->uid, pcred->uid);
1473 }
1474
1475 /*
1476 * The usb asyncio usage of siginfo is wrong. The glibc support
1477 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1478 * AKA after the generic fields:
1479 * kernel_pid_t si_pid;
1480 * kernel_uid32_t si_uid;
1481 * sigval_t si_value;
1482 *
1483 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1484 * after the generic fields is:
1485 * void __user *si_addr;
1486 *
1487 * This is a practical problem when there is a 64bit big endian kernel
1488 * and a 32bit userspace. As the 32bit address will encoded in the low
1489 * 32bits of the pointer. Those low 32bits will be stored at higher
1490 * address than appear in a 32 bit pointer. So userspace will not
1491 * see the address it was expecting for it's completions.
1492 *
1493 * There is nothing in the encoding that can allow
1494 * copy_siginfo_to_user32 to detect this confusion of formats, so
1495 * handle this by requiring the caller of kill_pid_usb_asyncio to
1496 * notice when this situration takes place and to store the 32bit
1497 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1498 * parameter.
1499 */
1500 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1501 struct pid *pid, const struct cred *cred)
1502 {
1503 struct kernel_siginfo info;
1504 struct task_struct *p;
1505 unsigned long flags;
1506 int ret = -EINVAL;
1507
1508 clear_siginfo(&info);
1509 info.si_signo = sig;
1510 info.si_errno = errno;
1511 info.si_code = SI_ASYNCIO;
1512 *((sigval_t *)&info.si_pid) = addr;
1513
1514 if (!valid_signal(sig))
1515 return ret;
1516
1517 rcu_read_lock();
1518 p = pid_task(pid, PIDTYPE_PID);
1519 if (!p) {
1520 ret = -ESRCH;
1521 goto out_unlock;
1522 }
1523 if (!kill_as_cred_perm(cred, p)) {
1524 ret = -EPERM;
1525 goto out_unlock;
1526 }
1527 ret = security_task_kill(p, &info, sig, cred);
1528 if (ret)
1529 goto out_unlock;
1530
1531 if (sig) {
1532 if (lock_task_sighand(p, &flags)) {
1533 ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1534 unlock_task_sighand(p, &flags);
1535 } else
1536 ret = -ESRCH;
1537 }
1538 out_unlock:
1539 rcu_read_unlock();
1540 return ret;
1541 }
1542 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1543
1544 /*
1545 * kill_something_info() interprets pid in interesting ways just like kill(2).
1546 *
1547 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1548 * is probably wrong. Should make it like BSD or SYSV.
1549 */
1550
1551 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1552 {
1553 int ret;
1554
1555 if (pid > 0) {
1556 rcu_read_lock();
1557 ret = kill_pid_info(sig, info, find_vpid(pid));
1558 rcu_read_unlock();
1559 return ret;
1560 }
1561
1562 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1563 if (pid == INT_MIN)
1564 return -ESRCH;
1565
1566 read_lock(&tasklist_lock);
1567 if (pid != -1) {
1568 ret = __kill_pgrp_info(sig, info,
1569 pid ? find_vpid(-pid) : task_pgrp(current));
1570 } else {
1571 int retval = 0, count = 0;
1572 struct task_struct * p;
1573
1574 for_each_process(p) {
1575 if (task_pid_vnr(p) > 1 &&
1576 !same_thread_group(p, current)) {
1577 int err = group_send_sig_info(sig, info, p,
1578 PIDTYPE_MAX);
1579 ++count;
1580 if (err != -EPERM)
1581 retval = err;
1582 }
1583 }
1584 ret = count ? retval : -ESRCH;
1585 }
1586 read_unlock(&tasklist_lock);
1587
1588 return ret;
1589 }
1590
1591 /*
1592 * These are for backward compatibility with the rest of the kernel source.
1593 */
1594
1595 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1596 {
1597 /*
1598 * Make sure legacy kernel users don't send in bad values
1599 * (normal paths check this in check_kill_permission).
1600 */
1601 if (!valid_signal(sig))
1602 return -EINVAL;
1603
1604 return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1605 }
1606 EXPORT_SYMBOL(send_sig_info);
1607
1608 #define __si_special(priv) \
1609 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1610
1611 int
1612 send_sig(int sig, struct task_struct *p, int priv)
1613 {
1614 return send_sig_info(sig, __si_special(priv), p);
1615 }
1616 EXPORT_SYMBOL(send_sig);
1617
1618 void force_sig(int sig)
1619 {
1620 struct kernel_siginfo info;
1621
1622 clear_siginfo(&info);
1623 info.si_signo = sig;
1624 info.si_errno = 0;
1625 info.si_code = SI_KERNEL;
1626 info.si_pid = 0;
1627 info.si_uid = 0;
1628 force_sig_info(&info);
1629 }
1630 EXPORT_SYMBOL(force_sig);
1631
1632 /*
1633 * When things go south during signal handling, we
1634 * will force a SIGSEGV. And if the signal that caused
1635 * the problem was already a SIGSEGV, we'll want to
1636 * make sure we don't even try to deliver the signal..
1637 */
1638 void force_sigsegv(int sig)
1639 {
1640 struct task_struct *p = current;
1641
1642 if (sig == SIGSEGV) {
1643 unsigned long flags;
1644 spin_lock_irqsave(&p->sighand->siglock, flags);
1645 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1646 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1647 }
1648 force_sig(SIGSEGV);
1649 }
1650
1651 int force_sig_fault_to_task(int sig, int code, void __user *addr
1652 ___ARCH_SI_TRAPNO(int trapno)
1653 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1654 , struct task_struct *t)
1655 {
1656 struct kernel_siginfo info;
1657
1658 clear_siginfo(&info);
1659 info.si_signo = sig;
1660 info.si_errno = 0;
1661 info.si_code = code;
1662 info.si_addr = addr;
1663 #ifdef __ARCH_SI_TRAPNO
1664 info.si_trapno = trapno;
1665 #endif
1666 #ifdef __ia64__
1667 info.si_imm = imm;
1668 info.si_flags = flags;
1669 info.si_isr = isr;
1670 #endif
1671 return force_sig_info_to_task(&info, t);
1672 }
1673
1674 int force_sig_fault(int sig, int code, void __user *addr
1675 ___ARCH_SI_TRAPNO(int trapno)
1676 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1677 {
1678 return force_sig_fault_to_task(sig, code, addr
1679 ___ARCH_SI_TRAPNO(trapno)
1680 ___ARCH_SI_IA64(imm, flags, isr), current);
1681 }
1682
1683 int send_sig_fault(int sig, int code, void __user *addr
1684 ___ARCH_SI_TRAPNO(int trapno)
1685 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1686 , struct task_struct *t)
1687 {
1688 struct kernel_siginfo info;
1689
1690 clear_siginfo(&info);
1691 info.si_signo = sig;
1692 info.si_errno = 0;
1693 info.si_code = code;
1694 info.si_addr = addr;
1695 #ifdef __ARCH_SI_TRAPNO
1696 info.si_trapno = trapno;
1697 #endif
1698 #ifdef __ia64__
1699 info.si_imm = imm;
1700 info.si_flags = flags;
1701 info.si_isr = isr;
1702 #endif
1703 return send_sig_info(info.si_signo, &info, t);
1704 }
1705
1706 int force_sig_mceerr(int code, void __user *addr, short lsb)
1707 {
1708 struct kernel_siginfo info;
1709
1710 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1711 clear_siginfo(&info);
1712 info.si_signo = SIGBUS;
1713 info.si_errno = 0;
1714 info.si_code = code;
1715 info.si_addr = addr;
1716 info.si_addr_lsb = lsb;
1717 return force_sig_info(&info);
1718 }
1719
1720 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1721 {
1722 struct kernel_siginfo info;
1723
1724 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1725 clear_siginfo(&info);
1726 info.si_signo = SIGBUS;
1727 info.si_errno = 0;
1728 info.si_code = code;
1729 info.si_addr = addr;
1730 info.si_addr_lsb = lsb;
1731 return send_sig_info(info.si_signo, &info, t);
1732 }
1733 EXPORT_SYMBOL(send_sig_mceerr);
1734
1735 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1736 {
1737 struct kernel_siginfo info;
1738
1739 clear_siginfo(&info);
1740 info.si_signo = SIGSEGV;
1741 info.si_errno = 0;
1742 info.si_code = SEGV_BNDERR;
1743 info.si_addr = addr;
1744 info.si_lower = lower;
1745 info.si_upper = upper;
1746 return force_sig_info(&info);
1747 }
1748
1749 #ifdef SEGV_PKUERR
1750 int force_sig_pkuerr(void __user *addr, u32 pkey)
1751 {
1752 struct kernel_siginfo info;
1753
1754 clear_siginfo(&info);
1755 info.si_signo = SIGSEGV;
1756 info.si_errno = 0;
1757 info.si_code = SEGV_PKUERR;
1758 info.si_addr = addr;
1759 info.si_pkey = pkey;
1760 return force_sig_info(&info);
1761 }
1762 #endif
1763
1764 /* For the crazy architectures that include trap information in
1765 * the errno field, instead of an actual errno value.
1766 */
1767 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1768 {
1769 struct kernel_siginfo info;
1770
1771 clear_siginfo(&info);
1772 info.si_signo = SIGTRAP;
1773 info.si_errno = errno;
1774 info.si_code = TRAP_HWBKPT;
1775 info.si_addr = addr;
1776 return force_sig_info(&info);
1777 }
1778
1779 int kill_pgrp(struct pid *pid, int sig, int priv)
1780 {
1781 int ret;
1782
1783 read_lock(&tasklist_lock);
1784 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1785 read_unlock(&tasklist_lock);
1786
1787 return ret;
1788 }
1789 EXPORT_SYMBOL(kill_pgrp);
1790
1791 int kill_pid(struct pid *pid, int sig, int priv)
1792 {
1793 return kill_pid_info(sig, __si_special(priv), pid);
1794 }
1795 EXPORT_SYMBOL(kill_pid);
1796
1797 /*
1798 * These functions support sending signals using preallocated sigqueue
1799 * structures. This is needed "because realtime applications cannot
1800 * afford to lose notifications of asynchronous events, like timer
1801 * expirations or I/O completions". In the case of POSIX Timers
1802 * we allocate the sigqueue structure from the timer_create. If this
1803 * allocation fails we are able to report the failure to the application
1804 * with an EAGAIN error.
1805 */
1806 struct sigqueue *sigqueue_alloc(void)
1807 {
1808 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1809
1810 if (q)
1811 q->flags |= SIGQUEUE_PREALLOC;
1812
1813 return q;
1814 }
1815
1816 void sigqueue_free(struct sigqueue *q)
1817 {
1818 unsigned long flags;
1819 spinlock_t *lock = &current->sighand->siglock;
1820
1821 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1822 /*
1823 * We must hold ->siglock while testing q->list
1824 * to serialize with collect_signal() or with
1825 * __exit_signal()->flush_sigqueue().
1826 */
1827 spin_lock_irqsave(lock, flags);
1828 q->flags &= ~SIGQUEUE_PREALLOC;
1829 /*
1830 * If it is queued it will be freed when dequeued,
1831 * like the "regular" sigqueue.
1832 */
1833 if (!list_empty(&q->list))
1834 q = NULL;
1835 spin_unlock_irqrestore(lock, flags);
1836
1837 if (q)
1838 __sigqueue_free(q);
1839 }
1840
1841 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1842 {
1843 int sig = q->info.si_signo;
1844 struct sigpending *pending;
1845 struct task_struct *t;
1846 unsigned long flags;
1847 int ret, result;
1848
1849 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1850
1851 ret = -1;
1852 rcu_read_lock();
1853 t = pid_task(pid, type);
1854 if (!t || !likely(lock_task_sighand(t, &flags)))
1855 goto ret;
1856
1857 ret = 1; /* the signal is ignored */
1858 result = TRACE_SIGNAL_IGNORED;
1859 if (!prepare_signal(sig, t, false))
1860 goto out;
1861
1862 ret = 0;
1863 if (unlikely(!list_empty(&q->list))) {
1864 /*
1865 * If an SI_TIMER entry is already queue just increment
1866 * the overrun count.
1867 */
1868 BUG_ON(q->info.si_code != SI_TIMER);
1869 q->info.si_overrun++;
1870 result = TRACE_SIGNAL_ALREADY_PENDING;
1871 goto out;
1872 }
1873 q->info.si_overrun = 0;
1874
1875 signalfd_notify(t, sig);
1876 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1877 list_add_tail(&q->list, &pending->list);
1878 sigaddset(&pending->signal, sig);
1879 complete_signal(sig, t, type);
1880 result = TRACE_SIGNAL_DELIVERED;
1881 out:
1882 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1883 unlock_task_sighand(t, &flags);
1884 ret:
1885 rcu_read_unlock();
1886 return ret;
1887 }
1888
1889 static void do_notify_pidfd(struct task_struct *task)
1890 {
1891 struct pid *pid;
1892
1893 WARN_ON(task->exit_state == 0);
1894 pid = task_pid(task);
1895 wake_up_all(&pid->wait_pidfd);
1896 }
1897
1898 /*
1899 * Let a parent know about the death of a child.
1900 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1901 *
1902 * Returns true if our parent ignored us and so we've switched to
1903 * self-reaping.
1904 */
1905 bool do_notify_parent(struct task_struct *tsk, int sig)
1906 {
1907 struct kernel_siginfo info;
1908 unsigned long flags;
1909 struct sighand_struct *psig;
1910 bool autoreap = false;
1911 u64 utime, stime;
1912
1913 BUG_ON(sig == -1);
1914
1915 /* do_notify_parent_cldstop should have been called instead. */
1916 BUG_ON(task_is_stopped_or_traced(tsk));
1917
1918 BUG_ON(!tsk->ptrace &&
1919 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1920
1921 /* Wake up all pidfd waiters */
1922 do_notify_pidfd(tsk);
1923
1924 if (sig != SIGCHLD) {
1925 /*
1926 * This is only possible if parent == real_parent.
1927 * Check if it has changed security domain.
1928 */
1929 if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1930 sig = SIGCHLD;
1931 }
1932
1933 clear_siginfo(&info);
1934 info.si_signo = sig;
1935 info.si_errno = 0;
1936 /*
1937 * We are under tasklist_lock here so our parent is tied to
1938 * us and cannot change.
1939 *
1940 * task_active_pid_ns will always return the same pid namespace
1941 * until a task passes through release_task.
1942 *
1943 * write_lock() currently calls preempt_disable() which is the
1944 * same as rcu_read_lock(), but according to Oleg, this is not
1945 * correct to rely on this
1946 */
1947 rcu_read_lock();
1948 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1949 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1950 task_uid(tsk));
1951 rcu_read_unlock();
1952
1953 task_cputime(tsk, &utime, &stime);
1954 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1955 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1956
1957 info.si_status = tsk->exit_code & 0x7f;
1958 if (tsk->exit_code & 0x80)
1959 info.si_code = CLD_DUMPED;
1960 else if (tsk->exit_code & 0x7f)
1961 info.si_code = CLD_KILLED;
1962 else {
1963 info.si_code = CLD_EXITED;
1964 info.si_status = tsk->exit_code >> 8;
1965 }
1966
1967 psig = tsk->parent->sighand;
1968 spin_lock_irqsave(&psig->siglock, flags);
1969 if (!tsk->ptrace && sig == SIGCHLD &&
1970 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1971 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1972 /*
1973 * We are exiting and our parent doesn't care. POSIX.1
1974 * defines special semantics for setting SIGCHLD to SIG_IGN
1975 * or setting the SA_NOCLDWAIT flag: we should be reaped
1976 * automatically and not left for our parent's wait4 call.
1977 * Rather than having the parent do it as a magic kind of
1978 * signal handler, we just set this to tell do_exit that we
1979 * can be cleaned up without becoming a zombie. Note that
1980 * we still call __wake_up_parent in this case, because a
1981 * blocked sys_wait4 might now return -ECHILD.
1982 *
1983 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1984 * is implementation-defined: we do (if you don't want
1985 * it, just use SIG_IGN instead).
1986 */
1987 autoreap = true;
1988 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1989 sig = 0;
1990 }
1991 if (valid_signal(sig) && sig)
1992 __group_send_sig_info(sig, &info, tsk->parent);
1993 __wake_up_parent(tsk, tsk->parent);
1994 spin_unlock_irqrestore(&psig->siglock, flags);
1995
1996 return autoreap;
1997 }
1998
1999 /**
2000 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2001 * @tsk: task reporting the state change
2002 * @for_ptracer: the notification is for ptracer
2003 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2004 *
2005 * Notify @tsk's parent that the stopped/continued state has changed. If
2006 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2007 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2008 *
2009 * CONTEXT:
2010 * Must be called with tasklist_lock at least read locked.
2011 */
2012 static void do_notify_parent_cldstop(struct task_struct *tsk,
2013 bool for_ptracer, int why)
2014 {
2015 struct kernel_siginfo info;
2016 unsigned long flags;
2017 struct task_struct *parent;
2018 struct sighand_struct *sighand;
2019 u64 utime, stime;
2020
2021 if (for_ptracer) {
2022 parent = tsk->parent;
2023 } else {
2024 tsk = tsk->group_leader;
2025 parent = tsk->real_parent;
2026 }
2027
2028 clear_siginfo(&info);
2029 info.si_signo = SIGCHLD;
2030 info.si_errno = 0;
2031 /*
2032 * see comment in do_notify_parent() about the following 4 lines
2033 */
2034 rcu_read_lock();
2035 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2036 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2037 rcu_read_unlock();
2038
2039 task_cputime(tsk, &utime, &stime);
2040 info.si_utime = nsec_to_clock_t(utime);
2041 info.si_stime = nsec_to_clock_t(stime);
2042
2043 info.si_code = why;
2044 switch (why) {
2045 case CLD_CONTINUED:
2046 info.si_status = SIGCONT;
2047 break;
2048 case CLD_STOPPED:
2049 info.si_status = tsk->signal->group_exit_code & 0x7f;
2050 break;
2051 case CLD_TRAPPED:
2052 info.si_status = tsk->exit_code & 0x7f;
2053 break;
2054 default:
2055 BUG();
2056 }
2057
2058 sighand = parent->sighand;
2059 spin_lock_irqsave(&sighand->siglock, flags);
2060 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2061 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2062 __group_send_sig_info(SIGCHLD, &info, parent);
2063 /*
2064 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2065 */
2066 __wake_up_parent(tsk, parent);
2067 spin_unlock_irqrestore(&sighand->siglock, flags);
2068 }
2069
2070 static inline bool may_ptrace_stop(void)
2071 {
2072 if (!likely(current->ptrace))
2073 return false;
2074 /*
2075 * Are we in the middle of do_coredump?
2076 * If so and our tracer is also part of the coredump stopping
2077 * is a deadlock situation, and pointless because our tracer
2078 * is dead so don't allow us to stop.
2079 * If SIGKILL was already sent before the caller unlocked
2080 * ->siglock we must see ->core_state != NULL. Otherwise it
2081 * is safe to enter schedule().
2082 *
2083 * This is almost outdated, a task with the pending SIGKILL can't
2084 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2085 * after SIGKILL was already dequeued.
2086 */
2087 if (unlikely(current->mm->core_state) &&
2088 unlikely(current->mm == current->parent->mm))
2089 return false;
2090
2091 return true;
2092 }
2093
2094 /*
2095 * Return non-zero if there is a SIGKILL that should be waking us up.
2096 * Called with the siglock held.
2097 */
2098 static bool sigkill_pending(struct task_struct *tsk)
2099 {
2100 return sigismember(&tsk->pending.signal, SIGKILL) ||
2101 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2102 }
2103
2104 /*
2105 * This must be called with current->sighand->siglock held.
2106 *
2107 * This should be the path for all ptrace stops.
2108 * We always set current->last_siginfo while stopped here.
2109 * That makes it a way to test a stopped process for
2110 * being ptrace-stopped vs being job-control-stopped.
2111 *
2112 * If we actually decide not to stop at all because the tracer
2113 * is gone, we keep current->exit_code unless clear_code.
2114 */
2115 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2116 __releases(&current->sighand->siglock)
2117 __acquires(&current->sighand->siglock)
2118 {
2119 bool gstop_done = false;
2120
2121 if (arch_ptrace_stop_needed(exit_code, info)) {
2122 /*
2123 * The arch code has something special to do before a
2124 * ptrace stop. This is allowed to block, e.g. for faults
2125 * on user stack pages. We can't keep the siglock while
2126 * calling arch_ptrace_stop, so we must release it now.
2127 * To preserve proper semantics, we must do this before
2128 * any signal bookkeeping like checking group_stop_count.
2129 * Meanwhile, a SIGKILL could come in before we retake the
2130 * siglock. That must prevent us from sleeping in TASK_TRACED.
2131 * So after regaining the lock, we must check for SIGKILL.
2132 */
2133 spin_unlock_irq(&current->sighand->siglock);
2134 arch_ptrace_stop(exit_code, info);
2135 spin_lock_irq(&current->sighand->siglock);
2136 if (sigkill_pending(current))
2137 return;
2138 }
2139
2140 set_special_state(TASK_TRACED);
2141
2142 /*
2143 * We're committing to trapping. TRACED should be visible before
2144 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2145 * Also, transition to TRACED and updates to ->jobctl should be
2146 * atomic with respect to siglock and should be done after the arch
2147 * hook as siglock is released and regrabbed across it.
2148 *
2149 * TRACER TRACEE
2150 *
2151 * ptrace_attach()
2152 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
2153 * do_wait()
2154 * set_current_state() smp_wmb();
2155 * ptrace_do_wait()
2156 * wait_task_stopped()
2157 * task_stopped_code()
2158 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
2159 */
2160 smp_wmb();
2161
2162 current->last_siginfo = info;
2163 current->exit_code = exit_code;
2164
2165 /*
2166 * If @why is CLD_STOPPED, we're trapping to participate in a group
2167 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
2168 * across siglock relocks since INTERRUPT was scheduled, PENDING
2169 * could be clear now. We act as if SIGCONT is received after
2170 * TASK_TRACED is entered - ignore it.
2171 */
2172 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2173 gstop_done = task_participate_group_stop(current);
2174
2175 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2176 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2177 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2178 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2179
2180 /* entering a trap, clear TRAPPING */
2181 task_clear_jobctl_trapping(current);
2182
2183 spin_unlock_irq(&current->sighand->siglock);
2184 read_lock(&tasklist_lock);
2185 if (may_ptrace_stop()) {
2186 /*
2187 * Notify parents of the stop.
2188 *
2189 * While ptraced, there are two parents - the ptracer and
2190 * the real_parent of the group_leader. The ptracer should
2191 * know about every stop while the real parent is only
2192 * interested in the completion of group stop. The states
2193 * for the two don't interact with each other. Notify
2194 * separately unless they're gonna be duplicates.
2195 */
2196 do_notify_parent_cldstop(current, true, why);
2197 if (gstop_done && ptrace_reparented(current))
2198 do_notify_parent_cldstop(current, false, why);
2199
2200 /*
2201 * Don't want to allow preemption here, because
2202 * sys_ptrace() needs this task to be inactive.
2203 *
2204 * XXX: implement read_unlock_no_resched().
2205 */
2206 preempt_disable();
2207 read_unlock(&tasklist_lock);
2208 preempt_enable_no_resched();
2209 cgroup_enter_frozen();
2210 freezable_schedule();
2211 cgroup_leave_frozen(true);
2212 } else {
2213 /*
2214 * By the time we got the lock, our tracer went away.
2215 * Don't drop the lock yet, another tracer may come.
2216 *
2217 * If @gstop_done, the ptracer went away between group stop
2218 * completion and here. During detach, it would have set
2219 * JOBCTL_STOP_PENDING on us and we'll re-enter
2220 * TASK_STOPPED in do_signal_stop() on return, so notifying
2221 * the real parent of the group stop completion is enough.
2222 */
2223 if (gstop_done)
2224 do_notify_parent_cldstop(current, false, why);
2225
2226 /* tasklist protects us from ptrace_freeze_traced() */
2227 __set_current_state(TASK_RUNNING);
2228 if (clear_code)
2229 current->exit_code = 0;
2230 read_unlock(&tasklist_lock);
2231 }
2232
2233 /*
2234 * We are back. Now reacquire the siglock before touching
2235 * last_siginfo, so that we are sure to have synchronized with
2236 * any signal-sending on another CPU that wants to examine it.
2237 */
2238 spin_lock_irq(&current->sighand->siglock);
2239 current->last_siginfo = NULL;
2240
2241 /* LISTENING can be set only during STOP traps, clear it */
2242 current->jobctl &= ~JOBCTL_LISTENING;
2243
2244 /*
2245 * Queued signals ignored us while we were stopped for tracing.
2246 * So check for any that we should take before resuming user mode.
2247 * This sets TIF_SIGPENDING, but never clears it.
2248 */
2249 recalc_sigpending_tsk(current);
2250 }
2251
2252 static void ptrace_do_notify(int signr, int exit_code, int why)
2253 {
2254 kernel_siginfo_t info;
2255
2256 clear_siginfo(&info);
2257 info.si_signo = signr;
2258 info.si_code = exit_code;
2259 info.si_pid = task_pid_vnr(current);
2260 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2261
2262 /* Let the debugger run. */
2263 ptrace_stop(exit_code, why, 1, &info);
2264 }
2265
2266 void ptrace_notify(int exit_code)
2267 {
2268 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2269 if (unlikely(current->task_works))
2270 task_work_run();
2271
2272 spin_lock_irq(&current->sighand->siglock);
2273 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2274 spin_unlock_irq(&current->sighand->siglock);
2275 }
2276
2277 /**
2278 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2279 * @signr: signr causing group stop if initiating
2280 *
2281 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2282 * and participate in it. If already set, participate in the existing
2283 * group stop. If participated in a group stop (and thus slept), %true is
2284 * returned with siglock released.
2285 *
2286 * If ptraced, this function doesn't handle stop itself. Instead,
2287 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2288 * untouched. The caller must ensure that INTERRUPT trap handling takes
2289 * places afterwards.
2290 *
2291 * CONTEXT:
2292 * Must be called with @current->sighand->siglock held, which is released
2293 * on %true return.
2294 *
2295 * RETURNS:
2296 * %false if group stop is already cancelled or ptrace trap is scheduled.
2297 * %true if participated in group stop.
2298 */
2299 static bool do_signal_stop(int signr)
2300 __releases(&current->sighand->siglock)
2301 {
2302 struct signal_struct *sig = current->signal;
2303
2304 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2305 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2306 struct task_struct *t;
2307
2308 /* signr will be recorded in task->jobctl for retries */
2309 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2310
2311 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2312 unlikely(signal_group_exit(sig)))
2313 return false;
2314 /*
2315 * There is no group stop already in progress. We must
2316 * initiate one now.
2317 *
2318 * While ptraced, a task may be resumed while group stop is
2319 * still in effect and then receive a stop signal and
2320 * initiate another group stop. This deviates from the
2321 * usual behavior as two consecutive stop signals can't
2322 * cause two group stops when !ptraced. That is why we
2323 * also check !task_is_stopped(t) below.
2324 *
2325 * The condition can be distinguished by testing whether
2326 * SIGNAL_STOP_STOPPED is already set. Don't generate
2327 * group_exit_code in such case.
2328 *
2329 * This is not necessary for SIGNAL_STOP_CONTINUED because
2330 * an intervening stop signal is required to cause two
2331 * continued events regardless of ptrace.
2332 */
2333 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2334 sig->group_exit_code = signr;
2335
2336 sig->group_stop_count = 0;
2337
2338 if (task_set_jobctl_pending(current, signr | gstop))
2339 sig->group_stop_count++;
2340
2341 t = current;
2342 while_each_thread(current, t) {
2343 /*
2344 * Setting state to TASK_STOPPED for a group
2345 * stop is always done with the siglock held,
2346 * so this check has no races.
2347 */
2348 if (!task_is_stopped(t) &&
2349 task_set_jobctl_pending(t, signr | gstop)) {
2350 sig->group_stop_count++;
2351 if (likely(!(t->ptrace & PT_SEIZED)))
2352 signal_wake_up(t, 0);
2353 else
2354 ptrace_trap_notify(t);
2355 }
2356 }
2357 }
2358
2359 if (likely(!current->ptrace)) {
2360 int notify = 0;
2361
2362 /*
2363 * If there are no other threads in the group, or if there
2364 * is a group stop in progress and we are the last to stop,
2365 * report to the parent.
2366 */
2367 if (task_participate_group_stop(current))
2368 notify = CLD_STOPPED;
2369
2370 set_special_state(TASK_STOPPED);
2371 spin_unlock_irq(&current->sighand->siglock);
2372
2373 /*
2374 * Notify the parent of the group stop completion. Because
2375 * we're not holding either the siglock or tasklist_lock
2376 * here, ptracer may attach inbetween; however, this is for
2377 * group stop and should always be delivered to the real
2378 * parent of the group leader. The new ptracer will get
2379 * its notification when this task transitions into
2380 * TASK_TRACED.
2381 */
2382 if (notify) {
2383 read_lock(&tasklist_lock);
2384 do_notify_parent_cldstop(current, false, notify);
2385 read_unlock(&tasklist_lock);
2386 }
2387
2388 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2389 cgroup_enter_frozen();
2390 freezable_schedule();
2391 return true;
2392 } else {
2393 /*
2394 * While ptraced, group stop is handled by STOP trap.
2395 * Schedule it and let the caller deal with it.
2396 */
2397 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2398 return false;
2399 }
2400 }
2401
2402 /**
2403 * do_jobctl_trap - take care of ptrace jobctl traps
2404 *
2405 * When PT_SEIZED, it's used for both group stop and explicit
2406 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2407 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2408 * the stop signal; otherwise, %SIGTRAP.
2409 *
2410 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2411 * number as exit_code and no siginfo.
2412 *
2413 * CONTEXT:
2414 * Must be called with @current->sighand->siglock held, which may be
2415 * released and re-acquired before returning with intervening sleep.
2416 */
2417 static void do_jobctl_trap(void)
2418 {
2419 struct signal_struct *signal = current->signal;
2420 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2421
2422 if (current->ptrace & PT_SEIZED) {
2423 if (!signal->group_stop_count &&
2424 !(signal->flags & SIGNAL_STOP_STOPPED))
2425 signr = SIGTRAP;
2426 WARN_ON_ONCE(!signr);
2427 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2428 CLD_STOPPED);
2429 } else {
2430 WARN_ON_ONCE(!signr);
2431 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2432 current->exit_code = 0;
2433 }
2434 }
2435
2436 /**
2437 * do_freezer_trap - handle the freezer jobctl trap
2438 *
2439 * Puts the task into frozen state, if only the task is not about to quit.
2440 * In this case it drops JOBCTL_TRAP_FREEZE.
2441 *
2442 * CONTEXT:
2443 * Must be called with @current->sighand->siglock held,
2444 * which is always released before returning.
2445 */
2446 static void do_freezer_trap(void)
2447 __releases(&current->sighand->siglock)
2448 {
2449 /*
2450 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2451 * let's make another loop to give it a chance to be handled.
2452 * In any case, we'll return back.
2453 */
2454 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2455 JOBCTL_TRAP_FREEZE) {
2456 spin_unlock_irq(&current->sighand->siglock);
2457 return;
2458 }
2459
2460 /*
2461 * Now we're sure that there is no pending fatal signal and no
2462 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2463 * immediately (if there is a non-fatal signal pending), and
2464 * put the task into sleep.
2465 */
2466 __set_current_state(TASK_INTERRUPTIBLE);
2467 clear_thread_flag(TIF_SIGPENDING);
2468 spin_unlock_irq(&current->sighand->siglock);
2469 cgroup_enter_frozen();
2470 freezable_schedule();
2471 }
2472
2473 static int ptrace_signal(int signr, kernel_siginfo_t *info)
2474 {
2475 /*
2476 * We do not check sig_kernel_stop(signr) but set this marker
2477 * unconditionally because we do not know whether debugger will
2478 * change signr. This flag has no meaning unless we are going
2479 * to stop after return from ptrace_stop(). In this case it will
2480 * be checked in do_signal_stop(), we should only stop if it was
2481 * not cleared by SIGCONT while we were sleeping. See also the
2482 * comment in dequeue_signal().
2483 */
2484 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2485 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2486
2487 /* We're back. Did the debugger cancel the sig? */
2488 signr = current->exit_code;
2489 if (signr == 0)
2490 return signr;
2491
2492 current->exit_code = 0;
2493
2494 /*
2495 * Update the siginfo structure if the signal has
2496 * changed. If the debugger wanted something
2497 * specific in the siginfo structure then it should
2498 * have updated *info via PTRACE_SETSIGINFO.
2499 */
2500 if (signr != info->si_signo) {
2501 clear_siginfo(info);
2502 info->si_signo = signr;
2503 info->si_errno = 0;
2504 info->si_code = SI_USER;
2505 rcu_read_lock();
2506 info->si_pid = task_pid_vnr(current->parent);
2507 info->si_uid = from_kuid_munged(current_user_ns(),
2508 task_uid(current->parent));
2509 rcu_read_unlock();
2510 }
2511
2512 /* If the (new) signal is now blocked, requeue it. */
2513 if (sigismember(&current->blocked, signr)) {
2514 send_signal(signr, info, current, PIDTYPE_PID);
2515 signr = 0;
2516 }
2517
2518 return signr;
2519 }
2520
2521 bool get_signal(struct ksignal *ksig)
2522 {
2523 struct sighand_struct *sighand = current->sighand;
2524 struct signal_struct *signal = current->signal;
2525 int signr;
2526
2527 if (unlikely(current->task_works))
2528 task_work_run();
2529
2530 if (unlikely(uprobe_deny_signal()))
2531 return false;
2532
2533 /*
2534 * Do this once, we can't return to user-mode if freezing() == T.
2535 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2536 * thus do not need another check after return.
2537 */
2538 try_to_freeze();
2539
2540 relock:
2541 spin_lock_irq(&sighand->siglock);
2542 /*
2543 * Every stopped thread goes here after wakeup. Check to see if
2544 * we should notify the parent, prepare_signal(SIGCONT) encodes
2545 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2546 */
2547 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2548 int why;
2549
2550 if (signal->flags & SIGNAL_CLD_CONTINUED)
2551 why = CLD_CONTINUED;
2552 else
2553 why = CLD_STOPPED;
2554
2555 signal->flags &= ~SIGNAL_CLD_MASK;
2556
2557 spin_unlock_irq(&sighand->siglock);
2558
2559 /*
2560 * Notify the parent that we're continuing. This event is
2561 * always per-process and doesn't make whole lot of sense
2562 * for ptracers, who shouldn't consume the state via
2563 * wait(2) either, but, for backward compatibility, notify
2564 * the ptracer of the group leader too unless it's gonna be
2565 * a duplicate.
2566 */
2567 read_lock(&tasklist_lock);
2568 do_notify_parent_cldstop(current, false, why);
2569
2570 if (ptrace_reparented(current->group_leader))
2571 do_notify_parent_cldstop(current->group_leader,
2572 true, why);
2573 read_unlock(&tasklist_lock);
2574
2575 goto relock;
2576 }
2577
2578 /* Has this task already been marked for death? */
2579 if (signal_group_exit(signal)) {
2580 ksig->info.si_signo = signr = SIGKILL;
2581 sigdelset(&current->pending.signal, SIGKILL);
2582 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2583 &sighand->action[SIGKILL - 1]);
2584 recalc_sigpending();
2585 goto fatal;
2586 }
2587
2588 for (;;) {
2589 struct k_sigaction *ka;
2590
2591 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2592 do_signal_stop(0))
2593 goto relock;
2594
2595 if (unlikely(current->jobctl &
2596 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2597 if (current->jobctl & JOBCTL_TRAP_MASK) {
2598 do_jobctl_trap();
2599 spin_unlock_irq(&sighand->siglock);
2600 } else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2601 do_freezer_trap();
2602
2603 goto relock;
2604 }
2605
2606 /*
2607 * If the task is leaving the frozen state, let's update
2608 * cgroup counters and reset the frozen bit.
2609 */
2610 if (unlikely(cgroup_task_frozen(current))) {
2611 spin_unlock_irq(&sighand->siglock);
2612 cgroup_leave_frozen(false);
2613 goto relock;
2614 }
2615
2616 /*
2617 * Signals generated by the execution of an instruction
2618 * need to be delivered before any other pending signals
2619 * so that the instruction pointer in the signal stack
2620 * frame points to the faulting instruction.
2621 */
2622 signr = dequeue_synchronous_signal(&ksig->info);
2623 if (!signr)
2624 signr = dequeue_signal(current, &current->blocked, &ksig->info);
2625
2626 if (!signr)
2627 break; /* will return 0 */
2628
2629 if (unlikely(current->ptrace) && signr != SIGKILL) {
2630 signr = ptrace_signal(signr, &ksig->info);
2631 if (!signr)
2632 continue;
2633 }
2634
2635 ka = &sighand->action[signr-1];
2636
2637 /* Trace actually delivered signals. */
2638 trace_signal_deliver(signr, &ksig->info, ka);
2639
2640 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2641 continue;
2642 if (ka->sa.sa_handler != SIG_DFL) {
2643 /* Run the handler. */
2644 ksig->ka = *ka;
2645
2646 if (ka->sa.sa_flags & SA_ONESHOT)
2647 ka->sa.sa_handler = SIG_DFL;
2648
2649 break; /* will return non-zero "signr" value */
2650 }
2651
2652 /*
2653 * Now we are doing the default action for this signal.
2654 */
2655 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2656 continue;
2657
2658 /*
2659 * Global init gets no signals it doesn't want.
2660 * Container-init gets no signals it doesn't want from same
2661 * container.
2662 *
2663 * Note that if global/container-init sees a sig_kernel_only()
2664 * signal here, the signal must have been generated internally
2665 * or must have come from an ancestor namespace. In either
2666 * case, the signal cannot be dropped.
2667 */
2668 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2669 !sig_kernel_only(signr))
2670 continue;
2671
2672 if (sig_kernel_stop(signr)) {
2673 /*
2674 * The default action is to stop all threads in
2675 * the thread group. The job control signals
2676 * do nothing in an orphaned pgrp, but SIGSTOP
2677 * always works. Note that siglock needs to be
2678 * dropped during the call to is_orphaned_pgrp()
2679 * because of lock ordering with tasklist_lock.
2680 * This allows an intervening SIGCONT to be posted.
2681 * We need to check for that and bail out if necessary.
2682 */
2683 if (signr != SIGSTOP) {
2684 spin_unlock_irq(&sighand->siglock);
2685
2686 /* signals can be posted during this window */
2687
2688 if (is_current_pgrp_orphaned())
2689 goto relock;
2690
2691 spin_lock_irq(&sighand->siglock);
2692 }
2693
2694 if (likely(do_signal_stop(ksig->info.si_signo))) {
2695 /* It released the siglock. */
2696 goto relock;
2697 }
2698
2699 /*
2700 * We didn't actually stop, due to a race
2701 * with SIGCONT or something like that.
2702 */
2703 continue;
2704 }
2705
2706 fatal:
2707 spin_unlock_irq(&sighand->siglock);
2708 if (unlikely(cgroup_task_frozen(current)))
2709 cgroup_leave_frozen(true);
2710
2711 /*
2712 * Anything else is fatal, maybe with a core dump.
2713 */
2714 current->flags |= PF_SIGNALED;
2715
2716 if (sig_kernel_coredump(signr)) {
2717 if (print_fatal_signals)
2718 print_fatal_signal(ksig->info.si_signo);
2719 proc_coredump_connector(current);
2720 /*
2721 * If it was able to dump core, this kills all
2722 * other threads in the group and synchronizes with
2723 * their demise. If we lost the race with another
2724 * thread getting here, it set group_exit_code
2725 * first and our do_group_exit call below will use
2726 * that value and ignore the one we pass it.
2727 */
2728 do_coredump(&ksig->info);
2729 }
2730
2731 /*
2732 * Death signals, no core dump.
2733 */
2734 do_group_exit(ksig->info.si_signo);
2735 /* NOTREACHED */
2736 }
2737 spin_unlock_irq(&sighand->siglock);
2738
2739 ksig->sig = signr;
2740 return ksig->sig > 0;
2741 }
2742
2743 /**
2744 * signal_delivered -
2745 * @ksig: kernel signal struct
2746 * @stepping: nonzero if debugger single-step or block-step in use
2747 *
2748 * This function should be called when a signal has successfully been
2749 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2750 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2751 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2752 */
2753 static void signal_delivered(struct ksignal *ksig, int stepping)
2754 {
2755 sigset_t blocked;
2756
2757 /* A signal was successfully delivered, and the
2758 saved sigmask was stored on the signal frame,
2759 and will be restored by sigreturn. So we can
2760 simply clear the restore sigmask flag. */
2761 clear_restore_sigmask();
2762
2763 sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2764 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2765 sigaddset(&blocked, ksig->sig);
2766 set_current_blocked(&blocked);
2767 tracehook_signal_handler(stepping);
2768 }
2769
2770 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2771 {
2772 if (failed)
2773 force_sigsegv(ksig->sig);
2774 else
2775 signal_delivered(ksig, stepping);
2776 }
2777
2778 /*
2779 * It could be that complete_signal() picked us to notify about the
2780 * group-wide signal. Other threads should be notified now to take
2781 * the shared signals in @which since we will not.
2782 */
2783 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2784 {
2785 sigset_t retarget;
2786 struct task_struct *t;
2787
2788 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2789 if (sigisemptyset(&retarget))
2790 return;
2791
2792 t = tsk;
2793 while_each_thread(tsk, t) {
2794 if (t->flags & PF_EXITING)
2795 continue;
2796
2797 if (!has_pending_signals(&retarget, &t->blocked))
2798 continue;
2799 /* Remove the signals this thread can handle. */
2800 sigandsets(&retarget, &retarget, &t->blocked);
2801
2802 if (!signal_pending(t))
2803 signal_wake_up(t, 0);
2804
2805 if (sigisemptyset(&retarget))
2806 break;
2807 }
2808 }
2809
2810 void exit_signals(struct task_struct *tsk)
2811 {
2812 int group_stop = 0;
2813 sigset_t unblocked;
2814
2815 /*
2816 * @tsk is about to have PF_EXITING set - lock out users which
2817 * expect stable threadgroup.
2818 */
2819 cgroup_threadgroup_change_begin(tsk);
2820
2821 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2822 tsk->flags |= PF_EXITING;
2823 cgroup_threadgroup_change_end(tsk);
2824 return;
2825 }
2826
2827 spin_lock_irq(&tsk->sighand->siglock);
2828 /*
2829 * From now this task is not visible for group-wide signals,
2830 * see wants_signal(), do_signal_stop().
2831 */
2832 tsk->flags |= PF_EXITING;
2833
2834 cgroup_threadgroup_change_end(tsk);
2835
2836 if (!signal_pending(tsk))
2837 goto out;
2838
2839 unblocked = tsk->blocked;
2840 signotset(&unblocked);
2841 retarget_shared_pending(tsk, &unblocked);
2842
2843 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2844 task_participate_group_stop(tsk))
2845 group_stop = CLD_STOPPED;
2846 out:
2847 spin_unlock_irq(&tsk->sighand->siglock);
2848
2849 /*
2850 * If group stop has completed, deliver the notification. This
2851 * should always go to the real parent of the group leader.
2852 */
2853 if (unlikely(group_stop)) {
2854 read_lock(&tasklist_lock);
2855 do_notify_parent_cldstop(tsk, false, group_stop);
2856 read_unlock(&tasklist_lock);
2857 }
2858 }
2859
2860 /*
2861 * System call entry points.
2862 */
2863
2864 /**
2865 * sys_restart_syscall - restart a system call
2866 */
2867 SYSCALL_DEFINE0(restart_syscall)
2868 {
2869 struct restart_block *restart = &current->restart_block;
2870 return restart->fn(restart);
2871 }
2872
2873 long do_no_restart_syscall(struct restart_block *param)
2874 {
2875 return -EINTR;
2876 }
2877
2878 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2879 {
2880 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2881 sigset_t newblocked;
2882 /* A set of now blocked but previously unblocked signals. */
2883 sigandnsets(&newblocked, newset, &current->blocked);
2884 retarget_shared_pending(tsk, &newblocked);
2885 }
2886 tsk->blocked = *newset;
2887 recalc_sigpending();
2888 }
2889
2890 /**
2891 * set_current_blocked - change current->blocked mask
2892 * @newset: new mask
2893 *
2894 * It is wrong to change ->blocked directly, this helper should be used
2895 * to ensure the process can't miss a shared signal we are going to block.
2896 */
2897 void set_current_blocked(sigset_t *newset)
2898 {
2899 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2900 __set_current_blocked(newset);
2901 }
2902
2903 void __set_current_blocked(const sigset_t *newset)
2904 {
2905 struct task_struct *tsk = current;
2906
2907 /*
2908 * In case the signal mask hasn't changed, there is nothing we need
2909 * to do. The current->blocked shouldn't be modified by other task.
2910 */
2911 if (sigequalsets(&tsk->blocked, newset))
2912 return;
2913
2914 spin_lock_irq(&tsk->sighand->siglock);
2915 __set_task_blocked(tsk, newset);
2916 spin_unlock_irq(&tsk->sighand->siglock);
2917 }
2918
2919 /*
2920 * This is also useful for kernel threads that want to temporarily
2921 * (or permanently) block certain signals.
2922 *
2923 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2924 * interface happily blocks "unblockable" signals like SIGKILL
2925 * and friends.
2926 */
2927 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2928 {
2929 struct task_struct *tsk = current;
2930 sigset_t newset;
2931
2932 /* Lockless, only current can change ->blocked, never from irq */
2933 if (oldset)
2934 *oldset = tsk->blocked;
2935
2936 switch (how) {
2937 case SIG_BLOCK:
2938 sigorsets(&newset, &tsk->blocked, set);
2939 break;
2940 case SIG_UNBLOCK:
2941 sigandnsets(&newset, &tsk->blocked, set);
2942 break;
2943 case SIG_SETMASK:
2944 newset = *set;
2945 break;
2946 default:
2947 return -EINVAL;
2948 }
2949
2950 __set_current_blocked(&newset);
2951 return 0;
2952 }
2953 EXPORT_SYMBOL(sigprocmask);
2954
2955 /*
2956 * The api helps set app-provided sigmasks.
2957 *
2958 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2959 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
2960 *
2961 * Note that it does set_restore_sigmask() in advance, so it must be always
2962 * paired with restore_saved_sigmask_unless() before return from syscall.
2963 */
2964 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
2965 {
2966 sigset_t kmask;
2967
2968 if (!umask)
2969 return 0;
2970 if (sigsetsize != sizeof(sigset_t))
2971 return -EINVAL;
2972 if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
2973 return -EFAULT;
2974
2975 set_restore_sigmask();
2976 current->saved_sigmask = current->blocked;
2977 set_current_blocked(&kmask);
2978
2979 return 0;
2980 }
2981
2982 #ifdef CONFIG_COMPAT
2983 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
2984 size_t sigsetsize)
2985 {
2986 sigset_t kmask;
2987
2988 if (!umask)
2989 return 0;
2990 if (sigsetsize != sizeof(compat_sigset_t))
2991 return -EINVAL;
2992 if (get_compat_sigset(&kmask, umask))
2993 return -EFAULT;
2994
2995 set_restore_sigmask();
2996 current->saved_sigmask = current->blocked;
2997 set_current_blocked(&kmask);
2998
2999 return 0;
3000 }
3001 #endif
3002
3003 /**
3004 * sys_rt_sigprocmask - change the list of currently blocked signals
3005 * @how: whether to add, remove, or set signals
3006 * @nset: stores pending signals
3007 * @oset: previous value of signal mask if non-null
3008 * @sigsetsize: size of sigset_t type
3009 */
3010 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3011 sigset_t __user *, oset, size_t, sigsetsize)
3012 {
3013 sigset_t old_set, new_set;
3014 int error;
3015
3016 /* XXX: Don't preclude handling different sized sigset_t's. */
3017 if (sigsetsize != sizeof(sigset_t))
3018 return -EINVAL;
3019
3020 old_set = current->blocked;
3021
3022 if (nset) {
3023 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3024 return -EFAULT;
3025 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3026
3027 error = sigprocmask(how, &new_set, NULL);
3028 if (error)
3029 return error;
3030 }
3031
3032 if (oset) {
3033 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3034 return -EFAULT;
3035 }
3036
3037 return 0;
3038 }
3039
3040 #ifdef CONFIG_COMPAT
3041 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3042 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3043 {
3044 sigset_t old_set = current->blocked;
3045
3046 /* XXX: Don't preclude handling different sized sigset_t's. */
3047 if (sigsetsize != sizeof(sigset_t))
3048 return -EINVAL;
3049
3050 if (nset) {
3051 sigset_t new_set;
3052 int error;
3053 if (get_compat_sigset(&new_set, nset))
3054 return -EFAULT;
3055 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3056
3057 error = sigprocmask(how, &new_set, NULL);
3058 if (error)
3059 return error;
3060 }
3061 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3062 }
3063 #endif
3064
3065 static void do_sigpending(sigset_t *set)
3066 {
3067 spin_lock_irq(&current->sighand->siglock);
3068 sigorsets(set, &current->pending.signal,
3069 &current->signal->shared_pending.signal);
3070 spin_unlock_irq(&current->sighand->siglock);
3071
3072 /* Outside the lock because only this thread touches it. */
3073 sigandsets(set, &current->blocked, set);
3074 }
3075
3076 /**
3077 * sys_rt_sigpending - examine a pending signal that has been raised
3078 * while blocked
3079 * @uset: stores pending signals
3080 * @sigsetsize: size of sigset_t type or larger
3081 */
3082 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3083 {
3084 sigset_t set;
3085
3086 if (sigsetsize > sizeof(*uset))
3087 return -EINVAL;
3088
3089 do_sigpending(&set);
3090
3091 if (copy_to_user(uset, &set, sigsetsize))
3092 return -EFAULT;
3093
3094 return 0;
3095 }
3096
3097 #ifdef CONFIG_COMPAT
3098 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3099 compat_size_t, sigsetsize)
3100 {
3101 sigset_t set;
3102
3103 if (sigsetsize > sizeof(*uset))
3104 return -EINVAL;
3105
3106 do_sigpending(&set);
3107
3108 return put_compat_sigset(uset, &set, sigsetsize);
3109 }
3110 #endif
3111
3112 static const struct {
3113 unsigned char limit, layout;
3114 } sig_sicodes[] = {
3115 [SIGILL] = { NSIGILL, SIL_FAULT },
3116 [SIGFPE] = { NSIGFPE, SIL_FAULT },
3117 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3118 [SIGBUS] = { NSIGBUS, SIL_FAULT },
3119 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3120 #if defined(SIGEMT)
3121 [SIGEMT] = { NSIGEMT, SIL_FAULT },
3122 #endif
3123 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3124 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
3125 [SIGSYS] = { NSIGSYS, SIL_SYS },
3126 };
3127
3128 static bool known_siginfo_layout(unsigned sig, int si_code)
3129 {
3130 if (si_code == SI_KERNEL)
3131 return true;
3132 else if ((si_code > SI_USER)) {
3133 if (sig_specific_sicodes(sig)) {
3134 if (si_code <= sig_sicodes[sig].limit)
3135 return true;
3136 }
3137 else if (si_code <= NSIGPOLL)
3138 return true;
3139 }
3140 else if (si_code >= SI_DETHREAD)
3141 return true;
3142 else if (si_code == SI_ASYNCNL)
3143 return true;
3144 return false;
3145 }
3146
3147 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3148 {
3149 enum siginfo_layout layout = SIL_KILL;
3150 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3151 if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3152 (si_code <= sig_sicodes[sig].limit)) {
3153 layout = sig_sicodes[sig].layout;
3154 /* Handle the exceptions */
3155 if ((sig == SIGBUS) &&
3156 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3157 layout = SIL_FAULT_MCEERR;
3158 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3159 layout = SIL_FAULT_BNDERR;
3160 #ifdef SEGV_PKUERR
3161 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3162 layout = SIL_FAULT_PKUERR;
3163 #endif
3164 }
3165 else if (si_code <= NSIGPOLL)
3166 layout = SIL_POLL;
3167 } else {
3168 if (si_code == SI_TIMER)
3169 layout = SIL_TIMER;
3170 else if (si_code == SI_SIGIO)
3171 layout = SIL_POLL;
3172 else if (si_code < 0)
3173 layout = SIL_RT;
3174 }
3175 return layout;
3176 }
3177
3178 static inline char __user *si_expansion(const siginfo_t __user *info)
3179 {
3180 return ((char __user *)info) + sizeof(struct kernel_siginfo);
3181 }
3182
3183 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3184 {
3185 char __user *expansion = si_expansion(to);
3186 if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3187 return -EFAULT;
3188 if (clear_user(expansion, SI_EXPANSION_SIZE))
3189 return -EFAULT;
3190 return 0;
3191 }
3192
3193 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3194 const siginfo_t __user *from)
3195 {
3196 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3197 char __user *expansion = si_expansion(from);
3198 char buf[SI_EXPANSION_SIZE];
3199 int i;
3200 /*
3201 * An unknown si_code might need more than
3202 * sizeof(struct kernel_siginfo) bytes. Verify all of the
3203 * extra bytes are 0. This guarantees copy_siginfo_to_user
3204 * will return this data to userspace exactly.
3205 */
3206 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3207 return -EFAULT;
3208 for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3209 if (buf[i] != 0)
3210 return -E2BIG;
3211 }
3212 }
3213 return 0;
3214 }
3215
3216 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3217 const siginfo_t __user *from)
3218 {
3219 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3220 return -EFAULT;
3221 to->si_signo = signo;
3222 return post_copy_siginfo_from_user(to, from);
3223 }
3224
3225 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3226 {
3227 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3228 return -EFAULT;
3229 return post_copy_siginfo_from_user(to, from);
3230 }
3231
3232 #ifdef CONFIG_COMPAT
3233 int copy_siginfo_to_user32(struct compat_siginfo __user *to,
3234 const struct kernel_siginfo *from)
3235 #if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
3236 {
3237 return __copy_siginfo_to_user32(to, from, in_x32_syscall());
3238 }
3239 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3240 const struct kernel_siginfo *from, bool x32_ABI)
3241 #endif
3242 {
3243 struct compat_siginfo new;
3244 memset(&new, 0, sizeof(new));
3245
3246 new.si_signo = from->si_signo;
3247 new.si_errno = from->si_errno;
3248 new.si_code = from->si_code;
3249 switch(siginfo_layout(from->si_signo, from->si_code)) {
3250 case SIL_KILL:
3251 new.si_pid = from->si_pid;
3252 new.si_uid = from->si_uid;
3253 break;
3254 case SIL_TIMER:
3255 new.si_tid = from->si_tid;
3256 new.si_overrun = from->si_overrun;
3257 new.si_int = from->si_int;
3258 break;
3259 case SIL_POLL:
3260 new.si_band = from->si_band;
3261 new.si_fd = from->si_fd;
3262 break;
3263 case SIL_FAULT:
3264 new.si_addr = ptr_to_compat(from->si_addr);
3265 #ifdef __ARCH_SI_TRAPNO
3266 new.si_trapno = from->si_trapno;
3267 #endif
3268 break;
3269 case SIL_FAULT_MCEERR:
3270 new.si_addr = ptr_to_compat(from->si_addr);
3271 #ifdef __ARCH_SI_TRAPNO
3272 new.si_trapno = from->si_trapno;
3273 #endif
3274 new.si_addr_lsb = from->si_addr_lsb;
3275 break;
3276 case SIL_FAULT_BNDERR:
3277 new.si_addr = ptr_to_compat(from->si_addr);
3278 #ifdef __ARCH_SI_TRAPNO
3279 new.si_trapno = from->si_trapno;
3280 #endif
3281 new.si_lower = ptr_to_compat(from->si_lower);
3282 new.si_upper = ptr_to_compat(from->si_upper);
3283 break;
3284 case SIL_FAULT_PKUERR:
3285 new.si_addr = ptr_to_compat(from->si_addr);
3286 #ifdef __ARCH_SI_TRAPNO
3287 new.si_trapno = from->si_trapno;
3288 #endif
3289 new.si_pkey = from->si_pkey;
3290 break;
3291 case SIL_CHLD:
3292 new.si_pid = from->si_pid;
3293 new.si_uid = from->si_uid;
3294 new.si_status = from->si_status;
3295 #ifdef CONFIG_X86_X32_ABI
3296 if (x32_ABI) {
3297 new._sifields._sigchld_x32._utime = from->si_utime;
3298 new._sifields._sigchld_x32._stime = from->si_stime;
3299 } else
3300 #endif
3301 {
3302 new.si_utime = from->si_utime;
3303 new.si_stime = from->si_stime;
3304 }
3305 break;
3306 case SIL_RT:
3307 new.si_pid = from->si_pid;
3308 new.si_uid = from->si_uid;
3309 new.si_int = from->si_int;
3310 break;
3311 case SIL_SYS:
3312 new.si_call_addr = ptr_to_compat(from->si_call_addr);
3313 new.si_syscall = from->si_syscall;
3314 new.si_arch = from->si_arch;
3315 break;
3316 }
3317
3318 if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3319 return -EFAULT;
3320
3321 return 0;
3322 }
3323
3324 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3325 const struct compat_siginfo *from)
3326 {
3327 clear_siginfo(to);
3328 to->si_signo = from->si_signo;
3329 to->si_errno = from->si_errno;
3330 to->si_code = from->si_code;
3331 switch(siginfo_layout(from->si_signo, from->si_code)) {
3332 case SIL_KILL:
3333 to->si_pid = from->si_pid;
3334 to->si_uid = from->si_uid;
3335 break;
3336 case SIL_TIMER:
3337 to->si_tid = from->si_tid;
3338 to->si_overrun = from->si_overrun;
3339 to->si_int = from->si_int;
3340 break;
3341 case SIL_POLL:
3342 to->si_band = from->si_band;
3343 to->si_fd = from->si_fd;
3344 break;
3345 case SIL_FAULT:
3346 to->si_addr = compat_ptr(from->si_addr);
3347 #ifdef __ARCH_SI_TRAPNO
3348 to->si_trapno = from->si_trapno;
3349 #endif
3350 break;
3351 case SIL_FAULT_MCEERR:
3352 to->si_addr = compat_ptr(from->si_addr);
3353 #ifdef __ARCH_SI_TRAPNO
3354 to->si_trapno = from->si_trapno;
3355 #endif
3356 to->si_addr_lsb = from->si_addr_lsb;
3357 break;
3358 case SIL_FAULT_BNDERR:
3359 to->si_addr = compat_ptr(from->si_addr);
3360 #ifdef __ARCH_SI_TRAPNO
3361 to->si_trapno = from->si_trapno;
3362 #endif
3363 to->si_lower = compat_ptr(from->si_lower);
3364 to->si_upper = compat_ptr(from->si_upper);
3365 break;
3366 case SIL_FAULT_PKUERR:
3367 to->si_addr = compat_ptr(from->si_addr);
3368 #ifdef __ARCH_SI_TRAPNO
3369 to->si_trapno = from->si_trapno;
3370 #endif
3371 to->si_pkey = from->si_pkey;
3372 break;
3373 case SIL_CHLD:
3374 to->si_pid = from->si_pid;
3375 to->si_uid = from->si_uid;
3376 to->si_status = from->si_status;
3377 #ifdef CONFIG_X86_X32_ABI
3378 if (in_x32_syscall()) {
3379 to->si_utime = from->_sifields._sigchld_x32._utime;
3380 to->si_stime = from->_sifields._sigchld_x32._stime;
3381 } else
3382 #endif
3383 {
3384 to->si_utime = from->si_utime;
3385 to->si_stime = from->si_stime;
3386 }
3387 break;
3388 case SIL_RT:
3389 to->si_pid = from->si_pid;
3390 to->si_uid = from->si_uid;
3391 to->si_int = from->si_int;
3392 break;
3393 case SIL_SYS:
3394 to->si_call_addr = compat_ptr(from->si_call_addr);
3395 to->si_syscall = from->si_syscall;
3396 to->si_arch = from->si_arch;
3397 break;
3398 }
3399 return 0;
3400 }
3401
3402 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3403 const struct compat_siginfo __user *ufrom)
3404 {
3405 struct compat_siginfo from;
3406
3407 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3408 return -EFAULT;
3409
3410 from.si_signo = signo;
3411 return post_copy_siginfo_from_user32(to, &from);
3412 }
3413
3414 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3415 const struct compat_siginfo __user *ufrom)
3416 {
3417 struct compat_siginfo from;
3418
3419 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3420 return -EFAULT;
3421
3422 return post_copy_siginfo_from_user32(to, &from);
3423 }
3424 #endif /* CONFIG_COMPAT */
3425
3426 /**
3427 * do_sigtimedwait - wait for queued signals specified in @which
3428 * @which: queued signals to wait for
3429 * @info: if non-null, the signal's siginfo is returned here
3430 * @ts: upper bound on process time suspension
3431 */
3432 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3433 const struct timespec64 *ts)
3434 {
3435 ktime_t *to = NULL, timeout = KTIME_MAX;
3436 struct task_struct *tsk = current;
3437 sigset_t mask = *which;
3438 int sig, ret = 0;
3439
3440 if (ts) {
3441 if (!timespec64_valid(ts))
3442 return -EINVAL;
3443 timeout = timespec64_to_ktime(*ts);
3444 to = &timeout;
3445 }
3446
3447 /*
3448 * Invert the set of allowed signals to get those we want to block.
3449 */
3450 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3451 signotset(&mask);
3452
3453 spin_lock_irq(&tsk->sighand->siglock);
3454 sig = dequeue_signal(tsk, &mask, info);
3455 if (!sig && timeout) {
3456 /*
3457 * None ready, temporarily unblock those we're interested
3458 * while we are sleeping in so that we'll be awakened when
3459 * they arrive. Unblocking is always fine, we can avoid
3460 * set_current_blocked().
3461 */
3462 tsk->real_blocked = tsk->blocked;
3463 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3464 recalc_sigpending();
3465 spin_unlock_irq(&tsk->sighand->siglock);
3466
3467 __set_current_state(TASK_INTERRUPTIBLE);
3468 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3469 HRTIMER_MODE_REL);
3470 spin_lock_irq(&tsk->sighand->siglock);
3471 __set_task_blocked(tsk, &tsk->real_blocked);
3472 sigemptyset(&tsk->real_blocked);
3473 sig = dequeue_signal(tsk, &mask, info);
3474 }
3475 spin_unlock_irq(&tsk->sighand->siglock);
3476
3477 if (sig)
3478 return sig;
3479 return ret ? -EINTR : -EAGAIN;
3480 }
3481
3482 /**
3483 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3484 * in @uthese
3485 * @uthese: queued signals to wait for
3486 * @uinfo: if non-null, the signal's siginfo is returned here
3487 * @uts: upper bound on process time suspension
3488 * @sigsetsize: size of sigset_t type
3489 */
3490 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3491 siginfo_t __user *, uinfo,
3492 const struct __kernel_timespec __user *, uts,
3493 size_t, sigsetsize)
3494 {
3495 sigset_t these;
3496 struct timespec64 ts;
3497 kernel_siginfo_t info;
3498 int ret;
3499
3500 /* XXX: Don't preclude handling different sized sigset_t's. */
3501 if (sigsetsize != sizeof(sigset_t))
3502 return -EINVAL;
3503
3504 if (copy_from_user(&these, uthese, sizeof(these)))
3505 return -EFAULT;
3506
3507 if (uts) {
3508 if (get_timespec64(&ts, uts))
3509 return -EFAULT;
3510 }
3511
3512 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3513
3514 if (ret > 0 && uinfo) {
3515 if (copy_siginfo_to_user(uinfo, &info))
3516 ret = -EFAULT;
3517 }
3518
3519 return ret;
3520 }
3521
3522 #ifdef CONFIG_COMPAT_32BIT_TIME
3523 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3524 siginfo_t __user *, uinfo,
3525 const struct old_timespec32 __user *, uts,
3526 size_t, sigsetsize)
3527 {
3528 sigset_t these;
3529 struct timespec64 ts;
3530 kernel_siginfo_t info;
3531 int ret;
3532
3533 if (sigsetsize != sizeof(sigset_t))
3534 return -EINVAL;
3535
3536 if (copy_from_user(&these, uthese, sizeof(these)))
3537 return -EFAULT;
3538
3539 if (uts) {
3540 if (get_old_timespec32(&ts, uts))
3541 return -EFAULT;
3542 }
3543
3544 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3545
3546 if (ret > 0 && uinfo) {
3547 if (copy_siginfo_to_user(uinfo, &info))
3548 ret = -EFAULT;
3549 }
3550
3551 return ret;
3552 }
3553 #endif
3554
3555 #ifdef CONFIG_COMPAT
3556 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3557 struct compat_siginfo __user *, uinfo,
3558 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3559 {
3560 sigset_t s;
3561 struct timespec64 t;
3562 kernel_siginfo_t info;
3563 long ret;
3564
3565 if (sigsetsize != sizeof(sigset_t))
3566 return -EINVAL;
3567
3568 if (get_compat_sigset(&s, uthese))
3569 return -EFAULT;
3570
3571 if (uts) {
3572 if (get_timespec64(&t, uts))
3573 return -EFAULT;
3574 }
3575
3576 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3577
3578 if (ret > 0 && uinfo) {
3579 if (copy_siginfo_to_user32(uinfo, &info))
3580 ret = -EFAULT;
3581 }
3582
3583 return ret;
3584 }
3585
3586 #ifdef CONFIG_COMPAT_32BIT_TIME
3587 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3588 struct compat_siginfo __user *, uinfo,
3589 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3590 {
3591 sigset_t s;
3592 struct timespec64 t;
3593 kernel_siginfo_t info;
3594 long ret;
3595
3596 if (sigsetsize != sizeof(sigset_t))
3597 return -EINVAL;
3598
3599 if (get_compat_sigset(&s, uthese))
3600 return -EFAULT;
3601
3602 if (uts) {
3603 if (get_old_timespec32(&t, uts))
3604 return -EFAULT;
3605 }
3606
3607 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3608
3609 if (ret > 0 && uinfo) {
3610 if (copy_siginfo_to_user32(uinfo, &info))
3611 ret = -EFAULT;
3612 }
3613
3614 return ret;
3615 }
3616 #endif
3617 #endif
3618
3619 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3620 {
3621 clear_siginfo(info);
3622 info->si_signo = sig;
3623 info->si_errno = 0;
3624 info->si_code = SI_USER;
3625 info->si_pid = task_tgid_vnr(current);
3626 info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3627 }
3628
3629 /**
3630 * sys_kill - send a signal to a process
3631 * @pid: the PID of the process
3632 * @sig: signal to be sent
3633 */
3634 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3635 {
3636 struct kernel_siginfo info;
3637
3638 prepare_kill_siginfo(sig, &info);
3639
3640 return kill_something_info(sig, &info, pid);
3641 }
3642
3643 /*
3644 * Verify that the signaler and signalee either are in the same pid namespace
3645 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3646 * namespace.
3647 */
3648 static bool access_pidfd_pidns(struct pid *pid)
3649 {
3650 struct pid_namespace *active = task_active_pid_ns(current);
3651 struct pid_namespace *p = ns_of_pid(pid);
3652
3653 for (;;) {
3654 if (!p)
3655 return false;
3656 if (p == active)
3657 break;
3658 p = p->parent;
3659 }
3660
3661 return true;
3662 }
3663
3664 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info)
3665 {
3666 #ifdef CONFIG_COMPAT
3667 /*
3668 * Avoid hooking up compat syscalls and instead handle necessary
3669 * conversions here. Note, this is a stop-gap measure and should not be
3670 * considered a generic solution.
3671 */
3672 if (in_compat_syscall())
3673 return copy_siginfo_from_user32(
3674 kinfo, (struct compat_siginfo __user *)info);
3675 #endif
3676 return copy_siginfo_from_user(kinfo, info);
3677 }
3678
3679 static struct pid *pidfd_to_pid(const struct file *file)
3680 {
3681 if (file->f_op == &pidfd_fops)
3682 return file->private_data;
3683
3684 return tgid_pidfd_to_pid(file);
3685 }
3686
3687 /**
3688 * sys_pidfd_send_signal - Signal a process through a pidfd
3689 * @pidfd: file descriptor of the process
3690 * @sig: signal to send
3691 * @info: signal info
3692 * @flags: future flags
3693 *
3694 * The syscall currently only signals via PIDTYPE_PID which covers
3695 * kill(<positive-pid>, <signal>. It does not signal threads or process
3696 * groups.
3697 * In order to extend the syscall to threads and process groups the @flags
3698 * argument should be used. In essence, the @flags argument will determine
3699 * what is signaled and not the file descriptor itself. Put in other words,
3700 * grouping is a property of the flags argument not a property of the file
3701 * descriptor.
3702 *
3703 * Return: 0 on success, negative errno on failure
3704 */
3705 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3706 siginfo_t __user *, info, unsigned int, flags)
3707 {
3708 int ret;
3709 struct fd f;
3710 struct pid *pid;
3711 kernel_siginfo_t kinfo;
3712
3713 /* Enforce flags be set to 0 until we add an extension. */
3714 if (flags)
3715 return -EINVAL;
3716
3717 f = fdget(pidfd);
3718 if (!f.file)
3719 return -EBADF;
3720
3721 /* Is this a pidfd? */
3722 pid = pidfd_to_pid(f.file);
3723 if (IS_ERR(pid)) {
3724 ret = PTR_ERR(pid);
3725 goto err;
3726 }
3727
3728 ret = -EINVAL;
3729 if (!access_pidfd_pidns(pid))
3730 goto err;
3731
3732 if (info) {
3733 ret = copy_siginfo_from_user_any(&kinfo, info);
3734 if (unlikely(ret))
3735 goto err;
3736
3737 ret = -EINVAL;
3738 if (unlikely(sig != kinfo.si_signo))
3739 goto err;
3740
3741 /* Only allow sending arbitrary signals to yourself. */
3742 ret = -EPERM;
3743 if ((task_pid(current) != pid) &&
3744 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3745 goto err;
3746 } else {
3747 prepare_kill_siginfo(sig, &kinfo);
3748 }
3749
3750 ret = kill_pid_info(sig, &kinfo, pid);
3751
3752 err:
3753 fdput(f);
3754 return ret;
3755 }
3756
3757 static int
3758 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3759 {
3760 struct task_struct *p;
3761 int error = -ESRCH;
3762
3763 rcu_read_lock();
3764 p = find_task_by_vpid(pid);
3765 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3766 error = check_kill_permission(sig, info, p);
3767 /*
3768 * The null signal is a permissions and process existence
3769 * probe. No signal is actually delivered.
3770 */
3771 if (!error && sig) {
3772 error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3773 /*
3774 * If lock_task_sighand() failed we pretend the task
3775 * dies after receiving the signal. The window is tiny,
3776 * and the signal is private anyway.
3777 */
3778 if (unlikely(error == -ESRCH))
3779 error = 0;
3780 }
3781 }
3782 rcu_read_unlock();
3783
3784 return error;
3785 }
3786
3787 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3788 {
3789 struct kernel_siginfo info;
3790
3791 clear_siginfo(&info);
3792 info.si_signo = sig;
3793 info.si_errno = 0;
3794 info.si_code = SI_TKILL;
3795 info.si_pid = task_tgid_vnr(current);
3796 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3797
3798 return do_send_specific(tgid, pid, sig, &info);
3799 }
3800
3801 /**
3802 * sys_tgkill - send signal to one specific thread
3803 * @tgid: the thread group ID of the thread
3804 * @pid: the PID of the thread
3805 * @sig: signal to be sent
3806 *
3807 * This syscall also checks the @tgid and returns -ESRCH even if the PID
3808 * exists but it's not belonging to the target process anymore. This
3809 * method solves the problem of threads exiting and PIDs getting reused.
3810 */
3811 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3812 {
3813 /* This is only valid for single tasks */
3814 if (pid <= 0 || tgid <= 0)
3815 return -EINVAL;
3816
3817 return do_tkill(tgid, pid, sig);
3818 }
3819
3820 /**
3821 * sys_tkill - send signal to one specific task
3822 * @pid: the PID of the task
3823 * @sig: signal to be sent
3824 *
3825 * Send a signal to only one task, even if it's a CLONE_THREAD task.
3826 */
3827 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3828 {
3829 /* This is only valid for single tasks */
3830 if (pid <= 0)
3831 return -EINVAL;
3832
3833 return do_tkill(0, pid, sig);
3834 }
3835
3836 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3837 {
3838 /* Not even root can pretend to send signals from the kernel.
3839 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3840 */
3841 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3842 (task_pid_vnr(current) != pid))
3843 return -EPERM;
3844
3845 /* POSIX.1b doesn't mention process groups. */
3846 return kill_proc_info(sig, info, pid);
3847 }
3848
3849 /**
3850 * sys_rt_sigqueueinfo - send signal information to a signal
3851 * @pid: the PID of the thread
3852 * @sig: signal to be sent
3853 * @uinfo: signal info to be sent
3854 */
3855 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3856 siginfo_t __user *, uinfo)
3857 {
3858 kernel_siginfo_t info;
3859 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3860 if (unlikely(ret))
3861 return ret;
3862 return do_rt_sigqueueinfo(pid, sig, &info);
3863 }
3864
3865 #ifdef CONFIG_COMPAT
3866 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3867 compat_pid_t, pid,
3868 int, sig,
3869 struct compat_siginfo __user *, uinfo)
3870 {
3871 kernel_siginfo_t info;
3872 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3873 if (unlikely(ret))
3874 return ret;
3875 return do_rt_sigqueueinfo(pid, sig, &info);
3876 }
3877 #endif
3878
3879 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3880 {
3881 /* This is only valid for single tasks */
3882 if (pid <= 0 || tgid <= 0)
3883 return -EINVAL;
3884
3885 /* Not even root can pretend to send signals from the kernel.
3886 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3887 */
3888 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3889 (task_pid_vnr(current) != pid))
3890 return -EPERM;
3891
3892 return do_send_specific(tgid, pid, sig, info);
3893 }
3894
3895 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3896 siginfo_t __user *, uinfo)
3897 {
3898 kernel_siginfo_t info;
3899 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3900 if (unlikely(ret))
3901 return ret;
3902 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3903 }
3904
3905 #ifdef CONFIG_COMPAT
3906 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3907 compat_pid_t, tgid,
3908 compat_pid_t, pid,
3909 int, sig,
3910 struct compat_siginfo __user *, uinfo)
3911 {
3912 kernel_siginfo_t info;
3913 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3914 if (unlikely(ret))
3915 return ret;
3916 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3917 }
3918 #endif
3919
3920 /*
3921 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3922 */
3923 void kernel_sigaction(int sig, __sighandler_t action)
3924 {
3925 spin_lock_irq(&current->sighand->siglock);
3926 current->sighand->action[sig - 1].sa.sa_handler = action;
3927 if (action == SIG_IGN) {
3928 sigset_t mask;
3929
3930 sigemptyset(&mask);
3931 sigaddset(&mask, sig);
3932
3933 flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3934 flush_sigqueue_mask(&mask, &current->pending);
3935 recalc_sigpending();
3936 }
3937 spin_unlock_irq(&current->sighand->siglock);
3938 }
3939 EXPORT_SYMBOL(kernel_sigaction);
3940
3941 void __weak sigaction_compat_abi(struct k_sigaction *act,
3942 struct k_sigaction *oact)
3943 {
3944 }
3945
3946 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3947 {
3948 struct task_struct *p = current, *t;
3949 struct k_sigaction *k;
3950 sigset_t mask;
3951
3952 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3953 return -EINVAL;
3954
3955 k = &p->sighand->action[sig-1];
3956
3957 spin_lock_irq(&p->sighand->siglock);
3958 if (oact)
3959 *oact = *k;
3960
3961 sigaction_compat_abi(act, oact);
3962
3963 if (act) {
3964 sigdelsetmask(&act->sa.sa_mask,
3965 sigmask(SIGKILL) | sigmask(SIGSTOP));
3966 *k = *act;
3967 /*
3968 * POSIX 3.3.1.3:
3969 * "Setting a signal action to SIG_IGN for a signal that is
3970 * pending shall cause the pending signal to be discarded,
3971 * whether or not it is blocked."
3972 *
3973 * "Setting a signal action to SIG_DFL for a signal that is
3974 * pending and whose default action is to ignore the signal
3975 * (for example, SIGCHLD), shall cause the pending signal to
3976 * be discarded, whether or not it is blocked"
3977 */
3978 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3979 sigemptyset(&mask);
3980 sigaddset(&mask, sig);
3981 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3982 for_each_thread(p, t)
3983 flush_sigqueue_mask(&mask, &t->pending);
3984 }
3985 }
3986
3987 spin_unlock_irq(&p->sighand->siglock);
3988 return 0;
3989 }
3990
3991 static int
3992 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
3993 size_t min_ss_size)
3994 {
3995 struct task_struct *t = current;
3996
3997 if (oss) {
3998 memset(oss, 0, sizeof(stack_t));
3999 oss->ss_sp = (void __user *) t->sas_ss_sp;
4000 oss->ss_size = t->sas_ss_size;
4001 oss->ss_flags = sas_ss_flags(sp) |
4002 (current->sas_ss_flags & SS_FLAG_BITS);
4003 }
4004
4005 if (ss) {
4006 void __user *ss_sp = ss->ss_sp;
4007 size_t ss_size = ss->ss_size;
4008 unsigned ss_flags = ss->ss_flags;
4009 int ss_mode;
4010
4011 if (unlikely(on_sig_stack(sp)))
4012 return -EPERM;
4013
4014 ss_mode = ss_flags & ~SS_FLAG_BITS;
4015 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4016 ss_mode != 0))
4017 return -EINVAL;
4018
4019 if (ss_mode == SS_DISABLE) {
4020 ss_size = 0;
4021 ss_sp = NULL;
4022 } else {
4023 if (unlikely(ss_size < min_ss_size))
4024 return -ENOMEM;
4025 }
4026
4027 t->sas_ss_sp = (unsigned long) ss_sp;
4028 t->sas_ss_size = ss_size;
4029 t->sas_ss_flags = ss_flags;
4030 }
4031 return 0;
4032 }
4033
4034 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4035 {
4036 stack_t new, old;
4037 int err;
4038 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4039 return -EFAULT;
4040 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4041 current_user_stack_pointer(),
4042 MINSIGSTKSZ);
4043 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4044 err = -EFAULT;
4045 return err;
4046 }
4047
4048 int restore_altstack(const stack_t __user *uss)
4049 {
4050 stack_t new;
4051 if (copy_from_user(&new, uss, sizeof(stack_t)))
4052 return -EFAULT;
4053 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4054 MINSIGSTKSZ);
4055 /* squash all but EFAULT for now */
4056 return 0;
4057 }
4058
4059 int __save_altstack(stack_t __user *uss, unsigned long sp)
4060 {
4061 struct task_struct *t = current;
4062 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4063 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4064 __put_user(t->sas_ss_size, &uss->ss_size);
4065 if (err)
4066 return err;
4067 if (t->sas_ss_flags & SS_AUTODISARM)
4068 sas_ss_reset(t);
4069 return 0;
4070 }
4071
4072 #ifdef CONFIG_COMPAT
4073 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4074 compat_stack_t __user *uoss_ptr)
4075 {
4076 stack_t uss, uoss;
4077 int ret;
4078
4079 if (uss_ptr) {
4080 compat_stack_t uss32;
4081 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4082 return -EFAULT;
4083 uss.ss_sp = compat_ptr(uss32.ss_sp);
4084 uss.ss_flags = uss32.ss_flags;
4085 uss.ss_size = uss32.ss_size;
4086 }
4087 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4088 compat_user_stack_pointer(),
4089 COMPAT_MINSIGSTKSZ);
4090 if (ret >= 0 && uoss_ptr) {
4091 compat_stack_t old;
4092 memset(&old, 0, sizeof(old));
4093 old.ss_sp = ptr_to_compat(uoss.ss_sp);
4094 old.ss_flags = uoss.ss_flags;
4095 old.ss_size = uoss.ss_size;
4096 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4097 ret = -EFAULT;
4098 }
4099 return ret;
4100 }
4101
4102 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4103 const compat_stack_t __user *, uss_ptr,
4104 compat_stack_t __user *, uoss_ptr)
4105 {
4106 return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4107 }
4108
4109 int compat_restore_altstack(const compat_stack_t __user *uss)
4110 {
4111 int err = do_compat_sigaltstack(uss, NULL);
4112 /* squash all but -EFAULT for now */
4113 return err == -EFAULT ? err : 0;
4114 }
4115
4116 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4117 {
4118 int err;
4119 struct task_struct *t = current;
4120 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4121 &uss->ss_sp) |
4122 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4123 __put_user(t->sas_ss_size, &uss->ss_size);
4124 if (err)
4125 return err;
4126 if (t->sas_ss_flags & SS_AUTODISARM)
4127 sas_ss_reset(t);
4128 return 0;
4129 }
4130 #endif
4131
4132 #ifdef __ARCH_WANT_SYS_SIGPENDING
4133
4134 /**
4135 * sys_sigpending - examine pending signals
4136 * @uset: where mask of pending signal is returned
4137 */
4138 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4139 {
4140 sigset_t set;
4141
4142 if (sizeof(old_sigset_t) > sizeof(*uset))
4143 return -EINVAL;
4144
4145 do_sigpending(&set);
4146
4147 if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4148 return -EFAULT;
4149
4150 return 0;
4151 }
4152
4153 #ifdef CONFIG_COMPAT
4154 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4155 {
4156 sigset_t set;
4157
4158 do_sigpending(&set);
4159
4160 return put_user(set.sig[0], set32);
4161 }
4162 #endif
4163
4164 #endif
4165
4166 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4167 /**
4168 * sys_sigprocmask - examine and change blocked signals
4169 * @how: whether to add, remove, or set signals
4170 * @nset: signals to add or remove (if non-null)
4171 * @oset: previous value of signal mask if non-null
4172 *
4173 * Some platforms have their own version with special arguments;
4174 * others support only sys_rt_sigprocmask.
4175 */
4176
4177 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4178 old_sigset_t __user *, oset)
4179 {
4180 old_sigset_t old_set, new_set;
4181 sigset_t new_blocked;
4182
4183 old_set = current->blocked.sig[0];
4184
4185 if (nset) {
4186 if (copy_from_user(&new_set, nset, sizeof(*nset)))
4187 return -EFAULT;
4188
4189 new_blocked = current->blocked;
4190
4191 switch (how) {
4192 case SIG_BLOCK:
4193 sigaddsetmask(&new_blocked, new_set);
4194 break;
4195 case SIG_UNBLOCK:
4196 sigdelsetmask(&new_blocked, new_set);
4197 break;
4198 case SIG_SETMASK:
4199 new_blocked.sig[0] = new_set;
4200 break;
4201 default:
4202 return -EINVAL;
4203 }
4204
4205 set_current_blocked(&new_blocked);
4206 }
4207
4208 if (oset) {
4209 if (copy_to_user(oset, &old_set, sizeof(*oset)))
4210 return -EFAULT;
4211 }
4212
4213 return 0;
4214 }
4215 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4216
4217 #ifndef CONFIG_ODD_RT_SIGACTION
4218 /**
4219 * sys_rt_sigaction - alter an action taken by a process
4220 * @sig: signal to be sent
4221 * @act: new sigaction
4222 * @oact: used to save the previous sigaction
4223 * @sigsetsize: size of sigset_t type
4224 */
4225 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4226 const struct sigaction __user *, act,
4227 struct sigaction __user *, oact,
4228 size_t, sigsetsize)
4229 {
4230 struct k_sigaction new_sa, old_sa;
4231 int ret;
4232
4233 /* XXX: Don't preclude handling different sized sigset_t's. */
4234 if (sigsetsize != sizeof(sigset_t))
4235 return -EINVAL;
4236
4237 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4238 return -EFAULT;
4239
4240 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4241 if (ret)
4242 return ret;
4243
4244 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4245 return -EFAULT;
4246
4247 return 0;
4248 }
4249 #ifdef CONFIG_COMPAT
4250 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4251 const struct compat_sigaction __user *, act,
4252 struct compat_sigaction __user *, oact,
4253 compat_size_t, sigsetsize)
4254 {
4255 struct k_sigaction new_ka, old_ka;
4256 #ifdef __ARCH_HAS_SA_RESTORER
4257 compat_uptr_t restorer;
4258 #endif
4259 int ret;
4260
4261 /* XXX: Don't preclude handling different sized sigset_t's. */
4262 if (sigsetsize != sizeof(compat_sigset_t))
4263 return -EINVAL;
4264
4265 if (act) {
4266 compat_uptr_t handler;
4267 ret = get_user(handler, &act->sa_handler);
4268 new_ka.sa.sa_handler = compat_ptr(handler);
4269 #ifdef __ARCH_HAS_SA_RESTORER
4270 ret |= get_user(restorer, &act->sa_restorer);
4271 new_ka.sa.sa_restorer = compat_ptr(restorer);
4272 #endif
4273 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4274 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4275 if (ret)
4276 return -EFAULT;
4277 }
4278
4279 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4280 if (!ret && oact) {
4281 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4282 &oact->sa_handler);
4283 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4284 sizeof(oact->sa_mask));
4285 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4286 #ifdef __ARCH_HAS_SA_RESTORER
4287 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4288 &oact->sa_restorer);
4289 #endif
4290 }
4291 return ret;
4292 }
4293 #endif
4294 #endif /* !CONFIG_ODD_RT_SIGACTION */
4295
4296 #ifdef CONFIG_OLD_SIGACTION
4297 SYSCALL_DEFINE3(sigaction, int, sig,
4298 const struct old_sigaction __user *, act,
4299 struct old_sigaction __user *, oact)
4300 {
4301 struct k_sigaction new_ka, old_ka;
4302 int ret;
4303
4304 if (act) {
4305 old_sigset_t mask;
4306 if (!access_ok(act, sizeof(*act)) ||
4307 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4308 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4309 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4310 __get_user(mask, &act->sa_mask))
4311 return -EFAULT;
4312 #ifdef __ARCH_HAS_KA_RESTORER
4313 new_ka.ka_restorer = NULL;
4314 #endif
4315 siginitset(&new_ka.sa.sa_mask, mask);
4316 }
4317
4318 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4319
4320 if (!ret && oact) {
4321 if (!access_ok(oact, sizeof(*oact)) ||
4322 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4323 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4324 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4325 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4326 return -EFAULT;
4327 }
4328
4329 return ret;
4330 }
4331 #endif
4332 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4333 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4334 const struct compat_old_sigaction __user *, act,
4335 struct compat_old_sigaction __user *, oact)
4336 {
4337 struct k_sigaction new_ka, old_ka;
4338 int ret;
4339 compat_old_sigset_t mask;
4340 compat_uptr_t handler, restorer;
4341
4342 if (act) {
4343 if (!access_ok(act, sizeof(*act)) ||
4344 __get_user(handler, &act->sa_handler) ||
4345 __get_user(restorer, &act->sa_restorer) ||
4346 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4347 __get_user(mask, &act->sa_mask))
4348 return -EFAULT;
4349
4350 #ifdef __ARCH_HAS_KA_RESTORER
4351 new_ka.ka_restorer = NULL;
4352 #endif
4353 new_ka.sa.sa_handler = compat_ptr(handler);
4354 new_ka.sa.sa_restorer = compat_ptr(restorer);
4355 siginitset(&new_ka.sa.sa_mask, mask);
4356 }
4357
4358 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4359
4360 if (!ret && oact) {
4361 if (!access_ok(oact, sizeof(*oact)) ||
4362 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4363 &oact->sa_handler) ||
4364 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4365 &oact->sa_restorer) ||
4366 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4367 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4368 return -EFAULT;
4369 }
4370 return ret;
4371 }
4372 #endif
4373
4374 #ifdef CONFIG_SGETMASK_SYSCALL
4375
4376 /*
4377 * For backwards compatibility. Functionality superseded by sigprocmask.
4378 */
4379 SYSCALL_DEFINE0(sgetmask)
4380 {
4381 /* SMP safe */
4382 return current->blocked.sig[0];
4383 }
4384
4385 SYSCALL_DEFINE1(ssetmask, int, newmask)
4386 {
4387 int old = current->blocked.sig[0];
4388 sigset_t newset;
4389
4390 siginitset(&newset, newmask);
4391 set_current_blocked(&newset);
4392
4393 return old;
4394 }
4395 #endif /* CONFIG_SGETMASK_SYSCALL */
4396
4397 #ifdef __ARCH_WANT_SYS_SIGNAL
4398 /*
4399 * For backwards compatibility. Functionality superseded by sigaction.
4400 */
4401 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4402 {
4403 struct k_sigaction new_sa, old_sa;
4404 int ret;
4405
4406 new_sa.sa.sa_handler = handler;
4407 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4408 sigemptyset(&new_sa.sa.sa_mask);
4409
4410 ret = do_sigaction(sig, &new_sa, &old_sa);
4411
4412 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4413 }
4414 #endif /* __ARCH_WANT_SYS_SIGNAL */
4415
4416 #ifdef __ARCH_WANT_SYS_PAUSE
4417
4418 SYSCALL_DEFINE0(pause)
4419 {
4420 while (!signal_pending(current)) {
4421 __set_current_state(TASK_INTERRUPTIBLE);
4422 schedule();
4423 }
4424 return -ERESTARTNOHAND;
4425 }
4426
4427 #endif
4428
4429 static int sigsuspend(sigset_t *set)
4430 {
4431 current->saved_sigmask = current->blocked;
4432 set_current_blocked(set);
4433
4434 while (!signal_pending(current)) {
4435 __set_current_state(TASK_INTERRUPTIBLE);
4436 schedule();
4437 }
4438 set_restore_sigmask();
4439 return -ERESTARTNOHAND;
4440 }
4441
4442 /**
4443 * sys_rt_sigsuspend - replace the signal mask for a value with the
4444 * @unewset value until a signal is received
4445 * @unewset: new signal mask value
4446 * @sigsetsize: size of sigset_t type
4447 */
4448 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4449 {
4450 sigset_t newset;
4451
4452 /* XXX: Don't preclude handling different sized sigset_t's. */
4453 if (sigsetsize != sizeof(sigset_t))
4454 return -EINVAL;
4455
4456 if (copy_from_user(&newset, unewset, sizeof(newset)))
4457 return -EFAULT;
4458 return sigsuspend(&newset);
4459 }
4460
4461 #ifdef CONFIG_COMPAT
4462 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4463 {
4464 sigset_t newset;
4465
4466 /* XXX: Don't preclude handling different sized sigset_t's. */
4467 if (sigsetsize != sizeof(sigset_t))
4468 return -EINVAL;
4469
4470 if (get_compat_sigset(&newset, unewset))
4471 return -EFAULT;
4472 return sigsuspend(&newset);
4473 }
4474 #endif
4475
4476 #ifdef CONFIG_OLD_SIGSUSPEND
4477 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4478 {
4479 sigset_t blocked;
4480 siginitset(&blocked, mask);
4481 return sigsuspend(&blocked);
4482 }
4483 #endif
4484 #ifdef CONFIG_OLD_SIGSUSPEND3
4485 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4486 {
4487 sigset_t blocked;
4488 siginitset(&blocked, mask);
4489 return sigsuspend(&blocked);
4490 }
4491 #endif
4492
4493 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4494 {
4495 return NULL;
4496 }
4497
4498 static inline void siginfo_buildtime_checks(void)
4499 {
4500 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4501
4502 /* Verify the offsets in the two siginfos match */
4503 #define CHECK_OFFSET(field) \
4504 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4505
4506 /* kill */
4507 CHECK_OFFSET(si_pid);
4508 CHECK_OFFSET(si_uid);
4509
4510 /* timer */
4511 CHECK_OFFSET(si_tid);
4512 CHECK_OFFSET(si_overrun);
4513 CHECK_OFFSET(si_value);
4514
4515 /* rt */
4516 CHECK_OFFSET(si_pid);
4517 CHECK_OFFSET(si_uid);
4518 CHECK_OFFSET(si_value);
4519
4520 /* sigchld */
4521 CHECK_OFFSET(si_pid);
4522 CHECK_OFFSET(si_uid);
4523 CHECK_OFFSET(si_status);
4524 CHECK_OFFSET(si_utime);
4525 CHECK_OFFSET(si_stime);
4526
4527 /* sigfault */
4528 CHECK_OFFSET(si_addr);
4529 CHECK_OFFSET(si_addr_lsb);
4530 CHECK_OFFSET(si_lower);
4531 CHECK_OFFSET(si_upper);
4532 CHECK_OFFSET(si_pkey);
4533
4534 /* sigpoll */
4535 CHECK_OFFSET(si_band);
4536 CHECK_OFFSET(si_fd);
4537
4538 /* sigsys */
4539 CHECK_OFFSET(si_call_addr);
4540 CHECK_OFFSET(si_syscall);
4541 CHECK_OFFSET(si_arch);
4542 #undef CHECK_OFFSET
4543
4544 /* usb asyncio */
4545 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4546 offsetof(struct siginfo, si_addr));
4547 if (sizeof(int) == sizeof(void __user *)) {
4548 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4549 sizeof(void __user *));
4550 } else {
4551 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4552 sizeof_field(struct siginfo, si_uid)) !=
4553 sizeof(void __user *));
4554 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4555 offsetof(struct siginfo, si_uid));
4556 }
4557 #ifdef CONFIG_COMPAT
4558 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4559 offsetof(struct compat_siginfo, si_addr));
4560 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4561 sizeof(compat_uptr_t));
4562 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4563 sizeof_field(struct siginfo, si_pid));
4564 #endif
4565 }
4566
4567 void __init signals_init(void)
4568 {
4569 siginfo_buildtime_checks();
4570
4571 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4572 }
4573
4574 #ifdef CONFIG_KGDB_KDB
4575 #include <linux/kdb.h>
4576 /*
4577 * kdb_send_sig - Allows kdb to send signals without exposing
4578 * signal internals. This function checks if the required locks are
4579 * available before calling the main signal code, to avoid kdb
4580 * deadlocks.
4581 */
4582 void kdb_send_sig(struct task_struct *t, int sig)
4583 {
4584 static struct task_struct *kdb_prev_t;
4585 int new_t, ret;
4586 if (!spin_trylock(&t->sighand->siglock)) {
4587 kdb_printf("Can't do kill command now.\n"
4588 "The sigmask lock is held somewhere else in "
4589 "kernel, try again later\n");
4590 return;
4591 }
4592 new_t = kdb_prev_t != t;
4593 kdb_prev_t = t;
4594 if (t->state != TASK_RUNNING && new_t) {
4595 spin_unlock(&t->sighand->siglock);
4596 kdb_printf("Process is not RUNNING, sending a signal from "
4597 "kdb risks deadlock\n"
4598 "on the run queue locks. "
4599 "The signal has _not_ been sent.\n"
4600 "Reissue the kill command if you want to risk "
4601 "the deadlock.\n");
4602 return;
4603 }
4604 ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4605 spin_unlock(&t->sighand->siglock);
4606 if (ret)
4607 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4608 sig, t->pid);
4609 else
4610 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4611 }
4612 #endif /* CONFIG_KGDB_KDB */