]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/signal.c
KVM: x86: hyper-v: Allocate 'struct kvm_vcpu_hv' dynamically
[mirror_ubuntu-jammy-kernel.git] / kernel / signal.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/signal.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 *
9 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
10 * Changes to use preallocated sigqueue structures
11 * to allow signals to be sent reliably.
12 */
13
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/tracehook.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/livepatch.h>
47 #include <linux/cgroup.h>
48 #include <linux/audit.h>
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/signal.h>
52
53 #include <asm/param.h>
54 #include <linux/uaccess.h>
55 #include <asm/unistd.h>
56 #include <asm/siginfo.h>
57 #include <asm/cacheflush.h>
58
59 /*
60 * SLAB caches for signal bits.
61 */
62
63 static struct kmem_cache *sigqueue_cachep;
64
65 int print_fatal_signals __read_mostly;
66
67 static void __user *sig_handler(struct task_struct *t, int sig)
68 {
69 return t->sighand->action[sig - 1].sa.sa_handler;
70 }
71
72 static inline bool sig_handler_ignored(void __user *handler, int sig)
73 {
74 /* Is it explicitly or implicitly ignored? */
75 return handler == SIG_IGN ||
76 (handler == SIG_DFL && sig_kernel_ignore(sig));
77 }
78
79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
80 {
81 void __user *handler;
82
83 handler = sig_handler(t, sig);
84
85 /* SIGKILL and SIGSTOP may not be sent to the global init */
86 if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
87 return true;
88
89 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
90 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
91 return true;
92
93 /* Only allow kernel generated signals to this kthread */
94 if (unlikely((t->flags & PF_KTHREAD) &&
95 (handler == SIG_KTHREAD_KERNEL) && !force))
96 return true;
97
98 return sig_handler_ignored(handler, sig);
99 }
100
101 static bool sig_ignored(struct task_struct *t, int sig, bool force)
102 {
103 /*
104 * Blocked signals are never ignored, since the
105 * signal handler may change by the time it is
106 * unblocked.
107 */
108 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
109 return false;
110
111 /*
112 * Tracers may want to know about even ignored signal unless it
113 * is SIGKILL which can't be reported anyway but can be ignored
114 * by SIGNAL_UNKILLABLE task.
115 */
116 if (t->ptrace && sig != SIGKILL)
117 return false;
118
119 return sig_task_ignored(t, sig, force);
120 }
121
122 /*
123 * Re-calculate pending state from the set of locally pending
124 * signals, globally pending signals, and blocked signals.
125 */
126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
127 {
128 unsigned long ready;
129 long i;
130
131 switch (_NSIG_WORDS) {
132 default:
133 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
134 ready |= signal->sig[i] &~ blocked->sig[i];
135 break;
136
137 case 4: ready = signal->sig[3] &~ blocked->sig[3];
138 ready |= signal->sig[2] &~ blocked->sig[2];
139 ready |= signal->sig[1] &~ blocked->sig[1];
140 ready |= signal->sig[0] &~ blocked->sig[0];
141 break;
142
143 case 2: ready = signal->sig[1] &~ blocked->sig[1];
144 ready |= signal->sig[0] &~ blocked->sig[0];
145 break;
146
147 case 1: ready = signal->sig[0] &~ blocked->sig[0];
148 }
149 return ready != 0;
150 }
151
152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
153
154 static bool recalc_sigpending_tsk(struct task_struct *t)
155 {
156 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
157 PENDING(&t->pending, &t->blocked) ||
158 PENDING(&t->signal->shared_pending, &t->blocked) ||
159 cgroup_task_frozen(t)) {
160 set_tsk_thread_flag(t, TIF_SIGPENDING);
161 return true;
162 }
163
164 /*
165 * We must never clear the flag in another thread, or in current
166 * when it's possible the current syscall is returning -ERESTART*.
167 * So we don't clear it here, and only callers who know they should do.
168 */
169 return false;
170 }
171
172 /*
173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
174 * This is superfluous when called on current, the wakeup is a harmless no-op.
175 */
176 void recalc_sigpending_and_wake(struct task_struct *t)
177 {
178 if (recalc_sigpending_tsk(t))
179 signal_wake_up(t, 0);
180 }
181
182 void recalc_sigpending(void)
183 {
184 if (!recalc_sigpending_tsk(current) && !freezing(current) &&
185 !klp_patch_pending(current))
186 clear_thread_flag(TIF_SIGPENDING);
187
188 }
189 EXPORT_SYMBOL(recalc_sigpending);
190
191 void calculate_sigpending(void)
192 {
193 /* Have any signals or users of TIF_SIGPENDING been delayed
194 * until after fork?
195 */
196 spin_lock_irq(&current->sighand->siglock);
197 set_tsk_thread_flag(current, TIF_SIGPENDING);
198 recalc_sigpending();
199 spin_unlock_irq(&current->sighand->siglock);
200 }
201
202 /* Given the mask, find the first available signal that should be serviced. */
203
204 #define SYNCHRONOUS_MASK \
205 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
206 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
207
208 int next_signal(struct sigpending *pending, sigset_t *mask)
209 {
210 unsigned long i, *s, *m, x;
211 int sig = 0;
212
213 s = pending->signal.sig;
214 m = mask->sig;
215
216 /*
217 * Handle the first word specially: it contains the
218 * synchronous signals that need to be dequeued first.
219 */
220 x = *s &~ *m;
221 if (x) {
222 if (x & SYNCHRONOUS_MASK)
223 x &= SYNCHRONOUS_MASK;
224 sig = ffz(~x) + 1;
225 return sig;
226 }
227
228 switch (_NSIG_WORDS) {
229 default:
230 for (i = 1; i < _NSIG_WORDS; ++i) {
231 x = *++s &~ *++m;
232 if (!x)
233 continue;
234 sig = ffz(~x) + i*_NSIG_BPW + 1;
235 break;
236 }
237 break;
238
239 case 2:
240 x = s[1] &~ m[1];
241 if (!x)
242 break;
243 sig = ffz(~x) + _NSIG_BPW + 1;
244 break;
245
246 case 1:
247 /* Nothing to do */
248 break;
249 }
250
251 return sig;
252 }
253
254 static inline void print_dropped_signal(int sig)
255 {
256 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
257
258 if (!print_fatal_signals)
259 return;
260
261 if (!__ratelimit(&ratelimit_state))
262 return;
263
264 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
265 current->comm, current->pid, sig);
266 }
267
268 /**
269 * task_set_jobctl_pending - set jobctl pending bits
270 * @task: target task
271 * @mask: pending bits to set
272 *
273 * Clear @mask from @task->jobctl. @mask must be subset of
274 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
275 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
276 * cleared. If @task is already being killed or exiting, this function
277 * becomes noop.
278 *
279 * CONTEXT:
280 * Must be called with @task->sighand->siglock held.
281 *
282 * RETURNS:
283 * %true if @mask is set, %false if made noop because @task was dying.
284 */
285 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
286 {
287 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
288 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
289 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
290
291 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
292 return false;
293
294 if (mask & JOBCTL_STOP_SIGMASK)
295 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
296
297 task->jobctl |= mask;
298 return true;
299 }
300
301 /**
302 * task_clear_jobctl_trapping - clear jobctl trapping bit
303 * @task: target task
304 *
305 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
306 * Clear it and wake up the ptracer. Note that we don't need any further
307 * locking. @task->siglock guarantees that @task->parent points to the
308 * ptracer.
309 *
310 * CONTEXT:
311 * Must be called with @task->sighand->siglock held.
312 */
313 void task_clear_jobctl_trapping(struct task_struct *task)
314 {
315 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
316 task->jobctl &= ~JOBCTL_TRAPPING;
317 smp_mb(); /* advised by wake_up_bit() */
318 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
319 }
320 }
321
322 /**
323 * task_clear_jobctl_pending - clear jobctl pending bits
324 * @task: target task
325 * @mask: pending bits to clear
326 *
327 * Clear @mask from @task->jobctl. @mask must be subset of
328 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
329 * STOP bits are cleared together.
330 *
331 * If clearing of @mask leaves no stop or trap pending, this function calls
332 * task_clear_jobctl_trapping().
333 *
334 * CONTEXT:
335 * Must be called with @task->sighand->siglock held.
336 */
337 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
338 {
339 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
340
341 if (mask & JOBCTL_STOP_PENDING)
342 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
343
344 task->jobctl &= ~mask;
345
346 if (!(task->jobctl & JOBCTL_PENDING_MASK))
347 task_clear_jobctl_trapping(task);
348 }
349
350 /**
351 * task_participate_group_stop - participate in a group stop
352 * @task: task participating in a group stop
353 *
354 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
355 * Group stop states are cleared and the group stop count is consumed if
356 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
357 * stop, the appropriate `SIGNAL_*` flags are set.
358 *
359 * CONTEXT:
360 * Must be called with @task->sighand->siglock held.
361 *
362 * RETURNS:
363 * %true if group stop completion should be notified to the parent, %false
364 * otherwise.
365 */
366 static bool task_participate_group_stop(struct task_struct *task)
367 {
368 struct signal_struct *sig = task->signal;
369 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
370
371 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
372
373 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
374
375 if (!consume)
376 return false;
377
378 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
379 sig->group_stop_count--;
380
381 /*
382 * Tell the caller to notify completion iff we are entering into a
383 * fresh group stop. Read comment in do_signal_stop() for details.
384 */
385 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
386 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
387 return true;
388 }
389 return false;
390 }
391
392 void task_join_group_stop(struct task_struct *task)
393 {
394 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
395 struct signal_struct *sig = current->signal;
396
397 if (sig->group_stop_count) {
398 sig->group_stop_count++;
399 mask |= JOBCTL_STOP_CONSUME;
400 } else if (!(sig->flags & SIGNAL_STOP_STOPPED))
401 return;
402
403 /* Have the new thread join an on-going signal group stop */
404 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
405 }
406
407 /*
408 * allocate a new signal queue record
409 * - this may be called without locks if and only if t == current, otherwise an
410 * appropriate lock must be held to stop the target task from exiting
411 */
412 static struct sigqueue *
413 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
414 {
415 struct sigqueue *q = NULL;
416 struct user_struct *user;
417 int sigpending;
418
419 /*
420 * Protect access to @t credentials. This can go away when all
421 * callers hold rcu read lock.
422 *
423 * NOTE! A pending signal will hold on to the user refcount,
424 * and we get/put the refcount only when the sigpending count
425 * changes from/to zero.
426 */
427 rcu_read_lock();
428 user = __task_cred(t)->user;
429 sigpending = atomic_inc_return(&user->sigpending);
430 if (sigpending == 1)
431 get_uid(user);
432 rcu_read_unlock();
433
434 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
435 q = kmem_cache_alloc(sigqueue_cachep, flags);
436 } else {
437 print_dropped_signal(sig);
438 }
439
440 if (unlikely(q == NULL)) {
441 if (atomic_dec_and_test(&user->sigpending))
442 free_uid(user);
443 } else {
444 INIT_LIST_HEAD(&q->list);
445 q->flags = 0;
446 q->user = user;
447 }
448
449 return q;
450 }
451
452 static void __sigqueue_free(struct sigqueue *q)
453 {
454 if (q->flags & SIGQUEUE_PREALLOC)
455 return;
456 if (atomic_dec_and_test(&q->user->sigpending))
457 free_uid(q->user);
458 kmem_cache_free(sigqueue_cachep, q);
459 }
460
461 void flush_sigqueue(struct sigpending *queue)
462 {
463 struct sigqueue *q;
464
465 sigemptyset(&queue->signal);
466 while (!list_empty(&queue->list)) {
467 q = list_entry(queue->list.next, struct sigqueue , list);
468 list_del_init(&q->list);
469 __sigqueue_free(q);
470 }
471 }
472
473 /*
474 * Flush all pending signals for this kthread.
475 */
476 void flush_signals(struct task_struct *t)
477 {
478 unsigned long flags;
479
480 spin_lock_irqsave(&t->sighand->siglock, flags);
481 clear_tsk_thread_flag(t, TIF_SIGPENDING);
482 flush_sigqueue(&t->pending);
483 flush_sigqueue(&t->signal->shared_pending);
484 spin_unlock_irqrestore(&t->sighand->siglock, flags);
485 }
486 EXPORT_SYMBOL(flush_signals);
487
488 #ifdef CONFIG_POSIX_TIMERS
489 static void __flush_itimer_signals(struct sigpending *pending)
490 {
491 sigset_t signal, retain;
492 struct sigqueue *q, *n;
493
494 signal = pending->signal;
495 sigemptyset(&retain);
496
497 list_for_each_entry_safe(q, n, &pending->list, list) {
498 int sig = q->info.si_signo;
499
500 if (likely(q->info.si_code != SI_TIMER)) {
501 sigaddset(&retain, sig);
502 } else {
503 sigdelset(&signal, sig);
504 list_del_init(&q->list);
505 __sigqueue_free(q);
506 }
507 }
508
509 sigorsets(&pending->signal, &signal, &retain);
510 }
511
512 void flush_itimer_signals(void)
513 {
514 struct task_struct *tsk = current;
515 unsigned long flags;
516
517 spin_lock_irqsave(&tsk->sighand->siglock, flags);
518 __flush_itimer_signals(&tsk->pending);
519 __flush_itimer_signals(&tsk->signal->shared_pending);
520 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
521 }
522 #endif
523
524 void ignore_signals(struct task_struct *t)
525 {
526 int i;
527
528 for (i = 0; i < _NSIG; ++i)
529 t->sighand->action[i].sa.sa_handler = SIG_IGN;
530
531 flush_signals(t);
532 }
533
534 /*
535 * Flush all handlers for a task.
536 */
537
538 void
539 flush_signal_handlers(struct task_struct *t, int force_default)
540 {
541 int i;
542 struct k_sigaction *ka = &t->sighand->action[0];
543 for (i = _NSIG ; i != 0 ; i--) {
544 if (force_default || ka->sa.sa_handler != SIG_IGN)
545 ka->sa.sa_handler = SIG_DFL;
546 ka->sa.sa_flags = 0;
547 #ifdef __ARCH_HAS_SA_RESTORER
548 ka->sa.sa_restorer = NULL;
549 #endif
550 sigemptyset(&ka->sa.sa_mask);
551 ka++;
552 }
553 }
554
555 bool unhandled_signal(struct task_struct *tsk, int sig)
556 {
557 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
558 if (is_global_init(tsk))
559 return true;
560
561 if (handler != SIG_IGN && handler != SIG_DFL)
562 return false;
563
564 /* if ptraced, let the tracer determine */
565 return !tsk->ptrace;
566 }
567
568 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
569 bool *resched_timer)
570 {
571 struct sigqueue *q, *first = NULL;
572
573 /*
574 * Collect the siginfo appropriate to this signal. Check if
575 * there is another siginfo for the same signal.
576 */
577 list_for_each_entry(q, &list->list, list) {
578 if (q->info.si_signo == sig) {
579 if (first)
580 goto still_pending;
581 first = q;
582 }
583 }
584
585 sigdelset(&list->signal, sig);
586
587 if (first) {
588 still_pending:
589 list_del_init(&first->list);
590 copy_siginfo(info, &first->info);
591
592 *resched_timer =
593 (first->flags & SIGQUEUE_PREALLOC) &&
594 (info->si_code == SI_TIMER) &&
595 (info->si_sys_private);
596
597 __sigqueue_free(first);
598 } else {
599 /*
600 * Ok, it wasn't in the queue. This must be
601 * a fast-pathed signal or we must have been
602 * out of queue space. So zero out the info.
603 */
604 clear_siginfo(info);
605 info->si_signo = sig;
606 info->si_errno = 0;
607 info->si_code = SI_USER;
608 info->si_pid = 0;
609 info->si_uid = 0;
610 }
611 }
612
613 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
614 kernel_siginfo_t *info, bool *resched_timer)
615 {
616 int sig = next_signal(pending, mask);
617
618 if (sig)
619 collect_signal(sig, pending, info, resched_timer);
620 return sig;
621 }
622
623 /*
624 * Dequeue a signal and return the element to the caller, which is
625 * expected to free it.
626 *
627 * All callers have to hold the siglock.
628 */
629 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
630 {
631 bool resched_timer = false;
632 int signr;
633
634 /* We only dequeue private signals from ourselves, we don't let
635 * signalfd steal them
636 */
637 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
638 if (!signr) {
639 signr = __dequeue_signal(&tsk->signal->shared_pending,
640 mask, info, &resched_timer);
641 #ifdef CONFIG_POSIX_TIMERS
642 /*
643 * itimer signal ?
644 *
645 * itimers are process shared and we restart periodic
646 * itimers in the signal delivery path to prevent DoS
647 * attacks in the high resolution timer case. This is
648 * compliant with the old way of self-restarting
649 * itimers, as the SIGALRM is a legacy signal and only
650 * queued once. Changing the restart behaviour to
651 * restart the timer in the signal dequeue path is
652 * reducing the timer noise on heavy loaded !highres
653 * systems too.
654 */
655 if (unlikely(signr == SIGALRM)) {
656 struct hrtimer *tmr = &tsk->signal->real_timer;
657
658 if (!hrtimer_is_queued(tmr) &&
659 tsk->signal->it_real_incr != 0) {
660 hrtimer_forward(tmr, tmr->base->get_time(),
661 tsk->signal->it_real_incr);
662 hrtimer_restart(tmr);
663 }
664 }
665 #endif
666 }
667
668 recalc_sigpending();
669 if (!signr)
670 return 0;
671
672 if (unlikely(sig_kernel_stop(signr))) {
673 /*
674 * Set a marker that we have dequeued a stop signal. Our
675 * caller might release the siglock and then the pending
676 * stop signal it is about to process is no longer in the
677 * pending bitmasks, but must still be cleared by a SIGCONT
678 * (and overruled by a SIGKILL). So those cases clear this
679 * shared flag after we've set it. Note that this flag may
680 * remain set after the signal we return is ignored or
681 * handled. That doesn't matter because its only purpose
682 * is to alert stop-signal processing code when another
683 * processor has come along and cleared the flag.
684 */
685 current->jobctl |= JOBCTL_STOP_DEQUEUED;
686 }
687 #ifdef CONFIG_POSIX_TIMERS
688 if (resched_timer) {
689 /*
690 * Release the siglock to ensure proper locking order
691 * of timer locks outside of siglocks. Note, we leave
692 * irqs disabled here, since the posix-timers code is
693 * about to disable them again anyway.
694 */
695 spin_unlock(&tsk->sighand->siglock);
696 posixtimer_rearm(info);
697 spin_lock(&tsk->sighand->siglock);
698
699 /* Don't expose the si_sys_private value to userspace */
700 info->si_sys_private = 0;
701 }
702 #endif
703 return signr;
704 }
705 EXPORT_SYMBOL_GPL(dequeue_signal);
706
707 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
708 {
709 struct task_struct *tsk = current;
710 struct sigpending *pending = &tsk->pending;
711 struct sigqueue *q, *sync = NULL;
712
713 /*
714 * Might a synchronous signal be in the queue?
715 */
716 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
717 return 0;
718
719 /*
720 * Return the first synchronous signal in the queue.
721 */
722 list_for_each_entry(q, &pending->list, list) {
723 /* Synchronous signals have a positive si_code */
724 if ((q->info.si_code > SI_USER) &&
725 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
726 sync = q;
727 goto next;
728 }
729 }
730 return 0;
731 next:
732 /*
733 * Check if there is another siginfo for the same signal.
734 */
735 list_for_each_entry_continue(q, &pending->list, list) {
736 if (q->info.si_signo == sync->info.si_signo)
737 goto still_pending;
738 }
739
740 sigdelset(&pending->signal, sync->info.si_signo);
741 recalc_sigpending();
742 still_pending:
743 list_del_init(&sync->list);
744 copy_siginfo(info, &sync->info);
745 __sigqueue_free(sync);
746 return info->si_signo;
747 }
748
749 /*
750 * Tell a process that it has a new active signal..
751 *
752 * NOTE! we rely on the previous spin_lock to
753 * lock interrupts for us! We can only be called with
754 * "siglock" held, and the local interrupt must
755 * have been disabled when that got acquired!
756 *
757 * No need to set need_resched since signal event passing
758 * goes through ->blocked
759 */
760 void signal_wake_up_state(struct task_struct *t, unsigned int state)
761 {
762 set_tsk_thread_flag(t, TIF_SIGPENDING);
763 /*
764 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
765 * case. We don't check t->state here because there is a race with it
766 * executing another processor and just now entering stopped state.
767 * By using wake_up_state, we ensure the process will wake up and
768 * handle its death signal.
769 */
770 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
771 kick_process(t);
772 }
773
774 /*
775 * Remove signals in mask from the pending set and queue.
776 * Returns 1 if any signals were found.
777 *
778 * All callers must be holding the siglock.
779 */
780 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
781 {
782 struct sigqueue *q, *n;
783 sigset_t m;
784
785 sigandsets(&m, mask, &s->signal);
786 if (sigisemptyset(&m))
787 return;
788
789 sigandnsets(&s->signal, &s->signal, mask);
790 list_for_each_entry_safe(q, n, &s->list, list) {
791 if (sigismember(mask, q->info.si_signo)) {
792 list_del_init(&q->list);
793 __sigqueue_free(q);
794 }
795 }
796 }
797
798 static inline int is_si_special(const struct kernel_siginfo *info)
799 {
800 return info <= SEND_SIG_PRIV;
801 }
802
803 static inline bool si_fromuser(const struct kernel_siginfo *info)
804 {
805 return info == SEND_SIG_NOINFO ||
806 (!is_si_special(info) && SI_FROMUSER(info));
807 }
808
809 /*
810 * called with RCU read lock from check_kill_permission()
811 */
812 static bool kill_ok_by_cred(struct task_struct *t)
813 {
814 const struct cred *cred = current_cred();
815 const struct cred *tcred = __task_cred(t);
816
817 return uid_eq(cred->euid, tcred->suid) ||
818 uid_eq(cred->euid, tcred->uid) ||
819 uid_eq(cred->uid, tcred->suid) ||
820 uid_eq(cred->uid, tcred->uid) ||
821 ns_capable(tcred->user_ns, CAP_KILL);
822 }
823
824 /*
825 * Bad permissions for sending the signal
826 * - the caller must hold the RCU read lock
827 */
828 static int check_kill_permission(int sig, struct kernel_siginfo *info,
829 struct task_struct *t)
830 {
831 struct pid *sid;
832 int error;
833
834 if (!valid_signal(sig))
835 return -EINVAL;
836
837 if (!si_fromuser(info))
838 return 0;
839
840 error = audit_signal_info(sig, t); /* Let audit system see the signal */
841 if (error)
842 return error;
843
844 if (!same_thread_group(current, t) &&
845 !kill_ok_by_cred(t)) {
846 switch (sig) {
847 case SIGCONT:
848 sid = task_session(t);
849 /*
850 * We don't return the error if sid == NULL. The
851 * task was unhashed, the caller must notice this.
852 */
853 if (!sid || sid == task_session(current))
854 break;
855 fallthrough;
856 default:
857 return -EPERM;
858 }
859 }
860
861 return security_task_kill(t, info, sig, NULL);
862 }
863
864 /**
865 * ptrace_trap_notify - schedule trap to notify ptracer
866 * @t: tracee wanting to notify tracer
867 *
868 * This function schedules sticky ptrace trap which is cleared on the next
869 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
870 * ptracer.
871 *
872 * If @t is running, STOP trap will be taken. If trapped for STOP and
873 * ptracer is listening for events, tracee is woken up so that it can
874 * re-trap for the new event. If trapped otherwise, STOP trap will be
875 * eventually taken without returning to userland after the existing traps
876 * are finished by PTRACE_CONT.
877 *
878 * CONTEXT:
879 * Must be called with @task->sighand->siglock held.
880 */
881 static void ptrace_trap_notify(struct task_struct *t)
882 {
883 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
884 assert_spin_locked(&t->sighand->siglock);
885
886 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
887 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
888 }
889
890 /*
891 * Handle magic process-wide effects of stop/continue signals. Unlike
892 * the signal actions, these happen immediately at signal-generation
893 * time regardless of blocking, ignoring, or handling. This does the
894 * actual continuing for SIGCONT, but not the actual stopping for stop
895 * signals. The process stop is done as a signal action for SIG_DFL.
896 *
897 * Returns true if the signal should be actually delivered, otherwise
898 * it should be dropped.
899 */
900 static bool prepare_signal(int sig, struct task_struct *p, bool force)
901 {
902 struct signal_struct *signal = p->signal;
903 struct task_struct *t;
904 sigset_t flush;
905
906 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
907 if (!(signal->flags & SIGNAL_GROUP_EXIT))
908 return sig == SIGKILL;
909 /*
910 * The process is in the middle of dying, nothing to do.
911 */
912 } else if (sig_kernel_stop(sig)) {
913 /*
914 * This is a stop signal. Remove SIGCONT from all queues.
915 */
916 siginitset(&flush, sigmask(SIGCONT));
917 flush_sigqueue_mask(&flush, &signal->shared_pending);
918 for_each_thread(p, t)
919 flush_sigqueue_mask(&flush, &t->pending);
920 } else if (sig == SIGCONT) {
921 unsigned int why;
922 /*
923 * Remove all stop signals from all queues, wake all threads.
924 */
925 siginitset(&flush, SIG_KERNEL_STOP_MASK);
926 flush_sigqueue_mask(&flush, &signal->shared_pending);
927 for_each_thread(p, t) {
928 flush_sigqueue_mask(&flush, &t->pending);
929 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
930 if (likely(!(t->ptrace & PT_SEIZED)))
931 wake_up_state(t, __TASK_STOPPED);
932 else
933 ptrace_trap_notify(t);
934 }
935
936 /*
937 * Notify the parent with CLD_CONTINUED if we were stopped.
938 *
939 * If we were in the middle of a group stop, we pretend it
940 * was already finished, and then continued. Since SIGCHLD
941 * doesn't queue we report only CLD_STOPPED, as if the next
942 * CLD_CONTINUED was dropped.
943 */
944 why = 0;
945 if (signal->flags & SIGNAL_STOP_STOPPED)
946 why |= SIGNAL_CLD_CONTINUED;
947 else if (signal->group_stop_count)
948 why |= SIGNAL_CLD_STOPPED;
949
950 if (why) {
951 /*
952 * The first thread which returns from do_signal_stop()
953 * will take ->siglock, notice SIGNAL_CLD_MASK, and
954 * notify its parent. See get_signal().
955 */
956 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
957 signal->group_stop_count = 0;
958 signal->group_exit_code = 0;
959 }
960 }
961
962 return !sig_ignored(p, sig, force);
963 }
964
965 /*
966 * Test if P wants to take SIG. After we've checked all threads with this,
967 * it's equivalent to finding no threads not blocking SIG. Any threads not
968 * blocking SIG were ruled out because they are not running and already
969 * have pending signals. Such threads will dequeue from the shared queue
970 * as soon as they're available, so putting the signal on the shared queue
971 * will be equivalent to sending it to one such thread.
972 */
973 static inline bool wants_signal(int sig, struct task_struct *p)
974 {
975 if (sigismember(&p->blocked, sig))
976 return false;
977
978 if (p->flags & PF_EXITING)
979 return false;
980
981 if (sig == SIGKILL)
982 return true;
983
984 if (task_is_stopped_or_traced(p))
985 return false;
986
987 return task_curr(p) || !task_sigpending(p);
988 }
989
990 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
991 {
992 struct signal_struct *signal = p->signal;
993 struct task_struct *t;
994
995 /*
996 * Now find a thread we can wake up to take the signal off the queue.
997 *
998 * If the main thread wants the signal, it gets first crack.
999 * Probably the least surprising to the average bear.
1000 */
1001 if (wants_signal(sig, p))
1002 t = p;
1003 else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1004 /*
1005 * There is just one thread and it does not need to be woken.
1006 * It will dequeue unblocked signals before it runs again.
1007 */
1008 return;
1009 else {
1010 /*
1011 * Otherwise try to find a suitable thread.
1012 */
1013 t = signal->curr_target;
1014 while (!wants_signal(sig, t)) {
1015 t = next_thread(t);
1016 if (t == signal->curr_target)
1017 /*
1018 * No thread needs to be woken.
1019 * Any eligible threads will see
1020 * the signal in the queue soon.
1021 */
1022 return;
1023 }
1024 signal->curr_target = t;
1025 }
1026
1027 /*
1028 * Found a killable thread. If the signal will be fatal,
1029 * then start taking the whole group down immediately.
1030 */
1031 if (sig_fatal(p, sig) &&
1032 !(signal->flags & SIGNAL_GROUP_EXIT) &&
1033 !sigismember(&t->real_blocked, sig) &&
1034 (sig == SIGKILL || !p->ptrace)) {
1035 /*
1036 * This signal will be fatal to the whole group.
1037 */
1038 if (!sig_kernel_coredump(sig)) {
1039 /*
1040 * Start a group exit and wake everybody up.
1041 * This way we don't have other threads
1042 * running and doing things after a slower
1043 * thread has the fatal signal pending.
1044 */
1045 signal->flags = SIGNAL_GROUP_EXIT;
1046 signal->group_exit_code = sig;
1047 signal->group_stop_count = 0;
1048 t = p;
1049 do {
1050 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1051 sigaddset(&t->pending.signal, SIGKILL);
1052 signal_wake_up(t, 1);
1053 } while_each_thread(p, t);
1054 return;
1055 }
1056 }
1057
1058 /*
1059 * The signal is already in the shared-pending queue.
1060 * Tell the chosen thread to wake up and dequeue it.
1061 */
1062 signal_wake_up(t, sig == SIGKILL);
1063 return;
1064 }
1065
1066 static inline bool legacy_queue(struct sigpending *signals, int sig)
1067 {
1068 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1069 }
1070
1071 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1072 enum pid_type type, bool force)
1073 {
1074 struct sigpending *pending;
1075 struct sigqueue *q;
1076 int override_rlimit;
1077 int ret = 0, result;
1078
1079 assert_spin_locked(&t->sighand->siglock);
1080
1081 result = TRACE_SIGNAL_IGNORED;
1082 if (!prepare_signal(sig, t, force))
1083 goto ret;
1084
1085 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1086 /*
1087 * Short-circuit ignored signals and support queuing
1088 * exactly one non-rt signal, so that we can get more
1089 * detailed information about the cause of the signal.
1090 */
1091 result = TRACE_SIGNAL_ALREADY_PENDING;
1092 if (legacy_queue(pending, sig))
1093 goto ret;
1094
1095 result = TRACE_SIGNAL_DELIVERED;
1096 /*
1097 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1098 */
1099 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1100 goto out_set;
1101
1102 /*
1103 * Real-time signals must be queued if sent by sigqueue, or
1104 * some other real-time mechanism. It is implementation
1105 * defined whether kill() does so. We attempt to do so, on
1106 * the principle of least surprise, but since kill is not
1107 * allowed to fail with EAGAIN when low on memory we just
1108 * make sure at least one signal gets delivered and don't
1109 * pass on the info struct.
1110 */
1111 if (sig < SIGRTMIN)
1112 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1113 else
1114 override_rlimit = 0;
1115
1116 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1117 if (q) {
1118 list_add_tail(&q->list, &pending->list);
1119 switch ((unsigned long) info) {
1120 case (unsigned long) SEND_SIG_NOINFO:
1121 clear_siginfo(&q->info);
1122 q->info.si_signo = sig;
1123 q->info.si_errno = 0;
1124 q->info.si_code = SI_USER;
1125 q->info.si_pid = task_tgid_nr_ns(current,
1126 task_active_pid_ns(t));
1127 rcu_read_lock();
1128 q->info.si_uid =
1129 from_kuid_munged(task_cred_xxx(t, user_ns),
1130 current_uid());
1131 rcu_read_unlock();
1132 break;
1133 case (unsigned long) SEND_SIG_PRIV:
1134 clear_siginfo(&q->info);
1135 q->info.si_signo = sig;
1136 q->info.si_errno = 0;
1137 q->info.si_code = SI_KERNEL;
1138 q->info.si_pid = 0;
1139 q->info.si_uid = 0;
1140 break;
1141 default:
1142 copy_siginfo(&q->info, info);
1143 break;
1144 }
1145 } else if (!is_si_special(info) &&
1146 sig >= SIGRTMIN && info->si_code != SI_USER) {
1147 /*
1148 * Queue overflow, abort. We may abort if the
1149 * signal was rt and sent by user using something
1150 * other than kill().
1151 */
1152 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1153 ret = -EAGAIN;
1154 goto ret;
1155 } else {
1156 /*
1157 * This is a silent loss of information. We still
1158 * send the signal, but the *info bits are lost.
1159 */
1160 result = TRACE_SIGNAL_LOSE_INFO;
1161 }
1162
1163 out_set:
1164 signalfd_notify(t, sig);
1165 sigaddset(&pending->signal, sig);
1166
1167 /* Let multiprocess signals appear after on-going forks */
1168 if (type > PIDTYPE_TGID) {
1169 struct multiprocess_signals *delayed;
1170 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1171 sigset_t *signal = &delayed->signal;
1172 /* Can't queue both a stop and a continue signal */
1173 if (sig == SIGCONT)
1174 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1175 else if (sig_kernel_stop(sig))
1176 sigdelset(signal, SIGCONT);
1177 sigaddset(signal, sig);
1178 }
1179 }
1180
1181 complete_signal(sig, t, type);
1182 ret:
1183 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1184 return ret;
1185 }
1186
1187 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1188 {
1189 bool ret = false;
1190 switch (siginfo_layout(info->si_signo, info->si_code)) {
1191 case SIL_KILL:
1192 case SIL_CHLD:
1193 case SIL_RT:
1194 ret = true;
1195 break;
1196 case SIL_TIMER:
1197 case SIL_POLL:
1198 case SIL_FAULT:
1199 case SIL_FAULT_MCEERR:
1200 case SIL_FAULT_BNDERR:
1201 case SIL_FAULT_PKUERR:
1202 case SIL_SYS:
1203 ret = false;
1204 break;
1205 }
1206 return ret;
1207 }
1208
1209 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1210 enum pid_type type)
1211 {
1212 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1213 bool force = false;
1214
1215 if (info == SEND_SIG_NOINFO) {
1216 /* Force if sent from an ancestor pid namespace */
1217 force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1218 } else if (info == SEND_SIG_PRIV) {
1219 /* Don't ignore kernel generated signals */
1220 force = true;
1221 } else if (has_si_pid_and_uid(info)) {
1222 /* SIGKILL and SIGSTOP is special or has ids */
1223 struct user_namespace *t_user_ns;
1224
1225 rcu_read_lock();
1226 t_user_ns = task_cred_xxx(t, user_ns);
1227 if (current_user_ns() != t_user_ns) {
1228 kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1229 info->si_uid = from_kuid_munged(t_user_ns, uid);
1230 }
1231 rcu_read_unlock();
1232
1233 /* A kernel generated signal? */
1234 force = (info->si_code == SI_KERNEL);
1235
1236 /* From an ancestor pid namespace? */
1237 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1238 info->si_pid = 0;
1239 force = true;
1240 }
1241 }
1242 return __send_signal(sig, info, t, type, force);
1243 }
1244
1245 static void print_fatal_signal(int signr)
1246 {
1247 struct pt_regs *regs = signal_pt_regs();
1248 pr_info("potentially unexpected fatal signal %d.\n", signr);
1249
1250 #if defined(__i386__) && !defined(__arch_um__)
1251 pr_info("code at %08lx: ", regs->ip);
1252 {
1253 int i;
1254 for (i = 0; i < 16; i++) {
1255 unsigned char insn;
1256
1257 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1258 break;
1259 pr_cont("%02x ", insn);
1260 }
1261 }
1262 pr_cont("\n");
1263 #endif
1264 preempt_disable();
1265 show_regs(regs);
1266 preempt_enable();
1267 }
1268
1269 static int __init setup_print_fatal_signals(char *str)
1270 {
1271 get_option (&str, &print_fatal_signals);
1272
1273 return 1;
1274 }
1275
1276 __setup("print-fatal-signals=", setup_print_fatal_signals);
1277
1278 int
1279 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1280 {
1281 return send_signal(sig, info, p, PIDTYPE_TGID);
1282 }
1283
1284 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1285 enum pid_type type)
1286 {
1287 unsigned long flags;
1288 int ret = -ESRCH;
1289
1290 if (lock_task_sighand(p, &flags)) {
1291 ret = send_signal(sig, info, p, type);
1292 unlock_task_sighand(p, &flags);
1293 }
1294
1295 return ret;
1296 }
1297
1298 /*
1299 * Force a signal that the process can't ignore: if necessary
1300 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1301 *
1302 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1303 * since we do not want to have a signal handler that was blocked
1304 * be invoked when user space had explicitly blocked it.
1305 *
1306 * We don't want to have recursive SIGSEGV's etc, for example,
1307 * that is why we also clear SIGNAL_UNKILLABLE.
1308 */
1309 static int
1310 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
1311 {
1312 unsigned long int flags;
1313 int ret, blocked, ignored;
1314 struct k_sigaction *action;
1315 int sig = info->si_signo;
1316
1317 spin_lock_irqsave(&t->sighand->siglock, flags);
1318 action = &t->sighand->action[sig-1];
1319 ignored = action->sa.sa_handler == SIG_IGN;
1320 blocked = sigismember(&t->blocked, sig);
1321 if (blocked || ignored) {
1322 action->sa.sa_handler = SIG_DFL;
1323 if (blocked) {
1324 sigdelset(&t->blocked, sig);
1325 recalc_sigpending_and_wake(t);
1326 }
1327 }
1328 /*
1329 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1330 * debugging to leave init killable.
1331 */
1332 if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1333 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1334 ret = send_signal(sig, info, t, PIDTYPE_PID);
1335 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1336
1337 return ret;
1338 }
1339
1340 int force_sig_info(struct kernel_siginfo *info)
1341 {
1342 return force_sig_info_to_task(info, current);
1343 }
1344
1345 /*
1346 * Nuke all other threads in the group.
1347 */
1348 int zap_other_threads(struct task_struct *p)
1349 {
1350 struct task_struct *t = p;
1351 int count = 0;
1352
1353 p->signal->group_stop_count = 0;
1354
1355 while_each_thread(p, t) {
1356 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1357 count++;
1358
1359 /* Don't bother with already dead threads */
1360 if (t->exit_state)
1361 continue;
1362 sigaddset(&t->pending.signal, SIGKILL);
1363 signal_wake_up(t, 1);
1364 }
1365
1366 return count;
1367 }
1368
1369 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1370 unsigned long *flags)
1371 {
1372 struct sighand_struct *sighand;
1373
1374 rcu_read_lock();
1375 for (;;) {
1376 sighand = rcu_dereference(tsk->sighand);
1377 if (unlikely(sighand == NULL))
1378 break;
1379
1380 /*
1381 * This sighand can be already freed and even reused, but
1382 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1383 * initializes ->siglock: this slab can't go away, it has
1384 * the same object type, ->siglock can't be reinitialized.
1385 *
1386 * We need to ensure that tsk->sighand is still the same
1387 * after we take the lock, we can race with de_thread() or
1388 * __exit_signal(). In the latter case the next iteration
1389 * must see ->sighand == NULL.
1390 */
1391 spin_lock_irqsave(&sighand->siglock, *flags);
1392 if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1393 break;
1394 spin_unlock_irqrestore(&sighand->siglock, *flags);
1395 }
1396 rcu_read_unlock();
1397
1398 return sighand;
1399 }
1400
1401 /*
1402 * send signal info to all the members of a group
1403 */
1404 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1405 struct task_struct *p, enum pid_type type)
1406 {
1407 int ret;
1408
1409 rcu_read_lock();
1410 ret = check_kill_permission(sig, info, p);
1411 rcu_read_unlock();
1412
1413 if (!ret && sig)
1414 ret = do_send_sig_info(sig, info, p, type);
1415
1416 return ret;
1417 }
1418
1419 /*
1420 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1421 * control characters do (^C, ^Z etc)
1422 * - the caller must hold at least a readlock on tasklist_lock
1423 */
1424 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1425 {
1426 struct task_struct *p = NULL;
1427 int retval, success;
1428
1429 success = 0;
1430 retval = -ESRCH;
1431 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1432 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1433 success |= !err;
1434 retval = err;
1435 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1436 return success ? 0 : retval;
1437 }
1438
1439 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1440 {
1441 int error = -ESRCH;
1442 struct task_struct *p;
1443
1444 for (;;) {
1445 rcu_read_lock();
1446 p = pid_task(pid, PIDTYPE_PID);
1447 if (p)
1448 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1449 rcu_read_unlock();
1450 if (likely(!p || error != -ESRCH))
1451 return error;
1452
1453 /*
1454 * The task was unhashed in between, try again. If it
1455 * is dead, pid_task() will return NULL, if we race with
1456 * de_thread() it will find the new leader.
1457 */
1458 }
1459 }
1460
1461 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1462 {
1463 int error;
1464 rcu_read_lock();
1465 error = kill_pid_info(sig, info, find_vpid(pid));
1466 rcu_read_unlock();
1467 return error;
1468 }
1469
1470 static inline bool kill_as_cred_perm(const struct cred *cred,
1471 struct task_struct *target)
1472 {
1473 const struct cred *pcred = __task_cred(target);
1474
1475 return uid_eq(cred->euid, pcred->suid) ||
1476 uid_eq(cred->euid, pcred->uid) ||
1477 uid_eq(cred->uid, pcred->suid) ||
1478 uid_eq(cred->uid, pcred->uid);
1479 }
1480
1481 /*
1482 * The usb asyncio usage of siginfo is wrong. The glibc support
1483 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1484 * AKA after the generic fields:
1485 * kernel_pid_t si_pid;
1486 * kernel_uid32_t si_uid;
1487 * sigval_t si_value;
1488 *
1489 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1490 * after the generic fields is:
1491 * void __user *si_addr;
1492 *
1493 * This is a practical problem when there is a 64bit big endian kernel
1494 * and a 32bit userspace. As the 32bit address will encoded in the low
1495 * 32bits of the pointer. Those low 32bits will be stored at higher
1496 * address than appear in a 32 bit pointer. So userspace will not
1497 * see the address it was expecting for it's completions.
1498 *
1499 * There is nothing in the encoding that can allow
1500 * copy_siginfo_to_user32 to detect this confusion of formats, so
1501 * handle this by requiring the caller of kill_pid_usb_asyncio to
1502 * notice when this situration takes place and to store the 32bit
1503 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1504 * parameter.
1505 */
1506 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1507 struct pid *pid, const struct cred *cred)
1508 {
1509 struct kernel_siginfo info;
1510 struct task_struct *p;
1511 unsigned long flags;
1512 int ret = -EINVAL;
1513
1514 if (!valid_signal(sig))
1515 return ret;
1516
1517 clear_siginfo(&info);
1518 info.si_signo = sig;
1519 info.si_errno = errno;
1520 info.si_code = SI_ASYNCIO;
1521 *((sigval_t *)&info.si_pid) = addr;
1522
1523 rcu_read_lock();
1524 p = pid_task(pid, PIDTYPE_PID);
1525 if (!p) {
1526 ret = -ESRCH;
1527 goto out_unlock;
1528 }
1529 if (!kill_as_cred_perm(cred, p)) {
1530 ret = -EPERM;
1531 goto out_unlock;
1532 }
1533 ret = security_task_kill(p, &info, sig, cred);
1534 if (ret)
1535 goto out_unlock;
1536
1537 if (sig) {
1538 if (lock_task_sighand(p, &flags)) {
1539 ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1540 unlock_task_sighand(p, &flags);
1541 } else
1542 ret = -ESRCH;
1543 }
1544 out_unlock:
1545 rcu_read_unlock();
1546 return ret;
1547 }
1548 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1549
1550 /*
1551 * kill_something_info() interprets pid in interesting ways just like kill(2).
1552 *
1553 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1554 * is probably wrong. Should make it like BSD or SYSV.
1555 */
1556
1557 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1558 {
1559 int ret;
1560
1561 if (pid > 0)
1562 return kill_proc_info(sig, info, pid);
1563
1564 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1565 if (pid == INT_MIN)
1566 return -ESRCH;
1567
1568 read_lock(&tasklist_lock);
1569 if (pid != -1) {
1570 ret = __kill_pgrp_info(sig, info,
1571 pid ? find_vpid(-pid) : task_pgrp(current));
1572 } else {
1573 int retval = 0, count = 0;
1574 struct task_struct * p;
1575
1576 for_each_process(p) {
1577 if (task_pid_vnr(p) > 1 &&
1578 !same_thread_group(p, current)) {
1579 int err = group_send_sig_info(sig, info, p,
1580 PIDTYPE_MAX);
1581 ++count;
1582 if (err != -EPERM)
1583 retval = err;
1584 }
1585 }
1586 ret = count ? retval : -ESRCH;
1587 }
1588 read_unlock(&tasklist_lock);
1589
1590 return ret;
1591 }
1592
1593 /*
1594 * These are for backward compatibility with the rest of the kernel source.
1595 */
1596
1597 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1598 {
1599 /*
1600 * Make sure legacy kernel users don't send in bad values
1601 * (normal paths check this in check_kill_permission).
1602 */
1603 if (!valid_signal(sig))
1604 return -EINVAL;
1605
1606 return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1607 }
1608 EXPORT_SYMBOL(send_sig_info);
1609
1610 #define __si_special(priv) \
1611 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1612
1613 int
1614 send_sig(int sig, struct task_struct *p, int priv)
1615 {
1616 return send_sig_info(sig, __si_special(priv), p);
1617 }
1618 EXPORT_SYMBOL(send_sig);
1619
1620 void force_sig(int sig)
1621 {
1622 struct kernel_siginfo info;
1623
1624 clear_siginfo(&info);
1625 info.si_signo = sig;
1626 info.si_errno = 0;
1627 info.si_code = SI_KERNEL;
1628 info.si_pid = 0;
1629 info.si_uid = 0;
1630 force_sig_info(&info);
1631 }
1632 EXPORT_SYMBOL(force_sig);
1633
1634 /*
1635 * When things go south during signal handling, we
1636 * will force a SIGSEGV. And if the signal that caused
1637 * the problem was already a SIGSEGV, we'll want to
1638 * make sure we don't even try to deliver the signal..
1639 */
1640 void force_sigsegv(int sig)
1641 {
1642 struct task_struct *p = current;
1643
1644 if (sig == SIGSEGV) {
1645 unsigned long flags;
1646 spin_lock_irqsave(&p->sighand->siglock, flags);
1647 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1648 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1649 }
1650 force_sig(SIGSEGV);
1651 }
1652
1653 int force_sig_fault_to_task(int sig, int code, void __user *addr
1654 ___ARCH_SI_TRAPNO(int trapno)
1655 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1656 , struct task_struct *t)
1657 {
1658 struct kernel_siginfo info;
1659
1660 clear_siginfo(&info);
1661 info.si_signo = sig;
1662 info.si_errno = 0;
1663 info.si_code = code;
1664 info.si_addr = addr;
1665 #ifdef __ARCH_SI_TRAPNO
1666 info.si_trapno = trapno;
1667 #endif
1668 #ifdef __ia64__
1669 info.si_imm = imm;
1670 info.si_flags = flags;
1671 info.si_isr = isr;
1672 #endif
1673 return force_sig_info_to_task(&info, t);
1674 }
1675
1676 int force_sig_fault(int sig, int code, void __user *addr
1677 ___ARCH_SI_TRAPNO(int trapno)
1678 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1679 {
1680 return force_sig_fault_to_task(sig, code, addr
1681 ___ARCH_SI_TRAPNO(trapno)
1682 ___ARCH_SI_IA64(imm, flags, isr), current);
1683 }
1684
1685 int send_sig_fault(int sig, int code, void __user *addr
1686 ___ARCH_SI_TRAPNO(int trapno)
1687 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1688 , struct task_struct *t)
1689 {
1690 struct kernel_siginfo info;
1691
1692 clear_siginfo(&info);
1693 info.si_signo = sig;
1694 info.si_errno = 0;
1695 info.si_code = code;
1696 info.si_addr = addr;
1697 #ifdef __ARCH_SI_TRAPNO
1698 info.si_trapno = trapno;
1699 #endif
1700 #ifdef __ia64__
1701 info.si_imm = imm;
1702 info.si_flags = flags;
1703 info.si_isr = isr;
1704 #endif
1705 return send_sig_info(info.si_signo, &info, t);
1706 }
1707
1708 int force_sig_mceerr(int code, void __user *addr, short lsb)
1709 {
1710 struct kernel_siginfo info;
1711
1712 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1713 clear_siginfo(&info);
1714 info.si_signo = SIGBUS;
1715 info.si_errno = 0;
1716 info.si_code = code;
1717 info.si_addr = addr;
1718 info.si_addr_lsb = lsb;
1719 return force_sig_info(&info);
1720 }
1721
1722 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1723 {
1724 struct kernel_siginfo info;
1725
1726 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1727 clear_siginfo(&info);
1728 info.si_signo = SIGBUS;
1729 info.si_errno = 0;
1730 info.si_code = code;
1731 info.si_addr = addr;
1732 info.si_addr_lsb = lsb;
1733 return send_sig_info(info.si_signo, &info, t);
1734 }
1735 EXPORT_SYMBOL(send_sig_mceerr);
1736
1737 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1738 {
1739 struct kernel_siginfo info;
1740
1741 clear_siginfo(&info);
1742 info.si_signo = SIGSEGV;
1743 info.si_errno = 0;
1744 info.si_code = SEGV_BNDERR;
1745 info.si_addr = addr;
1746 info.si_lower = lower;
1747 info.si_upper = upper;
1748 return force_sig_info(&info);
1749 }
1750
1751 #ifdef SEGV_PKUERR
1752 int force_sig_pkuerr(void __user *addr, u32 pkey)
1753 {
1754 struct kernel_siginfo info;
1755
1756 clear_siginfo(&info);
1757 info.si_signo = SIGSEGV;
1758 info.si_errno = 0;
1759 info.si_code = SEGV_PKUERR;
1760 info.si_addr = addr;
1761 info.si_pkey = pkey;
1762 return force_sig_info(&info);
1763 }
1764 #endif
1765
1766 /* For the crazy architectures that include trap information in
1767 * the errno field, instead of an actual errno value.
1768 */
1769 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1770 {
1771 struct kernel_siginfo info;
1772
1773 clear_siginfo(&info);
1774 info.si_signo = SIGTRAP;
1775 info.si_errno = errno;
1776 info.si_code = TRAP_HWBKPT;
1777 info.si_addr = addr;
1778 return force_sig_info(&info);
1779 }
1780
1781 int kill_pgrp(struct pid *pid, int sig, int priv)
1782 {
1783 int ret;
1784
1785 read_lock(&tasklist_lock);
1786 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1787 read_unlock(&tasklist_lock);
1788
1789 return ret;
1790 }
1791 EXPORT_SYMBOL(kill_pgrp);
1792
1793 int kill_pid(struct pid *pid, int sig, int priv)
1794 {
1795 return kill_pid_info(sig, __si_special(priv), pid);
1796 }
1797 EXPORT_SYMBOL(kill_pid);
1798
1799 /*
1800 * These functions support sending signals using preallocated sigqueue
1801 * structures. This is needed "because realtime applications cannot
1802 * afford to lose notifications of asynchronous events, like timer
1803 * expirations or I/O completions". In the case of POSIX Timers
1804 * we allocate the sigqueue structure from the timer_create. If this
1805 * allocation fails we are able to report the failure to the application
1806 * with an EAGAIN error.
1807 */
1808 struct sigqueue *sigqueue_alloc(void)
1809 {
1810 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1811
1812 if (q)
1813 q->flags |= SIGQUEUE_PREALLOC;
1814
1815 return q;
1816 }
1817
1818 void sigqueue_free(struct sigqueue *q)
1819 {
1820 unsigned long flags;
1821 spinlock_t *lock = &current->sighand->siglock;
1822
1823 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1824 /*
1825 * We must hold ->siglock while testing q->list
1826 * to serialize with collect_signal() or with
1827 * __exit_signal()->flush_sigqueue().
1828 */
1829 spin_lock_irqsave(lock, flags);
1830 q->flags &= ~SIGQUEUE_PREALLOC;
1831 /*
1832 * If it is queued it will be freed when dequeued,
1833 * like the "regular" sigqueue.
1834 */
1835 if (!list_empty(&q->list))
1836 q = NULL;
1837 spin_unlock_irqrestore(lock, flags);
1838
1839 if (q)
1840 __sigqueue_free(q);
1841 }
1842
1843 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1844 {
1845 int sig = q->info.si_signo;
1846 struct sigpending *pending;
1847 struct task_struct *t;
1848 unsigned long flags;
1849 int ret, result;
1850
1851 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1852
1853 ret = -1;
1854 rcu_read_lock();
1855 t = pid_task(pid, type);
1856 if (!t || !likely(lock_task_sighand(t, &flags)))
1857 goto ret;
1858
1859 ret = 1; /* the signal is ignored */
1860 result = TRACE_SIGNAL_IGNORED;
1861 if (!prepare_signal(sig, t, false))
1862 goto out;
1863
1864 ret = 0;
1865 if (unlikely(!list_empty(&q->list))) {
1866 /*
1867 * If an SI_TIMER entry is already queue just increment
1868 * the overrun count.
1869 */
1870 BUG_ON(q->info.si_code != SI_TIMER);
1871 q->info.si_overrun++;
1872 result = TRACE_SIGNAL_ALREADY_PENDING;
1873 goto out;
1874 }
1875 q->info.si_overrun = 0;
1876
1877 signalfd_notify(t, sig);
1878 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1879 list_add_tail(&q->list, &pending->list);
1880 sigaddset(&pending->signal, sig);
1881 complete_signal(sig, t, type);
1882 result = TRACE_SIGNAL_DELIVERED;
1883 out:
1884 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1885 unlock_task_sighand(t, &flags);
1886 ret:
1887 rcu_read_unlock();
1888 return ret;
1889 }
1890
1891 static void do_notify_pidfd(struct task_struct *task)
1892 {
1893 struct pid *pid;
1894
1895 WARN_ON(task->exit_state == 0);
1896 pid = task_pid(task);
1897 wake_up_all(&pid->wait_pidfd);
1898 }
1899
1900 /*
1901 * Let a parent know about the death of a child.
1902 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1903 *
1904 * Returns true if our parent ignored us and so we've switched to
1905 * self-reaping.
1906 */
1907 bool do_notify_parent(struct task_struct *tsk, int sig)
1908 {
1909 struct kernel_siginfo info;
1910 unsigned long flags;
1911 struct sighand_struct *psig;
1912 bool autoreap = false;
1913 u64 utime, stime;
1914
1915 BUG_ON(sig == -1);
1916
1917 /* do_notify_parent_cldstop should have been called instead. */
1918 BUG_ON(task_is_stopped_or_traced(tsk));
1919
1920 BUG_ON(!tsk->ptrace &&
1921 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1922
1923 /* Wake up all pidfd waiters */
1924 do_notify_pidfd(tsk);
1925
1926 if (sig != SIGCHLD) {
1927 /*
1928 * This is only possible if parent == real_parent.
1929 * Check if it has changed security domain.
1930 */
1931 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
1932 sig = SIGCHLD;
1933 }
1934
1935 clear_siginfo(&info);
1936 info.si_signo = sig;
1937 info.si_errno = 0;
1938 /*
1939 * We are under tasklist_lock here so our parent is tied to
1940 * us and cannot change.
1941 *
1942 * task_active_pid_ns will always return the same pid namespace
1943 * until a task passes through release_task.
1944 *
1945 * write_lock() currently calls preempt_disable() which is the
1946 * same as rcu_read_lock(), but according to Oleg, this is not
1947 * correct to rely on this
1948 */
1949 rcu_read_lock();
1950 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1951 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1952 task_uid(tsk));
1953 rcu_read_unlock();
1954
1955 task_cputime(tsk, &utime, &stime);
1956 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1957 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1958
1959 info.si_status = tsk->exit_code & 0x7f;
1960 if (tsk->exit_code & 0x80)
1961 info.si_code = CLD_DUMPED;
1962 else if (tsk->exit_code & 0x7f)
1963 info.si_code = CLD_KILLED;
1964 else {
1965 info.si_code = CLD_EXITED;
1966 info.si_status = tsk->exit_code >> 8;
1967 }
1968
1969 psig = tsk->parent->sighand;
1970 spin_lock_irqsave(&psig->siglock, flags);
1971 if (!tsk->ptrace && sig == SIGCHLD &&
1972 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1973 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1974 /*
1975 * We are exiting and our parent doesn't care. POSIX.1
1976 * defines special semantics for setting SIGCHLD to SIG_IGN
1977 * or setting the SA_NOCLDWAIT flag: we should be reaped
1978 * automatically and not left for our parent's wait4 call.
1979 * Rather than having the parent do it as a magic kind of
1980 * signal handler, we just set this to tell do_exit that we
1981 * can be cleaned up without becoming a zombie. Note that
1982 * we still call __wake_up_parent in this case, because a
1983 * blocked sys_wait4 might now return -ECHILD.
1984 *
1985 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1986 * is implementation-defined: we do (if you don't want
1987 * it, just use SIG_IGN instead).
1988 */
1989 autoreap = true;
1990 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1991 sig = 0;
1992 }
1993 /*
1994 * Send with __send_signal as si_pid and si_uid are in the
1995 * parent's namespaces.
1996 */
1997 if (valid_signal(sig) && sig)
1998 __send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false);
1999 __wake_up_parent(tsk, tsk->parent);
2000 spin_unlock_irqrestore(&psig->siglock, flags);
2001
2002 return autoreap;
2003 }
2004
2005 /**
2006 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2007 * @tsk: task reporting the state change
2008 * @for_ptracer: the notification is for ptracer
2009 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2010 *
2011 * Notify @tsk's parent that the stopped/continued state has changed. If
2012 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2013 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2014 *
2015 * CONTEXT:
2016 * Must be called with tasklist_lock at least read locked.
2017 */
2018 static void do_notify_parent_cldstop(struct task_struct *tsk,
2019 bool for_ptracer, int why)
2020 {
2021 struct kernel_siginfo info;
2022 unsigned long flags;
2023 struct task_struct *parent;
2024 struct sighand_struct *sighand;
2025 u64 utime, stime;
2026
2027 if (for_ptracer) {
2028 parent = tsk->parent;
2029 } else {
2030 tsk = tsk->group_leader;
2031 parent = tsk->real_parent;
2032 }
2033
2034 clear_siginfo(&info);
2035 info.si_signo = SIGCHLD;
2036 info.si_errno = 0;
2037 /*
2038 * see comment in do_notify_parent() about the following 4 lines
2039 */
2040 rcu_read_lock();
2041 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2042 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2043 rcu_read_unlock();
2044
2045 task_cputime(tsk, &utime, &stime);
2046 info.si_utime = nsec_to_clock_t(utime);
2047 info.si_stime = nsec_to_clock_t(stime);
2048
2049 info.si_code = why;
2050 switch (why) {
2051 case CLD_CONTINUED:
2052 info.si_status = SIGCONT;
2053 break;
2054 case CLD_STOPPED:
2055 info.si_status = tsk->signal->group_exit_code & 0x7f;
2056 break;
2057 case CLD_TRAPPED:
2058 info.si_status = tsk->exit_code & 0x7f;
2059 break;
2060 default:
2061 BUG();
2062 }
2063
2064 sighand = parent->sighand;
2065 spin_lock_irqsave(&sighand->siglock, flags);
2066 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2067 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2068 __group_send_sig_info(SIGCHLD, &info, parent);
2069 /*
2070 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2071 */
2072 __wake_up_parent(tsk, parent);
2073 spin_unlock_irqrestore(&sighand->siglock, flags);
2074 }
2075
2076 static inline bool may_ptrace_stop(void)
2077 {
2078 if (!likely(current->ptrace))
2079 return false;
2080 /*
2081 * Are we in the middle of do_coredump?
2082 * If so and our tracer is also part of the coredump stopping
2083 * is a deadlock situation, and pointless because our tracer
2084 * is dead so don't allow us to stop.
2085 * If SIGKILL was already sent before the caller unlocked
2086 * ->siglock we must see ->core_state != NULL. Otherwise it
2087 * is safe to enter schedule().
2088 *
2089 * This is almost outdated, a task with the pending SIGKILL can't
2090 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2091 * after SIGKILL was already dequeued.
2092 */
2093 if (unlikely(current->mm->core_state) &&
2094 unlikely(current->mm == current->parent->mm))
2095 return false;
2096
2097 return true;
2098 }
2099
2100 /*
2101 * Return non-zero if there is a SIGKILL that should be waking us up.
2102 * Called with the siglock held.
2103 */
2104 static bool sigkill_pending(struct task_struct *tsk)
2105 {
2106 return sigismember(&tsk->pending.signal, SIGKILL) ||
2107 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2108 }
2109
2110 /*
2111 * This must be called with current->sighand->siglock held.
2112 *
2113 * This should be the path for all ptrace stops.
2114 * We always set current->last_siginfo while stopped here.
2115 * That makes it a way to test a stopped process for
2116 * being ptrace-stopped vs being job-control-stopped.
2117 *
2118 * If we actually decide not to stop at all because the tracer
2119 * is gone, we keep current->exit_code unless clear_code.
2120 */
2121 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2122 __releases(&current->sighand->siglock)
2123 __acquires(&current->sighand->siglock)
2124 {
2125 bool gstop_done = false;
2126
2127 if (arch_ptrace_stop_needed(exit_code, info)) {
2128 /*
2129 * The arch code has something special to do before a
2130 * ptrace stop. This is allowed to block, e.g. for faults
2131 * on user stack pages. We can't keep the siglock while
2132 * calling arch_ptrace_stop, so we must release it now.
2133 * To preserve proper semantics, we must do this before
2134 * any signal bookkeeping like checking group_stop_count.
2135 * Meanwhile, a SIGKILL could come in before we retake the
2136 * siglock. That must prevent us from sleeping in TASK_TRACED.
2137 * So after regaining the lock, we must check for SIGKILL.
2138 */
2139 spin_unlock_irq(&current->sighand->siglock);
2140 arch_ptrace_stop(exit_code, info);
2141 spin_lock_irq(&current->sighand->siglock);
2142 if (sigkill_pending(current))
2143 return;
2144 }
2145
2146 set_special_state(TASK_TRACED);
2147
2148 /*
2149 * We're committing to trapping. TRACED should be visible before
2150 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2151 * Also, transition to TRACED and updates to ->jobctl should be
2152 * atomic with respect to siglock and should be done after the arch
2153 * hook as siglock is released and regrabbed across it.
2154 *
2155 * TRACER TRACEE
2156 *
2157 * ptrace_attach()
2158 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
2159 * do_wait()
2160 * set_current_state() smp_wmb();
2161 * ptrace_do_wait()
2162 * wait_task_stopped()
2163 * task_stopped_code()
2164 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
2165 */
2166 smp_wmb();
2167
2168 current->last_siginfo = info;
2169 current->exit_code = exit_code;
2170
2171 /*
2172 * If @why is CLD_STOPPED, we're trapping to participate in a group
2173 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
2174 * across siglock relocks since INTERRUPT was scheduled, PENDING
2175 * could be clear now. We act as if SIGCONT is received after
2176 * TASK_TRACED is entered - ignore it.
2177 */
2178 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2179 gstop_done = task_participate_group_stop(current);
2180
2181 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2182 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2183 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2184 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2185
2186 /* entering a trap, clear TRAPPING */
2187 task_clear_jobctl_trapping(current);
2188
2189 spin_unlock_irq(&current->sighand->siglock);
2190 read_lock(&tasklist_lock);
2191 if (may_ptrace_stop()) {
2192 /*
2193 * Notify parents of the stop.
2194 *
2195 * While ptraced, there are two parents - the ptracer and
2196 * the real_parent of the group_leader. The ptracer should
2197 * know about every stop while the real parent is only
2198 * interested in the completion of group stop. The states
2199 * for the two don't interact with each other. Notify
2200 * separately unless they're gonna be duplicates.
2201 */
2202 do_notify_parent_cldstop(current, true, why);
2203 if (gstop_done && ptrace_reparented(current))
2204 do_notify_parent_cldstop(current, false, why);
2205
2206 /*
2207 * Don't want to allow preemption here, because
2208 * sys_ptrace() needs this task to be inactive.
2209 *
2210 * XXX: implement read_unlock_no_resched().
2211 */
2212 preempt_disable();
2213 read_unlock(&tasklist_lock);
2214 cgroup_enter_frozen();
2215 preempt_enable_no_resched();
2216 freezable_schedule();
2217 cgroup_leave_frozen(true);
2218 } else {
2219 /*
2220 * By the time we got the lock, our tracer went away.
2221 * Don't drop the lock yet, another tracer may come.
2222 *
2223 * If @gstop_done, the ptracer went away between group stop
2224 * completion and here. During detach, it would have set
2225 * JOBCTL_STOP_PENDING on us and we'll re-enter
2226 * TASK_STOPPED in do_signal_stop() on return, so notifying
2227 * the real parent of the group stop completion is enough.
2228 */
2229 if (gstop_done)
2230 do_notify_parent_cldstop(current, false, why);
2231
2232 /* tasklist protects us from ptrace_freeze_traced() */
2233 __set_current_state(TASK_RUNNING);
2234 if (clear_code)
2235 current->exit_code = 0;
2236 read_unlock(&tasklist_lock);
2237 }
2238
2239 /*
2240 * We are back. Now reacquire the siglock before touching
2241 * last_siginfo, so that we are sure to have synchronized with
2242 * any signal-sending on another CPU that wants to examine it.
2243 */
2244 spin_lock_irq(&current->sighand->siglock);
2245 current->last_siginfo = NULL;
2246
2247 /* LISTENING can be set only during STOP traps, clear it */
2248 current->jobctl &= ~JOBCTL_LISTENING;
2249
2250 /*
2251 * Queued signals ignored us while we were stopped for tracing.
2252 * So check for any that we should take before resuming user mode.
2253 * This sets TIF_SIGPENDING, but never clears it.
2254 */
2255 recalc_sigpending_tsk(current);
2256 }
2257
2258 static void ptrace_do_notify(int signr, int exit_code, int why)
2259 {
2260 kernel_siginfo_t info;
2261
2262 clear_siginfo(&info);
2263 info.si_signo = signr;
2264 info.si_code = exit_code;
2265 info.si_pid = task_pid_vnr(current);
2266 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2267
2268 /* Let the debugger run. */
2269 ptrace_stop(exit_code, why, 1, &info);
2270 }
2271
2272 void ptrace_notify(int exit_code)
2273 {
2274 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2275 if (unlikely(current->task_works))
2276 task_work_run();
2277
2278 spin_lock_irq(&current->sighand->siglock);
2279 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2280 spin_unlock_irq(&current->sighand->siglock);
2281 }
2282
2283 /**
2284 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2285 * @signr: signr causing group stop if initiating
2286 *
2287 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2288 * and participate in it. If already set, participate in the existing
2289 * group stop. If participated in a group stop (and thus slept), %true is
2290 * returned with siglock released.
2291 *
2292 * If ptraced, this function doesn't handle stop itself. Instead,
2293 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2294 * untouched. The caller must ensure that INTERRUPT trap handling takes
2295 * places afterwards.
2296 *
2297 * CONTEXT:
2298 * Must be called with @current->sighand->siglock held, which is released
2299 * on %true return.
2300 *
2301 * RETURNS:
2302 * %false if group stop is already cancelled or ptrace trap is scheduled.
2303 * %true if participated in group stop.
2304 */
2305 static bool do_signal_stop(int signr)
2306 __releases(&current->sighand->siglock)
2307 {
2308 struct signal_struct *sig = current->signal;
2309
2310 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2311 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2312 struct task_struct *t;
2313
2314 /* signr will be recorded in task->jobctl for retries */
2315 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2316
2317 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2318 unlikely(signal_group_exit(sig)))
2319 return false;
2320 /*
2321 * There is no group stop already in progress. We must
2322 * initiate one now.
2323 *
2324 * While ptraced, a task may be resumed while group stop is
2325 * still in effect and then receive a stop signal and
2326 * initiate another group stop. This deviates from the
2327 * usual behavior as two consecutive stop signals can't
2328 * cause two group stops when !ptraced. That is why we
2329 * also check !task_is_stopped(t) below.
2330 *
2331 * The condition can be distinguished by testing whether
2332 * SIGNAL_STOP_STOPPED is already set. Don't generate
2333 * group_exit_code in such case.
2334 *
2335 * This is not necessary for SIGNAL_STOP_CONTINUED because
2336 * an intervening stop signal is required to cause two
2337 * continued events regardless of ptrace.
2338 */
2339 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2340 sig->group_exit_code = signr;
2341
2342 sig->group_stop_count = 0;
2343
2344 if (task_set_jobctl_pending(current, signr | gstop))
2345 sig->group_stop_count++;
2346
2347 t = current;
2348 while_each_thread(current, t) {
2349 /*
2350 * Setting state to TASK_STOPPED for a group
2351 * stop is always done with the siglock held,
2352 * so this check has no races.
2353 */
2354 if (!task_is_stopped(t) &&
2355 task_set_jobctl_pending(t, signr | gstop)) {
2356 sig->group_stop_count++;
2357 if (likely(!(t->ptrace & PT_SEIZED)))
2358 signal_wake_up(t, 0);
2359 else
2360 ptrace_trap_notify(t);
2361 }
2362 }
2363 }
2364
2365 if (likely(!current->ptrace)) {
2366 int notify = 0;
2367
2368 /*
2369 * If there are no other threads in the group, or if there
2370 * is a group stop in progress and we are the last to stop,
2371 * report to the parent.
2372 */
2373 if (task_participate_group_stop(current))
2374 notify = CLD_STOPPED;
2375
2376 set_special_state(TASK_STOPPED);
2377 spin_unlock_irq(&current->sighand->siglock);
2378
2379 /*
2380 * Notify the parent of the group stop completion. Because
2381 * we're not holding either the siglock or tasklist_lock
2382 * here, ptracer may attach inbetween; however, this is for
2383 * group stop and should always be delivered to the real
2384 * parent of the group leader. The new ptracer will get
2385 * its notification when this task transitions into
2386 * TASK_TRACED.
2387 */
2388 if (notify) {
2389 read_lock(&tasklist_lock);
2390 do_notify_parent_cldstop(current, false, notify);
2391 read_unlock(&tasklist_lock);
2392 }
2393
2394 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2395 cgroup_enter_frozen();
2396 freezable_schedule();
2397 return true;
2398 } else {
2399 /*
2400 * While ptraced, group stop is handled by STOP trap.
2401 * Schedule it and let the caller deal with it.
2402 */
2403 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2404 return false;
2405 }
2406 }
2407
2408 /**
2409 * do_jobctl_trap - take care of ptrace jobctl traps
2410 *
2411 * When PT_SEIZED, it's used for both group stop and explicit
2412 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2413 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2414 * the stop signal; otherwise, %SIGTRAP.
2415 *
2416 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2417 * number as exit_code and no siginfo.
2418 *
2419 * CONTEXT:
2420 * Must be called with @current->sighand->siglock held, which may be
2421 * released and re-acquired before returning with intervening sleep.
2422 */
2423 static void do_jobctl_trap(void)
2424 {
2425 struct signal_struct *signal = current->signal;
2426 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2427
2428 if (current->ptrace & PT_SEIZED) {
2429 if (!signal->group_stop_count &&
2430 !(signal->flags & SIGNAL_STOP_STOPPED))
2431 signr = SIGTRAP;
2432 WARN_ON_ONCE(!signr);
2433 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2434 CLD_STOPPED);
2435 } else {
2436 WARN_ON_ONCE(!signr);
2437 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2438 current->exit_code = 0;
2439 }
2440 }
2441
2442 /**
2443 * do_freezer_trap - handle the freezer jobctl trap
2444 *
2445 * Puts the task into frozen state, if only the task is not about to quit.
2446 * In this case it drops JOBCTL_TRAP_FREEZE.
2447 *
2448 * CONTEXT:
2449 * Must be called with @current->sighand->siglock held,
2450 * which is always released before returning.
2451 */
2452 static void do_freezer_trap(void)
2453 __releases(&current->sighand->siglock)
2454 {
2455 /*
2456 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2457 * let's make another loop to give it a chance to be handled.
2458 * In any case, we'll return back.
2459 */
2460 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2461 JOBCTL_TRAP_FREEZE) {
2462 spin_unlock_irq(&current->sighand->siglock);
2463 return;
2464 }
2465
2466 /*
2467 * Now we're sure that there is no pending fatal signal and no
2468 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2469 * immediately (if there is a non-fatal signal pending), and
2470 * put the task into sleep.
2471 */
2472 __set_current_state(TASK_INTERRUPTIBLE);
2473 clear_thread_flag(TIF_SIGPENDING);
2474 spin_unlock_irq(&current->sighand->siglock);
2475 cgroup_enter_frozen();
2476 freezable_schedule();
2477 }
2478
2479 static int ptrace_signal(int signr, kernel_siginfo_t *info)
2480 {
2481 /*
2482 * We do not check sig_kernel_stop(signr) but set this marker
2483 * unconditionally because we do not know whether debugger will
2484 * change signr. This flag has no meaning unless we are going
2485 * to stop after return from ptrace_stop(). In this case it will
2486 * be checked in do_signal_stop(), we should only stop if it was
2487 * not cleared by SIGCONT while we were sleeping. See also the
2488 * comment in dequeue_signal().
2489 */
2490 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2491 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2492
2493 /* We're back. Did the debugger cancel the sig? */
2494 signr = current->exit_code;
2495 if (signr == 0)
2496 return signr;
2497
2498 current->exit_code = 0;
2499
2500 /*
2501 * Update the siginfo structure if the signal has
2502 * changed. If the debugger wanted something
2503 * specific in the siginfo structure then it should
2504 * have updated *info via PTRACE_SETSIGINFO.
2505 */
2506 if (signr != info->si_signo) {
2507 clear_siginfo(info);
2508 info->si_signo = signr;
2509 info->si_errno = 0;
2510 info->si_code = SI_USER;
2511 rcu_read_lock();
2512 info->si_pid = task_pid_vnr(current->parent);
2513 info->si_uid = from_kuid_munged(current_user_ns(),
2514 task_uid(current->parent));
2515 rcu_read_unlock();
2516 }
2517
2518 /* If the (new) signal is now blocked, requeue it. */
2519 if (sigismember(&current->blocked, signr)) {
2520 send_signal(signr, info, current, PIDTYPE_PID);
2521 signr = 0;
2522 }
2523
2524 return signr;
2525 }
2526
2527 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2528 {
2529 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2530 case SIL_FAULT:
2531 case SIL_FAULT_MCEERR:
2532 case SIL_FAULT_BNDERR:
2533 case SIL_FAULT_PKUERR:
2534 ksig->info.si_addr = arch_untagged_si_addr(
2535 ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2536 break;
2537 case SIL_KILL:
2538 case SIL_TIMER:
2539 case SIL_POLL:
2540 case SIL_CHLD:
2541 case SIL_RT:
2542 case SIL_SYS:
2543 break;
2544 }
2545 }
2546
2547 bool get_signal(struct ksignal *ksig)
2548 {
2549 struct sighand_struct *sighand = current->sighand;
2550 struct signal_struct *signal = current->signal;
2551 int signr;
2552
2553 /*
2554 * For non-generic architectures, check for TIF_NOTIFY_SIGNAL so
2555 * that the arch handlers don't all have to do it. If we get here
2556 * without TIF_SIGPENDING, just exit after running signal work.
2557 */
2558 if (!IS_ENABLED(CONFIG_GENERIC_ENTRY)) {
2559 if (test_thread_flag(TIF_NOTIFY_SIGNAL))
2560 tracehook_notify_signal();
2561 if (!task_sigpending(current))
2562 return false;
2563 }
2564
2565 if (unlikely(uprobe_deny_signal()))
2566 return false;
2567
2568 /*
2569 * Do this once, we can't return to user-mode if freezing() == T.
2570 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2571 * thus do not need another check after return.
2572 */
2573 try_to_freeze();
2574
2575 relock:
2576 spin_lock_irq(&sighand->siglock);
2577
2578 /*
2579 * Every stopped thread goes here after wakeup. Check to see if
2580 * we should notify the parent, prepare_signal(SIGCONT) encodes
2581 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2582 */
2583 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2584 int why;
2585
2586 if (signal->flags & SIGNAL_CLD_CONTINUED)
2587 why = CLD_CONTINUED;
2588 else
2589 why = CLD_STOPPED;
2590
2591 signal->flags &= ~SIGNAL_CLD_MASK;
2592
2593 spin_unlock_irq(&sighand->siglock);
2594
2595 /*
2596 * Notify the parent that we're continuing. This event is
2597 * always per-process and doesn't make whole lot of sense
2598 * for ptracers, who shouldn't consume the state via
2599 * wait(2) either, but, for backward compatibility, notify
2600 * the ptracer of the group leader too unless it's gonna be
2601 * a duplicate.
2602 */
2603 read_lock(&tasklist_lock);
2604 do_notify_parent_cldstop(current, false, why);
2605
2606 if (ptrace_reparented(current->group_leader))
2607 do_notify_parent_cldstop(current->group_leader,
2608 true, why);
2609 read_unlock(&tasklist_lock);
2610
2611 goto relock;
2612 }
2613
2614 /* Has this task already been marked for death? */
2615 if (signal_group_exit(signal)) {
2616 ksig->info.si_signo = signr = SIGKILL;
2617 sigdelset(&current->pending.signal, SIGKILL);
2618 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2619 &sighand->action[SIGKILL - 1]);
2620 recalc_sigpending();
2621 goto fatal;
2622 }
2623
2624 for (;;) {
2625 struct k_sigaction *ka;
2626
2627 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2628 do_signal_stop(0))
2629 goto relock;
2630
2631 if (unlikely(current->jobctl &
2632 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2633 if (current->jobctl & JOBCTL_TRAP_MASK) {
2634 do_jobctl_trap();
2635 spin_unlock_irq(&sighand->siglock);
2636 } else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2637 do_freezer_trap();
2638
2639 goto relock;
2640 }
2641
2642 /*
2643 * If the task is leaving the frozen state, let's update
2644 * cgroup counters and reset the frozen bit.
2645 */
2646 if (unlikely(cgroup_task_frozen(current))) {
2647 spin_unlock_irq(&sighand->siglock);
2648 cgroup_leave_frozen(false);
2649 goto relock;
2650 }
2651
2652 /*
2653 * Signals generated by the execution of an instruction
2654 * need to be delivered before any other pending signals
2655 * so that the instruction pointer in the signal stack
2656 * frame points to the faulting instruction.
2657 */
2658 signr = dequeue_synchronous_signal(&ksig->info);
2659 if (!signr)
2660 signr = dequeue_signal(current, &current->blocked, &ksig->info);
2661
2662 if (!signr)
2663 break; /* will return 0 */
2664
2665 if (unlikely(current->ptrace) && signr != SIGKILL) {
2666 signr = ptrace_signal(signr, &ksig->info);
2667 if (!signr)
2668 continue;
2669 }
2670
2671 ka = &sighand->action[signr-1];
2672
2673 /* Trace actually delivered signals. */
2674 trace_signal_deliver(signr, &ksig->info, ka);
2675
2676 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2677 continue;
2678 if (ka->sa.sa_handler != SIG_DFL) {
2679 /* Run the handler. */
2680 ksig->ka = *ka;
2681
2682 if (ka->sa.sa_flags & SA_ONESHOT)
2683 ka->sa.sa_handler = SIG_DFL;
2684
2685 break; /* will return non-zero "signr" value */
2686 }
2687
2688 /*
2689 * Now we are doing the default action for this signal.
2690 */
2691 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2692 continue;
2693
2694 /*
2695 * Global init gets no signals it doesn't want.
2696 * Container-init gets no signals it doesn't want from same
2697 * container.
2698 *
2699 * Note that if global/container-init sees a sig_kernel_only()
2700 * signal here, the signal must have been generated internally
2701 * or must have come from an ancestor namespace. In either
2702 * case, the signal cannot be dropped.
2703 */
2704 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2705 !sig_kernel_only(signr))
2706 continue;
2707
2708 if (sig_kernel_stop(signr)) {
2709 /*
2710 * The default action is to stop all threads in
2711 * the thread group. The job control signals
2712 * do nothing in an orphaned pgrp, but SIGSTOP
2713 * always works. Note that siglock needs to be
2714 * dropped during the call to is_orphaned_pgrp()
2715 * because of lock ordering with tasklist_lock.
2716 * This allows an intervening SIGCONT to be posted.
2717 * We need to check for that and bail out if necessary.
2718 */
2719 if (signr != SIGSTOP) {
2720 spin_unlock_irq(&sighand->siglock);
2721
2722 /* signals can be posted during this window */
2723
2724 if (is_current_pgrp_orphaned())
2725 goto relock;
2726
2727 spin_lock_irq(&sighand->siglock);
2728 }
2729
2730 if (likely(do_signal_stop(ksig->info.si_signo))) {
2731 /* It released the siglock. */
2732 goto relock;
2733 }
2734
2735 /*
2736 * We didn't actually stop, due to a race
2737 * with SIGCONT or something like that.
2738 */
2739 continue;
2740 }
2741
2742 fatal:
2743 spin_unlock_irq(&sighand->siglock);
2744 if (unlikely(cgroup_task_frozen(current)))
2745 cgroup_leave_frozen(true);
2746
2747 /*
2748 * Anything else is fatal, maybe with a core dump.
2749 */
2750 current->flags |= PF_SIGNALED;
2751
2752 if (sig_kernel_coredump(signr)) {
2753 if (print_fatal_signals)
2754 print_fatal_signal(ksig->info.si_signo);
2755 proc_coredump_connector(current);
2756 /*
2757 * If it was able to dump core, this kills all
2758 * other threads in the group and synchronizes with
2759 * their demise. If we lost the race with another
2760 * thread getting here, it set group_exit_code
2761 * first and our do_group_exit call below will use
2762 * that value and ignore the one we pass it.
2763 */
2764 do_coredump(&ksig->info);
2765 }
2766
2767 /*
2768 * Death signals, no core dump.
2769 */
2770 do_group_exit(ksig->info.si_signo);
2771 /* NOTREACHED */
2772 }
2773 spin_unlock_irq(&sighand->siglock);
2774
2775 ksig->sig = signr;
2776
2777 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2778 hide_si_addr_tag_bits(ksig);
2779
2780 return ksig->sig > 0;
2781 }
2782
2783 /**
2784 * signal_delivered -
2785 * @ksig: kernel signal struct
2786 * @stepping: nonzero if debugger single-step or block-step in use
2787 *
2788 * This function should be called when a signal has successfully been
2789 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2790 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2791 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2792 */
2793 static void signal_delivered(struct ksignal *ksig, int stepping)
2794 {
2795 sigset_t blocked;
2796
2797 /* A signal was successfully delivered, and the
2798 saved sigmask was stored on the signal frame,
2799 and will be restored by sigreturn. So we can
2800 simply clear the restore sigmask flag. */
2801 clear_restore_sigmask();
2802
2803 sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2804 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2805 sigaddset(&blocked, ksig->sig);
2806 set_current_blocked(&blocked);
2807 tracehook_signal_handler(stepping);
2808 }
2809
2810 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2811 {
2812 if (failed)
2813 force_sigsegv(ksig->sig);
2814 else
2815 signal_delivered(ksig, stepping);
2816 }
2817
2818 /*
2819 * It could be that complete_signal() picked us to notify about the
2820 * group-wide signal. Other threads should be notified now to take
2821 * the shared signals in @which since we will not.
2822 */
2823 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2824 {
2825 sigset_t retarget;
2826 struct task_struct *t;
2827
2828 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2829 if (sigisemptyset(&retarget))
2830 return;
2831
2832 t = tsk;
2833 while_each_thread(tsk, t) {
2834 if (t->flags & PF_EXITING)
2835 continue;
2836
2837 if (!has_pending_signals(&retarget, &t->blocked))
2838 continue;
2839 /* Remove the signals this thread can handle. */
2840 sigandsets(&retarget, &retarget, &t->blocked);
2841
2842 if (!task_sigpending(t))
2843 signal_wake_up(t, 0);
2844
2845 if (sigisemptyset(&retarget))
2846 break;
2847 }
2848 }
2849
2850 void exit_signals(struct task_struct *tsk)
2851 {
2852 int group_stop = 0;
2853 sigset_t unblocked;
2854
2855 /*
2856 * @tsk is about to have PF_EXITING set - lock out users which
2857 * expect stable threadgroup.
2858 */
2859 cgroup_threadgroup_change_begin(tsk);
2860
2861 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2862 tsk->flags |= PF_EXITING;
2863 cgroup_threadgroup_change_end(tsk);
2864 return;
2865 }
2866
2867 spin_lock_irq(&tsk->sighand->siglock);
2868 /*
2869 * From now this task is not visible for group-wide signals,
2870 * see wants_signal(), do_signal_stop().
2871 */
2872 tsk->flags |= PF_EXITING;
2873
2874 cgroup_threadgroup_change_end(tsk);
2875
2876 if (!task_sigpending(tsk))
2877 goto out;
2878
2879 unblocked = tsk->blocked;
2880 signotset(&unblocked);
2881 retarget_shared_pending(tsk, &unblocked);
2882
2883 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2884 task_participate_group_stop(tsk))
2885 group_stop = CLD_STOPPED;
2886 out:
2887 spin_unlock_irq(&tsk->sighand->siglock);
2888
2889 /*
2890 * If group stop has completed, deliver the notification. This
2891 * should always go to the real parent of the group leader.
2892 */
2893 if (unlikely(group_stop)) {
2894 read_lock(&tasklist_lock);
2895 do_notify_parent_cldstop(tsk, false, group_stop);
2896 read_unlock(&tasklist_lock);
2897 }
2898 }
2899
2900 /*
2901 * System call entry points.
2902 */
2903
2904 /**
2905 * sys_restart_syscall - restart a system call
2906 */
2907 SYSCALL_DEFINE0(restart_syscall)
2908 {
2909 struct restart_block *restart = &current->restart_block;
2910 return restart->fn(restart);
2911 }
2912
2913 long do_no_restart_syscall(struct restart_block *param)
2914 {
2915 return -EINTR;
2916 }
2917
2918 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2919 {
2920 if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
2921 sigset_t newblocked;
2922 /* A set of now blocked but previously unblocked signals. */
2923 sigandnsets(&newblocked, newset, &current->blocked);
2924 retarget_shared_pending(tsk, &newblocked);
2925 }
2926 tsk->blocked = *newset;
2927 recalc_sigpending();
2928 }
2929
2930 /**
2931 * set_current_blocked - change current->blocked mask
2932 * @newset: new mask
2933 *
2934 * It is wrong to change ->blocked directly, this helper should be used
2935 * to ensure the process can't miss a shared signal we are going to block.
2936 */
2937 void set_current_blocked(sigset_t *newset)
2938 {
2939 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2940 __set_current_blocked(newset);
2941 }
2942
2943 void __set_current_blocked(const sigset_t *newset)
2944 {
2945 struct task_struct *tsk = current;
2946
2947 /*
2948 * In case the signal mask hasn't changed, there is nothing we need
2949 * to do. The current->blocked shouldn't be modified by other task.
2950 */
2951 if (sigequalsets(&tsk->blocked, newset))
2952 return;
2953
2954 spin_lock_irq(&tsk->sighand->siglock);
2955 __set_task_blocked(tsk, newset);
2956 spin_unlock_irq(&tsk->sighand->siglock);
2957 }
2958
2959 /*
2960 * This is also useful for kernel threads that want to temporarily
2961 * (or permanently) block certain signals.
2962 *
2963 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2964 * interface happily blocks "unblockable" signals like SIGKILL
2965 * and friends.
2966 */
2967 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2968 {
2969 struct task_struct *tsk = current;
2970 sigset_t newset;
2971
2972 /* Lockless, only current can change ->blocked, never from irq */
2973 if (oldset)
2974 *oldset = tsk->blocked;
2975
2976 switch (how) {
2977 case SIG_BLOCK:
2978 sigorsets(&newset, &tsk->blocked, set);
2979 break;
2980 case SIG_UNBLOCK:
2981 sigandnsets(&newset, &tsk->blocked, set);
2982 break;
2983 case SIG_SETMASK:
2984 newset = *set;
2985 break;
2986 default:
2987 return -EINVAL;
2988 }
2989
2990 __set_current_blocked(&newset);
2991 return 0;
2992 }
2993 EXPORT_SYMBOL(sigprocmask);
2994
2995 /*
2996 * The api helps set app-provided sigmasks.
2997 *
2998 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2999 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3000 *
3001 * Note that it does set_restore_sigmask() in advance, so it must be always
3002 * paired with restore_saved_sigmask_unless() before return from syscall.
3003 */
3004 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3005 {
3006 sigset_t kmask;
3007
3008 if (!umask)
3009 return 0;
3010 if (sigsetsize != sizeof(sigset_t))
3011 return -EINVAL;
3012 if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3013 return -EFAULT;
3014
3015 set_restore_sigmask();
3016 current->saved_sigmask = current->blocked;
3017 set_current_blocked(&kmask);
3018
3019 return 0;
3020 }
3021
3022 #ifdef CONFIG_COMPAT
3023 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3024 size_t sigsetsize)
3025 {
3026 sigset_t kmask;
3027
3028 if (!umask)
3029 return 0;
3030 if (sigsetsize != sizeof(compat_sigset_t))
3031 return -EINVAL;
3032 if (get_compat_sigset(&kmask, umask))
3033 return -EFAULT;
3034
3035 set_restore_sigmask();
3036 current->saved_sigmask = current->blocked;
3037 set_current_blocked(&kmask);
3038
3039 return 0;
3040 }
3041 #endif
3042
3043 /**
3044 * sys_rt_sigprocmask - change the list of currently blocked signals
3045 * @how: whether to add, remove, or set signals
3046 * @nset: stores pending signals
3047 * @oset: previous value of signal mask if non-null
3048 * @sigsetsize: size of sigset_t type
3049 */
3050 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3051 sigset_t __user *, oset, size_t, sigsetsize)
3052 {
3053 sigset_t old_set, new_set;
3054 int error;
3055
3056 /* XXX: Don't preclude handling different sized sigset_t's. */
3057 if (sigsetsize != sizeof(sigset_t))
3058 return -EINVAL;
3059
3060 old_set = current->blocked;
3061
3062 if (nset) {
3063 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3064 return -EFAULT;
3065 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3066
3067 error = sigprocmask(how, &new_set, NULL);
3068 if (error)
3069 return error;
3070 }
3071
3072 if (oset) {
3073 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3074 return -EFAULT;
3075 }
3076
3077 return 0;
3078 }
3079
3080 #ifdef CONFIG_COMPAT
3081 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3082 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3083 {
3084 sigset_t old_set = current->blocked;
3085
3086 /* XXX: Don't preclude handling different sized sigset_t's. */
3087 if (sigsetsize != sizeof(sigset_t))
3088 return -EINVAL;
3089
3090 if (nset) {
3091 sigset_t new_set;
3092 int error;
3093 if (get_compat_sigset(&new_set, nset))
3094 return -EFAULT;
3095 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3096
3097 error = sigprocmask(how, &new_set, NULL);
3098 if (error)
3099 return error;
3100 }
3101 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3102 }
3103 #endif
3104
3105 static void do_sigpending(sigset_t *set)
3106 {
3107 spin_lock_irq(&current->sighand->siglock);
3108 sigorsets(set, &current->pending.signal,
3109 &current->signal->shared_pending.signal);
3110 spin_unlock_irq(&current->sighand->siglock);
3111
3112 /* Outside the lock because only this thread touches it. */
3113 sigandsets(set, &current->blocked, set);
3114 }
3115
3116 /**
3117 * sys_rt_sigpending - examine a pending signal that has been raised
3118 * while blocked
3119 * @uset: stores pending signals
3120 * @sigsetsize: size of sigset_t type or larger
3121 */
3122 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3123 {
3124 sigset_t set;
3125
3126 if (sigsetsize > sizeof(*uset))
3127 return -EINVAL;
3128
3129 do_sigpending(&set);
3130
3131 if (copy_to_user(uset, &set, sigsetsize))
3132 return -EFAULT;
3133
3134 return 0;
3135 }
3136
3137 #ifdef CONFIG_COMPAT
3138 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3139 compat_size_t, sigsetsize)
3140 {
3141 sigset_t set;
3142
3143 if (sigsetsize > sizeof(*uset))
3144 return -EINVAL;
3145
3146 do_sigpending(&set);
3147
3148 return put_compat_sigset(uset, &set, sigsetsize);
3149 }
3150 #endif
3151
3152 static const struct {
3153 unsigned char limit, layout;
3154 } sig_sicodes[] = {
3155 [SIGILL] = { NSIGILL, SIL_FAULT },
3156 [SIGFPE] = { NSIGFPE, SIL_FAULT },
3157 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3158 [SIGBUS] = { NSIGBUS, SIL_FAULT },
3159 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3160 #if defined(SIGEMT)
3161 [SIGEMT] = { NSIGEMT, SIL_FAULT },
3162 #endif
3163 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3164 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
3165 [SIGSYS] = { NSIGSYS, SIL_SYS },
3166 };
3167
3168 static bool known_siginfo_layout(unsigned sig, int si_code)
3169 {
3170 if (si_code == SI_KERNEL)
3171 return true;
3172 else if ((si_code > SI_USER)) {
3173 if (sig_specific_sicodes(sig)) {
3174 if (si_code <= sig_sicodes[sig].limit)
3175 return true;
3176 }
3177 else if (si_code <= NSIGPOLL)
3178 return true;
3179 }
3180 else if (si_code >= SI_DETHREAD)
3181 return true;
3182 else if (si_code == SI_ASYNCNL)
3183 return true;
3184 return false;
3185 }
3186
3187 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3188 {
3189 enum siginfo_layout layout = SIL_KILL;
3190 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3191 if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3192 (si_code <= sig_sicodes[sig].limit)) {
3193 layout = sig_sicodes[sig].layout;
3194 /* Handle the exceptions */
3195 if ((sig == SIGBUS) &&
3196 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3197 layout = SIL_FAULT_MCEERR;
3198 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3199 layout = SIL_FAULT_BNDERR;
3200 #ifdef SEGV_PKUERR
3201 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3202 layout = SIL_FAULT_PKUERR;
3203 #endif
3204 }
3205 else if (si_code <= NSIGPOLL)
3206 layout = SIL_POLL;
3207 } else {
3208 if (si_code == SI_TIMER)
3209 layout = SIL_TIMER;
3210 else if (si_code == SI_SIGIO)
3211 layout = SIL_POLL;
3212 else if (si_code < 0)
3213 layout = SIL_RT;
3214 }
3215 return layout;
3216 }
3217
3218 static inline char __user *si_expansion(const siginfo_t __user *info)
3219 {
3220 return ((char __user *)info) + sizeof(struct kernel_siginfo);
3221 }
3222
3223 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3224 {
3225 char __user *expansion = si_expansion(to);
3226 if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3227 return -EFAULT;
3228 if (clear_user(expansion, SI_EXPANSION_SIZE))
3229 return -EFAULT;
3230 return 0;
3231 }
3232
3233 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3234 const siginfo_t __user *from)
3235 {
3236 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3237 char __user *expansion = si_expansion(from);
3238 char buf[SI_EXPANSION_SIZE];
3239 int i;
3240 /*
3241 * An unknown si_code might need more than
3242 * sizeof(struct kernel_siginfo) bytes. Verify all of the
3243 * extra bytes are 0. This guarantees copy_siginfo_to_user
3244 * will return this data to userspace exactly.
3245 */
3246 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3247 return -EFAULT;
3248 for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3249 if (buf[i] != 0)
3250 return -E2BIG;
3251 }
3252 }
3253 return 0;
3254 }
3255
3256 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3257 const siginfo_t __user *from)
3258 {
3259 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3260 return -EFAULT;
3261 to->si_signo = signo;
3262 return post_copy_siginfo_from_user(to, from);
3263 }
3264
3265 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3266 {
3267 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3268 return -EFAULT;
3269 return post_copy_siginfo_from_user(to, from);
3270 }
3271
3272 #ifdef CONFIG_COMPAT
3273 /**
3274 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3275 * @to: compat siginfo destination
3276 * @from: kernel siginfo source
3277 *
3278 * Note: This function does not work properly for the SIGCHLD on x32, but
3279 * fortunately it doesn't have to. The only valid callers for this function are
3280 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3281 * The latter does not care because SIGCHLD will never cause a coredump.
3282 */
3283 void copy_siginfo_to_external32(struct compat_siginfo *to,
3284 const struct kernel_siginfo *from)
3285 {
3286 memset(to, 0, sizeof(*to));
3287
3288 to->si_signo = from->si_signo;
3289 to->si_errno = from->si_errno;
3290 to->si_code = from->si_code;
3291 switch(siginfo_layout(from->si_signo, from->si_code)) {
3292 case SIL_KILL:
3293 to->si_pid = from->si_pid;
3294 to->si_uid = from->si_uid;
3295 break;
3296 case SIL_TIMER:
3297 to->si_tid = from->si_tid;
3298 to->si_overrun = from->si_overrun;
3299 to->si_int = from->si_int;
3300 break;
3301 case SIL_POLL:
3302 to->si_band = from->si_band;
3303 to->si_fd = from->si_fd;
3304 break;
3305 case SIL_FAULT:
3306 to->si_addr = ptr_to_compat(from->si_addr);
3307 #ifdef __ARCH_SI_TRAPNO
3308 to->si_trapno = from->si_trapno;
3309 #endif
3310 break;
3311 case SIL_FAULT_MCEERR:
3312 to->si_addr = ptr_to_compat(from->si_addr);
3313 #ifdef __ARCH_SI_TRAPNO
3314 to->si_trapno = from->si_trapno;
3315 #endif
3316 to->si_addr_lsb = from->si_addr_lsb;
3317 break;
3318 case SIL_FAULT_BNDERR:
3319 to->si_addr = ptr_to_compat(from->si_addr);
3320 #ifdef __ARCH_SI_TRAPNO
3321 to->si_trapno = from->si_trapno;
3322 #endif
3323 to->si_lower = ptr_to_compat(from->si_lower);
3324 to->si_upper = ptr_to_compat(from->si_upper);
3325 break;
3326 case SIL_FAULT_PKUERR:
3327 to->si_addr = ptr_to_compat(from->si_addr);
3328 #ifdef __ARCH_SI_TRAPNO
3329 to->si_trapno = from->si_trapno;
3330 #endif
3331 to->si_pkey = from->si_pkey;
3332 break;
3333 case SIL_CHLD:
3334 to->si_pid = from->si_pid;
3335 to->si_uid = from->si_uid;
3336 to->si_status = from->si_status;
3337 to->si_utime = from->si_utime;
3338 to->si_stime = from->si_stime;
3339 break;
3340 case SIL_RT:
3341 to->si_pid = from->si_pid;
3342 to->si_uid = from->si_uid;
3343 to->si_int = from->si_int;
3344 break;
3345 case SIL_SYS:
3346 to->si_call_addr = ptr_to_compat(from->si_call_addr);
3347 to->si_syscall = from->si_syscall;
3348 to->si_arch = from->si_arch;
3349 break;
3350 }
3351 }
3352
3353 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3354 const struct kernel_siginfo *from)
3355 {
3356 struct compat_siginfo new;
3357
3358 copy_siginfo_to_external32(&new, from);
3359 if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3360 return -EFAULT;
3361 return 0;
3362 }
3363
3364 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3365 const struct compat_siginfo *from)
3366 {
3367 clear_siginfo(to);
3368 to->si_signo = from->si_signo;
3369 to->si_errno = from->si_errno;
3370 to->si_code = from->si_code;
3371 switch(siginfo_layout(from->si_signo, from->si_code)) {
3372 case SIL_KILL:
3373 to->si_pid = from->si_pid;
3374 to->si_uid = from->si_uid;
3375 break;
3376 case SIL_TIMER:
3377 to->si_tid = from->si_tid;
3378 to->si_overrun = from->si_overrun;
3379 to->si_int = from->si_int;
3380 break;
3381 case SIL_POLL:
3382 to->si_band = from->si_band;
3383 to->si_fd = from->si_fd;
3384 break;
3385 case SIL_FAULT:
3386 to->si_addr = compat_ptr(from->si_addr);
3387 #ifdef __ARCH_SI_TRAPNO
3388 to->si_trapno = from->si_trapno;
3389 #endif
3390 break;
3391 case SIL_FAULT_MCEERR:
3392 to->si_addr = compat_ptr(from->si_addr);
3393 #ifdef __ARCH_SI_TRAPNO
3394 to->si_trapno = from->si_trapno;
3395 #endif
3396 to->si_addr_lsb = from->si_addr_lsb;
3397 break;
3398 case SIL_FAULT_BNDERR:
3399 to->si_addr = compat_ptr(from->si_addr);
3400 #ifdef __ARCH_SI_TRAPNO
3401 to->si_trapno = from->si_trapno;
3402 #endif
3403 to->si_lower = compat_ptr(from->si_lower);
3404 to->si_upper = compat_ptr(from->si_upper);
3405 break;
3406 case SIL_FAULT_PKUERR:
3407 to->si_addr = compat_ptr(from->si_addr);
3408 #ifdef __ARCH_SI_TRAPNO
3409 to->si_trapno = from->si_trapno;
3410 #endif
3411 to->si_pkey = from->si_pkey;
3412 break;
3413 case SIL_CHLD:
3414 to->si_pid = from->si_pid;
3415 to->si_uid = from->si_uid;
3416 to->si_status = from->si_status;
3417 #ifdef CONFIG_X86_X32_ABI
3418 if (in_x32_syscall()) {
3419 to->si_utime = from->_sifields._sigchld_x32._utime;
3420 to->si_stime = from->_sifields._sigchld_x32._stime;
3421 } else
3422 #endif
3423 {
3424 to->si_utime = from->si_utime;
3425 to->si_stime = from->si_stime;
3426 }
3427 break;
3428 case SIL_RT:
3429 to->si_pid = from->si_pid;
3430 to->si_uid = from->si_uid;
3431 to->si_int = from->si_int;
3432 break;
3433 case SIL_SYS:
3434 to->si_call_addr = compat_ptr(from->si_call_addr);
3435 to->si_syscall = from->si_syscall;
3436 to->si_arch = from->si_arch;
3437 break;
3438 }
3439 return 0;
3440 }
3441
3442 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3443 const struct compat_siginfo __user *ufrom)
3444 {
3445 struct compat_siginfo from;
3446
3447 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3448 return -EFAULT;
3449
3450 from.si_signo = signo;
3451 return post_copy_siginfo_from_user32(to, &from);
3452 }
3453
3454 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3455 const struct compat_siginfo __user *ufrom)
3456 {
3457 struct compat_siginfo from;
3458
3459 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3460 return -EFAULT;
3461
3462 return post_copy_siginfo_from_user32(to, &from);
3463 }
3464 #endif /* CONFIG_COMPAT */
3465
3466 /**
3467 * do_sigtimedwait - wait for queued signals specified in @which
3468 * @which: queued signals to wait for
3469 * @info: if non-null, the signal's siginfo is returned here
3470 * @ts: upper bound on process time suspension
3471 */
3472 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3473 const struct timespec64 *ts)
3474 {
3475 ktime_t *to = NULL, timeout = KTIME_MAX;
3476 struct task_struct *tsk = current;
3477 sigset_t mask = *which;
3478 int sig, ret = 0;
3479
3480 if (ts) {
3481 if (!timespec64_valid(ts))
3482 return -EINVAL;
3483 timeout = timespec64_to_ktime(*ts);
3484 to = &timeout;
3485 }
3486
3487 /*
3488 * Invert the set of allowed signals to get those we want to block.
3489 */
3490 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3491 signotset(&mask);
3492
3493 spin_lock_irq(&tsk->sighand->siglock);
3494 sig = dequeue_signal(tsk, &mask, info);
3495 if (!sig && timeout) {
3496 /*
3497 * None ready, temporarily unblock those we're interested
3498 * while we are sleeping in so that we'll be awakened when
3499 * they arrive. Unblocking is always fine, we can avoid
3500 * set_current_blocked().
3501 */
3502 tsk->real_blocked = tsk->blocked;
3503 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3504 recalc_sigpending();
3505 spin_unlock_irq(&tsk->sighand->siglock);
3506
3507 __set_current_state(TASK_INTERRUPTIBLE);
3508 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3509 HRTIMER_MODE_REL);
3510 spin_lock_irq(&tsk->sighand->siglock);
3511 __set_task_blocked(tsk, &tsk->real_blocked);
3512 sigemptyset(&tsk->real_blocked);
3513 sig = dequeue_signal(tsk, &mask, info);
3514 }
3515 spin_unlock_irq(&tsk->sighand->siglock);
3516
3517 if (sig)
3518 return sig;
3519 return ret ? -EINTR : -EAGAIN;
3520 }
3521
3522 /**
3523 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3524 * in @uthese
3525 * @uthese: queued signals to wait for
3526 * @uinfo: if non-null, the signal's siginfo is returned here
3527 * @uts: upper bound on process time suspension
3528 * @sigsetsize: size of sigset_t type
3529 */
3530 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3531 siginfo_t __user *, uinfo,
3532 const struct __kernel_timespec __user *, uts,
3533 size_t, sigsetsize)
3534 {
3535 sigset_t these;
3536 struct timespec64 ts;
3537 kernel_siginfo_t info;
3538 int ret;
3539
3540 /* XXX: Don't preclude handling different sized sigset_t's. */
3541 if (sigsetsize != sizeof(sigset_t))
3542 return -EINVAL;
3543
3544 if (copy_from_user(&these, uthese, sizeof(these)))
3545 return -EFAULT;
3546
3547 if (uts) {
3548 if (get_timespec64(&ts, uts))
3549 return -EFAULT;
3550 }
3551
3552 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3553
3554 if (ret > 0 && uinfo) {
3555 if (copy_siginfo_to_user(uinfo, &info))
3556 ret = -EFAULT;
3557 }
3558
3559 return ret;
3560 }
3561
3562 #ifdef CONFIG_COMPAT_32BIT_TIME
3563 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3564 siginfo_t __user *, uinfo,
3565 const struct old_timespec32 __user *, uts,
3566 size_t, sigsetsize)
3567 {
3568 sigset_t these;
3569 struct timespec64 ts;
3570 kernel_siginfo_t info;
3571 int ret;
3572
3573 if (sigsetsize != sizeof(sigset_t))
3574 return -EINVAL;
3575
3576 if (copy_from_user(&these, uthese, sizeof(these)))
3577 return -EFAULT;
3578
3579 if (uts) {
3580 if (get_old_timespec32(&ts, uts))
3581 return -EFAULT;
3582 }
3583
3584 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3585
3586 if (ret > 0 && uinfo) {
3587 if (copy_siginfo_to_user(uinfo, &info))
3588 ret = -EFAULT;
3589 }
3590
3591 return ret;
3592 }
3593 #endif
3594
3595 #ifdef CONFIG_COMPAT
3596 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3597 struct compat_siginfo __user *, uinfo,
3598 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3599 {
3600 sigset_t s;
3601 struct timespec64 t;
3602 kernel_siginfo_t info;
3603 long ret;
3604
3605 if (sigsetsize != sizeof(sigset_t))
3606 return -EINVAL;
3607
3608 if (get_compat_sigset(&s, uthese))
3609 return -EFAULT;
3610
3611 if (uts) {
3612 if (get_timespec64(&t, uts))
3613 return -EFAULT;
3614 }
3615
3616 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3617
3618 if (ret > 0 && uinfo) {
3619 if (copy_siginfo_to_user32(uinfo, &info))
3620 ret = -EFAULT;
3621 }
3622
3623 return ret;
3624 }
3625
3626 #ifdef CONFIG_COMPAT_32BIT_TIME
3627 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3628 struct compat_siginfo __user *, uinfo,
3629 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3630 {
3631 sigset_t s;
3632 struct timespec64 t;
3633 kernel_siginfo_t info;
3634 long ret;
3635
3636 if (sigsetsize != sizeof(sigset_t))
3637 return -EINVAL;
3638
3639 if (get_compat_sigset(&s, uthese))
3640 return -EFAULT;
3641
3642 if (uts) {
3643 if (get_old_timespec32(&t, uts))
3644 return -EFAULT;
3645 }
3646
3647 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3648
3649 if (ret > 0 && uinfo) {
3650 if (copy_siginfo_to_user32(uinfo, &info))
3651 ret = -EFAULT;
3652 }
3653
3654 return ret;
3655 }
3656 #endif
3657 #endif
3658
3659 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3660 {
3661 clear_siginfo(info);
3662 info->si_signo = sig;
3663 info->si_errno = 0;
3664 info->si_code = SI_USER;
3665 info->si_pid = task_tgid_vnr(current);
3666 info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3667 }
3668
3669 /**
3670 * sys_kill - send a signal to a process
3671 * @pid: the PID of the process
3672 * @sig: signal to be sent
3673 */
3674 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3675 {
3676 struct kernel_siginfo info;
3677
3678 prepare_kill_siginfo(sig, &info);
3679
3680 return kill_something_info(sig, &info, pid);
3681 }
3682
3683 /*
3684 * Verify that the signaler and signalee either are in the same pid namespace
3685 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3686 * namespace.
3687 */
3688 static bool access_pidfd_pidns(struct pid *pid)
3689 {
3690 struct pid_namespace *active = task_active_pid_ns(current);
3691 struct pid_namespace *p = ns_of_pid(pid);
3692
3693 for (;;) {
3694 if (!p)
3695 return false;
3696 if (p == active)
3697 break;
3698 p = p->parent;
3699 }
3700
3701 return true;
3702 }
3703
3704 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info)
3705 {
3706 #ifdef CONFIG_COMPAT
3707 /*
3708 * Avoid hooking up compat syscalls and instead handle necessary
3709 * conversions here. Note, this is a stop-gap measure and should not be
3710 * considered a generic solution.
3711 */
3712 if (in_compat_syscall())
3713 return copy_siginfo_from_user32(
3714 kinfo, (struct compat_siginfo __user *)info);
3715 #endif
3716 return copy_siginfo_from_user(kinfo, info);
3717 }
3718
3719 static struct pid *pidfd_to_pid(const struct file *file)
3720 {
3721 struct pid *pid;
3722
3723 pid = pidfd_pid(file);
3724 if (!IS_ERR(pid))
3725 return pid;
3726
3727 return tgid_pidfd_to_pid(file);
3728 }
3729
3730 /**
3731 * sys_pidfd_send_signal - Signal a process through a pidfd
3732 * @pidfd: file descriptor of the process
3733 * @sig: signal to send
3734 * @info: signal info
3735 * @flags: future flags
3736 *
3737 * The syscall currently only signals via PIDTYPE_PID which covers
3738 * kill(<positive-pid>, <signal>. It does not signal threads or process
3739 * groups.
3740 * In order to extend the syscall to threads and process groups the @flags
3741 * argument should be used. In essence, the @flags argument will determine
3742 * what is signaled and not the file descriptor itself. Put in other words,
3743 * grouping is a property of the flags argument not a property of the file
3744 * descriptor.
3745 *
3746 * Return: 0 on success, negative errno on failure
3747 */
3748 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3749 siginfo_t __user *, info, unsigned int, flags)
3750 {
3751 int ret;
3752 struct fd f;
3753 struct pid *pid;
3754 kernel_siginfo_t kinfo;
3755
3756 /* Enforce flags be set to 0 until we add an extension. */
3757 if (flags)
3758 return -EINVAL;
3759
3760 f = fdget(pidfd);
3761 if (!f.file)
3762 return -EBADF;
3763
3764 /* Is this a pidfd? */
3765 pid = pidfd_to_pid(f.file);
3766 if (IS_ERR(pid)) {
3767 ret = PTR_ERR(pid);
3768 goto err;
3769 }
3770
3771 ret = -EINVAL;
3772 if (!access_pidfd_pidns(pid))
3773 goto err;
3774
3775 if (info) {
3776 ret = copy_siginfo_from_user_any(&kinfo, info);
3777 if (unlikely(ret))
3778 goto err;
3779
3780 ret = -EINVAL;
3781 if (unlikely(sig != kinfo.si_signo))
3782 goto err;
3783
3784 /* Only allow sending arbitrary signals to yourself. */
3785 ret = -EPERM;
3786 if ((task_pid(current) != pid) &&
3787 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3788 goto err;
3789 } else {
3790 prepare_kill_siginfo(sig, &kinfo);
3791 }
3792
3793 ret = kill_pid_info(sig, &kinfo, pid);
3794
3795 err:
3796 fdput(f);
3797 return ret;
3798 }
3799
3800 static int
3801 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3802 {
3803 struct task_struct *p;
3804 int error = -ESRCH;
3805
3806 rcu_read_lock();
3807 p = find_task_by_vpid(pid);
3808 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3809 error = check_kill_permission(sig, info, p);
3810 /*
3811 * The null signal is a permissions and process existence
3812 * probe. No signal is actually delivered.
3813 */
3814 if (!error && sig) {
3815 error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3816 /*
3817 * If lock_task_sighand() failed we pretend the task
3818 * dies after receiving the signal. The window is tiny,
3819 * and the signal is private anyway.
3820 */
3821 if (unlikely(error == -ESRCH))
3822 error = 0;
3823 }
3824 }
3825 rcu_read_unlock();
3826
3827 return error;
3828 }
3829
3830 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3831 {
3832 struct kernel_siginfo info;
3833
3834 clear_siginfo(&info);
3835 info.si_signo = sig;
3836 info.si_errno = 0;
3837 info.si_code = SI_TKILL;
3838 info.si_pid = task_tgid_vnr(current);
3839 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3840
3841 return do_send_specific(tgid, pid, sig, &info);
3842 }
3843
3844 /**
3845 * sys_tgkill - send signal to one specific thread
3846 * @tgid: the thread group ID of the thread
3847 * @pid: the PID of the thread
3848 * @sig: signal to be sent
3849 *
3850 * This syscall also checks the @tgid and returns -ESRCH even if the PID
3851 * exists but it's not belonging to the target process anymore. This
3852 * method solves the problem of threads exiting and PIDs getting reused.
3853 */
3854 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3855 {
3856 /* This is only valid for single tasks */
3857 if (pid <= 0 || tgid <= 0)
3858 return -EINVAL;
3859
3860 return do_tkill(tgid, pid, sig);
3861 }
3862
3863 /**
3864 * sys_tkill - send signal to one specific task
3865 * @pid: the PID of the task
3866 * @sig: signal to be sent
3867 *
3868 * Send a signal to only one task, even if it's a CLONE_THREAD task.
3869 */
3870 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3871 {
3872 /* This is only valid for single tasks */
3873 if (pid <= 0)
3874 return -EINVAL;
3875
3876 return do_tkill(0, pid, sig);
3877 }
3878
3879 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3880 {
3881 /* Not even root can pretend to send signals from the kernel.
3882 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3883 */
3884 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3885 (task_pid_vnr(current) != pid))
3886 return -EPERM;
3887
3888 /* POSIX.1b doesn't mention process groups. */
3889 return kill_proc_info(sig, info, pid);
3890 }
3891
3892 /**
3893 * sys_rt_sigqueueinfo - send signal information to a signal
3894 * @pid: the PID of the thread
3895 * @sig: signal to be sent
3896 * @uinfo: signal info to be sent
3897 */
3898 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3899 siginfo_t __user *, uinfo)
3900 {
3901 kernel_siginfo_t info;
3902 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3903 if (unlikely(ret))
3904 return ret;
3905 return do_rt_sigqueueinfo(pid, sig, &info);
3906 }
3907
3908 #ifdef CONFIG_COMPAT
3909 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3910 compat_pid_t, pid,
3911 int, sig,
3912 struct compat_siginfo __user *, uinfo)
3913 {
3914 kernel_siginfo_t info;
3915 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3916 if (unlikely(ret))
3917 return ret;
3918 return do_rt_sigqueueinfo(pid, sig, &info);
3919 }
3920 #endif
3921
3922 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3923 {
3924 /* This is only valid for single tasks */
3925 if (pid <= 0 || tgid <= 0)
3926 return -EINVAL;
3927
3928 /* Not even root can pretend to send signals from the kernel.
3929 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3930 */
3931 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3932 (task_pid_vnr(current) != pid))
3933 return -EPERM;
3934
3935 return do_send_specific(tgid, pid, sig, info);
3936 }
3937
3938 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3939 siginfo_t __user *, uinfo)
3940 {
3941 kernel_siginfo_t info;
3942 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3943 if (unlikely(ret))
3944 return ret;
3945 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3946 }
3947
3948 #ifdef CONFIG_COMPAT
3949 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3950 compat_pid_t, tgid,
3951 compat_pid_t, pid,
3952 int, sig,
3953 struct compat_siginfo __user *, uinfo)
3954 {
3955 kernel_siginfo_t info;
3956 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3957 if (unlikely(ret))
3958 return ret;
3959 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3960 }
3961 #endif
3962
3963 /*
3964 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3965 */
3966 void kernel_sigaction(int sig, __sighandler_t action)
3967 {
3968 spin_lock_irq(&current->sighand->siglock);
3969 current->sighand->action[sig - 1].sa.sa_handler = action;
3970 if (action == SIG_IGN) {
3971 sigset_t mask;
3972
3973 sigemptyset(&mask);
3974 sigaddset(&mask, sig);
3975
3976 flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3977 flush_sigqueue_mask(&mask, &current->pending);
3978 recalc_sigpending();
3979 }
3980 spin_unlock_irq(&current->sighand->siglock);
3981 }
3982 EXPORT_SYMBOL(kernel_sigaction);
3983
3984 void __weak sigaction_compat_abi(struct k_sigaction *act,
3985 struct k_sigaction *oact)
3986 {
3987 }
3988
3989 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3990 {
3991 struct task_struct *p = current, *t;
3992 struct k_sigaction *k;
3993 sigset_t mask;
3994
3995 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3996 return -EINVAL;
3997
3998 k = &p->sighand->action[sig-1];
3999
4000 spin_lock_irq(&p->sighand->siglock);
4001 if (oact)
4002 *oact = *k;
4003
4004 /*
4005 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4006 * e.g. by having an architecture use the bit in their uapi.
4007 */
4008 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4009
4010 /*
4011 * Clear unknown flag bits in order to allow userspace to detect missing
4012 * support for flag bits and to allow the kernel to use non-uapi bits
4013 * internally.
4014 */
4015 if (act)
4016 act->sa.sa_flags &= UAPI_SA_FLAGS;
4017 if (oact)
4018 oact->sa.sa_flags &= UAPI_SA_FLAGS;
4019
4020 sigaction_compat_abi(act, oact);
4021
4022 if (act) {
4023 sigdelsetmask(&act->sa.sa_mask,
4024 sigmask(SIGKILL) | sigmask(SIGSTOP));
4025 *k = *act;
4026 /*
4027 * POSIX 3.3.1.3:
4028 * "Setting a signal action to SIG_IGN for a signal that is
4029 * pending shall cause the pending signal to be discarded,
4030 * whether or not it is blocked."
4031 *
4032 * "Setting a signal action to SIG_DFL for a signal that is
4033 * pending and whose default action is to ignore the signal
4034 * (for example, SIGCHLD), shall cause the pending signal to
4035 * be discarded, whether or not it is blocked"
4036 */
4037 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4038 sigemptyset(&mask);
4039 sigaddset(&mask, sig);
4040 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4041 for_each_thread(p, t)
4042 flush_sigqueue_mask(&mask, &t->pending);
4043 }
4044 }
4045
4046 spin_unlock_irq(&p->sighand->siglock);
4047 return 0;
4048 }
4049
4050 static int
4051 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4052 size_t min_ss_size)
4053 {
4054 struct task_struct *t = current;
4055
4056 if (oss) {
4057 memset(oss, 0, sizeof(stack_t));
4058 oss->ss_sp = (void __user *) t->sas_ss_sp;
4059 oss->ss_size = t->sas_ss_size;
4060 oss->ss_flags = sas_ss_flags(sp) |
4061 (current->sas_ss_flags & SS_FLAG_BITS);
4062 }
4063
4064 if (ss) {
4065 void __user *ss_sp = ss->ss_sp;
4066 size_t ss_size = ss->ss_size;
4067 unsigned ss_flags = ss->ss_flags;
4068 int ss_mode;
4069
4070 if (unlikely(on_sig_stack(sp)))
4071 return -EPERM;
4072
4073 ss_mode = ss_flags & ~SS_FLAG_BITS;
4074 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4075 ss_mode != 0))
4076 return -EINVAL;
4077
4078 if (ss_mode == SS_DISABLE) {
4079 ss_size = 0;
4080 ss_sp = NULL;
4081 } else {
4082 if (unlikely(ss_size < min_ss_size))
4083 return -ENOMEM;
4084 }
4085
4086 t->sas_ss_sp = (unsigned long) ss_sp;
4087 t->sas_ss_size = ss_size;
4088 t->sas_ss_flags = ss_flags;
4089 }
4090 return 0;
4091 }
4092
4093 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4094 {
4095 stack_t new, old;
4096 int err;
4097 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4098 return -EFAULT;
4099 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4100 current_user_stack_pointer(),
4101 MINSIGSTKSZ);
4102 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4103 err = -EFAULT;
4104 return err;
4105 }
4106
4107 int restore_altstack(const stack_t __user *uss)
4108 {
4109 stack_t new;
4110 if (copy_from_user(&new, uss, sizeof(stack_t)))
4111 return -EFAULT;
4112 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4113 MINSIGSTKSZ);
4114 /* squash all but EFAULT for now */
4115 return 0;
4116 }
4117
4118 int __save_altstack(stack_t __user *uss, unsigned long sp)
4119 {
4120 struct task_struct *t = current;
4121 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4122 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4123 __put_user(t->sas_ss_size, &uss->ss_size);
4124 if (err)
4125 return err;
4126 if (t->sas_ss_flags & SS_AUTODISARM)
4127 sas_ss_reset(t);
4128 return 0;
4129 }
4130
4131 #ifdef CONFIG_COMPAT
4132 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4133 compat_stack_t __user *uoss_ptr)
4134 {
4135 stack_t uss, uoss;
4136 int ret;
4137
4138 if (uss_ptr) {
4139 compat_stack_t uss32;
4140 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4141 return -EFAULT;
4142 uss.ss_sp = compat_ptr(uss32.ss_sp);
4143 uss.ss_flags = uss32.ss_flags;
4144 uss.ss_size = uss32.ss_size;
4145 }
4146 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4147 compat_user_stack_pointer(),
4148 COMPAT_MINSIGSTKSZ);
4149 if (ret >= 0 && uoss_ptr) {
4150 compat_stack_t old;
4151 memset(&old, 0, sizeof(old));
4152 old.ss_sp = ptr_to_compat(uoss.ss_sp);
4153 old.ss_flags = uoss.ss_flags;
4154 old.ss_size = uoss.ss_size;
4155 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4156 ret = -EFAULT;
4157 }
4158 return ret;
4159 }
4160
4161 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4162 const compat_stack_t __user *, uss_ptr,
4163 compat_stack_t __user *, uoss_ptr)
4164 {
4165 return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4166 }
4167
4168 int compat_restore_altstack(const compat_stack_t __user *uss)
4169 {
4170 int err = do_compat_sigaltstack(uss, NULL);
4171 /* squash all but -EFAULT for now */
4172 return err == -EFAULT ? err : 0;
4173 }
4174
4175 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4176 {
4177 int err;
4178 struct task_struct *t = current;
4179 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4180 &uss->ss_sp) |
4181 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4182 __put_user(t->sas_ss_size, &uss->ss_size);
4183 if (err)
4184 return err;
4185 if (t->sas_ss_flags & SS_AUTODISARM)
4186 sas_ss_reset(t);
4187 return 0;
4188 }
4189 #endif
4190
4191 #ifdef __ARCH_WANT_SYS_SIGPENDING
4192
4193 /**
4194 * sys_sigpending - examine pending signals
4195 * @uset: where mask of pending signal is returned
4196 */
4197 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4198 {
4199 sigset_t set;
4200
4201 if (sizeof(old_sigset_t) > sizeof(*uset))
4202 return -EINVAL;
4203
4204 do_sigpending(&set);
4205
4206 if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4207 return -EFAULT;
4208
4209 return 0;
4210 }
4211
4212 #ifdef CONFIG_COMPAT
4213 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4214 {
4215 sigset_t set;
4216
4217 do_sigpending(&set);
4218
4219 return put_user(set.sig[0], set32);
4220 }
4221 #endif
4222
4223 #endif
4224
4225 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4226 /**
4227 * sys_sigprocmask - examine and change blocked signals
4228 * @how: whether to add, remove, or set signals
4229 * @nset: signals to add or remove (if non-null)
4230 * @oset: previous value of signal mask if non-null
4231 *
4232 * Some platforms have their own version with special arguments;
4233 * others support only sys_rt_sigprocmask.
4234 */
4235
4236 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4237 old_sigset_t __user *, oset)
4238 {
4239 old_sigset_t old_set, new_set;
4240 sigset_t new_blocked;
4241
4242 old_set = current->blocked.sig[0];
4243
4244 if (nset) {
4245 if (copy_from_user(&new_set, nset, sizeof(*nset)))
4246 return -EFAULT;
4247
4248 new_blocked = current->blocked;
4249
4250 switch (how) {
4251 case SIG_BLOCK:
4252 sigaddsetmask(&new_blocked, new_set);
4253 break;
4254 case SIG_UNBLOCK:
4255 sigdelsetmask(&new_blocked, new_set);
4256 break;
4257 case SIG_SETMASK:
4258 new_blocked.sig[0] = new_set;
4259 break;
4260 default:
4261 return -EINVAL;
4262 }
4263
4264 set_current_blocked(&new_blocked);
4265 }
4266
4267 if (oset) {
4268 if (copy_to_user(oset, &old_set, sizeof(*oset)))
4269 return -EFAULT;
4270 }
4271
4272 return 0;
4273 }
4274 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4275
4276 #ifndef CONFIG_ODD_RT_SIGACTION
4277 /**
4278 * sys_rt_sigaction - alter an action taken by a process
4279 * @sig: signal to be sent
4280 * @act: new sigaction
4281 * @oact: used to save the previous sigaction
4282 * @sigsetsize: size of sigset_t type
4283 */
4284 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4285 const struct sigaction __user *, act,
4286 struct sigaction __user *, oact,
4287 size_t, sigsetsize)
4288 {
4289 struct k_sigaction new_sa, old_sa;
4290 int ret;
4291
4292 /* XXX: Don't preclude handling different sized sigset_t's. */
4293 if (sigsetsize != sizeof(sigset_t))
4294 return -EINVAL;
4295
4296 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4297 return -EFAULT;
4298
4299 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4300 if (ret)
4301 return ret;
4302
4303 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4304 return -EFAULT;
4305
4306 return 0;
4307 }
4308 #ifdef CONFIG_COMPAT
4309 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4310 const struct compat_sigaction __user *, act,
4311 struct compat_sigaction __user *, oact,
4312 compat_size_t, sigsetsize)
4313 {
4314 struct k_sigaction new_ka, old_ka;
4315 #ifdef __ARCH_HAS_SA_RESTORER
4316 compat_uptr_t restorer;
4317 #endif
4318 int ret;
4319
4320 /* XXX: Don't preclude handling different sized sigset_t's. */
4321 if (sigsetsize != sizeof(compat_sigset_t))
4322 return -EINVAL;
4323
4324 if (act) {
4325 compat_uptr_t handler;
4326 ret = get_user(handler, &act->sa_handler);
4327 new_ka.sa.sa_handler = compat_ptr(handler);
4328 #ifdef __ARCH_HAS_SA_RESTORER
4329 ret |= get_user(restorer, &act->sa_restorer);
4330 new_ka.sa.sa_restorer = compat_ptr(restorer);
4331 #endif
4332 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4333 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4334 if (ret)
4335 return -EFAULT;
4336 }
4337
4338 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4339 if (!ret && oact) {
4340 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4341 &oact->sa_handler);
4342 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4343 sizeof(oact->sa_mask));
4344 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4345 #ifdef __ARCH_HAS_SA_RESTORER
4346 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4347 &oact->sa_restorer);
4348 #endif
4349 }
4350 return ret;
4351 }
4352 #endif
4353 #endif /* !CONFIG_ODD_RT_SIGACTION */
4354
4355 #ifdef CONFIG_OLD_SIGACTION
4356 SYSCALL_DEFINE3(sigaction, int, sig,
4357 const struct old_sigaction __user *, act,
4358 struct old_sigaction __user *, oact)
4359 {
4360 struct k_sigaction new_ka, old_ka;
4361 int ret;
4362
4363 if (act) {
4364 old_sigset_t mask;
4365 if (!access_ok(act, sizeof(*act)) ||
4366 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4367 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4368 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4369 __get_user(mask, &act->sa_mask))
4370 return -EFAULT;
4371 #ifdef __ARCH_HAS_KA_RESTORER
4372 new_ka.ka_restorer = NULL;
4373 #endif
4374 siginitset(&new_ka.sa.sa_mask, mask);
4375 }
4376
4377 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4378
4379 if (!ret && oact) {
4380 if (!access_ok(oact, sizeof(*oact)) ||
4381 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4382 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4383 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4384 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4385 return -EFAULT;
4386 }
4387
4388 return ret;
4389 }
4390 #endif
4391 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4392 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4393 const struct compat_old_sigaction __user *, act,
4394 struct compat_old_sigaction __user *, oact)
4395 {
4396 struct k_sigaction new_ka, old_ka;
4397 int ret;
4398 compat_old_sigset_t mask;
4399 compat_uptr_t handler, restorer;
4400
4401 if (act) {
4402 if (!access_ok(act, sizeof(*act)) ||
4403 __get_user(handler, &act->sa_handler) ||
4404 __get_user(restorer, &act->sa_restorer) ||
4405 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4406 __get_user(mask, &act->sa_mask))
4407 return -EFAULT;
4408
4409 #ifdef __ARCH_HAS_KA_RESTORER
4410 new_ka.ka_restorer = NULL;
4411 #endif
4412 new_ka.sa.sa_handler = compat_ptr(handler);
4413 new_ka.sa.sa_restorer = compat_ptr(restorer);
4414 siginitset(&new_ka.sa.sa_mask, mask);
4415 }
4416
4417 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4418
4419 if (!ret && oact) {
4420 if (!access_ok(oact, sizeof(*oact)) ||
4421 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4422 &oact->sa_handler) ||
4423 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4424 &oact->sa_restorer) ||
4425 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4426 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4427 return -EFAULT;
4428 }
4429 return ret;
4430 }
4431 #endif
4432
4433 #ifdef CONFIG_SGETMASK_SYSCALL
4434
4435 /*
4436 * For backwards compatibility. Functionality superseded by sigprocmask.
4437 */
4438 SYSCALL_DEFINE0(sgetmask)
4439 {
4440 /* SMP safe */
4441 return current->blocked.sig[0];
4442 }
4443
4444 SYSCALL_DEFINE1(ssetmask, int, newmask)
4445 {
4446 int old = current->blocked.sig[0];
4447 sigset_t newset;
4448
4449 siginitset(&newset, newmask);
4450 set_current_blocked(&newset);
4451
4452 return old;
4453 }
4454 #endif /* CONFIG_SGETMASK_SYSCALL */
4455
4456 #ifdef __ARCH_WANT_SYS_SIGNAL
4457 /*
4458 * For backwards compatibility. Functionality superseded by sigaction.
4459 */
4460 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4461 {
4462 struct k_sigaction new_sa, old_sa;
4463 int ret;
4464
4465 new_sa.sa.sa_handler = handler;
4466 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4467 sigemptyset(&new_sa.sa.sa_mask);
4468
4469 ret = do_sigaction(sig, &new_sa, &old_sa);
4470
4471 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4472 }
4473 #endif /* __ARCH_WANT_SYS_SIGNAL */
4474
4475 #ifdef __ARCH_WANT_SYS_PAUSE
4476
4477 SYSCALL_DEFINE0(pause)
4478 {
4479 while (!signal_pending(current)) {
4480 __set_current_state(TASK_INTERRUPTIBLE);
4481 schedule();
4482 }
4483 return -ERESTARTNOHAND;
4484 }
4485
4486 #endif
4487
4488 static int sigsuspend(sigset_t *set)
4489 {
4490 current->saved_sigmask = current->blocked;
4491 set_current_blocked(set);
4492
4493 while (!signal_pending(current)) {
4494 __set_current_state(TASK_INTERRUPTIBLE);
4495 schedule();
4496 }
4497 set_restore_sigmask();
4498 return -ERESTARTNOHAND;
4499 }
4500
4501 /**
4502 * sys_rt_sigsuspend - replace the signal mask for a value with the
4503 * @unewset value until a signal is received
4504 * @unewset: new signal mask value
4505 * @sigsetsize: size of sigset_t type
4506 */
4507 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4508 {
4509 sigset_t newset;
4510
4511 /* XXX: Don't preclude handling different sized sigset_t's. */
4512 if (sigsetsize != sizeof(sigset_t))
4513 return -EINVAL;
4514
4515 if (copy_from_user(&newset, unewset, sizeof(newset)))
4516 return -EFAULT;
4517 return sigsuspend(&newset);
4518 }
4519
4520 #ifdef CONFIG_COMPAT
4521 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4522 {
4523 sigset_t newset;
4524
4525 /* XXX: Don't preclude handling different sized sigset_t's. */
4526 if (sigsetsize != sizeof(sigset_t))
4527 return -EINVAL;
4528
4529 if (get_compat_sigset(&newset, unewset))
4530 return -EFAULT;
4531 return sigsuspend(&newset);
4532 }
4533 #endif
4534
4535 #ifdef CONFIG_OLD_SIGSUSPEND
4536 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4537 {
4538 sigset_t blocked;
4539 siginitset(&blocked, mask);
4540 return sigsuspend(&blocked);
4541 }
4542 #endif
4543 #ifdef CONFIG_OLD_SIGSUSPEND3
4544 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4545 {
4546 sigset_t blocked;
4547 siginitset(&blocked, mask);
4548 return sigsuspend(&blocked);
4549 }
4550 #endif
4551
4552 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4553 {
4554 return NULL;
4555 }
4556
4557 static inline void siginfo_buildtime_checks(void)
4558 {
4559 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4560
4561 /* Verify the offsets in the two siginfos match */
4562 #define CHECK_OFFSET(field) \
4563 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4564
4565 /* kill */
4566 CHECK_OFFSET(si_pid);
4567 CHECK_OFFSET(si_uid);
4568
4569 /* timer */
4570 CHECK_OFFSET(si_tid);
4571 CHECK_OFFSET(si_overrun);
4572 CHECK_OFFSET(si_value);
4573
4574 /* rt */
4575 CHECK_OFFSET(si_pid);
4576 CHECK_OFFSET(si_uid);
4577 CHECK_OFFSET(si_value);
4578
4579 /* sigchld */
4580 CHECK_OFFSET(si_pid);
4581 CHECK_OFFSET(si_uid);
4582 CHECK_OFFSET(si_status);
4583 CHECK_OFFSET(si_utime);
4584 CHECK_OFFSET(si_stime);
4585
4586 /* sigfault */
4587 CHECK_OFFSET(si_addr);
4588 CHECK_OFFSET(si_addr_lsb);
4589 CHECK_OFFSET(si_lower);
4590 CHECK_OFFSET(si_upper);
4591 CHECK_OFFSET(si_pkey);
4592
4593 /* sigpoll */
4594 CHECK_OFFSET(si_band);
4595 CHECK_OFFSET(si_fd);
4596
4597 /* sigsys */
4598 CHECK_OFFSET(si_call_addr);
4599 CHECK_OFFSET(si_syscall);
4600 CHECK_OFFSET(si_arch);
4601 #undef CHECK_OFFSET
4602
4603 /* usb asyncio */
4604 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4605 offsetof(struct siginfo, si_addr));
4606 if (sizeof(int) == sizeof(void __user *)) {
4607 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4608 sizeof(void __user *));
4609 } else {
4610 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4611 sizeof_field(struct siginfo, si_uid)) !=
4612 sizeof(void __user *));
4613 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4614 offsetof(struct siginfo, si_uid));
4615 }
4616 #ifdef CONFIG_COMPAT
4617 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4618 offsetof(struct compat_siginfo, si_addr));
4619 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4620 sizeof(compat_uptr_t));
4621 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4622 sizeof_field(struct siginfo, si_pid));
4623 #endif
4624 }
4625
4626 void __init signals_init(void)
4627 {
4628 siginfo_buildtime_checks();
4629
4630 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4631 }
4632
4633 #ifdef CONFIG_KGDB_KDB
4634 #include <linux/kdb.h>
4635 /*
4636 * kdb_send_sig - Allows kdb to send signals without exposing
4637 * signal internals. This function checks if the required locks are
4638 * available before calling the main signal code, to avoid kdb
4639 * deadlocks.
4640 */
4641 void kdb_send_sig(struct task_struct *t, int sig)
4642 {
4643 static struct task_struct *kdb_prev_t;
4644 int new_t, ret;
4645 if (!spin_trylock(&t->sighand->siglock)) {
4646 kdb_printf("Can't do kill command now.\n"
4647 "The sigmask lock is held somewhere else in "
4648 "kernel, try again later\n");
4649 return;
4650 }
4651 new_t = kdb_prev_t != t;
4652 kdb_prev_t = t;
4653 if (t->state != TASK_RUNNING && new_t) {
4654 spin_unlock(&t->sighand->siglock);
4655 kdb_printf("Process is not RUNNING, sending a signal from "
4656 "kdb risks deadlock\n"
4657 "on the run queue locks. "
4658 "The signal has _not_ been sent.\n"
4659 "Reissue the kill command if you want to risk "
4660 "the deadlock.\n");
4661 return;
4662 }
4663 ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4664 spin_unlock(&t->sighand->siglock);
4665 if (ret)
4666 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4667 sig, t->pid);
4668 else
4669 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4670 }
4671 #endif /* CONFIG_KGDB_KDB */