]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/signal.c
xen-netfront: Fix NULL sring after live migration
[mirror_ubuntu-jammy-kernel.git] / kernel / signal.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/signal.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 *
9 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
10 * Changes to use preallocated sigqueue structures
11 * to allow signals to be sent reliably.
12 */
13
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/tracehook.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/cgroup.h>
47 #include <linux/audit.h>
48
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/signal.h>
51
52 #include <asm/param.h>
53 #include <linux/uaccess.h>
54 #include <asm/unistd.h>
55 #include <asm/siginfo.h>
56 #include <asm/cacheflush.h>
57 #include <asm/syscall.h> /* for syscall_get_* */
58
59 /*
60 * SLAB caches for signal bits.
61 */
62
63 static struct kmem_cache *sigqueue_cachep;
64
65 int print_fatal_signals __read_mostly;
66
67 static void __user *sig_handler(struct task_struct *t, int sig)
68 {
69 return t->sighand->action[sig - 1].sa.sa_handler;
70 }
71
72 static inline bool sig_handler_ignored(void __user *handler, int sig)
73 {
74 /* Is it explicitly or implicitly ignored? */
75 return handler == SIG_IGN ||
76 (handler == SIG_DFL && sig_kernel_ignore(sig));
77 }
78
79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
80 {
81 void __user *handler;
82
83 handler = sig_handler(t, sig);
84
85 /* SIGKILL and SIGSTOP may not be sent to the global init */
86 if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
87 return true;
88
89 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
90 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
91 return true;
92
93 /* Only allow kernel generated signals to this kthread */
94 if (unlikely((t->flags & PF_KTHREAD) &&
95 (handler == SIG_KTHREAD_KERNEL) && !force))
96 return true;
97
98 return sig_handler_ignored(handler, sig);
99 }
100
101 static bool sig_ignored(struct task_struct *t, int sig, bool force)
102 {
103 /*
104 * Blocked signals are never ignored, since the
105 * signal handler may change by the time it is
106 * unblocked.
107 */
108 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
109 return false;
110
111 /*
112 * Tracers may want to know about even ignored signal unless it
113 * is SIGKILL which can't be reported anyway but can be ignored
114 * by SIGNAL_UNKILLABLE task.
115 */
116 if (t->ptrace && sig != SIGKILL)
117 return false;
118
119 return sig_task_ignored(t, sig, force);
120 }
121
122 /*
123 * Re-calculate pending state from the set of locally pending
124 * signals, globally pending signals, and blocked signals.
125 */
126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
127 {
128 unsigned long ready;
129 long i;
130
131 switch (_NSIG_WORDS) {
132 default:
133 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
134 ready |= signal->sig[i] &~ blocked->sig[i];
135 break;
136
137 case 4: ready = signal->sig[3] &~ blocked->sig[3];
138 ready |= signal->sig[2] &~ blocked->sig[2];
139 ready |= signal->sig[1] &~ blocked->sig[1];
140 ready |= signal->sig[0] &~ blocked->sig[0];
141 break;
142
143 case 2: ready = signal->sig[1] &~ blocked->sig[1];
144 ready |= signal->sig[0] &~ blocked->sig[0];
145 break;
146
147 case 1: ready = signal->sig[0] &~ blocked->sig[0];
148 }
149 return ready != 0;
150 }
151
152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
153
154 static bool recalc_sigpending_tsk(struct task_struct *t)
155 {
156 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
157 PENDING(&t->pending, &t->blocked) ||
158 PENDING(&t->signal->shared_pending, &t->blocked) ||
159 cgroup_task_frozen(t)) {
160 set_tsk_thread_flag(t, TIF_SIGPENDING);
161 return true;
162 }
163
164 /*
165 * We must never clear the flag in another thread, or in current
166 * when it's possible the current syscall is returning -ERESTART*.
167 * So we don't clear it here, and only callers who know they should do.
168 */
169 return false;
170 }
171
172 /*
173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
174 * This is superfluous when called on current, the wakeup is a harmless no-op.
175 */
176 void recalc_sigpending_and_wake(struct task_struct *t)
177 {
178 if (recalc_sigpending_tsk(t))
179 signal_wake_up(t, 0);
180 }
181
182 void recalc_sigpending(void)
183 {
184 if (!recalc_sigpending_tsk(current) && !freezing(current))
185 clear_thread_flag(TIF_SIGPENDING);
186
187 }
188 EXPORT_SYMBOL(recalc_sigpending);
189
190 void calculate_sigpending(void)
191 {
192 /* Have any signals or users of TIF_SIGPENDING been delayed
193 * until after fork?
194 */
195 spin_lock_irq(&current->sighand->siglock);
196 set_tsk_thread_flag(current, TIF_SIGPENDING);
197 recalc_sigpending();
198 spin_unlock_irq(&current->sighand->siglock);
199 }
200
201 /* Given the mask, find the first available signal that should be serviced. */
202
203 #define SYNCHRONOUS_MASK \
204 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
205 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
206
207 int next_signal(struct sigpending *pending, sigset_t *mask)
208 {
209 unsigned long i, *s, *m, x;
210 int sig = 0;
211
212 s = pending->signal.sig;
213 m = mask->sig;
214
215 /*
216 * Handle the first word specially: it contains the
217 * synchronous signals that need to be dequeued first.
218 */
219 x = *s &~ *m;
220 if (x) {
221 if (x & SYNCHRONOUS_MASK)
222 x &= SYNCHRONOUS_MASK;
223 sig = ffz(~x) + 1;
224 return sig;
225 }
226
227 switch (_NSIG_WORDS) {
228 default:
229 for (i = 1; i < _NSIG_WORDS; ++i) {
230 x = *++s &~ *++m;
231 if (!x)
232 continue;
233 sig = ffz(~x) + i*_NSIG_BPW + 1;
234 break;
235 }
236 break;
237
238 case 2:
239 x = s[1] &~ m[1];
240 if (!x)
241 break;
242 sig = ffz(~x) + _NSIG_BPW + 1;
243 break;
244
245 case 1:
246 /* Nothing to do */
247 break;
248 }
249
250 return sig;
251 }
252
253 static inline void print_dropped_signal(int sig)
254 {
255 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
256
257 if (!print_fatal_signals)
258 return;
259
260 if (!__ratelimit(&ratelimit_state))
261 return;
262
263 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
264 current->comm, current->pid, sig);
265 }
266
267 /**
268 * task_set_jobctl_pending - set jobctl pending bits
269 * @task: target task
270 * @mask: pending bits to set
271 *
272 * Clear @mask from @task->jobctl. @mask must be subset of
273 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
274 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
275 * cleared. If @task is already being killed or exiting, this function
276 * becomes noop.
277 *
278 * CONTEXT:
279 * Must be called with @task->sighand->siglock held.
280 *
281 * RETURNS:
282 * %true if @mask is set, %false if made noop because @task was dying.
283 */
284 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
285 {
286 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
287 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
288 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
289
290 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
291 return false;
292
293 if (mask & JOBCTL_STOP_SIGMASK)
294 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
295
296 task->jobctl |= mask;
297 return true;
298 }
299
300 /**
301 * task_clear_jobctl_trapping - clear jobctl trapping bit
302 * @task: target task
303 *
304 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
305 * Clear it and wake up the ptracer. Note that we don't need any further
306 * locking. @task->siglock guarantees that @task->parent points to the
307 * ptracer.
308 *
309 * CONTEXT:
310 * Must be called with @task->sighand->siglock held.
311 */
312 void task_clear_jobctl_trapping(struct task_struct *task)
313 {
314 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
315 task->jobctl &= ~JOBCTL_TRAPPING;
316 smp_mb(); /* advised by wake_up_bit() */
317 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
318 }
319 }
320
321 /**
322 * task_clear_jobctl_pending - clear jobctl pending bits
323 * @task: target task
324 * @mask: pending bits to clear
325 *
326 * Clear @mask from @task->jobctl. @mask must be subset of
327 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
328 * STOP bits are cleared together.
329 *
330 * If clearing of @mask leaves no stop or trap pending, this function calls
331 * task_clear_jobctl_trapping().
332 *
333 * CONTEXT:
334 * Must be called with @task->sighand->siglock held.
335 */
336 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
337 {
338 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
339
340 if (mask & JOBCTL_STOP_PENDING)
341 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
342
343 task->jobctl &= ~mask;
344
345 if (!(task->jobctl & JOBCTL_PENDING_MASK))
346 task_clear_jobctl_trapping(task);
347 }
348
349 /**
350 * task_participate_group_stop - participate in a group stop
351 * @task: task participating in a group stop
352 *
353 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
354 * Group stop states are cleared and the group stop count is consumed if
355 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
356 * stop, the appropriate `SIGNAL_*` flags are set.
357 *
358 * CONTEXT:
359 * Must be called with @task->sighand->siglock held.
360 *
361 * RETURNS:
362 * %true if group stop completion should be notified to the parent, %false
363 * otherwise.
364 */
365 static bool task_participate_group_stop(struct task_struct *task)
366 {
367 struct signal_struct *sig = task->signal;
368 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
369
370 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
371
372 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
373
374 if (!consume)
375 return false;
376
377 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
378 sig->group_stop_count--;
379
380 /*
381 * Tell the caller to notify completion iff we are entering into a
382 * fresh group stop. Read comment in do_signal_stop() for details.
383 */
384 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
385 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
386 return true;
387 }
388 return false;
389 }
390
391 void task_join_group_stop(struct task_struct *task)
392 {
393 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
394 struct signal_struct *sig = current->signal;
395
396 if (sig->group_stop_count) {
397 sig->group_stop_count++;
398 mask |= JOBCTL_STOP_CONSUME;
399 } else if (!(sig->flags & SIGNAL_STOP_STOPPED))
400 return;
401
402 /* Have the new thread join an on-going signal group stop */
403 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
404 }
405
406 /*
407 * allocate a new signal queue record
408 * - this may be called without locks if and only if t == current, otherwise an
409 * appropriate lock must be held to stop the target task from exiting
410 */
411 static struct sigqueue *
412 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
413 int override_rlimit, const unsigned int sigqueue_flags)
414 {
415 struct sigqueue *q = NULL;
416 struct ucounts *ucounts = NULL;
417 long sigpending;
418
419 /*
420 * Protect access to @t credentials. This can go away when all
421 * callers hold rcu read lock.
422 *
423 * NOTE! A pending signal will hold on to the user refcount,
424 * and we get/put the refcount only when the sigpending count
425 * changes from/to zero.
426 */
427 rcu_read_lock();
428 ucounts = task_ucounts(t);
429 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
430 rcu_read_unlock();
431 if (!sigpending)
432 return NULL;
433
434 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
435 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
436 } else {
437 print_dropped_signal(sig);
438 }
439
440 if (unlikely(q == NULL)) {
441 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
442 } else {
443 INIT_LIST_HEAD(&q->list);
444 q->flags = sigqueue_flags;
445 q->ucounts = ucounts;
446 }
447 return q;
448 }
449
450 static void __sigqueue_free(struct sigqueue *q)
451 {
452 if (q->flags & SIGQUEUE_PREALLOC)
453 return;
454 if (q->ucounts) {
455 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
456 q->ucounts = NULL;
457 }
458 kmem_cache_free(sigqueue_cachep, q);
459 }
460
461 void flush_sigqueue(struct sigpending *queue)
462 {
463 struct sigqueue *q;
464
465 sigemptyset(&queue->signal);
466 while (!list_empty(&queue->list)) {
467 q = list_entry(queue->list.next, struct sigqueue , list);
468 list_del_init(&q->list);
469 __sigqueue_free(q);
470 }
471 }
472
473 /*
474 * Flush all pending signals for this kthread.
475 */
476 void flush_signals(struct task_struct *t)
477 {
478 unsigned long flags;
479
480 spin_lock_irqsave(&t->sighand->siglock, flags);
481 clear_tsk_thread_flag(t, TIF_SIGPENDING);
482 flush_sigqueue(&t->pending);
483 flush_sigqueue(&t->signal->shared_pending);
484 spin_unlock_irqrestore(&t->sighand->siglock, flags);
485 }
486 EXPORT_SYMBOL(flush_signals);
487
488 #ifdef CONFIG_POSIX_TIMERS
489 static void __flush_itimer_signals(struct sigpending *pending)
490 {
491 sigset_t signal, retain;
492 struct sigqueue *q, *n;
493
494 signal = pending->signal;
495 sigemptyset(&retain);
496
497 list_for_each_entry_safe(q, n, &pending->list, list) {
498 int sig = q->info.si_signo;
499
500 if (likely(q->info.si_code != SI_TIMER)) {
501 sigaddset(&retain, sig);
502 } else {
503 sigdelset(&signal, sig);
504 list_del_init(&q->list);
505 __sigqueue_free(q);
506 }
507 }
508
509 sigorsets(&pending->signal, &signal, &retain);
510 }
511
512 void flush_itimer_signals(void)
513 {
514 struct task_struct *tsk = current;
515 unsigned long flags;
516
517 spin_lock_irqsave(&tsk->sighand->siglock, flags);
518 __flush_itimer_signals(&tsk->pending);
519 __flush_itimer_signals(&tsk->signal->shared_pending);
520 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
521 }
522 #endif
523
524 void ignore_signals(struct task_struct *t)
525 {
526 int i;
527
528 for (i = 0; i < _NSIG; ++i)
529 t->sighand->action[i].sa.sa_handler = SIG_IGN;
530
531 flush_signals(t);
532 }
533
534 /*
535 * Flush all handlers for a task.
536 */
537
538 void
539 flush_signal_handlers(struct task_struct *t, int force_default)
540 {
541 int i;
542 struct k_sigaction *ka = &t->sighand->action[0];
543 for (i = _NSIG ; i != 0 ; i--) {
544 if (force_default || ka->sa.sa_handler != SIG_IGN)
545 ka->sa.sa_handler = SIG_DFL;
546 ka->sa.sa_flags = 0;
547 #ifdef __ARCH_HAS_SA_RESTORER
548 ka->sa.sa_restorer = NULL;
549 #endif
550 sigemptyset(&ka->sa.sa_mask);
551 ka++;
552 }
553 }
554
555 bool unhandled_signal(struct task_struct *tsk, int sig)
556 {
557 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
558 if (is_global_init(tsk))
559 return true;
560
561 if (handler != SIG_IGN && handler != SIG_DFL)
562 return false;
563
564 /* if ptraced, let the tracer determine */
565 return !tsk->ptrace;
566 }
567
568 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
569 bool *resched_timer)
570 {
571 struct sigqueue *q, *first = NULL;
572
573 /*
574 * Collect the siginfo appropriate to this signal. Check if
575 * there is another siginfo for the same signal.
576 */
577 list_for_each_entry(q, &list->list, list) {
578 if (q->info.si_signo == sig) {
579 if (first)
580 goto still_pending;
581 first = q;
582 }
583 }
584
585 sigdelset(&list->signal, sig);
586
587 if (first) {
588 still_pending:
589 list_del_init(&first->list);
590 copy_siginfo(info, &first->info);
591
592 *resched_timer =
593 (first->flags & SIGQUEUE_PREALLOC) &&
594 (info->si_code == SI_TIMER) &&
595 (info->si_sys_private);
596
597 __sigqueue_free(first);
598 } else {
599 /*
600 * Ok, it wasn't in the queue. This must be
601 * a fast-pathed signal or we must have been
602 * out of queue space. So zero out the info.
603 */
604 clear_siginfo(info);
605 info->si_signo = sig;
606 info->si_errno = 0;
607 info->si_code = SI_USER;
608 info->si_pid = 0;
609 info->si_uid = 0;
610 }
611 }
612
613 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
614 kernel_siginfo_t *info, bool *resched_timer)
615 {
616 int sig = next_signal(pending, mask);
617
618 if (sig)
619 collect_signal(sig, pending, info, resched_timer);
620 return sig;
621 }
622
623 /*
624 * Dequeue a signal and return the element to the caller, which is
625 * expected to free it.
626 *
627 * All callers have to hold the siglock.
628 */
629 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
630 {
631 bool resched_timer = false;
632 int signr;
633
634 /* We only dequeue private signals from ourselves, we don't let
635 * signalfd steal them
636 */
637 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
638 if (!signr) {
639 signr = __dequeue_signal(&tsk->signal->shared_pending,
640 mask, info, &resched_timer);
641 #ifdef CONFIG_POSIX_TIMERS
642 /*
643 * itimer signal ?
644 *
645 * itimers are process shared and we restart periodic
646 * itimers in the signal delivery path to prevent DoS
647 * attacks in the high resolution timer case. This is
648 * compliant with the old way of self-restarting
649 * itimers, as the SIGALRM is a legacy signal and only
650 * queued once. Changing the restart behaviour to
651 * restart the timer in the signal dequeue path is
652 * reducing the timer noise on heavy loaded !highres
653 * systems too.
654 */
655 if (unlikely(signr == SIGALRM)) {
656 struct hrtimer *tmr = &tsk->signal->real_timer;
657
658 if (!hrtimer_is_queued(tmr) &&
659 tsk->signal->it_real_incr != 0) {
660 hrtimer_forward(tmr, tmr->base->get_time(),
661 tsk->signal->it_real_incr);
662 hrtimer_restart(tmr);
663 }
664 }
665 #endif
666 }
667
668 recalc_sigpending();
669 if (!signr)
670 return 0;
671
672 if (unlikely(sig_kernel_stop(signr))) {
673 /*
674 * Set a marker that we have dequeued a stop signal. Our
675 * caller might release the siglock and then the pending
676 * stop signal it is about to process is no longer in the
677 * pending bitmasks, but must still be cleared by a SIGCONT
678 * (and overruled by a SIGKILL). So those cases clear this
679 * shared flag after we've set it. Note that this flag may
680 * remain set after the signal we return is ignored or
681 * handled. That doesn't matter because its only purpose
682 * is to alert stop-signal processing code when another
683 * processor has come along and cleared the flag.
684 */
685 current->jobctl |= JOBCTL_STOP_DEQUEUED;
686 }
687 #ifdef CONFIG_POSIX_TIMERS
688 if (resched_timer) {
689 /*
690 * Release the siglock to ensure proper locking order
691 * of timer locks outside of siglocks. Note, we leave
692 * irqs disabled here, since the posix-timers code is
693 * about to disable them again anyway.
694 */
695 spin_unlock(&tsk->sighand->siglock);
696 posixtimer_rearm(info);
697 spin_lock(&tsk->sighand->siglock);
698
699 /* Don't expose the si_sys_private value to userspace */
700 info->si_sys_private = 0;
701 }
702 #endif
703 return signr;
704 }
705 EXPORT_SYMBOL_GPL(dequeue_signal);
706
707 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
708 {
709 struct task_struct *tsk = current;
710 struct sigpending *pending = &tsk->pending;
711 struct sigqueue *q, *sync = NULL;
712
713 /*
714 * Might a synchronous signal be in the queue?
715 */
716 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
717 return 0;
718
719 /*
720 * Return the first synchronous signal in the queue.
721 */
722 list_for_each_entry(q, &pending->list, list) {
723 /* Synchronous signals have a positive si_code */
724 if ((q->info.si_code > SI_USER) &&
725 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
726 sync = q;
727 goto next;
728 }
729 }
730 return 0;
731 next:
732 /*
733 * Check if there is another siginfo for the same signal.
734 */
735 list_for_each_entry_continue(q, &pending->list, list) {
736 if (q->info.si_signo == sync->info.si_signo)
737 goto still_pending;
738 }
739
740 sigdelset(&pending->signal, sync->info.si_signo);
741 recalc_sigpending();
742 still_pending:
743 list_del_init(&sync->list);
744 copy_siginfo(info, &sync->info);
745 __sigqueue_free(sync);
746 return info->si_signo;
747 }
748
749 /*
750 * Tell a process that it has a new active signal..
751 *
752 * NOTE! we rely on the previous spin_lock to
753 * lock interrupts for us! We can only be called with
754 * "siglock" held, and the local interrupt must
755 * have been disabled when that got acquired!
756 *
757 * No need to set need_resched since signal event passing
758 * goes through ->blocked
759 */
760 void signal_wake_up_state(struct task_struct *t, unsigned int state)
761 {
762 set_tsk_thread_flag(t, TIF_SIGPENDING);
763 /*
764 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
765 * case. We don't check t->state here because there is a race with it
766 * executing another processor and just now entering stopped state.
767 * By using wake_up_state, we ensure the process will wake up and
768 * handle its death signal.
769 */
770 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
771 kick_process(t);
772 }
773
774 /*
775 * Remove signals in mask from the pending set and queue.
776 * Returns 1 if any signals were found.
777 *
778 * All callers must be holding the siglock.
779 */
780 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
781 {
782 struct sigqueue *q, *n;
783 sigset_t m;
784
785 sigandsets(&m, mask, &s->signal);
786 if (sigisemptyset(&m))
787 return;
788
789 sigandnsets(&s->signal, &s->signal, mask);
790 list_for_each_entry_safe(q, n, &s->list, list) {
791 if (sigismember(mask, q->info.si_signo)) {
792 list_del_init(&q->list);
793 __sigqueue_free(q);
794 }
795 }
796 }
797
798 static inline int is_si_special(const struct kernel_siginfo *info)
799 {
800 return info <= SEND_SIG_PRIV;
801 }
802
803 static inline bool si_fromuser(const struct kernel_siginfo *info)
804 {
805 return info == SEND_SIG_NOINFO ||
806 (!is_si_special(info) && SI_FROMUSER(info));
807 }
808
809 /*
810 * called with RCU read lock from check_kill_permission()
811 */
812 static bool kill_ok_by_cred(struct task_struct *t)
813 {
814 const struct cred *cred = current_cred();
815 const struct cred *tcred = __task_cred(t);
816
817 return uid_eq(cred->euid, tcred->suid) ||
818 uid_eq(cred->euid, tcred->uid) ||
819 uid_eq(cred->uid, tcred->suid) ||
820 uid_eq(cred->uid, tcred->uid) ||
821 ns_capable(tcred->user_ns, CAP_KILL);
822 }
823
824 /*
825 * Bad permissions for sending the signal
826 * - the caller must hold the RCU read lock
827 */
828 static int check_kill_permission(int sig, struct kernel_siginfo *info,
829 struct task_struct *t)
830 {
831 struct pid *sid;
832 int error;
833
834 if (!valid_signal(sig))
835 return -EINVAL;
836
837 if (!si_fromuser(info))
838 return 0;
839
840 error = audit_signal_info(sig, t); /* Let audit system see the signal */
841 if (error)
842 return error;
843
844 if (!same_thread_group(current, t) &&
845 !kill_ok_by_cred(t)) {
846 switch (sig) {
847 case SIGCONT:
848 sid = task_session(t);
849 /*
850 * We don't return the error if sid == NULL. The
851 * task was unhashed, the caller must notice this.
852 */
853 if (!sid || sid == task_session(current))
854 break;
855 fallthrough;
856 default:
857 return -EPERM;
858 }
859 }
860
861 return security_task_kill(t, info, sig, NULL);
862 }
863
864 /**
865 * ptrace_trap_notify - schedule trap to notify ptracer
866 * @t: tracee wanting to notify tracer
867 *
868 * This function schedules sticky ptrace trap which is cleared on the next
869 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
870 * ptracer.
871 *
872 * If @t is running, STOP trap will be taken. If trapped for STOP and
873 * ptracer is listening for events, tracee is woken up so that it can
874 * re-trap for the new event. If trapped otherwise, STOP trap will be
875 * eventually taken without returning to userland after the existing traps
876 * are finished by PTRACE_CONT.
877 *
878 * CONTEXT:
879 * Must be called with @task->sighand->siglock held.
880 */
881 static void ptrace_trap_notify(struct task_struct *t)
882 {
883 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
884 assert_spin_locked(&t->sighand->siglock);
885
886 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
887 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
888 }
889
890 /*
891 * Handle magic process-wide effects of stop/continue signals. Unlike
892 * the signal actions, these happen immediately at signal-generation
893 * time regardless of blocking, ignoring, or handling. This does the
894 * actual continuing for SIGCONT, but not the actual stopping for stop
895 * signals. The process stop is done as a signal action for SIG_DFL.
896 *
897 * Returns true if the signal should be actually delivered, otherwise
898 * it should be dropped.
899 */
900 static bool prepare_signal(int sig, struct task_struct *p, bool force)
901 {
902 struct signal_struct *signal = p->signal;
903 struct task_struct *t;
904 sigset_t flush;
905
906 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
907 if (!(signal->flags & SIGNAL_GROUP_EXIT))
908 return sig == SIGKILL;
909 /*
910 * The process is in the middle of dying, nothing to do.
911 */
912 } else if (sig_kernel_stop(sig)) {
913 /*
914 * This is a stop signal. Remove SIGCONT from all queues.
915 */
916 siginitset(&flush, sigmask(SIGCONT));
917 flush_sigqueue_mask(&flush, &signal->shared_pending);
918 for_each_thread(p, t)
919 flush_sigqueue_mask(&flush, &t->pending);
920 } else if (sig == SIGCONT) {
921 unsigned int why;
922 /*
923 * Remove all stop signals from all queues, wake all threads.
924 */
925 siginitset(&flush, SIG_KERNEL_STOP_MASK);
926 flush_sigqueue_mask(&flush, &signal->shared_pending);
927 for_each_thread(p, t) {
928 flush_sigqueue_mask(&flush, &t->pending);
929 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
930 if (likely(!(t->ptrace & PT_SEIZED)))
931 wake_up_state(t, __TASK_STOPPED);
932 else
933 ptrace_trap_notify(t);
934 }
935
936 /*
937 * Notify the parent with CLD_CONTINUED if we were stopped.
938 *
939 * If we were in the middle of a group stop, we pretend it
940 * was already finished, and then continued. Since SIGCHLD
941 * doesn't queue we report only CLD_STOPPED, as if the next
942 * CLD_CONTINUED was dropped.
943 */
944 why = 0;
945 if (signal->flags & SIGNAL_STOP_STOPPED)
946 why |= SIGNAL_CLD_CONTINUED;
947 else if (signal->group_stop_count)
948 why |= SIGNAL_CLD_STOPPED;
949
950 if (why) {
951 /*
952 * The first thread which returns from do_signal_stop()
953 * will take ->siglock, notice SIGNAL_CLD_MASK, and
954 * notify its parent. See get_signal().
955 */
956 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
957 signal->group_stop_count = 0;
958 signal->group_exit_code = 0;
959 }
960 }
961
962 return !sig_ignored(p, sig, force);
963 }
964
965 /*
966 * Test if P wants to take SIG. After we've checked all threads with this,
967 * it's equivalent to finding no threads not blocking SIG. Any threads not
968 * blocking SIG were ruled out because they are not running and already
969 * have pending signals. Such threads will dequeue from the shared queue
970 * as soon as they're available, so putting the signal on the shared queue
971 * will be equivalent to sending it to one such thread.
972 */
973 static inline bool wants_signal(int sig, struct task_struct *p)
974 {
975 if (sigismember(&p->blocked, sig))
976 return false;
977
978 if (p->flags & PF_EXITING)
979 return false;
980
981 if (sig == SIGKILL)
982 return true;
983
984 if (task_is_stopped_or_traced(p))
985 return false;
986
987 return task_curr(p) || !task_sigpending(p);
988 }
989
990 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
991 {
992 struct signal_struct *signal = p->signal;
993 struct task_struct *t;
994
995 /*
996 * Now find a thread we can wake up to take the signal off the queue.
997 *
998 * If the main thread wants the signal, it gets first crack.
999 * Probably the least surprising to the average bear.
1000 */
1001 if (wants_signal(sig, p))
1002 t = p;
1003 else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1004 /*
1005 * There is just one thread and it does not need to be woken.
1006 * It will dequeue unblocked signals before it runs again.
1007 */
1008 return;
1009 else {
1010 /*
1011 * Otherwise try to find a suitable thread.
1012 */
1013 t = signal->curr_target;
1014 while (!wants_signal(sig, t)) {
1015 t = next_thread(t);
1016 if (t == signal->curr_target)
1017 /*
1018 * No thread needs to be woken.
1019 * Any eligible threads will see
1020 * the signal in the queue soon.
1021 */
1022 return;
1023 }
1024 signal->curr_target = t;
1025 }
1026
1027 /*
1028 * Found a killable thread. If the signal will be fatal,
1029 * then start taking the whole group down immediately.
1030 */
1031 if (sig_fatal(p, sig) &&
1032 !(signal->flags & SIGNAL_GROUP_EXIT) &&
1033 !sigismember(&t->real_blocked, sig) &&
1034 (sig == SIGKILL || !p->ptrace)) {
1035 /*
1036 * This signal will be fatal to the whole group.
1037 */
1038 if (!sig_kernel_coredump(sig)) {
1039 /*
1040 * Start a group exit and wake everybody up.
1041 * This way we don't have other threads
1042 * running and doing things after a slower
1043 * thread has the fatal signal pending.
1044 */
1045 signal->flags = SIGNAL_GROUP_EXIT;
1046 signal->group_exit_code = sig;
1047 signal->group_stop_count = 0;
1048 t = p;
1049 do {
1050 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1051 sigaddset(&t->pending.signal, SIGKILL);
1052 signal_wake_up(t, 1);
1053 } while_each_thread(p, t);
1054 return;
1055 }
1056 }
1057
1058 /*
1059 * The signal is already in the shared-pending queue.
1060 * Tell the chosen thread to wake up and dequeue it.
1061 */
1062 signal_wake_up(t, sig == SIGKILL);
1063 return;
1064 }
1065
1066 static inline bool legacy_queue(struct sigpending *signals, int sig)
1067 {
1068 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1069 }
1070
1071 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1072 enum pid_type type, bool force)
1073 {
1074 struct sigpending *pending;
1075 struct sigqueue *q;
1076 int override_rlimit;
1077 int ret = 0, result;
1078
1079 assert_spin_locked(&t->sighand->siglock);
1080
1081 result = TRACE_SIGNAL_IGNORED;
1082 if (!prepare_signal(sig, t, force))
1083 goto ret;
1084
1085 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1086 /*
1087 * Short-circuit ignored signals and support queuing
1088 * exactly one non-rt signal, so that we can get more
1089 * detailed information about the cause of the signal.
1090 */
1091 result = TRACE_SIGNAL_ALREADY_PENDING;
1092 if (legacy_queue(pending, sig))
1093 goto ret;
1094
1095 result = TRACE_SIGNAL_DELIVERED;
1096 /*
1097 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1098 */
1099 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1100 goto out_set;
1101
1102 /*
1103 * Real-time signals must be queued if sent by sigqueue, or
1104 * some other real-time mechanism. It is implementation
1105 * defined whether kill() does so. We attempt to do so, on
1106 * the principle of least surprise, but since kill is not
1107 * allowed to fail with EAGAIN when low on memory we just
1108 * make sure at least one signal gets delivered and don't
1109 * pass on the info struct.
1110 */
1111 if (sig < SIGRTMIN)
1112 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1113 else
1114 override_rlimit = 0;
1115
1116 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1117
1118 if (q) {
1119 list_add_tail(&q->list, &pending->list);
1120 switch ((unsigned long) info) {
1121 case (unsigned long) SEND_SIG_NOINFO:
1122 clear_siginfo(&q->info);
1123 q->info.si_signo = sig;
1124 q->info.si_errno = 0;
1125 q->info.si_code = SI_USER;
1126 q->info.si_pid = task_tgid_nr_ns(current,
1127 task_active_pid_ns(t));
1128 rcu_read_lock();
1129 q->info.si_uid =
1130 from_kuid_munged(task_cred_xxx(t, user_ns),
1131 current_uid());
1132 rcu_read_unlock();
1133 break;
1134 case (unsigned long) SEND_SIG_PRIV:
1135 clear_siginfo(&q->info);
1136 q->info.si_signo = sig;
1137 q->info.si_errno = 0;
1138 q->info.si_code = SI_KERNEL;
1139 q->info.si_pid = 0;
1140 q->info.si_uid = 0;
1141 break;
1142 default:
1143 copy_siginfo(&q->info, info);
1144 break;
1145 }
1146 } else if (!is_si_special(info) &&
1147 sig >= SIGRTMIN && info->si_code != SI_USER) {
1148 /*
1149 * Queue overflow, abort. We may abort if the
1150 * signal was rt and sent by user using something
1151 * other than kill().
1152 */
1153 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1154 ret = -EAGAIN;
1155 goto ret;
1156 } else {
1157 /*
1158 * This is a silent loss of information. We still
1159 * send the signal, but the *info bits are lost.
1160 */
1161 result = TRACE_SIGNAL_LOSE_INFO;
1162 }
1163
1164 out_set:
1165 signalfd_notify(t, sig);
1166 sigaddset(&pending->signal, sig);
1167
1168 /* Let multiprocess signals appear after on-going forks */
1169 if (type > PIDTYPE_TGID) {
1170 struct multiprocess_signals *delayed;
1171 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1172 sigset_t *signal = &delayed->signal;
1173 /* Can't queue both a stop and a continue signal */
1174 if (sig == SIGCONT)
1175 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1176 else if (sig_kernel_stop(sig))
1177 sigdelset(signal, SIGCONT);
1178 sigaddset(signal, sig);
1179 }
1180 }
1181
1182 complete_signal(sig, t, type);
1183 ret:
1184 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1185 return ret;
1186 }
1187
1188 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1189 {
1190 bool ret = false;
1191 switch (siginfo_layout(info->si_signo, info->si_code)) {
1192 case SIL_KILL:
1193 case SIL_CHLD:
1194 case SIL_RT:
1195 ret = true;
1196 break;
1197 case SIL_TIMER:
1198 case SIL_POLL:
1199 case SIL_FAULT:
1200 case SIL_FAULT_TRAPNO:
1201 case SIL_FAULT_MCEERR:
1202 case SIL_FAULT_BNDERR:
1203 case SIL_FAULT_PKUERR:
1204 case SIL_FAULT_PERF_EVENT:
1205 case SIL_SYS:
1206 ret = false;
1207 break;
1208 }
1209 return ret;
1210 }
1211
1212 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1213 enum pid_type type)
1214 {
1215 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1216 bool force = false;
1217
1218 if (info == SEND_SIG_NOINFO) {
1219 /* Force if sent from an ancestor pid namespace */
1220 force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1221 } else if (info == SEND_SIG_PRIV) {
1222 /* Don't ignore kernel generated signals */
1223 force = true;
1224 } else if (has_si_pid_and_uid(info)) {
1225 /* SIGKILL and SIGSTOP is special or has ids */
1226 struct user_namespace *t_user_ns;
1227
1228 rcu_read_lock();
1229 t_user_ns = task_cred_xxx(t, user_ns);
1230 if (current_user_ns() != t_user_ns) {
1231 kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1232 info->si_uid = from_kuid_munged(t_user_ns, uid);
1233 }
1234 rcu_read_unlock();
1235
1236 /* A kernel generated signal? */
1237 force = (info->si_code == SI_KERNEL);
1238
1239 /* From an ancestor pid namespace? */
1240 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1241 info->si_pid = 0;
1242 force = true;
1243 }
1244 }
1245 return __send_signal(sig, info, t, type, force);
1246 }
1247
1248 static void print_fatal_signal(int signr)
1249 {
1250 struct pt_regs *regs = signal_pt_regs();
1251 pr_info("potentially unexpected fatal signal %d.\n", signr);
1252
1253 #if defined(__i386__) && !defined(__arch_um__)
1254 pr_info("code at %08lx: ", regs->ip);
1255 {
1256 int i;
1257 for (i = 0; i < 16; i++) {
1258 unsigned char insn;
1259
1260 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1261 break;
1262 pr_cont("%02x ", insn);
1263 }
1264 }
1265 pr_cont("\n");
1266 #endif
1267 preempt_disable();
1268 show_regs(regs);
1269 preempt_enable();
1270 }
1271
1272 static int __init setup_print_fatal_signals(char *str)
1273 {
1274 get_option (&str, &print_fatal_signals);
1275
1276 return 1;
1277 }
1278
1279 __setup("print-fatal-signals=", setup_print_fatal_signals);
1280
1281 int
1282 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1283 {
1284 return send_signal(sig, info, p, PIDTYPE_TGID);
1285 }
1286
1287 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1288 enum pid_type type)
1289 {
1290 unsigned long flags;
1291 int ret = -ESRCH;
1292
1293 if (lock_task_sighand(p, &flags)) {
1294 ret = send_signal(sig, info, p, type);
1295 unlock_task_sighand(p, &flags);
1296 }
1297
1298 return ret;
1299 }
1300
1301 enum sig_handler {
1302 HANDLER_CURRENT, /* If reachable use the current handler */
1303 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1304 HANDLER_EXIT, /* Only visible as the process exit code */
1305 };
1306
1307 /*
1308 * Force a signal that the process can't ignore: if necessary
1309 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1310 *
1311 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1312 * since we do not want to have a signal handler that was blocked
1313 * be invoked when user space had explicitly blocked it.
1314 *
1315 * We don't want to have recursive SIGSEGV's etc, for example,
1316 * that is why we also clear SIGNAL_UNKILLABLE.
1317 */
1318 static int
1319 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1320 enum sig_handler handler)
1321 {
1322 unsigned long int flags;
1323 int ret, blocked, ignored;
1324 struct k_sigaction *action;
1325 int sig = info->si_signo;
1326
1327 spin_lock_irqsave(&t->sighand->siglock, flags);
1328 action = &t->sighand->action[sig-1];
1329 ignored = action->sa.sa_handler == SIG_IGN;
1330 blocked = sigismember(&t->blocked, sig);
1331 if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1332 action->sa.sa_handler = SIG_DFL;
1333 if (handler == HANDLER_EXIT)
1334 action->sa.sa_flags |= SA_IMMUTABLE;
1335 if (blocked) {
1336 sigdelset(&t->blocked, sig);
1337 recalc_sigpending_and_wake(t);
1338 }
1339 }
1340 /*
1341 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1342 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1343 */
1344 if (action->sa.sa_handler == SIG_DFL &&
1345 (!t->ptrace || (handler == HANDLER_EXIT)))
1346 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1347 ret = send_signal(sig, info, t, PIDTYPE_PID);
1348 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1349
1350 return ret;
1351 }
1352
1353 int force_sig_info(struct kernel_siginfo *info)
1354 {
1355 return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1356 }
1357
1358 /*
1359 * Nuke all other threads in the group.
1360 */
1361 int zap_other_threads(struct task_struct *p)
1362 {
1363 struct task_struct *t = p;
1364 int count = 0;
1365
1366 p->signal->group_stop_count = 0;
1367
1368 while_each_thread(p, t) {
1369 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1370 count++;
1371
1372 /* Don't bother with already dead threads */
1373 if (t->exit_state)
1374 continue;
1375 sigaddset(&t->pending.signal, SIGKILL);
1376 signal_wake_up(t, 1);
1377 }
1378
1379 return count;
1380 }
1381
1382 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1383 unsigned long *flags)
1384 {
1385 struct sighand_struct *sighand;
1386
1387 rcu_read_lock();
1388 for (;;) {
1389 sighand = rcu_dereference(tsk->sighand);
1390 if (unlikely(sighand == NULL))
1391 break;
1392
1393 /*
1394 * This sighand can be already freed and even reused, but
1395 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1396 * initializes ->siglock: this slab can't go away, it has
1397 * the same object type, ->siglock can't be reinitialized.
1398 *
1399 * We need to ensure that tsk->sighand is still the same
1400 * after we take the lock, we can race with de_thread() or
1401 * __exit_signal(). In the latter case the next iteration
1402 * must see ->sighand == NULL.
1403 */
1404 spin_lock_irqsave(&sighand->siglock, *flags);
1405 if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1406 break;
1407 spin_unlock_irqrestore(&sighand->siglock, *flags);
1408 }
1409 rcu_read_unlock();
1410
1411 return sighand;
1412 }
1413
1414 #ifdef CONFIG_LOCKDEP
1415 void lockdep_assert_task_sighand_held(struct task_struct *task)
1416 {
1417 struct sighand_struct *sighand;
1418
1419 rcu_read_lock();
1420 sighand = rcu_dereference(task->sighand);
1421 if (sighand)
1422 lockdep_assert_held(&sighand->siglock);
1423 else
1424 WARN_ON_ONCE(1);
1425 rcu_read_unlock();
1426 }
1427 #endif
1428
1429 /*
1430 * send signal info to all the members of a group
1431 */
1432 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1433 struct task_struct *p, enum pid_type type)
1434 {
1435 int ret;
1436
1437 rcu_read_lock();
1438 ret = check_kill_permission(sig, info, p);
1439 rcu_read_unlock();
1440
1441 if (!ret && sig)
1442 ret = do_send_sig_info(sig, info, p, type);
1443
1444 return ret;
1445 }
1446
1447 /*
1448 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1449 * control characters do (^C, ^Z etc)
1450 * - the caller must hold at least a readlock on tasklist_lock
1451 */
1452 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1453 {
1454 struct task_struct *p = NULL;
1455 int retval, success;
1456
1457 success = 0;
1458 retval = -ESRCH;
1459 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1460 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1461 success |= !err;
1462 retval = err;
1463 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1464 return success ? 0 : retval;
1465 }
1466
1467 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1468 {
1469 int error = -ESRCH;
1470 struct task_struct *p;
1471
1472 for (;;) {
1473 rcu_read_lock();
1474 p = pid_task(pid, PIDTYPE_PID);
1475 if (p)
1476 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1477 rcu_read_unlock();
1478 if (likely(!p || error != -ESRCH))
1479 return error;
1480
1481 /*
1482 * The task was unhashed in between, try again. If it
1483 * is dead, pid_task() will return NULL, if we race with
1484 * de_thread() it will find the new leader.
1485 */
1486 }
1487 }
1488
1489 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1490 {
1491 int error;
1492 rcu_read_lock();
1493 error = kill_pid_info(sig, info, find_vpid(pid));
1494 rcu_read_unlock();
1495 return error;
1496 }
1497
1498 static inline bool kill_as_cred_perm(const struct cred *cred,
1499 struct task_struct *target)
1500 {
1501 const struct cred *pcred = __task_cred(target);
1502
1503 return uid_eq(cred->euid, pcred->suid) ||
1504 uid_eq(cred->euid, pcred->uid) ||
1505 uid_eq(cred->uid, pcred->suid) ||
1506 uid_eq(cred->uid, pcred->uid);
1507 }
1508
1509 /*
1510 * The usb asyncio usage of siginfo is wrong. The glibc support
1511 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1512 * AKA after the generic fields:
1513 * kernel_pid_t si_pid;
1514 * kernel_uid32_t si_uid;
1515 * sigval_t si_value;
1516 *
1517 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1518 * after the generic fields is:
1519 * void __user *si_addr;
1520 *
1521 * This is a practical problem when there is a 64bit big endian kernel
1522 * and a 32bit userspace. As the 32bit address will encoded in the low
1523 * 32bits of the pointer. Those low 32bits will be stored at higher
1524 * address than appear in a 32 bit pointer. So userspace will not
1525 * see the address it was expecting for it's completions.
1526 *
1527 * There is nothing in the encoding that can allow
1528 * copy_siginfo_to_user32 to detect this confusion of formats, so
1529 * handle this by requiring the caller of kill_pid_usb_asyncio to
1530 * notice when this situration takes place and to store the 32bit
1531 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1532 * parameter.
1533 */
1534 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1535 struct pid *pid, const struct cred *cred)
1536 {
1537 struct kernel_siginfo info;
1538 struct task_struct *p;
1539 unsigned long flags;
1540 int ret = -EINVAL;
1541
1542 if (!valid_signal(sig))
1543 return ret;
1544
1545 clear_siginfo(&info);
1546 info.si_signo = sig;
1547 info.si_errno = errno;
1548 info.si_code = SI_ASYNCIO;
1549 *((sigval_t *)&info.si_pid) = addr;
1550
1551 rcu_read_lock();
1552 p = pid_task(pid, PIDTYPE_PID);
1553 if (!p) {
1554 ret = -ESRCH;
1555 goto out_unlock;
1556 }
1557 if (!kill_as_cred_perm(cred, p)) {
1558 ret = -EPERM;
1559 goto out_unlock;
1560 }
1561 ret = security_task_kill(p, &info, sig, cred);
1562 if (ret)
1563 goto out_unlock;
1564
1565 if (sig) {
1566 if (lock_task_sighand(p, &flags)) {
1567 ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1568 unlock_task_sighand(p, &flags);
1569 } else
1570 ret = -ESRCH;
1571 }
1572 out_unlock:
1573 rcu_read_unlock();
1574 return ret;
1575 }
1576 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1577
1578 /*
1579 * kill_something_info() interprets pid in interesting ways just like kill(2).
1580 *
1581 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1582 * is probably wrong. Should make it like BSD or SYSV.
1583 */
1584
1585 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1586 {
1587 int ret;
1588
1589 if (pid > 0)
1590 return kill_proc_info(sig, info, pid);
1591
1592 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1593 if (pid == INT_MIN)
1594 return -ESRCH;
1595
1596 read_lock(&tasklist_lock);
1597 if (pid != -1) {
1598 ret = __kill_pgrp_info(sig, info,
1599 pid ? find_vpid(-pid) : task_pgrp(current));
1600 } else {
1601 int retval = 0, count = 0;
1602 struct task_struct * p;
1603
1604 for_each_process(p) {
1605 if (task_pid_vnr(p) > 1 &&
1606 !same_thread_group(p, current)) {
1607 int err = group_send_sig_info(sig, info, p,
1608 PIDTYPE_MAX);
1609 ++count;
1610 if (err != -EPERM)
1611 retval = err;
1612 }
1613 }
1614 ret = count ? retval : -ESRCH;
1615 }
1616 read_unlock(&tasklist_lock);
1617
1618 return ret;
1619 }
1620
1621 /*
1622 * These are for backward compatibility with the rest of the kernel source.
1623 */
1624
1625 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1626 {
1627 /*
1628 * Make sure legacy kernel users don't send in bad values
1629 * (normal paths check this in check_kill_permission).
1630 */
1631 if (!valid_signal(sig))
1632 return -EINVAL;
1633
1634 return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1635 }
1636 EXPORT_SYMBOL(send_sig_info);
1637
1638 #define __si_special(priv) \
1639 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1640
1641 int
1642 send_sig(int sig, struct task_struct *p, int priv)
1643 {
1644 return send_sig_info(sig, __si_special(priv), p);
1645 }
1646 EXPORT_SYMBOL(send_sig);
1647
1648 void force_sig(int sig)
1649 {
1650 struct kernel_siginfo info;
1651
1652 clear_siginfo(&info);
1653 info.si_signo = sig;
1654 info.si_errno = 0;
1655 info.si_code = SI_KERNEL;
1656 info.si_pid = 0;
1657 info.si_uid = 0;
1658 force_sig_info(&info);
1659 }
1660 EXPORT_SYMBOL(force_sig);
1661
1662 void force_fatal_sig(int sig)
1663 {
1664 struct kernel_siginfo info;
1665
1666 clear_siginfo(&info);
1667 info.si_signo = sig;
1668 info.si_errno = 0;
1669 info.si_code = SI_KERNEL;
1670 info.si_pid = 0;
1671 info.si_uid = 0;
1672 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1673 }
1674
1675 void force_exit_sig(int sig)
1676 {
1677 struct kernel_siginfo info;
1678
1679 clear_siginfo(&info);
1680 info.si_signo = sig;
1681 info.si_errno = 0;
1682 info.si_code = SI_KERNEL;
1683 info.si_pid = 0;
1684 info.si_uid = 0;
1685 force_sig_info_to_task(&info, current, HANDLER_EXIT);
1686 }
1687
1688 /*
1689 * When things go south during signal handling, we
1690 * will force a SIGSEGV. And if the signal that caused
1691 * the problem was already a SIGSEGV, we'll want to
1692 * make sure we don't even try to deliver the signal..
1693 */
1694 void force_sigsegv(int sig)
1695 {
1696 if (sig == SIGSEGV)
1697 force_fatal_sig(SIGSEGV);
1698 else
1699 force_sig(SIGSEGV);
1700 }
1701
1702 int force_sig_fault_to_task(int sig, int code, void __user *addr
1703 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1704 , struct task_struct *t)
1705 {
1706 struct kernel_siginfo info;
1707
1708 clear_siginfo(&info);
1709 info.si_signo = sig;
1710 info.si_errno = 0;
1711 info.si_code = code;
1712 info.si_addr = addr;
1713 #ifdef __ia64__
1714 info.si_imm = imm;
1715 info.si_flags = flags;
1716 info.si_isr = isr;
1717 #endif
1718 return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1719 }
1720
1721 int force_sig_fault(int sig, int code, void __user *addr
1722 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1723 {
1724 return force_sig_fault_to_task(sig, code, addr
1725 ___ARCH_SI_IA64(imm, flags, isr), current);
1726 }
1727
1728 int send_sig_fault(int sig, int code, void __user *addr
1729 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1730 , struct task_struct *t)
1731 {
1732 struct kernel_siginfo info;
1733
1734 clear_siginfo(&info);
1735 info.si_signo = sig;
1736 info.si_errno = 0;
1737 info.si_code = code;
1738 info.si_addr = addr;
1739 #ifdef __ia64__
1740 info.si_imm = imm;
1741 info.si_flags = flags;
1742 info.si_isr = isr;
1743 #endif
1744 return send_sig_info(info.si_signo, &info, t);
1745 }
1746
1747 int force_sig_mceerr(int code, void __user *addr, short lsb)
1748 {
1749 struct kernel_siginfo info;
1750
1751 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1752 clear_siginfo(&info);
1753 info.si_signo = SIGBUS;
1754 info.si_errno = 0;
1755 info.si_code = code;
1756 info.si_addr = addr;
1757 info.si_addr_lsb = lsb;
1758 return force_sig_info(&info);
1759 }
1760
1761 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1762 {
1763 struct kernel_siginfo info;
1764
1765 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1766 clear_siginfo(&info);
1767 info.si_signo = SIGBUS;
1768 info.si_errno = 0;
1769 info.si_code = code;
1770 info.si_addr = addr;
1771 info.si_addr_lsb = lsb;
1772 return send_sig_info(info.si_signo, &info, t);
1773 }
1774 EXPORT_SYMBOL(send_sig_mceerr);
1775
1776 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1777 {
1778 struct kernel_siginfo info;
1779
1780 clear_siginfo(&info);
1781 info.si_signo = SIGSEGV;
1782 info.si_errno = 0;
1783 info.si_code = SEGV_BNDERR;
1784 info.si_addr = addr;
1785 info.si_lower = lower;
1786 info.si_upper = upper;
1787 return force_sig_info(&info);
1788 }
1789
1790 #ifdef SEGV_PKUERR
1791 int force_sig_pkuerr(void __user *addr, u32 pkey)
1792 {
1793 struct kernel_siginfo info;
1794
1795 clear_siginfo(&info);
1796 info.si_signo = SIGSEGV;
1797 info.si_errno = 0;
1798 info.si_code = SEGV_PKUERR;
1799 info.si_addr = addr;
1800 info.si_pkey = pkey;
1801 return force_sig_info(&info);
1802 }
1803 #endif
1804
1805 int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1806 {
1807 struct kernel_siginfo info;
1808
1809 clear_siginfo(&info);
1810 info.si_signo = SIGTRAP;
1811 info.si_errno = 0;
1812 info.si_code = TRAP_PERF;
1813 info.si_addr = addr;
1814 info.si_perf_data = sig_data;
1815 info.si_perf_type = type;
1816
1817 /*
1818 * Signals generated by perf events should not terminate the whole
1819 * process if SIGTRAP is blocked, however, delivering the signal
1820 * asynchronously is better than not delivering at all. But tell user
1821 * space if the signal was asynchronous, so it can clearly be
1822 * distinguished from normal synchronous ones.
1823 */
1824 info.si_perf_flags = sigismember(&current->blocked, info.si_signo) ?
1825 TRAP_PERF_FLAG_ASYNC :
1826 0;
1827
1828 return send_sig_info(info.si_signo, &info, current);
1829 }
1830
1831 /**
1832 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1833 * @syscall: syscall number to send to userland
1834 * @reason: filter-supplied reason code to send to userland (via si_errno)
1835 *
1836 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1837 */
1838 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1839 {
1840 struct kernel_siginfo info;
1841
1842 clear_siginfo(&info);
1843 info.si_signo = SIGSYS;
1844 info.si_code = SYS_SECCOMP;
1845 info.si_call_addr = (void __user *)KSTK_EIP(current);
1846 info.si_errno = reason;
1847 info.si_arch = syscall_get_arch(current);
1848 info.si_syscall = syscall;
1849 return force_sig_info_to_task(&info, current,
1850 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1851 }
1852
1853 /* For the crazy architectures that include trap information in
1854 * the errno field, instead of an actual errno value.
1855 */
1856 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1857 {
1858 struct kernel_siginfo info;
1859
1860 clear_siginfo(&info);
1861 info.si_signo = SIGTRAP;
1862 info.si_errno = errno;
1863 info.si_code = TRAP_HWBKPT;
1864 info.si_addr = addr;
1865 return force_sig_info(&info);
1866 }
1867
1868 /* For the rare architectures that include trap information using
1869 * si_trapno.
1870 */
1871 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1872 {
1873 struct kernel_siginfo info;
1874
1875 clear_siginfo(&info);
1876 info.si_signo = sig;
1877 info.si_errno = 0;
1878 info.si_code = code;
1879 info.si_addr = addr;
1880 info.si_trapno = trapno;
1881 return force_sig_info(&info);
1882 }
1883
1884 /* For the rare architectures that include trap information using
1885 * si_trapno.
1886 */
1887 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1888 struct task_struct *t)
1889 {
1890 struct kernel_siginfo info;
1891
1892 clear_siginfo(&info);
1893 info.si_signo = sig;
1894 info.si_errno = 0;
1895 info.si_code = code;
1896 info.si_addr = addr;
1897 info.si_trapno = trapno;
1898 return send_sig_info(info.si_signo, &info, t);
1899 }
1900
1901 int kill_pgrp(struct pid *pid, int sig, int priv)
1902 {
1903 int ret;
1904
1905 read_lock(&tasklist_lock);
1906 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1907 read_unlock(&tasklist_lock);
1908
1909 return ret;
1910 }
1911 EXPORT_SYMBOL(kill_pgrp);
1912
1913 int kill_pid(struct pid *pid, int sig, int priv)
1914 {
1915 return kill_pid_info(sig, __si_special(priv), pid);
1916 }
1917 EXPORT_SYMBOL(kill_pid);
1918
1919 /*
1920 * These functions support sending signals using preallocated sigqueue
1921 * structures. This is needed "because realtime applications cannot
1922 * afford to lose notifications of asynchronous events, like timer
1923 * expirations or I/O completions". In the case of POSIX Timers
1924 * we allocate the sigqueue structure from the timer_create. If this
1925 * allocation fails we are able to report the failure to the application
1926 * with an EAGAIN error.
1927 */
1928 struct sigqueue *sigqueue_alloc(void)
1929 {
1930 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1931 }
1932
1933 void sigqueue_free(struct sigqueue *q)
1934 {
1935 unsigned long flags;
1936 spinlock_t *lock = &current->sighand->siglock;
1937
1938 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1939 /*
1940 * We must hold ->siglock while testing q->list
1941 * to serialize with collect_signal() or with
1942 * __exit_signal()->flush_sigqueue().
1943 */
1944 spin_lock_irqsave(lock, flags);
1945 q->flags &= ~SIGQUEUE_PREALLOC;
1946 /*
1947 * If it is queued it will be freed when dequeued,
1948 * like the "regular" sigqueue.
1949 */
1950 if (!list_empty(&q->list))
1951 q = NULL;
1952 spin_unlock_irqrestore(lock, flags);
1953
1954 if (q)
1955 __sigqueue_free(q);
1956 }
1957
1958 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1959 {
1960 int sig = q->info.si_signo;
1961 struct sigpending *pending;
1962 struct task_struct *t;
1963 unsigned long flags;
1964 int ret, result;
1965
1966 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1967
1968 ret = -1;
1969 rcu_read_lock();
1970 t = pid_task(pid, type);
1971 if (!t || !likely(lock_task_sighand(t, &flags)))
1972 goto ret;
1973
1974 ret = 1; /* the signal is ignored */
1975 result = TRACE_SIGNAL_IGNORED;
1976 if (!prepare_signal(sig, t, false))
1977 goto out;
1978
1979 ret = 0;
1980 if (unlikely(!list_empty(&q->list))) {
1981 /*
1982 * If an SI_TIMER entry is already queue just increment
1983 * the overrun count.
1984 */
1985 BUG_ON(q->info.si_code != SI_TIMER);
1986 q->info.si_overrun++;
1987 result = TRACE_SIGNAL_ALREADY_PENDING;
1988 goto out;
1989 }
1990 q->info.si_overrun = 0;
1991
1992 signalfd_notify(t, sig);
1993 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1994 list_add_tail(&q->list, &pending->list);
1995 sigaddset(&pending->signal, sig);
1996 complete_signal(sig, t, type);
1997 result = TRACE_SIGNAL_DELIVERED;
1998 out:
1999 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2000 unlock_task_sighand(t, &flags);
2001 ret:
2002 rcu_read_unlock();
2003 return ret;
2004 }
2005
2006 static void do_notify_pidfd(struct task_struct *task)
2007 {
2008 struct pid *pid;
2009
2010 WARN_ON(task->exit_state == 0);
2011 pid = task_pid(task);
2012 wake_up_all(&pid->wait_pidfd);
2013 }
2014
2015 /*
2016 * Let a parent know about the death of a child.
2017 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2018 *
2019 * Returns true if our parent ignored us and so we've switched to
2020 * self-reaping.
2021 */
2022 bool do_notify_parent(struct task_struct *tsk, int sig)
2023 {
2024 struct kernel_siginfo info;
2025 unsigned long flags;
2026 struct sighand_struct *psig;
2027 bool autoreap = false;
2028 u64 utime, stime;
2029
2030 WARN_ON_ONCE(sig == -1);
2031
2032 /* do_notify_parent_cldstop should have been called instead. */
2033 WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2034
2035 WARN_ON_ONCE(!tsk->ptrace &&
2036 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2037
2038 /* Wake up all pidfd waiters */
2039 do_notify_pidfd(tsk);
2040
2041 if (sig != SIGCHLD) {
2042 /*
2043 * This is only possible if parent == real_parent.
2044 * Check if it has changed security domain.
2045 */
2046 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2047 sig = SIGCHLD;
2048 }
2049
2050 clear_siginfo(&info);
2051 info.si_signo = sig;
2052 info.si_errno = 0;
2053 /*
2054 * We are under tasklist_lock here so our parent is tied to
2055 * us and cannot change.
2056 *
2057 * task_active_pid_ns will always return the same pid namespace
2058 * until a task passes through release_task.
2059 *
2060 * write_lock() currently calls preempt_disable() which is the
2061 * same as rcu_read_lock(), but according to Oleg, this is not
2062 * correct to rely on this
2063 */
2064 rcu_read_lock();
2065 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2066 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2067 task_uid(tsk));
2068 rcu_read_unlock();
2069
2070 task_cputime(tsk, &utime, &stime);
2071 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2072 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2073
2074 info.si_status = tsk->exit_code & 0x7f;
2075 if (tsk->exit_code & 0x80)
2076 info.si_code = CLD_DUMPED;
2077 else if (tsk->exit_code & 0x7f)
2078 info.si_code = CLD_KILLED;
2079 else {
2080 info.si_code = CLD_EXITED;
2081 info.si_status = tsk->exit_code >> 8;
2082 }
2083
2084 psig = tsk->parent->sighand;
2085 spin_lock_irqsave(&psig->siglock, flags);
2086 if (!tsk->ptrace && sig == SIGCHLD &&
2087 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2088 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2089 /*
2090 * We are exiting and our parent doesn't care. POSIX.1
2091 * defines special semantics for setting SIGCHLD to SIG_IGN
2092 * or setting the SA_NOCLDWAIT flag: we should be reaped
2093 * automatically and not left for our parent's wait4 call.
2094 * Rather than having the parent do it as a magic kind of
2095 * signal handler, we just set this to tell do_exit that we
2096 * can be cleaned up without becoming a zombie. Note that
2097 * we still call __wake_up_parent in this case, because a
2098 * blocked sys_wait4 might now return -ECHILD.
2099 *
2100 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2101 * is implementation-defined: we do (if you don't want
2102 * it, just use SIG_IGN instead).
2103 */
2104 autoreap = true;
2105 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2106 sig = 0;
2107 }
2108 /*
2109 * Send with __send_signal as si_pid and si_uid are in the
2110 * parent's namespaces.
2111 */
2112 if (valid_signal(sig) && sig)
2113 __send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2114 __wake_up_parent(tsk, tsk->parent);
2115 spin_unlock_irqrestore(&psig->siglock, flags);
2116
2117 return autoreap;
2118 }
2119
2120 /**
2121 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2122 * @tsk: task reporting the state change
2123 * @for_ptracer: the notification is for ptracer
2124 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2125 *
2126 * Notify @tsk's parent that the stopped/continued state has changed. If
2127 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2128 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2129 *
2130 * CONTEXT:
2131 * Must be called with tasklist_lock at least read locked.
2132 */
2133 static void do_notify_parent_cldstop(struct task_struct *tsk,
2134 bool for_ptracer, int why)
2135 {
2136 struct kernel_siginfo info;
2137 unsigned long flags;
2138 struct task_struct *parent;
2139 struct sighand_struct *sighand;
2140 u64 utime, stime;
2141
2142 if (for_ptracer) {
2143 parent = tsk->parent;
2144 } else {
2145 tsk = tsk->group_leader;
2146 parent = tsk->real_parent;
2147 }
2148
2149 clear_siginfo(&info);
2150 info.si_signo = SIGCHLD;
2151 info.si_errno = 0;
2152 /*
2153 * see comment in do_notify_parent() about the following 4 lines
2154 */
2155 rcu_read_lock();
2156 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2157 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2158 rcu_read_unlock();
2159
2160 task_cputime(tsk, &utime, &stime);
2161 info.si_utime = nsec_to_clock_t(utime);
2162 info.si_stime = nsec_to_clock_t(stime);
2163
2164 info.si_code = why;
2165 switch (why) {
2166 case CLD_CONTINUED:
2167 info.si_status = SIGCONT;
2168 break;
2169 case CLD_STOPPED:
2170 info.si_status = tsk->signal->group_exit_code & 0x7f;
2171 break;
2172 case CLD_TRAPPED:
2173 info.si_status = tsk->exit_code & 0x7f;
2174 break;
2175 default:
2176 BUG();
2177 }
2178
2179 sighand = parent->sighand;
2180 spin_lock_irqsave(&sighand->siglock, flags);
2181 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2182 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2183 __group_send_sig_info(SIGCHLD, &info, parent);
2184 /*
2185 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2186 */
2187 __wake_up_parent(tsk, parent);
2188 spin_unlock_irqrestore(&sighand->siglock, flags);
2189 }
2190
2191 static inline bool may_ptrace_stop(void)
2192 {
2193 if (!likely(current->ptrace))
2194 return false;
2195 /*
2196 * Are we in the middle of do_coredump?
2197 * If so and our tracer is also part of the coredump stopping
2198 * is a deadlock situation, and pointless because our tracer
2199 * is dead so don't allow us to stop.
2200 * If SIGKILL was already sent before the caller unlocked
2201 * ->siglock we must see ->core_state != NULL. Otherwise it
2202 * is safe to enter schedule().
2203 *
2204 * This is almost outdated, a task with the pending SIGKILL can't
2205 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2206 * after SIGKILL was already dequeued.
2207 */
2208 if (unlikely(current->mm->core_state) &&
2209 unlikely(current->mm == current->parent->mm))
2210 return false;
2211
2212 return true;
2213 }
2214
2215
2216 /*
2217 * This must be called with current->sighand->siglock held.
2218 *
2219 * This should be the path for all ptrace stops.
2220 * We always set current->last_siginfo while stopped here.
2221 * That makes it a way to test a stopped process for
2222 * being ptrace-stopped vs being job-control-stopped.
2223 *
2224 * If we actually decide not to stop at all because the tracer
2225 * is gone, we keep current->exit_code unless clear_code.
2226 */
2227 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2228 __releases(&current->sighand->siglock)
2229 __acquires(&current->sighand->siglock)
2230 {
2231 bool gstop_done = false;
2232
2233 if (arch_ptrace_stop_needed(exit_code, info)) {
2234 /*
2235 * The arch code has something special to do before a
2236 * ptrace stop. This is allowed to block, e.g. for faults
2237 * on user stack pages. We can't keep the siglock while
2238 * calling arch_ptrace_stop, so we must release it now.
2239 * To preserve proper semantics, we must do this before
2240 * any signal bookkeeping like checking group_stop_count.
2241 */
2242 spin_unlock_irq(&current->sighand->siglock);
2243 arch_ptrace_stop(exit_code, info);
2244 spin_lock_irq(&current->sighand->siglock);
2245 }
2246
2247 /*
2248 * schedule() will not sleep if there is a pending signal that
2249 * can awaken the task.
2250 */
2251 set_special_state(TASK_TRACED);
2252
2253 /*
2254 * We're committing to trapping. TRACED should be visible before
2255 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2256 * Also, transition to TRACED and updates to ->jobctl should be
2257 * atomic with respect to siglock and should be done after the arch
2258 * hook as siglock is released and regrabbed across it.
2259 *
2260 * TRACER TRACEE
2261 *
2262 * ptrace_attach()
2263 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
2264 * do_wait()
2265 * set_current_state() smp_wmb();
2266 * ptrace_do_wait()
2267 * wait_task_stopped()
2268 * task_stopped_code()
2269 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
2270 */
2271 smp_wmb();
2272
2273 current->last_siginfo = info;
2274 current->exit_code = exit_code;
2275
2276 /*
2277 * If @why is CLD_STOPPED, we're trapping to participate in a group
2278 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
2279 * across siglock relocks since INTERRUPT was scheduled, PENDING
2280 * could be clear now. We act as if SIGCONT is received after
2281 * TASK_TRACED is entered - ignore it.
2282 */
2283 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2284 gstop_done = task_participate_group_stop(current);
2285
2286 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2287 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2288 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2289 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2290
2291 /* entering a trap, clear TRAPPING */
2292 task_clear_jobctl_trapping(current);
2293
2294 spin_unlock_irq(&current->sighand->siglock);
2295 read_lock(&tasklist_lock);
2296 if (may_ptrace_stop()) {
2297 /*
2298 * Notify parents of the stop.
2299 *
2300 * While ptraced, there are two parents - the ptracer and
2301 * the real_parent of the group_leader. The ptracer should
2302 * know about every stop while the real parent is only
2303 * interested in the completion of group stop. The states
2304 * for the two don't interact with each other. Notify
2305 * separately unless they're gonna be duplicates.
2306 */
2307 do_notify_parent_cldstop(current, true, why);
2308 if (gstop_done && ptrace_reparented(current))
2309 do_notify_parent_cldstop(current, false, why);
2310
2311 /*
2312 * Don't want to allow preemption here, because
2313 * sys_ptrace() needs this task to be inactive.
2314 *
2315 * XXX: implement read_unlock_no_resched().
2316 */
2317 preempt_disable();
2318 read_unlock(&tasklist_lock);
2319 cgroup_enter_frozen();
2320 preempt_enable_no_resched();
2321 freezable_schedule();
2322 cgroup_leave_frozen(true);
2323 } else {
2324 /*
2325 * By the time we got the lock, our tracer went away.
2326 * Don't drop the lock yet, another tracer may come.
2327 *
2328 * If @gstop_done, the ptracer went away between group stop
2329 * completion and here. During detach, it would have set
2330 * JOBCTL_STOP_PENDING on us and we'll re-enter
2331 * TASK_STOPPED in do_signal_stop() on return, so notifying
2332 * the real parent of the group stop completion is enough.
2333 */
2334 if (gstop_done)
2335 do_notify_parent_cldstop(current, false, why);
2336
2337 /* tasklist protects us from ptrace_freeze_traced() */
2338 __set_current_state(TASK_RUNNING);
2339 if (clear_code)
2340 current->exit_code = 0;
2341 read_unlock(&tasklist_lock);
2342 }
2343
2344 /*
2345 * We are back. Now reacquire the siglock before touching
2346 * last_siginfo, so that we are sure to have synchronized with
2347 * any signal-sending on another CPU that wants to examine it.
2348 */
2349 spin_lock_irq(&current->sighand->siglock);
2350 current->last_siginfo = NULL;
2351
2352 /* LISTENING can be set only during STOP traps, clear it */
2353 current->jobctl &= ~JOBCTL_LISTENING;
2354
2355 /*
2356 * Queued signals ignored us while we were stopped for tracing.
2357 * So check for any that we should take before resuming user mode.
2358 * This sets TIF_SIGPENDING, but never clears it.
2359 */
2360 recalc_sigpending_tsk(current);
2361 }
2362
2363 static void ptrace_do_notify(int signr, int exit_code, int why)
2364 {
2365 kernel_siginfo_t info;
2366
2367 clear_siginfo(&info);
2368 info.si_signo = signr;
2369 info.si_code = exit_code;
2370 info.si_pid = task_pid_vnr(current);
2371 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2372
2373 /* Let the debugger run. */
2374 ptrace_stop(exit_code, why, 1, &info);
2375 }
2376
2377 void ptrace_notify(int exit_code)
2378 {
2379 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2380 if (unlikely(current->task_works))
2381 task_work_run();
2382
2383 spin_lock_irq(&current->sighand->siglock);
2384 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2385 spin_unlock_irq(&current->sighand->siglock);
2386 }
2387
2388 /**
2389 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2390 * @signr: signr causing group stop if initiating
2391 *
2392 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2393 * and participate in it. If already set, participate in the existing
2394 * group stop. If participated in a group stop (and thus slept), %true is
2395 * returned with siglock released.
2396 *
2397 * If ptraced, this function doesn't handle stop itself. Instead,
2398 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2399 * untouched. The caller must ensure that INTERRUPT trap handling takes
2400 * places afterwards.
2401 *
2402 * CONTEXT:
2403 * Must be called with @current->sighand->siglock held, which is released
2404 * on %true return.
2405 *
2406 * RETURNS:
2407 * %false if group stop is already cancelled or ptrace trap is scheduled.
2408 * %true if participated in group stop.
2409 */
2410 static bool do_signal_stop(int signr)
2411 __releases(&current->sighand->siglock)
2412 {
2413 struct signal_struct *sig = current->signal;
2414
2415 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2416 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2417 struct task_struct *t;
2418
2419 /* signr will be recorded in task->jobctl for retries */
2420 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2421
2422 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2423 unlikely(signal_group_exit(sig)))
2424 return false;
2425 /*
2426 * There is no group stop already in progress. We must
2427 * initiate one now.
2428 *
2429 * While ptraced, a task may be resumed while group stop is
2430 * still in effect and then receive a stop signal and
2431 * initiate another group stop. This deviates from the
2432 * usual behavior as two consecutive stop signals can't
2433 * cause two group stops when !ptraced. That is why we
2434 * also check !task_is_stopped(t) below.
2435 *
2436 * The condition can be distinguished by testing whether
2437 * SIGNAL_STOP_STOPPED is already set. Don't generate
2438 * group_exit_code in such case.
2439 *
2440 * This is not necessary for SIGNAL_STOP_CONTINUED because
2441 * an intervening stop signal is required to cause two
2442 * continued events regardless of ptrace.
2443 */
2444 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2445 sig->group_exit_code = signr;
2446
2447 sig->group_stop_count = 0;
2448
2449 if (task_set_jobctl_pending(current, signr | gstop))
2450 sig->group_stop_count++;
2451
2452 t = current;
2453 while_each_thread(current, t) {
2454 /*
2455 * Setting state to TASK_STOPPED for a group
2456 * stop is always done with the siglock held,
2457 * so this check has no races.
2458 */
2459 if (!task_is_stopped(t) &&
2460 task_set_jobctl_pending(t, signr | gstop)) {
2461 sig->group_stop_count++;
2462 if (likely(!(t->ptrace & PT_SEIZED)))
2463 signal_wake_up(t, 0);
2464 else
2465 ptrace_trap_notify(t);
2466 }
2467 }
2468 }
2469
2470 if (likely(!current->ptrace)) {
2471 int notify = 0;
2472
2473 /*
2474 * If there are no other threads in the group, or if there
2475 * is a group stop in progress and we are the last to stop,
2476 * report to the parent.
2477 */
2478 if (task_participate_group_stop(current))
2479 notify = CLD_STOPPED;
2480
2481 set_special_state(TASK_STOPPED);
2482 spin_unlock_irq(&current->sighand->siglock);
2483
2484 /*
2485 * Notify the parent of the group stop completion. Because
2486 * we're not holding either the siglock or tasklist_lock
2487 * here, ptracer may attach inbetween; however, this is for
2488 * group stop and should always be delivered to the real
2489 * parent of the group leader. The new ptracer will get
2490 * its notification when this task transitions into
2491 * TASK_TRACED.
2492 */
2493 if (notify) {
2494 read_lock(&tasklist_lock);
2495 do_notify_parent_cldstop(current, false, notify);
2496 read_unlock(&tasklist_lock);
2497 }
2498
2499 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2500 cgroup_enter_frozen();
2501 freezable_schedule();
2502 return true;
2503 } else {
2504 /*
2505 * While ptraced, group stop is handled by STOP trap.
2506 * Schedule it and let the caller deal with it.
2507 */
2508 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2509 return false;
2510 }
2511 }
2512
2513 /**
2514 * do_jobctl_trap - take care of ptrace jobctl traps
2515 *
2516 * When PT_SEIZED, it's used for both group stop and explicit
2517 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2518 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2519 * the stop signal; otherwise, %SIGTRAP.
2520 *
2521 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2522 * number as exit_code and no siginfo.
2523 *
2524 * CONTEXT:
2525 * Must be called with @current->sighand->siglock held, which may be
2526 * released and re-acquired before returning with intervening sleep.
2527 */
2528 static void do_jobctl_trap(void)
2529 {
2530 struct signal_struct *signal = current->signal;
2531 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2532
2533 if (current->ptrace & PT_SEIZED) {
2534 if (!signal->group_stop_count &&
2535 !(signal->flags & SIGNAL_STOP_STOPPED))
2536 signr = SIGTRAP;
2537 WARN_ON_ONCE(!signr);
2538 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2539 CLD_STOPPED);
2540 } else {
2541 WARN_ON_ONCE(!signr);
2542 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2543 current->exit_code = 0;
2544 }
2545 }
2546
2547 /**
2548 * do_freezer_trap - handle the freezer jobctl trap
2549 *
2550 * Puts the task into frozen state, if only the task is not about to quit.
2551 * In this case it drops JOBCTL_TRAP_FREEZE.
2552 *
2553 * CONTEXT:
2554 * Must be called with @current->sighand->siglock held,
2555 * which is always released before returning.
2556 */
2557 static void do_freezer_trap(void)
2558 __releases(&current->sighand->siglock)
2559 {
2560 /*
2561 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2562 * let's make another loop to give it a chance to be handled.
2563 * In any case, we'll return back.
2564 */
2565 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2566 JOBCTL_TRAP_FREEZE) {
2567 spin_unlock_irq(&current->sighand->siglock);
2568 return;
2569 }
2570
2571 /*
2572 * Now we're sure that there is no pending fatal signal and no
2573 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2574 * immediately (if there is a non-fatal signal pending), and
2575 * put the task into sleep.
2576 */
2577 __set_current_state(TASK_INTERRUPTIBLE);
2578 clear_thread_flag(TIF_SIGPENDING);
2579 spin_unlock_irq(&current->sighand->siglock);
2580 cgroup_enter_frozen();
2581 freezable_schedule();
2582 }
2583
2584 static int ptrace_signal(int signr, kernel_siginfo_t *info)
2585 {
2586 /*
2587 * We do not check sig_kernel_stop(signr) but set this marker
2588 * unconditionally because we do not know whether debugger will
2589 * change signr. This flag has no meaning unless we are going
2590 * to stop after return from ptrace_stop(). In this case it will
2591 * be checked in do_signal_stop(), we should only stop if it was
2592 * not cleared by SIGCONT while we were sleeping. See also the
2593 * comment in dequeue_signal().
2594 */
2595 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2596 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2597
2598 /* We're back. Did the debugger cancel the sig? */
2599 signr = current->exit_code;
2600 if (signr == 0)
2601 return signr;
2602
2603 current->exit_code = 0;
2604
2605 /*
2606 * Update the siginfo structure if the signal has
2607 * changed. If the debugger wanted something
2608 * specific in the siginfo structure then it should
2609 * have updated *info via PTRACE_SETSIGINFO.
2610 */
2611 if (signr != info->si_signo) {
2612 clear_siginfo(info);
2613 info->si_signo = signr;
2614 info->si_errno = 0;
2615 info->si_code = SI_USER;
2616 rcu_read_lock();
2617 info->si_pid = task_pid_vnr(current->parent);
2618 info->si_uid = from_kuid_munged(current_user_ns(),
2619 task_uid(current->parent));
2620 rcu_read_unlock();
2621 }
2622
2623 /* If the (new) signal is now blocked, requeue it. */
2624 if (sigismember(&current->blocked, signr)) {
2625 send_signal(signr, info, current, PIDTYPE_PID);
2626 signr = 0;
2627 }
2628
2629 return signr;
2630 }
2631
2632 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2633 {
2634 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2635 case SIL_FAULT:
2636 case SIL_FAULT_TRAPNO:
2637 case SIL_FAULT_MCEERR:
2638 case SIL_FAULT_BNDERR:
2639 case SIL_FAULT_PKUERR:
2640 case SIL_FAULT_PERF_EVENT:
2641 ksig->info.si_addr = arch_untagged_si_addr(
2642 ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2643 break;
2644 case SIL_KILL:
2645 case SIL_TIMER:
2646 case SIL_POLL:
2647 case SIL_CHLD:
2648 case SIL_RT:
2649 case SIL_SYS:
2650 break;
2651 }
2652 }
2653
2654 bool get_signal(struct ksignal *ksig)
2655 {
2656 struct sighand_struct *sighand = current->sighand;
2657 struct signal_struct *signal = current->signal;
2658 int signr;
2659
2660 if (unlikely(current->task_works))
2661 task_work_run();
2662
2663 /*
2664 * For non-generic architectures, check for TIF_NOTIFY_SIGNAL so
2665 * that the arch handlers don't all have to do it. If we get here
2666 * without TIF_SIGPENDING, just exit after running signal work.
2667 */
2668 if (!IS_ENABLED(CONFIG_GENERIC_ENTRY)) {
2669 if (test_thread_flag(TIF_NOTIFY_SIGNAL))
2670 tracehook_notify_signal();
2671 if (!task_sigpending(current))
2672 return false;
2673 }
2674
2675 if (unlikely(uprobe_deny_signal()))
2676 return false;
2677
2678 /*
2679 * Do this once, we can't return to user-mode if freezing() == T.
2680 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2681 * thus do not need another check after return.
2682 */
2683 try_to_freeze();
2684
2685 relock:
2686 spin_lock_irq(&sighand->siglock);
2687
2688 /*
2689 * Every stopped thread goes here after wakeup. Check to see if
2690 * we should notify the parent, prepare_signal(SIGCONT) encodes
2691 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2692 */
2693 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2694 int why;
2695
2696 if (signal->flags & SIGNAL_CLD_CONTINUED)
2697 why = CLD_CONTINUED;
2698 else
2699 why = CLD_STOPPED;
2700
2701 signal->flags &= ~SIGNAL_CLD_MASK;
2702
2703 spin_unlock_irq(&sighand->siglock);
2704
2705 /*
2706 * Notify the parent that we're continuing. This event is
2707 * always per-process and doesn't make whole lot of sense
2708 * for ptracers, who shouldn't consume the state via
2709 * wait(2) either, but, for backward compatibility, notify
2710 * the ptracer of the group leader too unless it's gonna be
2711 * a duplicate.
2712 */
2713 read_lock(&tasklist_lock);
2714 do_notify_parent_cldstop(current, false, why);
2715
2716 if (ptrace_reparented(current->group_leader))
2717 do_notify_parent_cldstop(current->group_leader,
2718 true, why);
2719 read_unlock(&tasklist_lock);
2720
2721 goto relock;
2722 }
2723
2724 for (;;) {
2725 struct k_sigaction *ka;
2726
2727 /* Has this task already been marked for death? */
2728 if (signal_group_exit(signal)) {
2729 ksig->info.si_signo = signr = SIGKILL;
2730 sigdelset(&current->pending.signal, SIGKILL);
2731 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2732 &sighand->action[SIGKILL - 1]);
2733 recalc_sigpending();
2734 goto fatal;
2735 }
2736
2737 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2738 do_signal_stop(0))
2739 goto relock;
2740
2741 if (unlikely(current->jobctl &
2742 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2743 if (current->jobctl & JOBCTL_TRAP_MASK) {
2744 do_jobctl_trap();
2745 spin_unlock_irq(&sighand->siglock);
2746 } else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2747 do_freezer_trap();
2748
2749 goto relock;
2750 }
2751
2752 /*
2753 * If the task is leaving the frozen state, let's update
2754 * cgroup counters and reset the frozen bit.
2755 */
2756 if (unlikely(cgroup_task_frozen(current))) {
2757 spin_unlock_irq(&sighand->siglock);
2758 cgroup_leave_frozen(false);
2759 goto relock;
2760 }
2761
2762 /*
2763 * Signals generated by the execution of an instruction
2764 * need to be delivered before any other pending signals
2765 * so that the instruction pointer in the signal stack
2766 * frame points to the faulting instruction.
2767 */
2768 signr = dequeue_synchronous_signal(&ksig->info);
2769 if (!signr)
2770 signr = dequeue_signal(current, &current->blocked, &ksig->info);
2771
2772 if (!signr)
2773 break; /* will return 0 */
2774
2775 if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2776 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2777 signr = ptrace_signal(signr, &ksig->info);
2778 if (!signr)
2779 continue;
2780 }
2781
2782 ka = &sighand->action[signr-1];
2783
2784 /* Trace actually delivered signals. */
2785 trace_signal_deliver(signr, &ksig->info, ka);
2786
2787 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2788 continue;
2789 if (ka->sa.sa_handler != SIG_DFL) {
2790 /* Run the handler. */
2791 ksig->ka = *ka;
2792
2793 if (ka->sa.sa_flags & SA_ONESHOT)
2794 ka->sa.sa_handler = SIG_DFL;
2795
2796 break; /* will return non-zero "signr" value */
2797 }
2798
2799 /*
2800 * Now we are doing the default action for this signal.
2801 */
2802 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2803 continue;
2804
2805 /*
2806 * Global init gets no signals it doesn't want.
2807 * Container-init gets no signals it doesn't want from same
2808 * container.
2809 *
2810 * Note that if global/container-init sees a sig_kernel_only()
2811 * signal here, the signal must have been generated internally
2812 * or must have come from an ancestor namespace. In either
2813 * case, the signal cannot be dropped.
2814 */
2815 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2816 !sig_kernel_only(signr))
2817 continue;
2818
2819 if (sig_kernel_stop(signr)) {
2820 /*
2821 * The default action is to stop all threads in
2822 * the thread group. The job control signals
2823 * do nothing in an orphaned pgrp, but SIGSTOP
2824 * always works. Note that siglock needs to be
2825 * dropped during the call to is_orphaned_pgrp()
2826 * because of lock ordering with tasklist_lock.
2827 * This allows an intervening SIGCONT to be posted.
2828 * We need to check for that and bail out if necessary.
2829 */
2830 if (signr != SIGSTOP) {
2831 spin_unlock_irq(&sighand->siglock);
2832
2833 /* signals can be posted during this window */
2834
2835 if (is_current_pgrp_orphaned())
2836 goto relock;
2837
2838 spin_lock_irq(&sighand->siglock);
2839 }
2840
2841 if (likely(do_signal_stop(ksig->info.si_signo))) {
2842 /* It released the siglock. */
2843 goto relock;
2844 }
2845
2846 /*
2847 * We didn't actually stop, due to a race
2848 * with SIGCONT or something like that.
2849 */
2850 continue;
2851 }
2852
2853 fatal:
2854 spin_unlock_irq(&sighand->siglock);
2855 if (unlikely(cgroup_task_frozen(current)))
2856 cgroup_leave_frozen(true);
2857
2858 /*
2859 * Anything else is fatal, maybe with a core dump.
2860 */
2861 current->flags |= PF_SIGNALED;
2862
2863 if (sig_kernel_coredump(signr)) {
2864 if (print_fatal_signals)
2865 print_fatal_signal(ksig->info.si_signo);
2866 proc_coredump_connector(current);
2867 /*
2868 * If it was able to dump core, this kills all
2869 * other threads in the group and synchronizes with
2870 * their demise. If we lost the race with another
2871 * thread getting here, it set group_exit_code
2872 * first and our do_group_exit call below will use
2873 * that value and ignore the one we pass it.
2874 */
2875 do_coredump(&ksig->info);
2876 }
2877
2878 /*
2879 * PF_IO_WORKER threads will catch and exit on fatal signals
2880 * themselves. They have cleanup that must be performed, so
2881 * we cannot call do_exit() on their behalf.
2882 */
2883 if (current->flags & PF_IO_WORKER)
2884 goto out;
2885
2886 /*
2887 * Death signals, no core dump.
2888 */
2889 do_group_exit(ksig->info.si_signo);
2890 /* NOTREACHED */
2891 }
2892 spin_unlock_irq(&sighand->siglock);
2893 out:
2894 ksig->sig = signr;
2895
2896 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2897 hide_si_addr_tag_bits(ksig);
2898
2899 return ksig->sig > 0;
2900 }
2901
2902 /**
2903 * signal_delivered -
2904 * @ksig: kernel signal struct
2905 * @stepping: nonzero if debugger single-step or block-step in use
2906 *
2907 * This function should be called when a signal has successfully been
2908 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2909 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2910 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2911 */
2912 static void signal_delivered(struct ksignal *ksig, int stepping)
2913 {
2914 sigset_t blocked;
2915
2916 /* A signal was successfully delivered, and the
2917 saved sigmask was stored on the signal frame,
2918 and will be restored by sigreturn. So we can
2919 simply clear the restore sigmask flag. */
2920 clear_restore_sigmask();
2921
2922 sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2923 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2924 sigaddset(&blocked, ksig->sig);
2925 set_current_blocked(&blocked);
2926 if (current->sas_ss_flags & SS_AUTODISARM)
2927 sas_ss_reset(current);
2928 tracehook_signal_handler(stepping);
2929 }
2930
2931 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2932 {
2933 if (failed)
2934 force_sigsegv(ksig->sig);
2935 else
2936 signal_delivered(ksig, stepping);
2937 }
2938
2939 /*
2940 * It could be that complete_signal() picked us to notify about the
2941 * group-wide signal. Other threads should be notified now to take
2942 * the shared signals in @which since we will not.
2943 */
2944 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2945 {
2946 sigset_t retarget;
2947 struct task_struct *t;
2948
2949 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2950 if (sigisemptyset(&retarget))
2951 return;
2952
2953 t = tsk;
2954 while_each_thread(tsk, t) {
2955 if (t->flags & PF_EXITING)
2956 continue;
2957
2958 if (!has_pending_signals(&retarget, &t->blocked))
2959 continue;
2960 /* Remove the signals this thread can handle. */
2961 sigandsets(&retarget, &retarget, &t->blocked);
2962
2963 if (!task_sigpending(t))
2964 signal_wake_up(t, 0);
2965
2966 if (sigisemptyset(&retarget))
2967 break;
2968 }
2969 }
2970
2971 void exit_signals(struct task_struct *tsk)
2972 {
2973 int group_stop = 0;
2974 sigset_t unblocked;
2975
2976 /*
2977 * @tsk is about to have PF_EXITING set - lock out users which
2978 * expect stable threadgroup.
2979 */
2980 cgroup_threadgroup_change_begin(tsk);
2981
2982 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2983 tsk->flags |= PF_EXITING;
2984 cgroup_threadgroup_change_end(tsk);
2985 return;
2986 }
2987
2988 spin_lock_irq(&tsk->sighand->siglock);
2989 /*
2990 * From now this task is not visible for group-wide signals,
2991 * see wants_signal(), do_signal_stop().
2992 */
2993 tsk->flags |= PF_EXITING;
2994
2995 cgroup_threadgroup_change_end(tsk);
2996
2997 if (!task_sigpending(tsk))
2998 goto out;
2999
3000 unblocked = tsk->blocked;
3001 signotset(&unblocked);
3002 retarget_shared_pending(tsk, &unblocked);
3003
3004 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
3005 task_participate_group_stop(tsk))
3006 group_stop = CLD_STOPPED;
3007 out:
3008 spin_unlock_irq(&tsk->sighand->siglock);
3009
3010 /*
3011 * If group stop has completed, deliver the notification. This
3012 * should always go to the real parent of the group leader.
3013 */
3014 if (unlikely(group_stop)) {
3015 read_lock(&tasklist_lock);
3016 do_notify_parent_cldstop(tsk, false, group_stop);
3017 read_unlock(&tasklist_lock);
3018 }
3019 }
3020
3021 /*
3022 * System call entry points.
3023 */
3024
3025 /**
3026 * sys_restart_syscall - restart a system call
3027 */
3028 SYSCALL_DEFINE0(restart_syscall)
3029 {
3030 struct restart_block *restart = &current->restart_block;
3031 return restart->fn(restart);
3032 }
3033
3034 long do_no_restart_syscall(struct restart_block *param)
3035 {
3036 return -EINTR;
3037 }
3038
3039 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3040 {
3041 if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3042 sigset_t newblocked;
3043 /* A set of now blocked but previously unblocked signals. */
3044 sigandnsets(&newblocked, newset, &current->blocked);
3045 retarget_shared_pending(tsk, &newblocked);
3046 }
3047 tsk->blocked = *newset;
3048 recalc_sigpending();
3049 }
3050
3051 /**
3052 * set_current_blocked - change current->blocked mask
3053 * @newset: new mask
3054 *
3055 * It is wrong to change ->blocked directly, this helper should be used
3056 * to ensure the process can't miss a shared signal we are going to block.
3057 */
3058 void set_current_blocked(sigset_t *newset)
3059 {
3060 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3061 __set_current_blocked(newset);
3062 }
3063
3064 void __set_current_blocked(const sigset_t *newset)
3065 {
3066 struct task_struct *tsk = current;
3067
3068 /*
3069 * In case the signal mask hasn't changed, there is nothing we need
3070 * to do. The current->blocked shouldn't be modified by other task.
3071 */
3072 if (sigequalsets(&tsk->blocked, newset))
3073 return;
3074
3075 spin_lock_irq(&tsk->sighand->siglock);
3076 __set_task_blocked(tsk, newset);
3077 spin_unlock_irq(&tsk->sighand->siglock);
3078 }
3079
3080 /*
3081 * This is also useful for kernel threads that want to temporarily
3082 * (or permanently) block certain signals.
3083 *
3084 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3085 * interface happily blocks "unblockable" signals like SIGKILL
3086 * and friends.
3087 */
3088 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3089 {
3090 struct task_struct *tsk = current;
3091 sigset_t newset;
3092
3093 /* Lockless, only current can change ->blocked, never from irq */
3094 if (oldset)
3095 *oldset = tsk->blocked;
3096
3097 switch (how) {
3098 case SIG_BLOCK:
3099 sigorsets(&newset, &tsk->blocked, set);
3100 break;
3101 case SIG_UNBLOCK:
3102 sigandnsets(&newset, &tsk->blocked, set);
3103 break;
3104 case SIG_SETMASK:
3105 newset = *set;
3106 break;
3107 default:
3108 return -EINVAL;
3109 }
3110
3111 __set_current_blocked(&newset);
3112 return 0;
3113 }
3114 EXPORT_SYMBOL(sigprocmask);
3115
3116 /*
3117 * The api helps set app-provided sigmasks.
3118 *
3119 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3120 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3121 *
3122 * Note that it does set_restore_sigmask() in advance, so it must be always
3123 * paired with restore_saved_sigmask_unless() before return from syscall.
3124 */
3125 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3126 {
3127 sigset_t kmask;
3128
3129 if (!umask)
3130 return 0;
3131 if (sigsetsize != sizeof(sigset_t))
3132 return -EINVAL;
3133 if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3134 return -EFAULT;
3135
3136 set_restore_sigmask();
3137 current->saved_sigmask = current->blocked;
3138 set_current_blocked(&kmask);
3139
3140 return 0;
3141 }
3142
3143 #ifdef CONFIG_COMPAT
3144 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3145 size_t sigsetsize)
3146 {
3147 sigset_t kmask;
3148
3149 if (!umask)
3150 return 0;
3151 if (sigsetsize != sizeof(compat_sigset_t))
3152 return -EINVAL;
3153 if (get_compat_sigset(&kmask, umask))
3154 return -EFAULT;
3155
3156 set_restore_sigmask();
3157 current->saved_sigmask = current->blocked;
3158 set_current_blocked(&kmask);
3159
3160 return 0;
3161 }
3162 #endif
3163
3164 /**
3165 * sys_rt_sigprocmask - change the list of currently blocked signals
3166 * @how: whether to add, remove, or set signals
3167 * @nset: stores pending signals
3168 * @oset: previous value of signal mask if non-null
3169 * @sigsetsize: size of sigset_t type
3170 */
3171 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3172 sigset_t __user *, oset, size_t, sigsetsize)
3173 {
3174 sigset_t old_set, new_set;
3175 int error;
3176
3177 /* XXX: Don't preclude handling different sized sigset_t's. */
3178 if (sigsetsize != sizeof(sigset_t))
3179 return -EINVAL;
3180
3181 old_set = current->blocked;
3182
3183 if (nset) {
3184 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3185 return -EFAULT;
3186 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3187
3188 error = sigprocmask(how, &new_set, NULL);
3189 if (error)
3190 return error;
3191 }
3192
3193 if (oset) {
3194 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3195 return -EFAULT;
3196 }
3197
3198 return 0;
3199 }
3200
3201 #ifdef CONFIG_COMPAT
3202 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3203 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3204 {
3205 sigset_t old_set = current->blocked;
3206
3207 /* XXX: Don't preclude handling different sized sigset_t's. */
3208 if (sigsetsize != sizeof(sigset_t))
3209 return -EINVAL;
3210
3211 if (nset) {
3212 sigset_t new_set;
3213 int error;
3214 if (get_compat_sigset(&new_set, nset))
3215 return -EFAULT;
3216 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3217
3218 error = sigprocmask(how, &new_set, NULL);
3219 if (error)
3220 return error;
3221 }
3222 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3223 }
3224 #endif
3225
3226 static void do_sigpending(sigset_t *set)
3227 {
3228 spin_lock_irq(&current->sighand->siglock);
3229 sigorsets(set, &current->pending.signal,
3230 &current->signal->shared_pending.signal);
3231 spin_unlock_irq(&current->sighand->siglock);
3232
3233 /* Outside the lock because only this thread touches it. */
3234 sigandsets(set, &current->blocked, set);
3235 }
3236
3237 /**
3238 * sys_rt_sigpending - examine a pending signal that has been raised
3239 * while blocked
3240 * @uset: stores pending signals
3241 * @sigsetsize: size of sigset_t type or larger
3242 */
3243 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3244 {
3245 sigset_t set;
3246
3247 if (sigsetsize > sizeof(*uset))
3248 return -EINVAL;
3249
3250 do_sigpending(&set);
3251
3252 if (copy_to_user(uset, &set, sigsetsize))
3253 return -EFAULT;
3254
3255 return 0;
3256 }
3257
3258 #ifdef CONFIG_COMPAT
3259 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3260 compat_size_t, sigsetsize)
3261 {
3262 sigset_t set;
3263
3264 if (sigsetsize > sizeof(*uset))
3265 return -EINVAL;
3266
3267 do_sigpending(&set);
3268
3269 return put_compat_sigset(uset, &set, sigsetsize);
3270 }
3271 #endif
3272
3273 static const struct {
3274 unsigned char limit, layout;
3275 } sig_sicodes[] = {
3276 [SIGILL] = { NSIGILL, SIL_FAULT },
3277 [SIGFPE] = { NSIGFPE, SIL_FAULT },
3278 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3279 [SIGBUS] = { NSIGBUS, SIL_FAULT },
3280 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3281 #if defined(SIGEMT)
3282 [SIGEMT] = { NSIGEMT, SIL_FAULT },
3283 #endif
3284 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3285 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
3286 [SIGSYS] = { NSIGSYS, SIL_SYS },
3287 };
3288
3289 static bool known_siginfo_layout(unsigned sig, int si_code)
3290 {
3291 if (si_code == SI_KERNEL)
3292 return true;
3293 else if ((si_code > SI_USER)) {
3294 if (sig_specific_sicodes(sig)) {
3295 if (si_code <= sig_sicodes[sig].limit)
3296 return true;
3297 }
3298 else if (si_code <= NSIGPOLL)
3299 return true;
3300 }
3301 else if (si_code >= SI_DETHREAD)
3302 return true;
3303 else if (si_code == SI_ASYNCNL)
3304 return true;
3305 return false;
3306 }
3307
3308 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3309 {
3310 enum siginfo_layout layout = SIL_KILL;
3311 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3312 if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3313 (si_code <= sig_sicodes[sig].limit)) {
3314 layout = sig_sicodes[sig].layout;
3315 /* Handle the exceptions */
3316 if ((sig == SIGBUS) &&
3317 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3318 layout = SIL_FAULT_MCEERR;
3319 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3320 layout = SIL_FAULT_BNDERR;
3321 #ifdef SEGV_PKUERR
3322 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3323 layout = SIL_FAULT_PKUERR;
3324 #endif
3325 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3326 layout = SIL_FAULT_PERF_EVENT;
3327 else if (IS_ENABLED(CONFIG_SPARC) &&
3328 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3329 layout = SIL_FAULT_TRAPNO;
3330 else if (IS_ENABLED(CONFIG_ALPHA) &&
3331 ((sig == SIGFPE) ||
3332 ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3333 layout = SIL_FAULT_TRAPNO;
3334 }
3335 else if (si_code <= NSIGPOLL)
3336 layout = SIL_POLL;
3337 } else {
3338 if (si_code == SI_TIMER)
3339 layout = SIL_TIMER;
3340 else if (si_code == SI_SIGIO)
3341 layout = SIL_POLL;
3342 else if (si_code < 0)
3343 layout = SIL_RT;
3344 }
3345 return layout;
3346 }
3347
3348 static inline char __user *si_expansion(const siginfo_t __user *info)
3349 {
3350 return ((char __user *)info) + sizeof(struct kernel_siginfo);
3351 }
3352
3353 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3354 {
3355 char __user *expansion = si_expansion(to);
3356 if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3357 return -EFAULT;
3358 if (clear_user(expansion, SI_EXPANSION_SIZE))
3359 return -EFAULT;
3360 return 0;
3361 }
3362
3363 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3364 const siginfo_t __user *from)
3365 {
3366 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3367 char __user *expansion = si_expansion(from);
3368 char buf[SI_EXPANSION_SIZE];
3369 int i;
3370 /*
3371 * An unknown si_code might need more than
3372 * sizeof(struct kernel_siginfo) bytes. Verify all of the
3373 * extra bytes are 0. This guarantees copy_siginfo_to_user
3374 * will return this data to userspace exactly.
3375 */
3376 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3377 return -EFAULT;
3378 for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3379 if (buf[i] != 0)
3380 return -E2BIG;
3381 }
3382 }
3383 return 0;
3384 }
3385
3386 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3387 const siginfo_t __user *from)
3388 {
3389 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3390 return -EFAULT;
3391 to->si_signo = signo;
3392 return post_copy_siginfo_from_user(to, from);
3393 }
3394
3395 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3396 {
3397 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3398 return -EFAULT;
3399 return post_copy_siginfo_from_user(to, from);
3400 }
3401
3402 #ifdef CONFIG_COMPAT
3403 /**
3404 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3405 * @to: compat siginfo destination
3406 * @from: kernel siginfo source
3407 *
3408 * Note: This function does not work properly for the SIGCHLD on x32, but
3409 * fortunately it doesn't have to. The only valid callers for this function are
3410 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3411 * The latter does not care because SIGCHLD will never cause a coredump.
3412 */
3413 void copy_siginfo_to_external32(struct compat_siginfo *to,
3414 const struct kernel_siginfo *from)
3415 {
3416 memset(to, 0, sizeof(*to));
3417
3418 to->si_signo = from->si_signo;
3419 to->si_errno = from->si_errno;
3420 to->si_code = from->si_code;
3421 switch(siginfo_layout(from->si_signo, from->si_code)) {
3422 case SIL_KILL:
3423 to->si_pid = from->si_pid;
3424 to->si_uid = from->si_uid;
3425 break;
3426 case SIL_TIMER:
3427 to->si_tid = from->si_tid;
3428 to->si_overrun = from->si_overrun;
3429 to->si_int = from->si_int;
3430 break;
3431 case SIL_POLL:
3432 to->si_band = from->si_band;
3433 to->si_fd = from->si_fd;
3434 break;
3435 case SIL_FAULT:
3436 to->si_addr = ptr_to_compat(from->si_addr);
3437 break;
3438 case SIL_FAULT_TRAPNO:
3439 to->si_addr = ptr_to_compat(from->si_addr);
3440 to->si_trapno = from->si_trapno;
3441 break;
3442 case SIL_FAULT_MCEERR:
3443 to->si_addr = ptr_to_compat(from->si_addr);
3444 to->si_addr_lsb = from->si_addr_lsb;
3445 break;
3446 case SIL_FAULT_BNDERR:
3447 to->si_addr = ptr_to_compat(from->si_addr);
3448 to->si_lower = ptr_to_compat(from->si_lower);
3449 to->si_upper = ptr_to_compat(from->si_upper);
3450 break;
3451 case SIL_FAULT_PKUERR:
3452 to->si_addr = ptr_to_compat(from->si_addr);
3453 to->si_pkey = from->si_pkey;
3454 break;
3455 case SIL_FAULT_PERF_EVENT:
3456 to->si_addr = ptr_to_compat(from->si_addr);
3457 to->si_perf_data = from->si_perf_data;
3458 to->si_perf_type = from->si_perf_type;
3459 to->si_perf_flags = from->si_perf_flags;
3460 break;
3461 case SIL_CHLD:
3462 to->si_pid = from->si_pid;
3463 to->si_uid = from->si_uid;
3464 to->si_status = from->si_status;
3465 to->si_utime = from->si_utime;
3466 to->si_stime = from->si_stime;
3467 break;
3468 case SIL_RT:
3469 to->si_pid = from->si_pid;
3470 to->si_uid = from->si_uid;
3471 to->si_int = from->si_int;
3472 break;
3473 case SIL_SYS:
3474 to->si_call_addr = ptr_to_compat(from->si_call_addr);
3475 to->si_syscall = from->si_syscall;
3476 to->si_arch = from->si_arch;
3477 break;
3478 }
3479 }
3480
3481 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3482 const struct kernel_siginfo *from)
3483 {
3484 struct compat_siginfo new;
3485
3486 copy_siginfo_to_external32(&new, from);
3487 if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3488 return -EFAULT;
3489 return 0;
3490 }
3491
3492 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3493 const struct compat_siginfo *from)
3494 {
3495 clear_siginfo(to);
3496 to->si_signo = from->si_signo;
3497 to->si_errno = from->si_errno;
3498 to->si_code = from->si_code;
3499 switch(siginfo_layout(from->si_signo, from->si_code)) {
3500 case SIL_KILL:
3501 to->si_pid = from->si_pid;
3502 to->si_uid = from->si_uid;
3503 break;
3504 case SIL_TIMER:
3505 to->si_tid = from->si_tid;
3506 to->si_overrun = from->si_overrun;
3507 to->si_int = from->si_int;
3508 break;
3509 case SIL_POLL:
3510 to->si_band = from->si_band;
3511 to->si_fd = from->si_fd;
3512 break;
3513 case SIL_FAULT:
3514 to->si_addr = compat_ptr(from->si_addr);
3515 break;
3516 case SIL_FAULT_TRAPNO:
3517 to->si_addr = compat_ptr(from->si_addr);
3518 to->si_trapno = from->si_trapno;
3519 break;
3520 case SIL_FAULT_MCEERR:
3521 to->si_addr = compat_ptr(from->si_addr);
3522 to->si_addr_lsb = from->si_addr_lsb;
3523 break;
3524 case SIL_FAULT_BNDERR:
3525 to->si_addr = compat_ptr(from->si_addr);
3526 to->si_lower = compat_ptr(from->si_lower);
3527 to->si_upper = compat_ptr(from->si_upper);
3528 break;
3529 case SIL_FAULT_PKUERR:
3530 to->si_addr = compat_ptr(from->si_addr);
3531 to->si_pkey = from->si_pkey;
3532 break;
3533 case SIL_FAULT_PERF_EVENT:
3534 to->si_addr = compat_ptr(from->si_addr);
3535 to->si_perf_data = from->si_perf_data;
3536 to->si_perf_type = from->si_perf_type;
3537 to->si_perf_flags = from->si_perf_flags;
3538 break;
3539 case SIL_CHLD:
3540 to->si_pid = from->si_pid;
3541 to->si_uid = from->si_uid;
3542 to->si_status = from->si_status;
3543 #ifdef CONFIG_X86_X32_ABI
3544 if (in_x32_syscall()) {
3545 to->si_utime = from->_sifields._sigchld_x32._utime;
3546 to->si_stime = from->_sifields._sigchld_x32._stime;
3547 } else
3548 #endif
3549 {
3550 to->si_utime = from->si_utime;
3551 to->si_stime = from->si_stime;
3552 }
3553 break;
3554 case SIL_RT:
3555 to->si_pid = from->si_pid;
3556 to->si_uid = from->si_uid;
3557 to->si_int = from->si_int;
3558 break;
3559 case SIL_SYS:
3560 to->si_call_addr = compat_ptr(from->si_call_addr);
3561 to->si_syscall = from->si_syscall;
3562 to->si_arch = from->si_arch;
3563 break;
3564 }
3565 return 0;
3566 }
3567
3568 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3569 const struct compat_siginfo __user *ufrom)
3570 {
3571 struct compat_siginfo from;
3572
3573 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3574 return -EFAULT;
3575
3576 from.si_signo = signo;
3577 return post_copy_siginfo_from_user32(to, &from);
3578 }
3579
3580 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3581 const struct compat_siginfo __user *ufrom)
3582 {
3583 struct compat_siginfo from;
3584
3585 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3586 return -EFAULT;
3587
3588 return post_copy_siginfo_from_user32(to, &from);
3589 }
3590 #endif /* CONFIG_COMPAT */
3591
3592 /**
3593 * do_sigtimedwait - wait for queued signals specified in @which
3594 * @which: queued signals to wait for
3595 * @info: if non-null, the signal's siginfo is returned here
3596 * @ts: upper bound on process time suspension
3597 */
3598 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3599 const struct timespec64 *ts)
3600 {
3601 ktime_t *to = NULL, timeout = KTIME_MAX;
3602 struct task_struct *tsk = current;
3603 sigset_t mask = *which;
3604 int sig, ret = 0;
3605
3606 if (ts) {
3607 if (!timespec64_valid(ts))
3608 return -EINVAL;
3609 timeout = timespec64_to_ktime(*ts);
3610 to = &timeout;
3611 }
3612
3613 /*
3614 * Invert the set of allowed signals to get those we want to block.
3615 */
3616 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3617 signotset(&mask);
3618
3619 spin_lock_irq(&tsk->sighand->siglock);
3620 sig = dequeue_signal(tsk, &mask, info);
3621 if (!sig && timeout) {
3622 /*
3623 * None ready, temporarily unblock those we're interested
3624 * while we are sleeping in so that we'll be awakened when
3625 * they arrive. Unblocking is always fine, we can avoid
3626 * set_current_blocked().
3627 */
3628 tsk->real_blocked = tsk->blocked;
3629 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3630 recalc_sigpending();
3631 spin_unlock_irq(&tsk->sighand->siglock);
3632
3633 __set_current_state(TASK_INTERRUPTIBLE);
3634 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3635 HRTIMER_MODE_REL);
3636 spin_lock_irq(&tsk->sighand->siglock);
3637 __set_task_blocked(tsk, &tsk->real_blocked);
3638 sigemptyset(&tsk->real_blocked);
3639 sig = dequeue_signal(tsk, &mask, info);
3640 }
3641 spin_unlock_irq(&tsk->sighand->siglock);
3642
3643 if (sig)
3644 return sig;
3645 return ret ? -EINTR : -EAGAIN;
3646 }
3647
3648 /**
3649 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3650 * in @uthese
3651 * @uthese: queued signals to wait for
3652 * @uinfo: if non-null, the signal's siginfo is returned here
3653 * @uts: upper bound on process time suspension
3654 * @sigsetsize: size of sigset_t type
3655 */
3656 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3657 siginfo_t __user *, uinfo,
3658 const struct __kernel_timespec __user *, uts,
3659 size_t, sigsetsize)
3660 {
3661 sigset_t these;
3662 struct timespec64 ts;
3663 kernel_siginfo_t info;
3664 int ret;
3665
3666 /* XXX: Don't preclude handling different sized sigset_t's. */
3667 if (sigsetsize != sizeof(sigset_t))
3668 return -EINVAL;
3669
3670 if (copy_from_user(&these, uthese, sizeof(these)))
3671 return -EFAULT;
3672
3673 if (uts) {
3674 if (get_timespec64(&ts, uts))
3675 return -EFAULT;
3676 }
3677
3678 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3679
3680 if (ret > 0 && uinfo) {
3681 if (copy_siginfo_to_user(uinfo, &info))
3682 ret = -EFAULT;
3683 }
3684
3685 return ret;
3686 }
3687
3688 #ifdef CONFIG_COMPAT_32BIT_TIME
3689 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3690 siginfo_t __user *, uinfo,
3691 const struct old_timespec32 __user *, uts,
3692 size_t, sigsetsize)
3693 {
3694 sigset_t these;
3695 struct timespec64 ts;
3696 kernel_siginfo_t info;
3697 int ret;
3698
3699 if (sigsetsize != sizeof(sigset_t))
3700 return -EINVAL;
3701
3702 if (copy_from_user(&these, uthese, sizeof(these)))
3703 return -EFAULT;
3704
3705 if (uts) {
3706 if (get_old_timespec32(&ts, uts))
3707 return -EFAULT;
3708 }
3709
3710 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3711
3712 if (ret > 0 && uinfo) {
3713 if (copy_siginfo_to_user(uinfo, &info))
3714 ret = -EFAULT;
3715 }
3716
3717 return ret;
3718 }
3719 #endif
3720
3721 #ifdef CONFIG_COMPAT
3722 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3723 struct compat_siginfo __user *, uinfo,
3724 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3725 {
3726 sigset_t s;
3727 struct timespec64 t;
3728 kernel_siginfo_t info;
3729 long ret;
3730
3731 if (sigsetsize != sizeof(sigset_t))
3732 return -EINVAL;
3733
3734 if (get_compat_sigset(&s, uthese))
3735 return -EFAULT;
3736
3737 if (uts) {
3738 if (get_timespec64(&t, uts))
3739 return -EFAULT;
3740 }
3741
3742 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3743
3744 if (ret > 0 && uinfo) {
3745 if (copy_siginfo_to_user32(uinfo, &info))
3746 ret = -EFAULT;
3747 }
3748
3749 return ret;
3750 }
3751
3752 #ifdef CONFIG_COMPAT_32BIT_TIME
3753 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3754 struct compat_siginfo __user *, uinfo,
3755 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3756 {
3757 sigset_t s;
3758 struct timespec64 t;
3759 kernel_siginfo_t info;
3760 long ret;
3761
3762 if (sigsetsize != sizeof(sigset_t))
3763 return -EINVAL;
3764
3765 if (get_compat_sigset(&s, uthese))
3766 return -EFAULT;
3767
3768 if (uts) {
3769 if (get_old_timespec32(&t, uts))
3770 return -EFAULT;
3771 }
3772
3773 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3774
3775 if (ret > 0 && uinfo) {
3776 if (copy_siginfo_to_user32(uinfo, &info))
3777 ret = -EFAULT;
3778 }
3779
3780 return ret;
3781 }
3782 #endif
3783 #endif
3784
3785 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3786 {
3787 clear_siginfo(info);
3788 info->si_signo = sig;
3789 info->si_errno = 0;
3790 info->si_code = SI_USER;
3791 info->si_pid = task_tgid_vnr(current);
3792 info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3793 }
3794
3795 /**
3796 * sys_kill - send a signal to a process
3797 * @pid: the PID of the process
3798 * @sig: signal to be sent
3799 */
3800 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3801 {
3802 struct kernel_siginfo info;
3803
3804 prepare_kill_siginfo(sig, &info);
3805
3806 return kill_something_info(sig, &info, pid);
3807 }
3808
3809 /*
3810 * Verify that the signaler and signalee either are in the same pid namespace
3811 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3812 * namespace.
3813 */
3814 static bool access_pidfd_pidns(struct pid *pid)
3815 {
3816 struct pid_namespace *active = task_active_pid_ns(current);
3817 struct pid_namespace *p = ns_of_pid(pid);
3818
3819 for (;;) {
3820 if (!p)
3821 return false;
3822 if (p == active)
3823 break;
3824 p = p->parent;
3825 }
3826
3827 return true;
3828 }
3829
3830 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3831 siginfo_t __user *info)
3832 {
3833 #ifdef CONFIG_COMPAT
3834 /*
3835 * Avoid hooking up compat syscalls and instead handle necessary
3836 * conversions here. Note, this is a stop-gap measure and should not be
3837 * considered a generic solution.
3838 */
3839 if (in_compat_syscall())
3840 return copy_siginfo_from_user32(
3841 kinfo, (struct compat_siginfo __user *)info);
3842 #endif
3843 return copy_siginfo_from_user(kinfo, info);
3844 }
3845
3846 static struct pid *pidfd_to_pid(const struct file *file)
3847 {
3848 struct pid *pid;
3849
3850 pid = pidfd_pid(file);
3851 if (!IS_ERR(pid))
3852 return pid;
3853
3854 return tgid_pidfd_to_pid(file);
3855 }
3856
3857 /**
3858 * sys_pidfd_send_signal - Signal a process through a pidfd
3859 * @pidfd: file descriptor of the process
3860 * @sig: signal to send
3861 * @info: signal info
3862 * @flags: future flags
3863 *
3864 * The syscall currently only signals via PIDTYPE_PID which covers
3865 * kill(<positive-pid>, <signal>. It does not signal threads or process
3866 * groups.
3867 * In order to extend the syscall to threads and process groups the @flags
3868 * argument should be used. In essence, the @flags argument will determine
3869 * what is signaled and not the file descriptor itself. Put in other words,
3870 * grouping is a property of the flags argument not a property of the file
3871 * descriptor.
3872 *
3873 * Return: 0 on success, negative errno on failure
3874 */
3875 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3876 siginfo_t __user *, info, unsigned int, flags)
3877 {
3878 int ret;
3879 struct fd f;
3880 struct pid *pid;
3881 kernel_siginfo_t kinfo;
3882
3883 /* Enforce flags be set to 0 until we add an extension. */
3884 if (flags)
3885 return -EINVAL;
3886
3887 f = fdget(pidfd);
3888 if (!f.file)
3889 return -EBADF;
3890
3891 /* Is this a pidfd? */
3892 pid = pidfd_to_pid(f.file);
3893 if (IS_ERR(pid)) {
3894 ret = PTR_ERR(pid);
3895 goto err;
3896 }
3897
3898 ret = -EINVAL;
3899 if (!access_pidfd_pidns(pid))
3900 goto err;
3901
3902 if (info) {
3903 ret = copy_siginfo_from_user_any(&kinfo, info);
3904 if (unlikely(ret))
3905 goto err;
3906
3907 ret = -EINVAL;
3908 if (unlikely(sig != kinfo.si_signo))
3909 goto err;
3910
3911 /* Only allow sending arbitrary signals to yourself. */
3912 ret = -EPERM;
3913 if ((task_pid(current) != pid) &&
3914 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3915 goto err;
3916 } else {
3917 prepare_kill_siginfo(sig, &kinfo);
3918 }
3919
3920 ret = kill_pid_info(sig, &kinfo, pid);
3921
3922 err:
3923 fdput(f);
3924 return ret;
3925 }
3926
3927 static int
3928 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3929 {
3930 struct task_struct *p;
3931 int error = -ESRCH;
3932
3933 rcu_read_lock();
3934 p = find_task_by_vpid(pid);
3935 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3936 error = check_kill_permission(sig, info, p);
3937 /*
3938 * The null signal is a permissions and process existence
3939 * probe. No signal is actually delivered.
3940 */
3941 if (!error && sig) {
3942 error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3943 /*
3944 * If lock_task_sighand() failed we pretend the task
3945 * dies after receiving the signal. The window is tiny,
3946 * and the signal is private anyway.
3947 */
3948 if (unlikely(error == -ESRCH))
3949 error = 0;
3950 }
3951 }
3952 rcu_read_unlock();
3953
3954 return error;
3955 }
3956
3957 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3958 {
3959 struct kernel_siginfo info;
3960
3961 clear_siginfo(&info);
3962 info.si_signo = sig;
3963 info.si_errno = 0;
3964 info.si_code = SI_TKILL;
3965 info.si_pid = task_tgid_vnr(current);
3966 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3967
3968 return do_send_specific(tgid, pid, sig, &info);
3969 }
3970
3971 /**
3972 * sys_tgkill - send signal to one specific thread
3973 * @tgid: the thread group ID of the thread
3974 * @pid: the PID of the thread
3975 * @sig: signal to be sent
3976 *
3977 * This syscall also checks the @tgid and returns -ESRCH even if the PID
3978 * exists but it's not belonging to the target process anymore. This
3979 * method solves the problem of threads exiting and PIDs getting reused.
3980 */
3981 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3982 {
3983 /* This is only valid for single tasks */
3984 if (pid <= 0 || tgid <= 0)
3985 return -EINVAL;
3986
3987 return do_tkill(tgid, pid, sig);
3988 }
3989
3990 /**
3991 * sys_tkill - send signal to one specific task
3992 * @pid: the PID of the task
3993 * @sig: signal to be sent
3994 *
3995 * Send a signal to only one task, even if it's a CLONE_THREAD task.
3996 */
3997 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3998 {
3999 /* This is only valid for single tasks */
4000 if (pid <= 0)
4001 return -EINVAL;
4002
4003 return do_tkill(0, pid, sig);
4004 }
4005
4006 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
4007 {
4008 /* Not even root can pretend to send signals from the kernel.
4009 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4010 */
4011 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4012 (task_pid_vnr(current) != pid))
4013 return -EPERM;
4014
4015 /* POSIX.1b doesn't mention process groups. */
4016 return kill_proc_info(sig, info, pid);
4017 }
4018
4019 /**
4020 * sys_rt_sigqueueinfo - send signal information to a signal
4021 * @pid: the PID of the thread
4022 * @sig: signal to be sent
4023 * @uinfo: signal info to be sent
4024 */
4025 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4026 siginfo_t __user *, uinfo)
4027 {
4028 kernel_siginfo_t info;
4029 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4030 if (unlikely(ret))
4031 return ret;
4032 return do_rt_sigqueueinfo(pid, sig, &info);
4033 }
4034
4035 #ifdef CONFIG_COMPAT
4036 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4037 compat_pid_t, pid,
4038 int, sig,
4039 struct compat_siginfo __user *, uinfo)
4040 {
4041 kernel_siginfo_t info;
4042 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4043 if (unlikely(ret))
4044 return ret;
4045 return do_rt_sigqueueinfo(pid, sig, &info);
4046 }
4047 #endif
4048
4049 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4050 {
4051 /* This is only valid for single tasks */
4052 if (pid <= 0 || tgid <= 0)
4053 return -EINVAL;
4054
4055 /* Not even root can pretend to send signals from the kernel.
4056 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4057 */
4058 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4059 (task_pid_vnr(current) != pid))
4060 return -EPERM;
4061
4062 return do_send_specific(tgid, pid, sig, info);
4063 }
4064
4065 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4066 siginfo_t __user *, uinfo)
4067 {
4068 kernel_siginfo_t info;
4069 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4070 if (unlikely(ret))
4071 return ret;
4072 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4073 }
4074
4075 #ifdef CONFIG_COMPAT
4076 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4077 compat_pid_t, tgid,
4078 compat_pid_t, pid,
4079 int, sig,
4080 struct compat_siginfo __user *, uinfo)
4081 {
4082 kernel_siginfo_t info;
4083 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4084 if (unlikely(ret))
4085 return ret;
4086 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4087 }
4088 #endif
4089
4090 /*
4091 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4092 */
4093 void kernel_sigaction(int sig, __sighandler_t action)
4094 {
4095 spin_lock_irq(&current->sighand->siglock);
4096 current->sighand->action[sig - 1].sa.sa_handler = action;
4097 if (action == SIG_IGN) {
4098 sigset_t mask;
4099
4100 sigemptyset(&mask);
4101 sigaddset(&mask, sig);
4102
4103 flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4104 flush_sigqueue_mask(&mask, &current->pending);
4105 recalc_sigpending();
4106 }
4107 spin_unlock_irq(&current->sighand->siglock);
4108 }
4109 EXPORT_SYMBOL(kernel_sigaction);
4110
4111 void __weak sigaction_compat_abi(struct k_sigaction *act,
4112 struct k_sigaction *oact)
4113 {
4114 }
4115
4116 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4117 {
4118 struct task_struct *p = current, *t;
4119 struct k_sigaction *k;
4120 sigset_t mask;
4121
4122 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4123 return -EINVAL;
4124
4125 k = &p->sighand->action[sig-1];
4126
4127 spin_lock_irq(&p->sighand->siglock);
4128 if (k->sa.sa_flags & SA_IMMUTABLE) {
4129 spin_unlock_irq(&p->sighand->siglock);
4130 return -EINVAL;
4131 }
4132 if (oact)
4133 *oact = *k;
4134
4135 /*
4136 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4137 * e.g. by having an architecture use the bit in their uapi.
4138 */
4139 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4140
4141 /*
4142 * Clear unknown flag bits in order to allow userspace to detect missing
4143 * support for flag bits and to allow the kernel to use non-uapi bits
4144 * internally.
4145 */
4146 if (act)
4147 act->sa.sa_flags &= UAPI_SA_FLAGS;
4148 if (oact)
4149 oact->sa.sa_flags &= UAPI_SA_FLAGS;
4150
4151 sigaction_compat_abi(act, oact);
4152
4153 if (act) {
4154 sigdelsetmask(&act->sa.sa_mask,
4155 sigmask(SIGKILL) | sigmask(SIGSTOP));
4156 *k = *act;
4157 /*
4158 * POSIX 3.3.1.3:
4159 * "Setting a signal action to SIG_IGN for a signal that is
4160 * pending shall cause the pending signal to be discarded,
4161 * whether or not it is blocked."
4162 *
4163 * "Setting a signal action to SIG_DFL for a signal that is
4164 * pending and whose default action is to ignore the signal
4165 * (for example, SIGCHLD), shall cause the pending signal to
4166 * be discarded, whether or not it is blocked"
4167 */
4168 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4169 sigemptyset(&mask);
4170 sigaddset(&mask, sig);
4171 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4172 for_each_thread(p, t)
4173 flush_sigqueue_mask(&mask, &t->pending);
4174 }
4175 }
4176
4177 spin_unlock_irq(&p->sighand->siglock);
4178 return 0;
4179 }
4180
4181 #ifdef CONFIG_DYNAMIC_SIGFRAME
4182 static inline void sigaltstack_lock(void)
4183 __acquires(&current->sighand->siglock)
4184 {
4185 spin_lock_irq(&current->sighand->siglock);
4186 }
4187
4188 static inline void sigaltstack_unlock(void)
4189 __releases(&current->sighand->siglock)
4190 {
4191 spin_unlock_irq(&current->sighand->siglock);
4192 }
4193 #else
4194 static inline void sigaltstack_lock(void) { }
4195 static inline void sigaltstack_unlock(void) { }
4196 #endif
4197
4198 static int
4199 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4200 size_t min_ss_size)
4201 {
4202 struct task_struct *t = current;
4203 int ret = 0;
4204
4205 if (oss) {
4206 memset(oss, 0, sizeof(stack_t));
4207 oss->ss_sp = (void __user *) t->sas_ss_sp;
4208 oss->ss_size = t->sas_ss_size;
4209 oss->ss_flags = sas_ss_flags(sp) |
4210 (current->sas_ss_flags & SS_FLAG_BITS);
4211 }
4212
4213 if (ss) {
4214 void __user *ss_sp = ss->ss_sp;
4215 size_t ss_size = ss->ss_size;
4216 unsigned ss_flags = ss->ss_flags;
4217 int ss_mode;
4218
4219 if (unlikely(on_sig_stack(sp)))
4220 return -EPERM;
4221
4222 ss_mode = ss_flags & ~SS_FLAG_BITS;
4223 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4224 ss_mode != 0))
4225 return -EINVAL;
4226
4227 /*
4228 * Return before taking any locks if no actual
4229 * sigaltstack changes were requested.
4230 */
4231 if (t->sas_ss_sp == (unsigned long)ss_sp &&
4232 t->sas_ss_size == ss_size &&
4233 t->sas_ss_flags == ss_flags)
4234 return 0;
4235
4236 sigaltstack_lock();
4237 if (ss_mode == SS_DISABLE) {
4238 ss_size = 0;
4239 ss_sp = NULL;
4240 } else {
4241 if (unlikely(ss_size < min_ss_size))
4242 ret = -ENOMEM;
4243 if (!sigaltstack_size_valid(ss_size))
4244 ret = -ENOMEM;
4245 }
4246 if (!ret) {
4247 t->sas_ss_sp = (unsigned long) ss_sp;
4248 t->sas_ss_size = ss_size;
4249 t->sas_ss_flags = ss_flags;
4250 }
4251 sigaltstack_unlock();
4252 }
4253 return ret;
4254 }
4255
4256 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4257 {
4258 stack_t new, old;
4259 int err;
4260 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4261 return -EFAULT;
4262 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4263 current_user_stack_pointer(),
4264 MINSIGSTKSZ);
4265 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4266 err = -EFAULT;
4267 return err;
4268 }
4269
4270 int restore_altstack(const stack_t __user *uss)
4271 {
4272 stack_t new;
4273 if (copy_from_user(&new, uss, sizeof(stack_t)))
4274 return -EFAULT;
4275 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4276 MINSIGSTKSZ);
4277 /* squash all but EFAULT for now */
4278 return 0;
4279 }
4280
4281 int __save_altstack(stack_t __user *uss, unsigned long sp)
4282 {
4283 struct task_struct *t = current;
4284 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4285 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4286 __put_user(t->sas_ss_size, &uss->ss_size);
4287 return err;
4288 }
4289
4290 #ifdef CONFIG_COMPAT
4291 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4292 compat_stack_t __user *uoss_ptr)
4293 {
4294 stack_t uss, uoss;
4295 int ret;
4296
4297 if (uss_ptr) {
4298 compat_stack_t uss32;
4299 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4300 return -EFAULT;
4301 uss.ss_sp = compat_ptr(uss32.ss_sp);
4302 uss.ss_flags = uss32.ss_flags;
4303 uss.ss_size = uss32.ss_size;
4304 }
4305 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4306 compat_user_stack_pointer(),
4307 COMPAT_MINSIGSTKSZ);
4308 if (ret >= 0 && uoss_ptr) {
4309 compat_stack_t old;
4310 memset(&old, 0, sizeof(old));
4311 old.ss_sp = ptr_to_compat(uoss.ss_sp);
4312 old.ss_flags = uoss.ss_flags;
4313 old.ss_size = uoss.ss_size;
4314 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4315 ret = -EFAULT;
4316 }
4317 return ret;
4318 }
4319
4320 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4321 const compat_stack_t __user *, uss_ptr,
4322 compat_stack_t __user *, uoss_ptr)
4323 {
4324 return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4325 }
4326
4327 int compat_restore_altstack(const compat_stack_t __user *uss)
4328 {
4329 int err = do_compat_sigaltstack(uss, NULL);
4330 /* squash all but -EFAULT for now */
4331 return err == -EFAULT ? err : 0;
4332 }
4333
4334 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4335 {
4336 int err;
4337 struct task_struct *t = current;
4338 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4339 &uss->ss_sp) |
4340 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4341 __put_user(t->sas_ss_size, &uss->ss_size);
4342 return err;
4343 }
4344 #endif
4345
4346 #ifdef __ARCH_WANT_SYS_SIGPENDING
4347
4348 /**
4349 * sys_sigpending - examine pending signals
4350 * @uset: where mask of pending signal is returned
4351 */
4352 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4353 {
4354 sigset_t set;
4355
4356 if (sizeof(old_sigset_t) > sizeof(*uset))
4357 return -EINVAL;
4358
4359 do_sigpending(&set);
4360
4361 if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4362 return -EFAULT;
4363
4364 return 0;
4365 }
4366
4367 #ifdef CONFIG_COMPAT
4368 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4369 {
4370 sigset_t set;
4371
4372 do_sigpending(&set);
4373
4374 return put_user(set.sig[0], set32);
4375 }
4376 #endif
4377
4378 #endif
4379
4380 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4381 /**
4382 * sys_sigprocmask - examine and change blocked signals
4383 * @how: whether to add, remove, or set signals
4384 * @nset: signals to add or remove (if non-null)
4385 * @oset: previous value of signal mask if non-null
4386 *
4387 * Some platforms have their own version with special arguments;
4388 * others support only sys_rt_sigprocmask.
4389 */
4390
4391 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4392 old_sigset_t __user *, oset)
4393 {
4394 old_sigset_t old_set, new_set;
4395 sigset_t new_blocked;
4396
4397 old_set = current->blocked.sig[0];
4398
4399 if (nset) {
4400 if (copy_from_user(&new_set, nset, sizeof(*nset)))
4401 return -EFAULT;
4402
4403 new_blocked = current->blocked;
4404
4405 switch (how) {
4406 case SIG_BLOCK:
4407 sigaddsetmask(&new_blocked, new_set);
4408 break;
4409 case SIG_UNBLOCK:
4410 sigdelsetmask(&new_blocked, new_set);
4411 break;
4412 case SIG_SETMASK:
4413 new_blocked.sig[0] = new_set;
4414 break;
4415 default:
4416 return -EINVAL;
4417 }
4418
4419 set_current_blocked(&new_blocked);
4420 }
4421
4422 if (oset) {
4423 if (copy_to_user(oset, &old_set, sizeof(*oset)))
4424 return -EFAULT;
4425 }
4426
4427 return 0;
4428 }
4429 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4430
4431 #ifndef CONFIG_ODD_RT_SIGACTION
4432 /**
4433 * sys_rt_sigaction - alter an action taken by a process
4434 * @sig: signal to be sent
4435 * @act: new sigaction
4436 * @oact: used to save the previous sigaction
4437 * @sigsetsize: size of sigset_t type
4438 */
4439 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4440 const struct sigaction __user *, act,
4441 struct sigaction __user *, oact,
4442 size_t, sigsetsize)
4443 {
4444 struct k_sigaction new_sa, old_sa;
4445 int ret;
4446
4447 /* XXX: Don't preclude handling different sized sigset_t's. */
4448 if (sigsetsize != sizeof(sigset_t))
4449 return -EINVAL;
4450
4451 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4452 return -EFAULT;
4453
4454 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4455 if (ret)
4456 return ret;
4457
4458 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4459 return -EFAULT;
4460
4461 return 0;
4462 }
4463 #ifdef CONFIG_COMPAT
4464 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4465 const struct compat_sigaction __user *, act,
4466 struct compat_sigaction __user *, oact,
4467 compat_size_t, sigsetsize)
4468 {
4469 struct k_sigaction new_ka, old_ka;
4470 #ifdef __ARCH_HAS_SA_RESTORER
4471 compat_uptr_t restorer;
4472 #endif
4473 int ret;
4474
4475 /* XXX: Don't preclude handling different sized sigset_t's. */
4476 if (sigsetsize != sizeof(compat_sigset_t))
4477 return -EINVAL;
4478
4479 if (act) {
4480 compat_uptr_t handler;
4481 ret = get_user(handler, &act->sa_handler);
4482 new_ka.sa.sa_handler = compat_ptr(handler);
4483 #ifdef __ARCH_HAS_SA_RESTORER
4484 ret |= get_user(restorer, &act->sa_restorer);
4485 new_ka.sa.sa_restorer = compat_ptr(restorer);
4486 #endif
4487 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4488 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4489 if (ret)
4490 return -EFAULT;
4491 }
4492
4493 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4494 if (!ret && oact) {
4495 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4496 &oact->sa_handler);
4497 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4498 sizeof(oact->sa_mask));
4499 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4500 #ifdef __ARCH_HAS_SA_RESTORER
4501 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4502 &oact->sa_restorer);
4503 #endif
4504 }
4505 return ret;
4506 }
4507 #endif
4508 #endif /* !CONFIG_ODD_RT_SIGACTION */
4509
4510 #ifdef CONFIG_OLD_SIGACTION
4511 SYSCALL_DEFINE3(sigaction, int, sig,
4512 const struct old_sigaction __user *, act,
4513 struct old_sigaction __user *, oact)
4514 {
4515 struct k_sigaction new_ka, old_ka;
4516 int ret;
4517
4518 if (act) {
4519 old_sigset_t mask;
4520 if (!access_ok(act, sizeof(*act)) ||
4521 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4522 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4523 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4524 __get_user(mask, &act->sa_mask))
4525 return -EFAULT;
4526 #ifdef __ARCH_HAS_KA_RESTORER
4527 new_ka.ka_restorer = NULL;
4528 #endif
4529 siginitset(&new_ka.sa.sa_mask, mask);
4530 }
4531
4532 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4533
4534 if (!ret && oact) {
4535 if (!access_ok(oact, sizeof(*oact)) ||
4536 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4537 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4538 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4539 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4540 return -EFAULT;
4541 }
4542
4543 return ret;
4544 }
4545 #endif
4546 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4547 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4548 const struct compat_old_sigaction __user *, act,
4549 struct compat_old_sigaction __user *, oact)
4550 {
4551 struct k_sigaction new_ka, old_ka;
4552 int ret;
4553 compat_old_sigset_t mask;
4554 compat_uptr_t handler, restorer;
4555
4556 if (act) {
4557 if (!access_ok(act, sizeof(*act)) ||
4558 __get_user(handler, &act->sa_handler) ||
4559 __get_user(restorer, &act->sa_restorer) ||
4560 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4561 __get_user(mask, &act->sa_mask))
4562 return -EFAULT;
4563
4564 #ifdef __ARCH_HAS_KA_RESTORER
4565 new_ka.ka_restorer = NULL;
4566 #endif
4567 new_ka.sa.sa_handler = compat_ptr(handler);
4568 new_ka.sa.sa_restorer = compat_ptr(restorer);
4569 siginitset(&new_ka.sa.sa_mask, mask);
4570 }
4571
4572 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4573
4574 if (!ret && oact) {
4575 if (!access_ok(oact, sizeof(*oact)) ||
4576 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4577 &oact->sa_handler) ||
4578 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4579 &oact->sa_restorer) ||
4580 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4581 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4582 return -EFAULT;
4583 }
4584 return ret;
4585 }
4586 #endif
4587
4588 #ifdef CONFIG_SGETMASK_SYSCALL
4589
4590 /*
4591 * For backwards compatibility. Functionality superseded by sigprocmask.
4592 */
4593 SYSCALL_DEFINE0(sgetmask)
4594 {
4595 /* SMP safe */
4596 return current->blocked.sig[0];
4597 }
4598
4599 SYSCALL_DEFINE1(ssetmask, int, newmask)
4600 {
4601 int old = current->blocked.sig[0];
4602 sigset_t newset;
4603
4604 siginitset(&newset, newmask);
4605 set_current_blocked(&newset);
4606
4607 return old;
4608 }
4609 #endif /* CONFIG_SGETMASK_SYSCALL */
4610
4611 #ifdef __ARCH_WANT_SYS_SIGNAL
4612 /*
4613 * For backwards compatibility. Functionality superseded by sigaction.
4614 */
4615 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4616 {
4617 struct k_sigaction new_sa, old_sa;
4618 int ret;
4619
4620 new_sa.sa.sa_handler = handler;
4621 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4622 sigemptyset(&new_sa.sa.sa_mask);
4623
4624 ret = do_sigaction(sig, &new_sa, &old_sa);
4625
4626 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4627 }
4628 #endif /* __ARCH_WANT_SYS_SIGNAL */
4629
4630 #ifdef __ARCH_WANT_SYS_PAUSE
4631
4632 SYSCALL_DEFINE0(pause)
4633 {
4634 while (!signal_pending(current)) {
4635 __set_current_state(TASK_INTERRUPTIBLE);
4636 schedule();
4637 }
4638 return -ERESTARTNOHAND;
4639 }
4640
4641 #endif
4642
4643 static int sigsuspend(sigset_t *set)
4644 {
4645 current->saved_sigmask = current->blocked;
4646 set_current_blocked(set);
4647
4648 while (!signal_pending(current)) {
4649 __set_current_state(TASK_INTERRUPTIBLE);
4650 schedule();
4651 }
4652 set_restore_sigmask();
4653 return -ERESTARTNOHAND;
4654 }
4655
4656 /**
4657 * sys_rt_sigsuspend - replace the signal mask for a value with the
4658 * @unewset value until a signal is received
4659 * @unewset: new signal mask value
4660 * @sigsetsize: size of sigset_t type
4661 */
4662 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4663 {
4664 sigset_t newset;
4665
4666 /* XXX: Don't preclude handling different sized sigset_t's. */
4667 if (sigsetsize != sizeof(sigset_t))
4668 return -EINVAL;
4669
4670 if (copy_from_user(&newset, unewset, sizeof(newset)))
4671 return -EFAULT;
4672 return sigsuspend(&newset);
4673 }
4674
4675 #ifdef CONFIG_COMPAT
4676 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4677 {
4678 sigset_t newset;
4679
4680 /* XXX: Don't preclude handling different sized sigset_t's. */
4681 if (sigsetsize != sizeof(sigset_t))
4682 return -EINVAL;
4683
4684 if (get_compat_sigset(&newset, unewset))
4685 return -EFAULT;
4686 return sigsuspend(&newset);
4687 }
4688 #endif
4689
4690 #ifdef CONFIG_OLD_SIGSUSPEND
4691 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4692 {
4693 sigset_t blocked;
4694 siginitset(&blocked, mask);
4695 return sigsuspend(&blocked);
4696 }
4697 #endif
4698 #ifdef CONFIG_OLD_SIGSUSPEND3
4699 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4700 {
4701 sigset_t blocked;
4702 siginitset(&blocked, mask);
4703 return sigsuspend(&blocked);
4704 }
4705 #endif
4706
4707 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4708 {
4709 return NULL;
4710 }
4711
4712 static inline void siginfo_buildtime_checks(void)
4713 {
4714 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4715
4716 /* Verify the offsets in the two siginfos match */
4717 #define CHECK_OFFSET(field) \
4718 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4719
4720 /* kill */
4721 CHECK_OFFSET(si_pid);
4722 CHECK_OFFSET(si_uid);
4723
4724 /* timer */
4725 CHECK_OFFSET(si_tid);
4726 CHECK_OFFSET(si_overrun);
4727 CHECK_OFFSET(si_value);
4728
4729 /* rt */
4730 CHECK_OFFSET(si_pid);
4731 CHECK_OFFSET(si_uid);
4732 CHECK_OFFSET(si_value);
4733
4734 /* sigchld */
4735 CHECK_OFFSET(si_pid);
4736 CHECK_OFFSET(si_uid);
4737 CHECK_OFFSET(si_status);
4738 CHECK_OFFSET(si_utime);
4739 CHECK_OFFSET(si_stime);
4740
4741 /* sigfault */
4742 CHECK_OFFSET(si_addr);
4743 CHECK_OFFSET(si_trapno);
4744 CHECK_OFFSET(si_addr_lsb);
4745 CHECK_OFFSET(si_lower);
4746 CHECK_OFFSET(si_upper);
4747 CHECK_OFFSET(si_pkey);
4748 CHECK_OFFSET(si_perf_data);
4749 CHECK_OFFSET(si_perf_type);
4750 CHECK_OFFSET(si_perf_flags);
4751
4752 /* sigpoll */
4753 CHECK_OFFSET(si_band);
4754 CHECK_OFFSET(si_fd);
4755
4756 /* sigsys */
4757 CHECK_OFFSET(si_call_addr);
4758 CHECK_OFFSET(si_syscall);
4759 CHECK_OFFSET(si_arch);
4760 #undef CHECK_OFFSET
4761
4762 /* usb asyncio */
4763 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4764 offsetof(struct siginfo, si_addr));
4765 if (sizeof(int) == sizeof(void __user *)) {
4766 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4767 sizeof(void __user *));
4768 } else {
4769 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4770 sizeof_field(struct siginfo, si_uid)) !=
4771 sizeof(void __user *));
4772 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4773 offsetof(struct siginfo, si_uid));
4774 }
4775 #ifdef CONFIG_COMPAT
4776 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4777 offsetof(struct compat_siginfo, si_addr));
4778 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4779 sizeof(compat_uptr_t));
4780 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4781 sizeof_field(struct siginfo, si_pid));
4782 #endif
4783 }
4784
4785 void __init signals_init(void)
4786 {
4787 siginfo_buildtime_checks();
4788
4789 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4790 }
4791
4792 #ifdef CONFIG_KGDB_KDB
4793 #include <linux/kdb.h>
4794 /*
4795 * kdb_send_sig - Allows kdb to send signals without exposing
4796 * signal internals. This function checks if the required locks are
4797 * available before calling the main signal code, to avoid kdb
4798 * deadlocks.
4799 */
4800 void kdb_send_sig(struct task_struct *t, int sig)
4801 {
4802 static struct task_struct *kdb_prev_t;
4803 int new_t, ret;
4804 if (!spin_trylock(&t->sighand->siglock)) {
4805 kdb_printf("Can't do kill command now.\n"
4806 "The sigmask lock is held somewhere else in "
4807 "kernel, try again later\n");
4808 return;
4809 }
4810 new_t = kdb_prev_t != t;
4811 kdb_prev_t = t;
4812 if (!task_is_running(t) && new_t) {
4813 spin_unlock(&t->sighand->siglock);
4814 kdb_printf("Process is not RUNNING, sending a signal from "
4815 "kdb risks deadlock\n"
4816 "on the run queue locks. "
4817 "The signal has _not_ been sent.\n"
4818 "Reissue the kill command if you want to risk "
4819 "the deadlock.\n");
4820 return;
4821 }
4822 ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4823 spin_unlock(&t->sighand->siglock);
4824 if (ret)
4825 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4826 sig, t->pid);
4827 else
4828 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4829 }
4830 #endif /* CONFIG_KGDB_KDB */