]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/signal.c
coredump: move mm->core_waiters into struct core_state
[mirror_ubuntu-kernels.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/capability.h>
26 #include <linux/freezer.h>
27 #include <linux/pid_namespace.h>
28 #include <linux/nsproxy.h>
29
30 #include <asm/param.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
33 #include <asm/siginfo.h>
34 #include "audit.h" /* audit_signal_info() */
35
36 /*
37 * SLAB caches for signal bits.
38 */
39
40 static struct kmem_cache *sigqueue_cachep;
41
42 static int __sig_ignored(struct task_struct *t, int sig)
43 {
44 void __user *handler;
45
46 /* Is it explicitly or implicitly ignored? */
47
48 handler = t->sighand->action[sig - 1].sa.sa_handler;
49 return handler == SIG_IGN ||
50 (handler == SIG_DFL && sig_kernel_ignore(sig));
51 }
52
53 static int sig_ignored(struct task_struct *t, int sig)
54 {
55 /*
56 * Tracers always want to know about signals..
57 */
58 if (t->ptrace & PT_PTRACED)
59 return 0;
60
61 /*
62 * Blocked signals are never ignored, since the
63 * signal handler may change by the time it is
64 * unblocked.
65 */
66 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
67 return 0;
68
69 return __sig_ignored(t, sig);
70 }
71
72 /*
73 * Re-calculate pending state from the set of locally pending
74 * signals, globally pending signals, and blocked signals.
75 */
76 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
77 {
78 unsigned long ready;
79 long i;
80
81 switch (_NSIG_WORDS) {
82 default:
83 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
84 ready |= signal->sig[i] &~ blocked->sig[i];
85 break;
86
87 case 4: ready = signal->sig[3] &~ blocked->sig[3];
88 ready |= signal->sig[2] &~ blocked->sig[2];
89 ready |= signal->sig[1] &~ blocked->sig[1];
90 ready |= signal->sig[0] &~ blocked->sig[0];
91 break;
92
93 case 2: ready = signal->sig[1] &~ blocked->sig[1];
94 ready |= signal->sig[0] &~ blocked->sig[0];
95 break;
96
97 case 1: ready = signal->sig[0] &~ blocked->sig[0];
98 }
99 return ready != 0;
100 }
101
102 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
103
104 static int recalc_sigpending_tsk(struct task_struct *t)
105 {
106 if (t->signal->group_stop_count > 0 ||
107 PENDING(&t->pending, &t->blocked) ||
108 PENDING(&t->signal->shared_pending, &t->blocked)) {
109 set_tsk_thread_flag(t, TIF_SIGPENDING);
110 return 1;
111 }
112 /*
113 * We must never clear the flag in another thread, or in current
114 * when it's possible the current syscall is returning -ERESTART*.
115 * So we don't clear it here, and only callers who know they should do.
116 */
117 return 0;
118 }
119
120 /*
121 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
122 * This is superfluous when called on current, the wakeup is a harmless no-op.
123 */
124 void recalc_sigpending_and_wake(struct task_struct *t)
125 {
126 if (recalc_sigpending_tsk(t))
127 signal_wake_up(t, 0);
128 }
129
130 void recalc_sigpending(void)
131 {
132 if (!recalc_sigpending_tsk(current) && !freezing(current))
133 clear_thread_flag(TIF_SIGPENDING);
134
135 }
136
137 /* Given the mask, find the first available signal that should be serviced. */
138
139 int next_signal(struct sigpending *pending, sigset_t *mask)
140 {
141 unsigned long i, *s, *m, x;
142 int sig = 0;
143
144 s = pending->signal.sig;
145 m = mask->sig;
146 switch (_NSIG_WORDS) {
147 default:
148 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
149 if ((x = *s &~ *m) != 0) {
150 sig = ffz(~x) + i*_NSIG_BPW + 1;
151 break;
152 }
153 break;
154
155 case 2: if ((x = s[0] &~ m[0]) != 0)
156 sig = 1;
157 else if ((x = s[1] &~ m[1]) != 0)
158 sig = _NSIG_BPW + 1;
159 else
160 break;
161 sig += ffz(~x);
162 break;
163
164 case 1: if ((x = *s &~ *m) != 0)
165 sig = ffz(~x) + 1;
166 break;
167 }
168
169 return sig;
170 }
171
172 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
173 int override_rlimit)
174 {
175 struct sigqueue *q = NULL;
176 struct user_struct *user;
177
178 /*
179 * In order to avoid problems with "switch_user()", we want to make
180 * sure that the compiler doesn't re-load "t->user"
181 */
182 user = t->user;
183 barrier();
184 atomic_inc(&user->sigpending);
185 if (override_rlimit ||
186 atomic_read(&user->sigpending) <=
187 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
188 q = kmem_cache_alloc(sigqueue_cachep, flags);
189 if (unlikely(q == NULL)) {
190 atomic_dec(&user->sigpending);
191 } else {
192 INIT_LIST_HEAD(&q->list);
193 q->flags = 0;
194 q->user = get_uid(user);
195 }
196 return(q);
197 }
198
199 static void __sigqueue_free(struct sigqueue *q)
200 {
201 if (q->flags & SIGQUEUE_PREALLOC)
202 return;
203 atomic_dec(&q->user->sigpending);
204 free_uid(q->user);
205 kmem_cache_free(sigqueue_cachep, q);
206 }
207
208 void flush_sigqueue(struct sigpending *queue)
209 {
210 struct sigqueue *q;
211
212 sigemptyset(&queue->signal);
213 while (!list_empty(&queue->list)) {
214 q = list_entry(queue->list.next, struct sigqueue , list);
215 list_del_init(&q->list);
216 __sigqueue_free(q);
217 }
218 }
219
220 /*
221 * Flush all pending signals for a task.
222 */
223 void flush_signals(struct task_struct *t)
224 {
225 unsigned long flags;
226
227 spin_lock_irqsave(&t->sighand->siglock, flags);
228 clear_tsk_thread_flag(t, TIF_SIGPENDING);
229 flush_sigqueue(&t->pending);
230 flush_sigqueue(&t->signal->shared_pending);
231 spin_unlock_irqrestore(&t->sighand->siglock, flags);
232 }
233
234 static void __flush_itimer_signals(struct sigpending *pending)
235 {
236 sigset_t signal, retain;
237 struct sigqueue *q, *n;
238
239 signal = pending->signal;
240 sigemptyset(&retain);
241
242 list_for_each_entry_safe(q, n, &pending->list, list) {
243 int sig = q->info.si_signo;
244
245 if (likely(q->info.si_code != SI_TIMER)) {
246 sigaddset(&retain, sig);
247 } else {
248 sigdelset(&signal, sig);
249 list_del_init(&q->list);
250 __sigqueue_free(q);
251 }
252 }
253
254 sigorsets(&pending->signal, &signal, &retain);
255 }
256
257 void flush_itimer_signals(void)
258 {
259 struct task_struct *tsk = current;
260 unsigned long flags;
261
262 spin_lock_irqsave(&tsk->sighand->siglock, flags);
263 __flush_itimer_signals(&tsk->pending);
264 __flush_itimer_signals(&tsk->signal->shared_pending);
265 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
266 }
267
268 void ignore_signals(struct task_struct *t)
269 {
270 int i;
271
272 for (i = 0; i < _NSIG; ++i)
273 t->sighand->action[i].sa.sa_handler = SIG_IGN;
274
275 flush_signals(t);
276 }
277
278 /*
279 * Flush all handlers for a task.
280 */
281
282 void
283 flush_signal_handlers(struct task_struct *t, int force_default)
284 {
285 int i;
286 struct k_sigaction *ka = &t->sighand->action[0];
287 for (i = _NSIG ; i != 0 ; i--) {
288 if (force_default || ka->sa.sa_handler != SIG_IGN)
289 ka->sa.sa_handler = SIG_DFL;
290 ka->sa.sa_flags = 0;
291 sigemptyset(&ka->sa.sa_mask);
292 ka++;
293 }
294 }
295
296 int unhandled_signal(struct task_struct *tsk, int sig)
297 {
298 if (is_global_init(tsk))
299 return 1;
300 if (tsk->ptrace & PT_PTRACED)
301 return 0;
302 return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) ||
303 (tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL);
304 }
305
306
307 /* Notify the system that a driver wants to block all signals for this
308 * process, and wants to be notified if any signals at all were to be
309 * sent/acted upon. If the notifier routine returns non-zero, then the
310 * signal will be acted upon after all. If the notifier routine returns 0,
311 * then then signal will be blocked. Only one block per process is
312 * allowed. priv is a pointer to private data that the notifier routine
313 * can use to determine if the signal should be blocked or not. */
314
315 void
316 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
317 {
318 unsigned long flags;
319
320 spin_lock_irqsave(&current->sighand->siglock, flags);
321 current->notifier_mask = mask;
322 current->notifier_data = priv;
323 current->notifier = notifier;
324 spin_unlock_irqrestore(&current->sighand->siglock, flags);
325 }
326
327 /* Notify the system that blocking has ended. */
328
329 void
330 unblock_all_signals(void)
331 {
332 unsigned long flags;
333
334 spin_lock_irqsave(&current->sighand->siglock, flags);
335 current->notifier = NULL;
336 current->notifier_data = NULL;
337 recalc_sigpending();
338 spin_unlock_irqrestore(&current->sighand->siglock, flags);
339 }
340
341 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
342 {
343 struct sigqueue *q, *first = NULL;
344
345 /*
346 * Collect the siginfo appropriate to this signal. Check if
347 * there is another siginfo for the same signal.
348 */
349 list_for_each_entry(q, &list->list, list) {
350 if (q->info.si_signo == sig) {
351 if (first)
352 goto still_pending;
353 first = q;
354 }
355 }
356
357 sigdelset(&list->signal, sig);
358
359 if (first) {
360 still_pending:
361 list_del_init(&first->list);
362 copy_siginfo(info, &first->info);
363 __sigqueue_free(first);
364 } else {
365 /* Ok, it wasn't in the queue. This must be
366 a fast-pathed signal or we must have been
367 out of queue space. So zero out the info.
368 */
369 info->si_signo = sig;
370 info->si_errno = 0;
371 info->si_code = 0;
372 info->si_pid = 0;
373 info->si_uid = 0;
374 }
375 }
376
377 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
378 siginfo_t *info)
379 {
380 int sig = next_signal(pending, mask);
381
382 if (sig) {
383 if (current->notifier) {
384 if (sigismember(current->notifier_mask, sig)) {
385 if (!(current->notifier)(current->notifier_data)) {
386 clear_thread_flag(TIF_SIGPENDING);
387 return 0;
388 }
389 }
390 }
391
392 collect_signal(sig, pending, info);
393 }
394
395 return sig;
396 }
397
398 /*
399 * Dequeue a signal and return the element to the caller, which is
400 * expected to free it.
401 *
402 * All callers have to hold the siglock.
403 */
404 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
405 {
406 int signr;
407
408 /* We only dequeue private signals from ourselves, we don't let
409 * signalfd steal them
410 */
411 signr = __dequeue_signal(&tsk->pending, mask, info);
412 if (!signr) {
413 signr = __dequeue_signal(&tsk->signal->shared_pending,
414 mask, info);
415 /*
416 * itimer signal ?
417 *
418 * itimers are process shared and we restart periodic
419 * itimers in the signal delivery path to prevent DoS
420 * attacks in the high resolution timer case. This is
421 * compliant with the old way of self restarting
422 * itimers, as the SIGALRM is a legacy signal and only
423 * queued once. Changing the restart behaviour to
424 * restart the timer in the signal dequeue path is
425 * reducing the timer noise on heavy loaded !highres
426 * systems too.
427 */
428 if (unlikely(signr == SIGALRM)) {
429 struct hrtimer *tmr = &tsk->signal->real_timer;
430
431 if (!hrtimer_is_queued(tmr) &&
432 tsk->signal->it_real_incr.tv64 != 0) {
433 hrtimer_forward(tmr, tmr->base->get_time(),
434 tsk->signal->it_real_incr);
435 hrtimer_restart(tmr);
436 }
437 }
438 }
439
440 recalc_sigpending();
441 if (!signr)
442 return 0;
443
444 if (unlikely(sig_kernel_stop(signr))) {
445 /*
446 * Set a marker that we have dequeued a stop signal. Our
447 * caller might release the siglock and then the pending
448 * stop signal it is about to process is no longer in the
449 * pending bitmasks, but must still be cleared by a SIGCONT
450 * (and overruled by a SIGKILL). So those cases clear this
451 * shared flag after we've set it. Note that this flag may
452 * remain set after the signal we return is ignored or
453 * handled. That doesn't matter because its only purpose
454 * is to alert stop-signal processing code when another
455 * processor has come along and cleared the flag.
456 */
457 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
458 }
459 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
460 /*
461 * Release the siglock to ensure proper locking order
462 * of timer locks outside of siglocks. Note, we leave
463 * irqs disabled here, since the posix-timers code is
464 * about to disable them again anyway.
465 */
466 spin_unlock(&tsk->sighand->siglock);
467 do_schedule_next_timer(info);
468 spin_lock(&tsk->sighand->siglock);
469 }
470 return signr;
471 }
472
473 /*
474 * Tell a process that it has a new active signal..
475 *
476 * NOTE! we rely on the previous spin_lock to
477 * lock interrupts for us! We can only be called with
478 * "siglock" held, and the local interrupt must
479 * have been disabled when that got acquired!
480 *
481 * No need to set need_resched since signal event passing
482 * goes through ->blocked
483 */
484 void signal_wake_up(struct task_struct *t, int resume)
485 {
486 unsigned int mask;
487
488 set_tsk_thread_flag(t, TIF_SIGPENDING);
489
490 /*
491 * For SIGKILL, we want to wake it up in the stopped/traced/killable
492 * case. We don't check t->state here because there is a race with it
493 * executing another processor and just now entering stopped state.
494 * By using wake_up_state, we ensure the process will wake up and
495 * handle its death signal.
496 */
497 mask = TASK_INTERRUPTIBLE;
498 if (resume)
499 mask |= TASK_WAKEKILL;
500 if (!wake_up_state(t, mask))
501 kick_process(t);
502 }
503
504 /*
505 * Remove signals in mask from the pending set and queue.
506 * Returns 1 if any signals were found.
507 *
508 * All callers must be holding the siglock.
509 *
510 * This version takes a sigset mask and looks at all signals,
511 * not just those in the first mask word.
512 */
513 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
514 {
515 struct sigqueue *q, *n;
516 sigset_t m;
517
518 sigandsets(&m, mask, &s->signal);
519 if (sigisemptyset(&m))
520 return 0;
521
522 signandsets(&s->signal, &s->signal, mask);
523 list_for_each_entry_safe(q, n, &s->list, list) {
524 if (sigismember(mask, q->info.si_signo)) {
525 list_del_init(&q->list);
526 __sigqueue_free(q);
527 }
528 }
529 return 1;
530 }
531 /*
532 * Remove signals in mask from the pending set and queue.
533 * Returns 1 if any signals were found.
534 *
535 * All callers must be holding the siglock.
536 */
537 static int rm_from_queue(unsigned long mask, struct sigpending *s)
538 {
539 struct sigqueue *q, *n;
540
541 if (!sigtestsetmask(&s->signal, mask))
542 return 0;
543
544 sigdelsetmask(&s->signal, mask);
545 list_for_each_entry_safe(q, n, &s->list, list) {
546 if (q->info.si_signo < SIGRTMIN &&
547 (mask & sigmask(q->info.si_signo))) {
548 list_del_init(&q->list);
549 __sigqueue_free(q);
550 }
551 }
552 return 1;
553 }
554
555 /*
556 * Bad permissions for sending the signal
557 */
558 static int check_kill_permission(int sig, struct siginfo *info,
559 struct task_struct *t)
560 {
561 struct pid *sid;
562 int error;
563
564 if (!valid_signal(sig))
565 return -EINVAL;
566
567 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
568 return 0;
569
570 error = audit_signal_info(sig, t); /* Let audit system see the signal */
571 if (error)
572 return error;
573
574 if ((current->euid ^ t->suid) && (current->euid ^ t->uid) &&
575 (current->uid ^ t->suid) && (current->uid ^ t->uid) &&
576 !capable(CAP_KILL)) {
577 switch (sig) {
578 case SIGCONT:
579 sid = task_session(t);
580 /*
581 * We don't return the error if sid == NULL. The
582 * task was unhashed, the caller must notice this.
583 */
584 if (!sid || sid == task_session(current))
585 break;
586 default:
587 return -EPERM;
588 }
589 }
590
591 return security_task_kill(t, info, sig, 0);
592 }
593
594 /* forward decl */
595 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
596
597 /*
598 * Handle magic process-wide effects of stop/continue signals. Unlike
599 * the signal actions, these happen immediately at signal-generation
600 * time regardless of blocking, ignoring, or handling. This does the
601 * actual continuing for SIGCONT, but not the actual stopping for stop
602 * signals. The process stop is done as a signal action for SIG_DFL.
603 *
604 * Returns true if the signal should be actually delivered, otherwise
605 * it should be dropped.
606 */
607 static int prepare_signal(int sig, struct task_struct *p)
608 {
609 struct signal_struct *signal = p->signal;
610 struct task_struct *t;
611
612 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
613 /*
614 * The process is in the middle of dying, nothing to do.
615 */
616 } else if (sig_kernel_stop(sig)) {
617 /*
618 * This is a stop signal. Remove SIGCONT from all queues.
619 */
620 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
621 t = p;
622 do {
623 rm_from_queue(sigmask(SIGCONT), &t->pending);
624 } while_each_thread(p, t);
625 } else if (sig == SIGCONT) {
626 unsigned int why;
627 /*
628 * Remove all stop signals from all queues,
629 * and wake all threads.
630 */
631 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
632 t = p;
633 do {
634 unsigned int state;
635 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
636 /*
637 * If there is a handler for SIGCONT, we must make
638 * sure that no thread returns to user mode before
639 * we post the signal, in case it was the only
640 * thread eligible to run the signal handler--then
641 * it must not do anything between resuming and
642 * running the handler. With the TIF_SIGPENDING
643 * flag set, the thread will pause and acquire the
644 * siglock that we hold now and until we've queued
645 * the pending signal.
646 *
647 * Wake up the stopped thread _after_ setting
648 * TIF_SIGPENDING
649 */
650 state = __TASK_STOPPED;
651 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
652 set_tsk_thread_flag(t, TIF_SIGPENDING);
653 state |= TASK_INTERRUPTIBLE;
654 }
655 wake_up_state(t, state);
656 } while_each_thread(p, t);
657
658 /*
659 * Notify the parent with CLD_CONTINUED if we were stopped.
660 *
661 * If we were in the middle of a group stop, we pretend it
662 * was already finished, and then continued. Since SIGCHLD
663 * doesn't queue we report only CLD_STOPPED, as if the next
664 * CLD_CONTINUED was dropped.
665 */
666 why = 0;
667 if (signal->flags & SIGNAL_STOP_STOPPED)
668 why |= SIGNAL_CLD_CONTINUED;
669 else if (signal->group_stop_count)
670 why |= SIGNAL_CLD_STOPPED;
671
672 if (why) {
673 /*
674 * The first thread which returns from finish_stop()
675 * will take ->siglock, notice SIGNAL_CLD_MASK, and
676 * notify its parent. See get_signal_to_deliver().
677 */
678 signal->flags = why | SIGNAL_STOP_CONTINUED;
679 signal->group_stop_count = 0;
680 signal->group_exit_code = 0;
681 } else {
682 /*
683 * We are not stopped, but there could be a stop
684 * signal in the middle of being processed after
685 * being removed from the queue. Clear that too.
686 */
687 signal->flags &= ~SIGNAL_STOP_DEQUEUED;
688 }
689 }
690
691 return !sig_ignored(p, sig);
692 }
693
694 /*
695 * Test if P wants to take SIG. After we've checked all threads with this,
696 * it's equivalent to finding no threads not blocking SIG. Any threads not
697 * blocking SIG were ruled out because they are not running and already
698 * have pending signals. Such threads will dequeue from the shared queue
699 * as soon as they're available, so putting the signal on the shared queue
700 * will be equivalent to sending it to one such thread.
701 */
702 static inline int wants_signal(int sig, struct task_struct *p)
703 {
704 if (sigismember(&p->blocked, sig))
705 return 0;
706 if (p->flags & PF_EXITING)
707 return 0;
708 if (sig == SIGKILL)
709 return 1;
710 if (task_is_stopped_or_traced(p))
711 return 0;
712 return task_curr(p) || !signal_pending(p);
713 }
714
715 static void complete_signal(int sig, struct task_struct *p, int group)
716 {
717 struct signal_struct *signal = p->signal;
718 struct task_struct *t;
719
720 /*
721 * Now find a thread we can wake up to take the signal off the queue.
722 *
723 * If the main thread wants the signal, it gets first crack.
724 * Probably the least surprising to the average bear.
725 */
726 if (wants_signal(sig, p))
727 t = p;
728 else if (!group || thread_group_empty(p))
729 /*
730 * There is just one thread and it does not need to be woken.
731 * It will dequeue unblocked signals before it runs again.
732 */
733 return;
734 else {
735 /*
736 * Otherwise try to find a suitable thread.
737 */
738 t = signal->curr_target;
739 while (!wants_signal(sig, t)) {
740 t = next_thread(t);
741 if (t == signal->curr_target)
742 /*
743 * No thread needs to be woken.
744 * Any eligible threads will see
745 * the signal in the queue soon.
746 */
747 return;
748 }
749 signal->curr_target = t;
750 }
751
752 /*
753 * Found a killable thread. If the signal will be fatal,
754 * then start taking the whole group down immediately.
755 */
756 if (sig_fatal(p, sig) &&
757 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
758 !sigismember(&t->real_blocked, sig) &&
759 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
760 /*
761 * This signal will be fatal to the whole group.
762 */
763 if (!sig_kernel_coredump(sig)) {
764 /*
765 * Start a group exit and wake everybody up.
766 * This way we don't have other threads
767 * running and doing things after a slower
768 * thread has the fatal signal pending.
769 */
770 signal->flags = SIGNAL_GROUP_EXIT;
771 signal->group_exit_code = sig;
772 signal->group_stop_count = 0;
773 t = p;
774 do {
775 sigaddset(&t->pending.signal, SIGKILL);
776 signal_wake_up(t, 1);
777 } while_each_thread(p, t);
778 return;
779 }
780 }
781
782 /*
783 * The signal is already in the shared-pending queue.
784 * Tell the chosen thread to wake up and dequeue it.
785 */
786 signal_wake_up(t, sig == SIGKILL);
787 return;
788 }
789
790 static inline int legacy_queue(struct sigpending *signals, int sig)
791 {
792 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
793 }
794
795 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
796 int group)
797 {
798 struct sigpending *pending;
799 struct sigqueue *q;
800
801 assert_spin_locked(&t->sighand->siglock);
802 if (!prepare_signal(sig, t))
803 return 0;
804
805 pending = group ? &t->signal->shared_pending : &t->pending;
806 /*
807 * Short-circuit ignored signals and support queuing
808 * exactly one non-rt signal, so that we can get more
809 * detailed information about the cause of the signal.
810 */
811 if (legacy_queue(pending, sig))
812 return 0;
813 /*
814 * fast-pathed signals for kernel-internal things like SIGSTOP
815 * or SIGKILL.
816 */
817 if (info == SEND_SIG_FORCED)
818 goto out_set;
819
820 /* Real-time signals must be queued if sent by sigqueue, or
821 some other real-time mechanism. It is implementation
822 defined whether kill() does so. We attempt to do so, on
823 the principle of least surprise, but since kill is not
824 allowed to fail with EAGAIN when low on memory we just
825 make sure at least one signal gets delivered and don't
826 pass on the info struct. */
827
828 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
829 (is_si_special(info) ||
830 info->si_code >= 0)));
831 if (q) {
832 list_add_tail(&q->list, &pending->list);
833 switch ((unsigned long) info) {
834 case (unsigned long) SEND_SIG_NOINFO:
835 q->info.si_signo = sig;
836 q->info.si_errno = 0;
837 q->info.si_code = SI_USER;
838 q->info.si_pid = task_pid_vnr(current);
839 q->info.si_uid = current->uid;
840 break;
841 case (unsigned long) SEND_SIG_PRIV:
842 q->info.si_signo = sig;
843 q->info.si_errno = 0;
844 q->info.si_code = SI_KERNEL;
845 q->info.si_pid = 0;
846 q->info.si_uid = 0;
847 break;
848 default:
849 copy_siginfo(&q->info, info);
850 break;
851 }
852 } else if (!is_si_special(info)) {
853 if (sig >= SIGRTMIN && info->si_code != SI_USER)
854 /*
855 * Queue overflow, abort. We may abort if the signal was rt
856 * and sent by user using something other than kill().
857 */
858 return -EAGAIN;
859 }
860
861 out_set:
862 signalfd_notify(t, sig);
863 sigaddset(&pending->signal, sig);
864 complete_signal(sig, t, group);
865 return 0;
866 }
867
868 int print_fatal_signals;
869
870 static void print_fatal_signal(struct pt_regs *regs, int signr)
871 {
872 printk("%s/%d: potentially unexpected fatal signal %d.\n",
873 current->comm, task_pid_nr(current), signr);
874
875 #if defined(__i386__) && !defined(__arch_um__)
876 printk("code at %08lx: ", regs->ip);
877 {
878 int i;
879 for (i = 0; i < 16; i++) {
880 unsigned char insn;
881
882 __get_user(insn, (unsigned char *)(regs->ip + i));
883 printk("%02x ", insn);
884 }
885 }
886 #endif
887 printk("\n");
888 show_regs(regs);
889 }
890
891 static int __init setup_print_fatal_signals(char *str)
892 {
893 get_option (&str, &print_fatal_signals);
894
895 return 1;
896 }
897
898 __setup("print-fatal-signals=", setup_print_fatal_signals);
899
900 int
901 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
902 {
903 return send_signal(sig, info, p, 1);
904 }
905
906 static int
907 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
908 {
909 return send_signal(sig, info, t, 0);
910 }
911
912 /*
913 * Force a signal that the process can't ignore: if necessary
914 * we unblock the signal and change any SIG_IGN to SIG_DFL.
915 *
916 * Note: If we unblock the signal, we always reset it to SIG_DFL,
917 * since we do not want to have a signal handler that was blocked
918 * be invoked when user space had explicitly blocked it.
919 *
920 * We don't want to have recursive SIGSEGV's etc, for example,
921 * that is why we also clear SIGNAL_UNKILLABLE.
922 */
923 int
924 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
925 {
926 unsigned long int flags;
927 int ret, blocked, ignored;
928 struct k_sigaction *action;
929
930 spin_lock_irqsave(&t->sighand->siglock, flags);
931 action = &t->sighand->action[sig-1];
932 ignored = action->sa.sa_handler == SIG_IGN;
933 blocked = sigismember(&t->blocked, sig);
934 if (blocked || ignored) {
935 action->sa.sa_handler = SIG_DFL;
936 if (blocked) {
937 sigdelset(&t->blocked, sig);
938 recalc_sigpending_and_wake(t);
939 }
940 }
941 if (action->sa.sa_handler == SIG_DFL)
942 t->signal->flags &= ~SIGNAL_UNKILLABLE;
943 ret = specific_send_sig_info(sig, info, t);
944 spin_unlock_irqrestore(&t->sighand->siglock, flags);
945
946 return ret;
947 }
948
949 void
950 force_sig_specific(int sig, struct task_struct *t)
951 {
952 force_sig_info(sig, SEND_SIG_FORCED, t);
953 }
954
955 /*
956 * Nuke all other threads in the group.
957 */
958 void zap_other_threads(struct task_struct *p)
959 {
960 struct task_struct *t;
961
962 p->signal->group_stop_count = 0;
963
964 for (t = next_thread(p); t != p; t = next_thread(t)) {
965 /*
966 * Don't bother with already dead threads
967 */
968 if (t->exit_state)
969 continue;
970
971 /* SIGKILL will be handled before any pending SIGSTOP */
972 sigaddset(&t->pending.signal, SIGKILL);
973 signal_wake_up(t, 1);
974 }
975 }
976
977 int __fatal_signal_pending(struct task_struct *tsk)
978 {
979 return sigismember(&tsk->pending.signal, SIGKILL);
980 }
981 EXPORT_SYMBOL(__fatal_signal_pending);
982
983 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
984 {
985 struct sighand_struct *sighand;
986
987 rcu_read_lock();
988 for (;;) {
989 sighand = rcu_dereference(tsk->sighand);
990 if (unlikely(sighand == NULL))
991 break;
992
993 spin_lock_irqsave(&sighand->siglock, *flags);
994 if (likely(sighand == tsk->sighand))
995 break;
996 spin_unlock_irqrestore(&sighand->siglock, *flags);
997 }
998 rcu_read_unlock();
999
1000 return sighand;
1001 }
1002
1003 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1004 {
1005 unsigned long flags;
1006 int ret;
1007
1008 ret = check_kill_permission(sig, info, p);
1009
1010 if (!ret && sig) {
1011 ret = -ESRCH;
1012 if (lock_task_sighand(p, &flags)) {
1013 ret = __group_send_sig_info(sig, info, p);
1014 unlock_task_sighand(p, &flags);
1015 }
1016 }
1017
1018 return ret;
1019 }
1020
1021 /*
1022 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1023 * control characters do (^C, ^Z etc)
1024 */
1025
1026 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1027 {
1028 struct task_struct *p = NULL;
1029 int retval, success;
1030
1031 success = 0;
1032 retval = -ESRCH;
1033 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1034 int err = group_send_sig_info(sig, info, p);
1035 success |= !err;
1036 retval = err;
1037 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1038 return success ? 0 : retval;
1039 }
1040
1041 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1042 {
1043 int error = -ESRCH;
1044 struct task_struct *p;
1045
1046 rcu_read_lock();
1047 retry:
1048 p = pid_task(pid, PIDTYPE_PID);
1049 if (p) {
1050 error = group_send_sig_info(sig, info, p);
1051 if (unlikely(error == -ESRCH))
1052 /*
1053 * The task was unhashed in between, try again.
1054 * If it is dead, pid_task() will return NULL,
1055 * if we race with de_thread() it will find the
1056 * new leader.
1057 */
1058 goto retry;
1059 }
1060 rcu_read_unlock();
1061
1062 return error;
1063 }
1064
1065 int
1066 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1067 {
1068 int error;
1069 rcu_read_lock();
1070 error = kill_pid_info(sig, info, find_vpid(pid));
1071 rcu_read_unlock();
1072 return error;
1073 }
1074
1075 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1076 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1077 uid_t uid, uid_t euid, u32 secid)
1078 {
1079 int ret = -EINVAL;
1080 struct task_struct *p;
1081
1082 if (!valid_signal(sig))
1083 return ret;
1084
1085 read_lock(&tasklist_lock);
1086 p = pid_task(pid, PIDTYPE_PID);
1087 if (!p) {
1088 ret = -ESRCH;
1089 goto out_unlock;
1090 }
1091 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1092 && (euid != p->suid) && (euid != p->uid)
1093 && (uid != p->suid) && (uid != p->uid)) {
1094 ret = -EPERM;
1095 goto out_unlock;
1096 }
1097 ret = security_task_kill(p, info, sig, secid);
1098 if (ret)
1099 goto out_unlock;
1100 if (sig && p->sighand) {
1101 unsigned long flags;
1102 spin_lock_irqsave(&p->sighand->siglock, flags);
1103 ret = __group_send_sig_info(sig, info, p);
1104 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1105 }
1106 out_unlock:
1107 read_unlock(&tasklist_lock);
1108 return ret;
1109 }
1110 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1111
1112 /*
1113 * kill_something_info() interprets pid in interesting ways just like kill(2).
1114 *
1115 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1116 * is probably wrong. Should make it like BSD or SYSV.
1117 */
1118
1119 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1120 {
1121 int ret;
1122
1123 if (pid > 0) {
1124 rcu_read_lock();
1125 ret = kill_pid_info(sig, info, find_vpid(pid));
1126 rcu_read_unlock();
1127 return ret;
1128 }
1129
1130 read_lock(&tasklist_lock);
1131 if (pid != -1) {
1132 ret = __kill_pgrp_info(sig, info,
1133 pid ? find_vpid(-pid) : task_pgrp(current));
1134 } else {
1135 int retval = 0, count = 0;
1136 struct task_struct * p;
1137
1138 for_each_process(p) {
1139 if (p->pid > 1 && !same_thread_group(p, current)) {
1140 int err = group_send_sig_info(sig, info, p);
1141 ++count;
1142 if (err != -EPERM)
1143 retval = err;
1144 }
1145 }
1146 ret = count ? retval : -ESRCH;
1147 }
1148 read_unlock(&tasklist_lock);
1149
1150 return ret;
1151 }
1152
1153 /*
1154 * These are for backward compatibility with the rest of the kernel source.
1155 */
1156
1157 /*
1158 * The caller must ensure the task can't exit.
1159 */
1160 int
1161 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1162 {
1163 int ret;
1164 unsigned long flags;
1165
1166 /*
1167 * Make sure legacy kernel users don't send in bad values
1168 * (normal paths check this in check_kill_permission).
1169 */
1170 if (!valid_signal(sig))
1171 return -EINVAL;
1172
1173 spin_lock_irqsave(&p->sighand->siglock, flags);
1174 ret = specific_send_sig_info(sig, info, p);
1175 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1176 return ret;
1177 }
1178
1179 #define __si_special(priv) \
1180 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1181
1182 int
1183 send_sig(int sig, struct task_struct *p, int priv)
1184 {
1185 return send_sig_info(sig, __si_special(priv), p);
1186 }
1187
1188 void
1189 force_sig(int sig, struct task_struct *p)
1190 {
1191 force_sig_info(sig, SEND_SIG_PRIV, p);
1192 }
1193
1194 /*
1195 * When things go south during signal handling, we
1196 * will force a SIGSEGV. And if the signal that caused
1197 * the problem was already a SIGSEGV, we'll want to
1198 * make sure we don't even try to deliver the signal..
1199 */
1200 int
1201 force_sigsegv(int sig, struct task_struct *p)
1202 {
1203 if (sig == SIGSEGV) {
1204 unsigned long flags;
1205 spin_lock_irqsave(&p->sighand->siglock, flags);
1206 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1207 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1208 }
1209 force_sig(SIGSEGV, p);
1210 return 0;
1211 }
1212
1213 int kill_pgrp(struct pid *pid, int sig, int priv)
1214 {
1215 int ret;
1216
1217 read_lock(&tasklist_lock);
1218 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1219 read_unlock(&tasklist_lock);
1220
1221 return ret;
1222 }
1223 EXPORT_SYMBOL(kill_pgrp);
1224
1225 int kill_pid(struct pid *pid, int sig, int priv)
1226 {
1227 return kill_pid_info(sig, __si_special(priv), pid);
1228 }
1229 EXPORT_SYMBOL(kill_pid);
1230
1231 int
1232 kill_proc(pid_t pid, int sig, int priv)
1233 {
1234 int ret;
1235
1236 rcu_read_lock();
1237 ret = kill_pid_info(sig, __si_special(priv), find_pid(pid));
1238 rcu_read_unlock();
1239 return ret;
1240 }
1241
1242 /*
1243 * These functions support sending signals using preallocated sigqueue
1244 * structures. This is needed "because realtime applications cannot
1245 * afford to lose notifications of asynchronous events, like timer
1246 * expirations or I/O completions". In the case of Posix Timers
1247 * we allocate the sigqueue structure from the timer_create. If this
1248 * allocation fails we are able to report the failure to the application
1249 * with an EAGAIN error.
1250 */
1251
1252 struct sigqueue *sigqueue_alloc(void)
1253 {
1254 struct sigqueue *q;
1255
1256 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1257 q->flags |= SIGQUEUE_PREALLOC;
1258 return(q);
1259 }
1260
1261 void sigqueue_free(struct sigqueue *q)
1262 {
1263 unsigned long flags;
1264 spinlock_t *lock = &current->sighand->siglock;
1265
1266 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1267 /*
1268 * We must hold ->siglock while testing q->list
1269 * to serialize with collect_signal() or with
1270 * __exit_signal()->flush_sigqueue().
1271 */
1272 spin_lock_irqsave(lock, flags);
1273 q->flags &= ~SIGQUEUE_PREALLOC;
1274 /*
1275 * If it is queued it will be freed when dequeued,
1276 * like the "regular" sigqueue.
1277 */
1278 if (!list_empty(&q->list))
1279 q = NULL;
1280 spin_unlock_irqrestore(lock, flags);
1281
1282 if (q)
1283 __sigqueue_free(q);
1284 }
1285
1286 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1287 {
1288 int sig = q->info.si_signo;
1289 struct sigpending *pending;
1290 unsigned long flags;
1291 int ret;
1292
1293 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1294
1295 ret = -1;
1296 if (!likely(lock_task_sighand(t, &flags)))
1297 goto ret;
1298
1299 ret = 1; /* the signal is ignored */
1300 if (!prepare_signal(sig, t))
1301 goto out;
1302
1303 ret = 0;
1304 if (unlikely(!list_empty(&q->list))) {
1305 /*
1306 * If an SI_TIMER entry is already queue just increment
1307 * the overrun count.
1308 */
1309 BUG_ON(q->info.si_code != SI_TIMER);
1310 q->info.si_overrun++;
1311 goto out;
1312 }
1313
1314 signalfd_notify(t, sig);
1315 pending = group ? &t->signal->shared_pending : &t->pending;
1316 list_add_tail(&q->list, &pending->list);
1317 sigaddset(&pending->signal, sig);
1318 complete_signal(sig, t, group);
1319 out:
1320 unlock_task_sighand(t, &flags);
1321 ret:
1322 return ret;
1323 }
1324
1325 /*
1326 * Wake up any threads in the parent blocked in wait* syscalls.
1327 */
1328 static inline void __wake_up_parent(struct task_struct *p,
1329 struct task_struct *parent)
1330 {
1331 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1332 }
1333
1334 /*
1335 * Let a parent know about the death of a child.
1336 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1337 */
1338
1339 void do_notify_parent(struct task_struct *tsk, int sig)
1340 {
1341 struct siginfo info;
1342 unsigned long flags;
1343 struct sighand_struct *psig;
1344
1345 BUG_ON(sig == -1);
1346
1347 /* do_notify_parent_cldstop should have been called instead. */
1348 BUG_ON(task_is_stopped_or_traced(tsk));
1349
1350 BUG_ON(!tsk->ptrace &&
1351 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1352
1353 info.si_signo = sig;
1354 info.si_errno = 0;
1355 /*
1356 * we are under tasklist_lock here so our parent is tied to
1357 * us and cannot exit and release its namespace.
1358 *
1359 * the only it can is to switch its nsproxy with sys_unshare,
1360 * bu uncharing pid namespaces is not allowed, so we'll always
1361 * see relevant namespace
1362 *
1363 * write_lock() currently calls preempt_disable() which is the
1364 * same as rcu_read_lock(), but according to Oleg, this is not
1365 * correct to rely on this
1366 */
1367 rcu_read_lock();
1368 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1369 rcu_read_unlock();
1370
1371 info.si_uid = tsk->uid;
1372
1373 info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime,
1374 tsk->signal->utime));
1375 info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime,
1376 tsk->signal->stime));
1377
1378 info.si_status = tsk->exit_code & 0x7f;
1379 if (tsk->exit_code & 0x80)
1380 info.si_code = CLD_DUMPED;
1381 else if (tsk->exit_code & 0x7f)
1382 info.si_code = CLD_KILLED;
1383 else {
1384 info.si_code = CLD_EXITED;
1385 info.si_status = tsk->exit_code >> 8;
1386 }
1387
1388 psig = tsk->parent->sighand;
1389 spin_lock_irqsave(&psig->siglock, flags);
1390 if (!tsk->ptrace && sig == SIGCHLD &&
1391 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1392 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1393 /*
1394 * We are exiting and our parent doesn't care. POSIX.1
1395 * defines special semantics for setting SIGCHLD to SIG_IGN
1396 * or setting the SA_NOCLDWAIT flag: we should be reaped
1397 * automatically and not left for our parent's wait4 call.
1398 * Rather than having the parent do it as a magic kind of
1399 * signal handler, we just set this to tell do_exit that we
1400 * can be cleaned up without becoming a zombie. Note that
1401 * we still call __wake_up_parent in this case, because a
1402 * blocked sys_wait4 might now return -ECHILD.
1403 *
1404 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1405 * is implementation-defined: we do (if you don't want
1406 * it, just use SIG_IGN instead).
1407 */
1408 tsk->exit_signal = -1;
1409 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1410 sig = 0;
1411 }
1412 if (valid_signal(sig) && sig > 0)
1413 __group_send_sig_info(sig, &info, tsk->parent);
1414 __wake_up_parent(tsk, tsk->parent);
1415 spin_unlock_irqrestore(&psig->siglock, flags);
1416 }
1417
1418 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1419 {
1420 struct siginfo info;
1421 unsigned long flags;
1422 struct task_struct *parent;
1423 struct sighand_struct *sighand;
1424
1425 if (tsk->ptrace & PT_PTRACED)
1426 parent = tsk->parent;
1427 else {
1428 tsk = tsk->group_leader;
1429 parent = tsk->real_parent;
1430 }
1431
1432 info.si_signo = SIGCHLD;
1433 info.si_errno = 0;
1434 /*
1435 * see comment in do_notify_parent() abot the following 3 lines
1436 */
1437 rcu_read_lock();
1438 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1439 rcu_read_unlock();
1440
1441 info.si_uid = tsk->uid;
1442
1443 info.si_utime = cputime_to_clock_t(tsk->utime);
1444 info.si_stime = cputime_to_clock_t(tsk->stime);
1445
1446 info.si_code = why;
1447 switch (why) {
1448 case CLD_CONTINUED:
1449 info.si_status = SIGCONT;
1450 break;
1451 case CLD_STOPPED:
1452 info.si_status = tsk->signal->group_exit_code & 0x7f;
1453 break;
1454 case CLD_TRAPPED:
1455 info.si_status = tsk->exit_code & 0x7f;
1456 break;
1457 default:
1458 BUG();
1459 }
1460
1461 sighand = parent->sighand;
1462 spin_lock_irqsave(&sighand->siglock, flags);
1463 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1464 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1465 __group_send_sig_info(SIGCHLD, &info, parent);
1466 /*
1467 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1468 */
1469 __wake_up_parent(tsk, parent);
1470 spin_unlock_irqrestore(&sighand->siglock, flags);
1471 }
1472
1473 static inline int may_ptrace_stop(void)
1474 {
1475 if (!likely(current->ptrace & PT_PTRACED))
1476 return 0;
1477 /*
1478 * Are we in the middle of do_coredump?
1479 * If so and our tracer is also part of the coredump stopping
1480 * is a deadlock situation, and pointless because our tracer
1481 * is dead so don't allow us to stop.
1482 * If SIGKILL was already sent before the caller unlocked
1483 * ->siglock we must see ->core_state != NULL. Otherwise it
1484 * is safe to enter schedule().
1485 */
1486 if (unlikely(current->mm->core_state) &&
1487 unlikely(current->mm == current->parent->mm))
1488 return 0;
1489
1490 return 1;
1491 }
1492
1493 /*
1494 * Return nonzero if there is a SIGKILL that should be waking us up.
1495 * Called with the siglock held.
1496 */
1497 static int sigkill_pending(struct task_struct *tsk)
1498 {
1499 return sigismember(&tsk->pending.signal, SIGKILL) ||
1500 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1501 }
1502
1503 /*
1504 * This must be called with current->sighand->siglock held.
1505 *
1506 * This should be the path for all ptrace stops.
1507 * We always set current->last_siginfo while stopped here.
1508 * That makes it a way to test a stopped process for
1509 * being ptrace-stopped vs being job-control-stopped.
1510 *
1511 * If we actually decide not to stop at all because the tracer
1512 * is gone, we keep current->exit_code unless clear_code.
1513 */
1514 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1515 {
1516 if (arch_ptrace_stop_needed(exit_code, info)) {
1517 /*
1518 * The arch code has something special to do before a
1519 * ptrace stop. This is allowed to block, e.g. for faults
1520 * on user stack pages. We can't keep the siglock while
1521 * calling arch_ptrace_stop, so we must release it now.
1522 * To preserve proper semantics, we must do this before
1523 * any signal bookkeeping like checking group_stop_count.
1524 * Meanwhile, a SIGKILL could come in before we retake the
1525 * siglock. That must prevent us from sleeping in TASK_TRACED.
1526 * So after regaining the lock, we must check for SIGKILL.
1527 */
1528 spin_unlock_irq(&current->sighand->siglock);
1529 arch_ptrace_stop(exit_code, info);
1530 spin_lock_irq(&current->sighand->siglock);
1531 if (sigkill_pending(current))
1532 return;
1533 }
1534
1535 /*
1536 * If there is a group stop in progress,
1537 * we must participate in the bookkeeping.
1538 */
1539 if (current->signal->group_stop_count > 0)
1540 --current->signal->group_stop_count;
1541
1542 current->last_siginfo = info;
1543 current->exit_code = exit_code;
1544
1545 /* Let the debugger run. */
1546 __set_current_state(TASK_TRACED);
1547 spin_unlock_irq(&current->sighand->siglock);
1548 read_lock(&tasklist_lock);
1549 if (may_ptrace_stop()) {
1550 do_notify_parent_cldstop(current, CLD_TRAPPED);
1551 read_unlock(&tasklist_lock);
1552 schedule();
1553 } else {
1554 /*
1555 * By the time we got the lock, our tracer went away.
1556 * Don't drop the lock yet, another tracer may come.
1557 */
1558 __set_current_state(TASK_RUNNING);
1559 if (clear_code)
1560 current->exit_code = 0;
1561 read_unlock(&tasklist_lock);
1562 }
1563
1564 /*
1565 * While in TASK_TRACED, we were considered "frozen enough".
1566 * Now that we woke up, it's crucial if we're supposed to be
1567 * frozen that we freeze now before running anything substantial.
1568 */
1569 try_to_freeze();
1570
1571 /*
1572 * We are back. Now reacquire the siglock before touching
1573 * last_siginfo, so that we are sure to have synchronized with
1574 * any signal-sending on another CPU that wants to examine it.
1575 */
1576 spin_lock_irq(&current->sighand->siglock);
1577 current->last_siginfo = NULL;
1578
1579 /*
1580 * Queued signals ignored us while we were stopped for tracing.
1581 * So check for any that we should take before resuming user mode.
1582 * This sets TIF_SIGPENDING, but never clears it.
1583 */
1584 recalc_sigpending_tsk(current);
1585 }
1586
1587 void ptrace_notify(int exit_code)
1588 {
1589 siginfo_t info;
1590
1591 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1592
1593 memset(&info, 0, sizeof info);
1594 info.si_signo = SIGTRAP;
1595 info.si_code = exit_code;
1596 info.si_pid = task_pid_vnr(current);
1597 info.si_uid = current->uid;
1598
1599 /* Let the debugger run. */
1600 spin_lock_irq(&current->sighand->siglock);
1601 ptrace_stop(exit_code, 1, &info);
1602 spin_unlock_irq(&current->sighand->siglock);
1603 }
1604
1605 static void
1606 finish_stop(int stop_count)
1607 {
1608 /*
1609 * If there are no other threads in the group, or if there is
1610 * a group stop in progress and we are the last to stop,
1611 * report to the parent. When ptraced, every thread reports itself.
1612 */
1613 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1614 read_lock(&tasklist_lock);
1615 do_notify_parent_cldstop(current, CLD_STOPPED);
1616 read_unlock(&tasklist_lock);
1617 }
1618
1619 do {
1620 schedule();
1621 } while (try_to_freeze());
1622 /*
1623 * Now we don't run again until continued.
1624 */
1625 current->exit_code = 0;
1626 }
1627
1628 /*
1629 * This performs the stopping for SIGSTOP and other stop signals.
1630 * We have to stop all threads in the thread group.
1631 * Returns nonzero if we've actually stopped and released the siglock.
1632 * Returns zero if we didn't stop and still hold the siglock.
1633 */
1634 static int do_signal_stop(int signr)
1635 {
1636 struct signal_struct *sig = current->signal;
1637 int stop_count;
1638
1639 if (sig->group_stop_count > 0) {
1640 /*
1641 * There is a group stop in progress. We don't need to
1642 * start another one.
1643 */
1644 stop_count = --sig->group_stop_count;
1645 } else {
1646 struct task_struct *t;
1647
1648 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1649 unlikely(signal_group_exit(sig)))
1650 return 0;
1651 /*
1652 * There is no group stop already in progress.
1653 * We must initiate one now.
1654 */
1655 sig->group_exit_code = signr;
1656
1657 stop_count = 0;
1658 for (t = next_thread(current); t != current; t = next_thread(t))
1659 /*
1660 * Setting state to TASK_STOPPED for a group
1661 * stop is always done with the siglock held,
1662 * so this check has no races.
1663 */
1664 if (!(t->flags & PF_EXITING) &&
1665 !task_is_stopped_or_traced(t)) {
1666 stop_count++;
1667 signal_wake_up(t, 0);
1668 }
1669 sig->group_stop_count = stop_count;
1670 }
1671
1672 if (stop_count == 0)
1673 sig->flags = SIGNAL_STOP_STOPPED;
1674 current->exit_code = sig->group_exit_code;
1675 __set_current_state(TASK_STOPPED);
1676
1677 spin_unlock_irq(&current->sighand->siglock);
1678 finish_stop(stop_count);
1679 return 1;
1680 }
1681
1682 static int ptrace_signal(int signr, siginfo_t *info,
1683 struct pt_regs *regs, void *cookie)
1684 {
1685 if (!(current->ptrace & PT_PTRACED))
1686 return signr;
1687
1688 ptrace_signal_deliver(regs, cookie);
1689
1690 /* Let the debugger run. */
1691 ptrace_stop(signr, 0, info);
1692
1693 /* We're back. Did the debugger cancel the sig? */
1694 signr = current->exit_code;
1695 if (signr == 0)
1696 return signr;
1697
1698 current->exit_code = 0;
1699
1700 /* Update the siginfo structure if the signal has
1701 changed. If the debugger wanted something
1702 specific in the siginfo structure then it should
1703 have updated *info via PTRACE_SETSIGINFO. */
1704 if (signr != info->si_signo) {
1705 info->si_signo = signr;
1706 info->si_errno = 0;
1707 info->si_code = SI_USER;
1708 info->si_pid = task_pid_vnr(current->parent);
1709 info->si_uid = current->parent->uid;
1710 }
1711
1712 /* If the (new) signal is now blocked, requeue it. */
1713 if (sigismember(&current->blocked, signr)) {
1714 specific_send_sig_info(signr, info, current);
1715 signr = 0;
1716 }
1717
1718 return signr;
1719 }
1720
1721 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1722 struct pt_regs *regs, void *cookie)
1723 {
1724 struct sighand_struct *sighand = current->sighand;
1725 struct signal_struct *signal = current->signal;
1726 int signr;
1727
1728 relock:
1729 /*
1730 * We'll jump back here after any time we were stopped in TASK_STOPPED.
1731 * While in TASK_STOPPED, we were considered "frozen enough".
1732 * Now that we woke up, it's crucial if we're supposed to be
1733 * frozen that we freeze now before running anything substantial.
1734 */
1735 try_to_freeze();
1736
1737 spin_lock_irq(&sighand->siglock);
1738 /*
1739 * Every stopped thread goes here after wakeup. Check to see if
1740 * we should notify the parent, prepare_signal(SIGCONT) encodes
1741 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
1742 */
1743 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
1744 int why = (signal->flags & SIGNAL_STOP_CONTINUED)
1745 ? CLD_CONTINUED : CLD_STOPPED;
1746 signal->flags &= ~SIGNAL_CLD_MASK;
1747 spin_unlock_irq(&sighand->siglock);
1748
1749 read_lock(&tasklist_lock);
1750 do_notify_parent_cldstop(current->group_leader, why);
1751 read_unlock(&tasklist_lock);
1752 goto relock;
1753 }
1754
1755 for (;;) {
1756 struct k_sigaction *ka;
1757
1758 if (unlikely(signal->group_stop_count > 0) &&
1759 do_signal_stop(0))
1760 goto relock;
1761
1762 signr = dequeue_signal(current, &current->blocked, info);
1763 if (!signr)
1764 break; /* will return 0 */
1765
1766 if (signr != SIGKILL) {
1767 signr = ptrace_signal(signr, info, regs, cookie);
1768 if (!signr)
1769 continue;
1770 }
1771
1772 ka = &sighand->action[signr-1];
1773 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1774 continue;
1775 if (ka->sa.sa_handler != SIG_DFL) {
1776 /* Run the handler. */
1777 *return_ka = *ka;
1778
1779 if (ka->sa.sa_flags & SA_ONESHOT)
1780 ka->sa.sa_handler = SIG_DFL;
1781
1782 break; /* will return non-zero "signr" value */
1783 }
1784
1785 /*
1786 * Now we are doing the default action for this signal.
1787 */
1788 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1789 continue;
1790
1791 /*
1792 * Global init gets no signals it doesn't want.
1793 */
1794 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
1795 !signal_group_exit(signal))
1796 continue;
1797
1798 if (sig_kernel_stop(signr)) {
1799 /*
1800 * The default action is to stop all threads in
1801 * the thread group. The job control signals
1802 * do nothing in an orphaned pgrp, but SIGSTOP
1803 * always works. Note that siglock needs to be
1804 * dropped during the call to is_orphaned_pgrp()
1805 * because of lock ordering with tasklist_lock.
1806 * This allows an intervening SIGCONT to be posted.
1807 * We need to check for that and bail out if necessary.
1808 */
1809 if (signr != SIGSTOP) {
1810 spin_unlock_irq(&sighand->siglock);
1811
1812 /* signals can be posted during this window */
1813
1814 if (is_current_pgrp_orphaned())
1815 goto relock;
1816
1817 spin_lock_irq(&sighand->siglock);
1818 }
1819
1820 if (likely(do_signal_stop(signr))) {
1821 /* It released the siglock. */
1822 goto relock;
1823 }
1824
1825 /*
1826 * We didn't actually stop, due to a race
1827 * with SIGCONT or something like that.
1828 */
1829 continue;
1830 }
1831
1832 spin_unlock_irq(&sighand->siglock);
1833
1834 /*
1835 * Anything else is fatal, maybe with a core dump.
1836 */
1837 current->flags |= PF_SIGNALED;
1838
1839 if (sig_kernel_coredump(signr)) {
1840 if (print_fatal_signals)
1841 print_fatal_signal(regs, signr);
1842 /*
1843 * If it was able to dump core, this kills all
1844 * other threads in the group and synchronizes with
1845 * their demise. If we lost the race with another
1846 * thread getting here, it set group_exit_code
1847 * first and our do_group_exit call below will use
1848 * that value and ignore the one we pass it.
1849 */
1850 do_coredump((long)signr, signr, regs);
1851 }
1852
1853 /*
1854 * Death signals, no core dump.
1855 */
1856 do_group_exit(signr);
1857 /* NOTREACHED */
1858 }
1859 spin_unlock_irq(&sighand->siglock);
1860 return signr;
1861 }
1862
1863 void exit_signals(struct task_struct *tsk)
1864 {
1865 int group_stop = 0;
1866 struct task_struct *t;
1867
1868 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
1869 tsk->flags |= PF_EXITING;
1870 return;
1871 }
1872
1873 spin_lock_irq(&tsk->sighand->siglock);
1874 /*
1875 * From now this task is not visible for group-wide signals,
1876 * see wants_signal(), do_signal_stop().
1877 */
1878 tsk->flags |= PF_EXITING;
1879 if (!signal_pending(tsk))
1880 goto out;
1881
1882 /* It could be that __group_complete_signal() choose us to
1883 * notify about group-wide signal. Another thread should be
1884 * woken now to take the signal since we will not.
1885 */
1886 for (t = tsk; (t = next_thread(t)) != tsk; )
1887 if (!signal_pending(t) && !(t->flags & PF_EXITING))
1888 recalc_sigpending_and_wake(t);
1889
1890 if (unlikely(tsk->signal->group_stop_count) &&
1891 !--tsk->signal->group_stop_count) {
1892 tsk->signal->flags = SIGNAL_STOP_STOPPED;
1893 group_stop = 1;
1894 }
1895 out:
1896 spin_unlock_irq(&tsk->sighand->siglock);
1897
1898 if (unlikely(group_stop)) {
1899 read_lock(&tasklist_lock);
1900 do_notify_parent_cldstop(tsk, CLD_STOPPED);
1901 read_unlock(&tasklist_lock);
1902 }
1903 }
1904
1905 EXPORT_SYMBOL(recalc_sigpending);
1906 EXPORT_SYMBOL_GPL(dequeue_signal);
1907 EXPORT_SYMBOL(flush_signals);
1908 EXPORT_SYMBOL(force_sig);
1909 EXPORT_SYMBOL(kill_proc);
1910 EXPORT_SYMBOL(ptrace_notify);
1911 EXPORT_SYMBOL(send_sig);
1912 EXPORT_SYMBOL(send_sig_info);
1913 EXPORT_SYMBOL(sigprocmask);
1914 EXPORT_SYMBOL(block_all_signals);
1915 EXPORT_SYMBOL(unblock_all_signals);
1916
1917
1918 /*
1919 * System call entry points.
1920 */
1921
1922 asmlinkage long sys_restart_syscall(void)
1923 {
1924 struct restart_block *restart = &current_thread_info()->restart_block;
1925 return restart->fn(restart);
1926 }
1927
1928 long do_no_restart_syscall(struct restart_block *param)
1929 {
1930 return -EINTR;
1931 }
1932
1933 /*
1934 * We don't need to get the kernel lock - this is all local to this
1935 * particular thread.. (and that's good, because this is _heavily_
1936 * used by various programs)
1937 */
1938
1939 /*
1940 * This is also useful for kernel threads that want to temporarily
1941 * (or permanently) block certain signals.
1942 *
1943 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1944 * interface happily blocks "unblockable" signals like SIGKILL
1945 * and friends.
1946 */
1947 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1948 {
1949 int error;
1950
1951 spin_lock_irq(&current->sighand->siglock);
1952 if (oldset)
1953 *oldset = current->blocked;
1954
1955 error = 0;
1956 switch (how) {
1957 case SIG_BLOCK:
1958 sigorsets(&current->blocked, &current->blocked, set);
1959 break;
1960 case SIG_UNBLOCK:
1961 signandsets(&current->blocked, &current->blocked, set);
1962 break;
1963 case SIG_SETMASK:
1964 current->blocked = *set;
1965 break;
1966 default:
1967 error = -EINVAL;
1968 }
1969 recalc_sigpending();
1970 spin_unlock_irq(&current->sighand->siglock);
1971
1972 return error;
1973 }
1974
1975 asmlinkage long
1976 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
1977 {
1978 int error = -EINVAL;
1979 sigset_t old_set, new_set;
1980
1981 /* XXX: Don't preclude handling different sized sigset_t's. */
1982 if (sigsetsize != sizeof(sigset_t))
1983 goto out;
1984
1985 if (set) {
1986 error = -EFAULT;
1987 if (copy_from_user(&new_set, set, sizeof(*set)))
1988 goto out;
1989 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
1990
1991 error = sigprocmask(how, &new_set, &old_set);
1992 if (error)
1993 goto out;
1994 if (oset)
1995 goto set_old;
1996 } else if (oset) {
1997 spin_lock_irq(&current->sighand->siglock);
1998 old_set = current->blocked;
1999 spin_unlock_irq(&current->sighand->siglock);
2000
2001 set_old:
2002 error = -EFAULT;
2003 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2004 goto out;
2005 }
2006 error = 0;
2007 out:
2008 return error;
2009 }
2010
2011 long do_sigpending(void __user *set, unsigned long sigsetsize)
2012 {
2013 long error = -EINVAL;
2014 sigset_t pending;
2015
2016 if (sigsetsize > sizeof(sigset_t))
2017 goto out;
2018
2019 spin_lock_irq(&current->sighand->siglock);
2020 sigorsets(&pending, &current->pending.signal,
2021 &current->signal->shared_pending.signal);
2022 spin_unlock_irq(&current->sighand->siglock);
2023
2024 /* Outside the lock because only this thread touches it. */
2025 sigandsets(&pending, &current->blocked, &pending);
2026
2027 error = -EFAULT;
2028 if (!copy_to_user(set, &pending, sigsetsize))
2029 error = 0;
2030
2031 out:
2032 return error;
2033 }
2034
2035 asmlinkage long
2036 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2037 {
2038 return do_sigpending(set, sigsetsize);
2039 }
2040
2041 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2042
2043 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2044 {
2045 int err;
2046
2047 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2048 return -EFAULT;
2049 if (from->si_code < 0)
2050 return __copy_to_user(to, from, sizeof(siginfo_t))
2051 ? -EFAULT : 0;
2052 /*
2053 * If you change siginfo_t structure, please be sure
2054 * this code is fixed accordingly.
2055 * Please remember to update the signalfd_copyinfo() function
2056 * inside fs/signalfd.c too, in case siginfo_t changes.
2057 * It should never copy any pad contained in the structure
2058 * to avoid security leaks, but must copy the generic
2059 * 3 ints plus the relevant union member.
2060 */
2061 err = __put_user(from->si_signo, &to->si_signo);
2062 err |= __put_user(from->si_errno, &to->si_errno);
2063 err |= __put_user((short)from->si_code, &to->si_code);
2064 switch (from->si_code & __SI_MASK) {
2065 case __SI_KILL:
2066 err |= __put_user(from->si_pid, &to->si_pid);
2067 err |= __put_user(from->si_uid, &to->si_uid);
2068 break;
2069 case __SI_TIMER:
2070 err |= __put_user(from->si_tid, &to->si_tid);
2071 err |= __put_user(from->si_overrun, &to->si_overrun);
2072 err |= __put_user(from->si_ptr, &to->si_ptr);
2073 break;
2074 case __SI_POLL:
2075 err |= __put_user(from->si_band, &to->si_band);
2076 err |= __put_user(from->si_fd, &to->si_fd);
2077 break;
2078 case __SI_FAULT:
2079 err |= __put_user(from->si_addr, &to->si_addr);
2080 #ifdef __ARCH_SI_TRAPNO
2081 err |= __put_user(from->si_trapno, &to->si_trapno);
2082 #endif
2083 break;
2084 case __SI_CHLD:
2085 err |= __put_user(from->si_pid, &to->si_pid);
2086 err |= __put_user(from->si_uid, &to->si_uid);
2087 err |= __put_user(from->si_status, &to->si_status);
2088 err |= __put_user(from->si_utime, &to->si_utime);
2089 err |= __put_user(from->si_stime, &to->si_stime);
2090 break;
2091 case __SI_RT: /* This is not generated by the kernel as of now. */
2092 case __SI_MESGQ: /* But this is */
2093 err |= __put_user(from->si_pid, &to->si_pid);
2094 err |= __put_user(from->si_uid, &to->si_uid);
2095 err |= __put_user(from->si_ptr, &to->si_ptr);
2096 break;
2097 default: /* this is just in case for now ... */
2098 err |= __put_user(from->si_pid, &to->si_pid);
2099 err |= __put_user(from->si_uid, &to->si_uid);
2100 break;
2101 }
2102 return err;
2103 }
2104
2105 #endif
2106
2107 asmlinkage long
2108 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2109 siginfo_t __user *uinfo,
2110 const struct timespec __user *uts,
2111 size_t sigsetsize)
2112 {
2113 int ret, sig;
2114 sigset_t these;
2115 struct timespec ts;
2116 siginfo_t info;
2117 long timeout = 0;
2118
2119 /* XXX: Don't preclude handling different sized sigset_t's. */
2120 if (sigsetsize != sizeof(sigset_t))
2121 return -EINVAL;
2122
2123 if (copy_from_user(&these, uthese, sizeof(these)))
2124 return -EFAULT;
2125
2126 /*
2127 * Invert the set of allowed signals to get those we
2128 * want to block.
2129 */
2130 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2131 signotset(&these);
2132
2133 if (uts) {
2134 if (copy_from_user(&ts, uts, sizeof(ts)))
2135 return -EFAULT;
2136 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2137 || ts.tv_sec < 0)
2138 return -EINVAL;
2139 }
2140
2141 spin_lock_irq(&current->sighand->siglock);
2142 sig = dequeue_signal(current, &these, &info);
2143 if (!sig) {
2144 timeout = MAX_SCHEDULE_TIMEOUT;
2145 if (uts)
2146 timeout = (timespec_to_jiffies(&ts)
2147 + (ts.tv_sec || ts.tv_nsec));
2148
2149 if (timeout) {
2150 /* None ready -- temporarily unblock those we're
2151 * interested while we are sleeping in so that we'll
2152 * be awakened when they arrive. */
2153 current->real_blocked = current->blocked;
2154 sigandsets(&current->blocked, &current->blocked, &these);
2155 recalc_sigpending();
2156 spin_unlock_irq(&current->sighand->siglock);
2157
2158 timeout = schedule_timeout_interruptible(timeout);
2159
2160 spin_lock_irq(&current->sighand->siglock);
2161 sig = dequeue_signal(current, &these, &info);
2162 current->blocked = current->real_blocked;
2163 siginitset(&current->real_blocked, 0);
2164 recalc_sigpending();
2165 }
2166 }
2167 spin_unlock_irq(&current->sighand->siglock);
2168
2169 if (sig) {
2170 ret = sig;
2171 if (uinfo) {
2172 if (copy_siginfo_to_user(uinfo, &info))
2173 ret = -EFAULT;
2174 }
2175 } else {
2176 ret = -EAGAIN;
2177 if (timeout)
2178 ret = -EINTR;
2179 }
2180
2181 return ret;
2182 }
2183
2184 asmlinkage long
2185 sys_kill(pid_t pid, int sig)
2186 {
2187 struct siginfo info;
2188
2189 info.si_signo = sig;
2190 info.si_errno = 0;
2191 info.si_code = SI_USER;
2192 info.si_pid = task_tgid_vnr(current);
2193 info.si_uid = current->uid;
2194
2195 return kill_something_info(sig, &info, pid);
2196 }
2197
2198 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2199 {
2200 int error;
2201 struct siginfo info;
2202 struct task_struct *p;
2203 unsigned long flags;
2204
2205 error = -ESRCH;
2206 info.si_signo = sig;
2207 info.si_errno = 0;
2208 info.si_code = SI_TKILL;
2209 info.si_pid = task_tgid_vnr(current);
2210 info.si_uid = current->uid;
2211
2212 rcu_read_lock();
2213 p = find_task_by_vpid(pid);
2214 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2215 error = check_kill_permission(sig, &info, p);
2216 /*
2217 * The null signal is a permissions and process existence
2218 * probe. No signal is actually delivered.
2219 *
2220 * If lock_task_sighand() fails we pretend the task dies
2221 * after receiving the signal. The window is tiny, and the
2222 * signal is private anyway.
2223 */
2224 if (!error && sig && lock_task_sighand(p, &flags)) {
2225 error = specific_send_sig_info(sig, &info, p);
2226 unlock_task_sighand(p, &flags);
2227 }
2228 }
2229 rcu_read_unlock();
2230
2231 return error;
2232 }
2233
2234 /**
2235 * sys_tgkill - send signal to one specific thread
2236 * @tgid: the thread group ID of the thread
2237 * @pid: the PID of the thread
2238 * @sig: signal to be sent
2239 *
2240 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2241 * exists but it's not belonging to the target process anymore. This
2242 * method solves the problem of threads exiting and PIDs getting reused.
2243 */
2244 asmlinkage long sys_tgkill(pid_t tgid, pid_t pid, int sig)
2245 {
2246 /* This is only valid for single tasks */
2247 if (pid <= 0 || tgid <= 0)
2248 return -EINVAL;
2249
2250 return do_tkill(tgid, pid, sig);
2251 }
2252
2253 /*
2254 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2255 */
2256 asmlinkage long
2257 sys_tkill(pid_t pid, int sig)
2258 {
2259 /* This is only valid for single tasks */
2260 if (pid <= 0)
2261 return -EINVAL;
2262
2263 return do_tkill(0, pid, sig);
2264 }
2265
2266 asmlinkage long
2267 sys_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t __user *uinfo)
2268 {
2269 siginfo_t info;
2270
2271 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2272 return -EFAULT;
2273
2274 /* Not even root can pretend to send signals from the kernel.
2275 Nor can they impersonate a kill(), which adds source info. */
2276 if (info.si_code >= 0)
2277 return -EPERM;
2278 info.si_signo = sig;
2279
2280 /* POSIX.1b doesn't mention process groups. */
2281 return kill_proc_info(sig, &info, pid);
2282 }
2283
2284 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2285 {
2286 struct task_struct *t = current;
2287 struct k_sigaction *k;
2288 sigset_t mask;
2289
2290 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2291 return -EINVAL;
2292
2293 k = &t->sighand->action[sig-1];
2294
2295 spin_lock_irq(&current->sighand->siglock);
2296 if (oact)
2297 *oact = *k;
2298
2299 if (act) {
2300 sigdelsetmask(&act->sa.sa_mask,
2301 sigmask(SIGKILL) | sigmask(SIGSTOP));
2302 *k = *act;
2303 /*
2304 * POSIX 3.3.1.3:
2305 * "Setting a signal action to SIG_IGN for a signal that is
2306 * pending shall cause the pending signal to be discarded,
2307 * whether or not it is blocked."
2308 *
2309 * "Setting a signal action to SIG_DFL for a signal that is
2310 * pending and whose default action is to ignore the signal
2311 * (for example, SIGCHLD), shall cause the pending signal to
2312 * be discarded, whether or not it is blocked"
2313 */
2314 if (__sig_ignored(t, sig)) {
2315 sigemptyset(&mask);
2316 sigaddset(&mask, sig);
2317 rm_from_queue_full(&mask, &t->signal->shared_pending);
2318 do {
2319 rm_from_queue_full(&mask, &t->pending);
2320 t = next_thread(t);
2321 } while (t != current);
2322 }
2323 }
2324
2325 spin_unlock_irq(&current->sighand->siglock);
2326 return 0;
2327 }
2328
2329 int
2330 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2331 {
2332 stack_t oss;
2333 int error;
2334
2335 if (uoss) {
2336 oss.ss_sp = (void __user *) current->sas_ss_sp;
2337 oss.ss_size = current->sas_ss_size;
2338 oss.ss_flags = sas_ss_flags(sp);
2339 }
2340
2341 if (uss) {
2342 void __user *ss_sp;
2343 size_t ss_size;
2344 int ss_flags;
2345
2346 error = -EFAULT;
2347 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2348 || __get_user(ss_sp, &uss->ss_sp)
2349 || __get_user(ss_flags, &uss->ss_flags)
2350 || __get_user(ss_size, &uss->ss_size))
2351 goto out;
2352
2353 error = -EPERM;
2354 if (on_sig_stack(sp))
2355 goto out;
2356
2357 error = -EINVAL;
2358 /*
2359 *
2360 * Note - this code used to test ss_flags incorrectly
2361 * old code may have been written using ss_flags==0
2362 * to mean ss_flags==SS_ONSTACK (as this was the only
2363 * way that worked) - this fix preserves that older
2364 * mechanism
2365 */
2366 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2367 goto out;
2368
2369 if (ss_flags == SS_DISABLE) {
2370 ss_size = 0;
2371 ss_sp = NULL;
2372 } else {
2373 error = -ENOMEM;
2374 if (ss_size < MINSIGSTKSZ)
2375 goto out;
2376 }
2377
2378 current->sas_ss_sp = (unsigned long) ss_sp;
2379 current->sas_ss_size = ss_size;
2380 }
2381
2382 if (uoss) {
2383 error = -EFAULT;
2384 if (copy_to_user(uoss, &oss, sizeof(oss)))
2385 goto out;
2386 }
2387
2388 error = 0;
2389 out:
2390 return error;
2391 }
2392
2393 #ifdef __ARCH_WANT_SYS_SIGPENDING
2394
2395 asmlinkage long
2396 sys_sigpending(old_sigset_t __user *set)
2397 {
2398 return do_sigpending(set, sizeof(*set));
2399 }
2400
2401 #endif
2402
2403 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2404 /* Some platforms have their own version with special arguments others
2405 support only sys_rt_sigprocmask. */
2406
2407 asmlinkage long
2408 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2409 {
2410 int error;
2411 old_sigset_t old_set, new_set;
2412
2413 if (set) {
2414 error = -EFAULT;
2415 if (copy_from_user(&new_set, set, sizeof(*set)))
2416 goto out;
2417 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2418
2419 spin_lock_irq(&current->sighand->siglock);
2420 old_set = current->blocked.sig[0];
2421
2422 error = 0;
2423 switch (how) {
2424 default:
2425 error = -EINVAL;
2426 break;
2427 case SIG_BLOCK:
2428 sigaddsetmask(&current->blocked, new_set);
2429 break;
2430 case SIG_UNBLOCK:
2431 sigdelsetmask(&current->blocked, new_set);
2432 break;
2433 case SIG_SETMASK:
2434 current->blocked.sig[0] = new_set;
2435 break;
2436 }
2437
2438 recalc_sigpending();
2439 spin_unlock_irq(&current->sighand->siglock);
2440 if (error)
2441 goto out;
2442 if (oset)
2443 goto set_old;
2444 } else if (oset) {
2445 old_set = current->blocked.sig[0];
2446 set_old:
2447 error = -EFAULT;
2448 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2449 goto out;
2450 }
2451 error = 0;
2452 out:
2453 return error;
2454 }
2455 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2456
2457 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2458 asmlinkage long
2459 sys_rt_sigaction(int sig,
2460 const struct sigaction __user *act,
2461 struct sigaction __user *oact,
2462 size_t sigsetsize)
2463 {
2464 struct k_sigaction new_sa, old_sa;
2465 int ret = -EINVAL;
2466
2467 /* XXX: Don't preclude handling different sized sigset_t's. */
2468 if (sigsetsize != sizeof(sigset_t))
2469 goto out;
2470
2471 if (act) {
2472 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2473 return -EFAULT;
2474 }
2475
2476 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2477
2478 if (!ret && oact) {
2479 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2480 return -EFAULT;
2481 }
2482 out:
2483 return ret;
2484 }
2485 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2486
2487 #ifdef __ARCH_WANT_SYS_SGETMASK
2488
2489 /*
2490 * For backwards compatibility. Functionality superseded by sigprocmask.
2491 */
2492 asmlinkage long
2493 sys_sgetmask(void)
2494 {
2495 /* SMP safe */
2496 return current->blocked.sig[0];
2497 }
2498
2499 asmlinkage long
2500 sys_ssetmask(int newmask)
2501 {
2502 int old;
2503
2504 spin_lock_irq(&current->sighand->siglock);
2505 old = current->blocked.sig[0];
2506
2507 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2508 sigmask(SIGSTOP)));
2509 recalc_sigpending();
2510 spin_unlock_irq(&current->sighand->siglock);
2511
2512 return old;
2513 }
2514 #endif /* __ARCH_WANT_SGETMASK */
2515
2516 #ifdef __ARCH_WANT_SYS_SIGNAL
2517 /*
2518 * For backwards compatibility. Functionality superseded by sigaction.
2519 */
2520 asmlinkage unsigned long
2521 sys_signal(int sig, __sighandler_t handler)
2522 {
2523 struct k_sigaction new_sa, old_sa;
2524 int ret;
2525
2526 new_sa.sa.sa_handler = handler;
2527 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2528 sigemptyset(&new_sa.sa.sa_mask);
2529
2530 ret = do_sigaction(sig, &new_sa, &old_sa);
2531
2532 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2533 }
2534 #endif /* __ARCH_WANT_SYS_SIGNAL */
2535
2536 #ifdef __ARCH_WANT_SYS_PAUSE
2537
2538 asmlinkage long
2539 sys_pause(void)
2540 {
2541 current->state = TASK_INTERRUPTIBLE;
2542 schedule();
2543 return -ERESTARTNOHAND;
2544 }
2545
2546 #endif
2547
2548 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2549 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2550 {
2551 sigset_t newset;
2552
2553 /* XXX: Don't preclude handling different sized sigset_t's. */
2554 if (sigsetsize != sizeof(sigset_t))
2555 return -EINVAL;
2556
2557 if (copy_from_user(&newset, unewset, sizeof(newset)))
2558 return -EFAULT;
2559 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2560
2561 spin_lock_irq(&current->sighand->siglock);
2562 current->saved_sigmask = current->blocked;
2563 current->blocked = newset;
2564 recalc_sigpending();
2565 spin_unlock_irq(&current->sighand->siglock);
2566
2567 current->state = TASK_INTERRUPTIBLE;
2568 schedule();
2569 set_restore_sigmask();
2570 return -ERESTARTNOHAND;
2571 }
2572 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2573
2574 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2575 {
2576 return NULL;
2577 }
2578
2579 void __init signals_init(void)
2580 {
2581 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2582 }