]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/signal.c
cputime: Use accessors to read task cputime stats
[mirror_ubuntu-artful-kernel.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/ptrace.h>
24 #include <linux/signal.h>
25 #include <linux/signalfd.h>
26 #include <linux/ratelimit.h>
27 #include <linux/tracehook.h>
28 #include <linux/capability.h>
29 #include <linux/freezer.h>
30 #include <linux/pid_namespace.h>
31 #include <linux/nsproxy.h>
32 #include <linux/user_namespace.h>
33 #include <linux/uprobes.h>
34 #include <linux/compat.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/signal.h>
37
38 #include <asm/param.h>
39 #include <asm/uaccess.h>
40 #include <asm/unistd.h>
41 #include <asm/siginfo.h>
42 #include <asm/cacheflush.h>
43 #include "audit.h" /* audit_signal_info() */
44
45 /*
46 * SLAB caches for signal bits.
47 */
48
49 static struct kmem_cache *sigqueue_cachep;
50
51 int print_fatal_signals __read_mostly;
52
53 static void __user *sig_handler(struct task_struct *t, int sig)
54 {
55 return t->sighand->action[sig - 1].sa.sa_handler;
56 }
57
58 static int sig_handler_ignored(void __user *handler, int sig)
59 {
60 /* Is it explicitly or implicitly ignored? */
61 return handler == SIG_IGN ||
62 (handler == SIG_DFL && sig_kernel_ignore(sig));
63 }
64
65 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
66 {
67 void __user *handler;
68
69 handler = sig_handler(t, sig);
70
71 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
72 handler == SIG_DFL && !force)
73 return 1;
74
75 return sig_handler_ignored(handler, sig);
76 }
77
78 static int sig_ignored(struct task_struct *t, int sig, bool force)
79 {
80 /*
81 * Blocked signals are never ignored, since the
82 * signal handler may change by the time it is
83 * unblocked.
84 */
85 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
86 return 0;
87
88 if (!sig_task_ignored(t, sig, force))
89 return 0;
90
91 /*
92 * Tracers may want to know about even ignored signals.
93 */
94 return !t->ptrace;
95 }
96
97 /*
98 * Re-calculate pending state from the set of locally pending
99 * signals, globally pending signals, and blocked signals.
100 */
101 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
102 {
103 unsigned long ready;
104 long i;
105
106 switch (_NSIG_WORDS) {
107 default:
108 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
109 ready |= signal->sig[i] &~ blocked->sig[i];
110 break;
111
112 case 4: ready = signal->sig[3] &~ blocked->sig[3];
113 ready |= signal->sig[2] &~ blocked->sig[2];
114 ready |= signal->sig[1] &~ blocked->sig[1];
115 ready |= signal->sig[0] &~ blocked->sig[0];
116 break;
117
118 case 2: ready = signal->sig[1] &~ blocked->sig[1];
119 ready |= signal->sig[0] &~ blocked->sig[0];
120 break;
121
122 case 1: ready = signal->sig[0] &~ blocked->sig[0];
123 }
124 return ready != 0;
125 }
126
127 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
128
129 static int recalc_sigpending_tsk(struct task_struct *t)
130 {
131 if ((t->jobctl & JOBCTL_PENDING_MASK) ||
132 PENDING(&t->pending, &t->blocked) ||
133 PENDING(&t->signal->shared_pending, &t->blocked)) {
134 set_tsk_thread_flag(t, TIF_SIGPENDING);
135 return 1;
136 }
137 /*
138 * We must never clear the flag in another thread, or in current
139 * when it's possible the current syscall is returning -ERESTART*.
140 * So we don't clear it here, and only callers who know they should do.
141 */
142 return 0;
143 }
144
145 /*
146 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
147 * This is superfluous when called on current, the wakeup is a harmless no-op.
148 */
149 void recalc_sigpending_and_wake(struct task_struct *t)
150 {
151 if (recalc_sigpending_tsk(t))
152 signal_wake_up(t, 0);
153 }
154
155 void recalc_sigpending(void)
156 {
157 if (!recalc_sigpending_tsk(current) && !freezing(current))
158 clear_thread_flag(TIF_SIGPENDING);
159
160 }
161
162 /* Given the mask, find the first available signal that should be serviced. */
163
164 #define SYNCHRONOUS_MASK \
165 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
166 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
167
168 int next_signal(struct sigpending *pending, sigset_t *mask)
169 {
170 unsigned long i, *s, *m, x;
171 int sig = 0;
172
173 s = pending->signal.sig;
174 m = mask->sig;
175
176 /*
177 * Handle the first word specially: it contains the
178 * synchronous signals that need to be dequeued first.
179 */
180 x = *s &~ *m;
181 if (x) {
182 if (x & SYNCHRONOUS_MASK)
183 x &= SYNCHRONOUS_MASK;
184 sig = ffz(~x) + 1;
185 return sig;
186 }
187
188 switch (_NSIG_WORDS) {
189 default:
190 for (i = 1; i < _NSIG_WORDS; ++i) {
191 x = *++s &~ *++m;
192 if (!x)
193 continue;
194 sig = ffz(~x) + i*_NSIG_BPW + 1;
195 break;
196 }
197 break;
198
199 case 2:
200 x = s[1] &~ m[1];
201 if (!x)
202 break;
203 sig = ffz(~x) + _NSIG_BPW + 1;
204 break;
205
206 case 1:
207 /* Nothing to do */
208 break;
209 }
210
211 return sig;
212 }
213
214 static inline void print_dropped_signal(int sig)
215 {
216 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
217
218 if (!print_fatal_signals)
219 return;
220
221 if (!__ratelimit(&ratelimit_state))
222 return;
223
224 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
225 current->comm, current->pid, sig);
226 }
227
228 /**
229 * task_set_jobctl_pending - set jobctl pending bits
230 * @task: target task
231 * @mask: pending bits to set
232 *
233 * Clear @mask from @task->jobctl. @mask must be subset of
234 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
235 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
236 * cleared. If @task is already being killed or exiting, this function
237 * becomes noop.
238 *
239 * CONTEXT:
240 * Must be called with @task->sighand->siglock held.
241 *
242 * RETURNS:
243 * %true if @mask is set, %false if made noop because @task was dying.
244 */
245 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
246 {
247 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
248 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
249 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
250
251 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
252 return false;
253
254 if (mask & JOBCTL_STOP_SIGMASK)
255 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
256
257 task->jobctl |= mask;
258 return true;
259 }
260
261 /**
262 * task_clear_jobctl_trapping - clear jobctl trapping bit
263 * @task: target task
264 *
265 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
266 * Clear it and wake up the ptracer. Note that we don't need any further
267 * locking. @task->siglock guarantees that @task->parent points to the
268 * ptracer.
269 *
270 * CONTEXT:
271 * Must be called with @task->sighand->siglock held.
272 */
273 void task_clear_jobctl_trapping(struct task_struct *task)
274 {
275 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
276 task->jobctl &= ~JOBCTL_TRAPPING;
277 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
278 }
279 }
280
281 /**
282 * task_clear_jobctl_pending - clear jobctl pending bits
283 * @task: target task
284 * @mask: pending bits to clear
285 *
286 * Clear @mask from @task->jobctl. @mask must be subset of
287 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
288 * STOP bits are cleared together.
289 *
290 * If clearing of @mask leaves no stop or trap pending, this function calls
291 * task_clear_jobctl_trapping().
292 *
293 * CONTEXT:
294 * Must be called with @task->sighand->siglock held.
295 */
296 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
297 {
298 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
299
300 if (mask & JOBCTL_STOP_PENDING)
301 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
302
303 task->jobctl &= ~mask;
304
305 if (!(task->jobctl & JOBCTL_PENDING_MASK))
306 task_clear_jobctl_trapping(task);
307 }
308
309 /**
310 * task_participate_group_stop - participate in a group stop
311 * @task: task participating in a group stop
312 *
313 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
314 * Group stop states are cleared and the group stop count is consumed if
315 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
316 * stop, the appropriate %SIGNAL_* flags are set.
317 *
318 * CONTEXT:
319 * Must be called with @task->sighand->siglock held.
320 *
321 * RETURNS:
322 * %true if group stop completion should be notified to the parent, %false
323 * otherwise.
324 */
325 static bool task_participate_group_stop(struct task_struct *task)
326 {
327 struct signal_struct *sig = task->signal;
328 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
329
330 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
331
332 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
333
334 if (!consume)
335 return false;
336
337 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
338 sig->group_stop_count--;
339
340 /*
341 * Tell the caller to notify completion iff we are entering into a
342 * fresh group stop. Read comment in do_signal_stop() for details.
343 */
344 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
345 sig->flags = SIGNAL_STOP_STOPPED;
346 return true;
347 }
348 return false;
349 }
350
351 /*
352 * allocate a new signal queue record
353 * - this may be called without locks if and only if t == current, otherwise an
354 * appropriate lock must be held to stop the target task from exiting
355 */
356 static struct sigqueue *
357 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
358 {
359 struct sigqueue *q = NULL;
360 struct user_struct *user;
361
362 /*
363 * Protect access to @t credentials. This can go away when all
364 * callers hold rcu read lock.
365 */
366 rcu_read_lock();
367 user = get_uid(__task_cred(t)->user);
368 atomic_inc(&user->sigpending);
369 rcu_read_unlock();
370
371 if (override_rlimit ||
372 atomic_read(&user->sigpending) <=
373 task_rlimit(t, RLIMIT_SIGPENDING)) {
374 q = kmem_cache_alloc(sigqueue_cachep, flags);
375 } else {
376 print_dropped_signal(sig);
377 }
378
379 if (unlikely(q == NULL)) {
380 atomic_dec(&user->sigpending);
381 free_uid(user);
382 } else {
383 INIT_LIST_HEAD(&q->list);
384 q->flags = 0;
385 q->user = user;
386 }
387
388 return q;
389 }
390
391 static void __sigqueue_free(struct sigqueue *q)
392 {
393 if (q->flags & SIGQUEUE_PREALLOC)
394 return;
395 atomic_dec(&q->user->sigpending);
396 free_uid(q->user);
397 kmem_cache_free(sigqueue_cachep, q);
398 }
399
400 void flush_sigqueue(struct sigpending *queue)
401 {
402 struct sigqueue *q;
403
404 sigemptyset(&queue->signal);
405 while (!list_empty(&queue->list)) {
406 q = list_entry(queue->list.next, struct sigqueue , list);
407 list_del_init(&q->list);
408 __sigqueue_free(q);
409 }
410 }
411
412 /*
413 * Flush all pending signals for a task.
414 */
415 void __flush_signals(struct task_struct *t)
416 {
417 clear_tsk_thread_flag(t, TIF_SIGPENDING);
418 flush_sigqueue(&t->pending);
419 flush_sigqueue(&t->signal->shared_pending);
420 }
421
422 void flush_signals(struct task_struct *t)
423 {
424 unsigned long flags;
425
426 spin_lock_irqsave(&t->sighand->siglock, flags);
427 __flush_signals(t);
428 spin_unlock_irqrestore(&t->sighand->siglock, flags);
429 }
430
431 static void __flush_itimer_signals(struct sigpending *pending)
432 {
433 sigset_t signal, retain;
434 struct sigqueue *q, *n;
435
436 signal = pending->signal;
437 sigemptyset(&retain);
438
439 list_for_each_entry_safe(q, n, &pending->list, list) {
440 int sig = q->info.si_signo;
441
442 if (likely(q->info.si_code != SI_TIMER)) {
443 sigaddset(&retain, sig);
444 } else {
445 sigdelset(&signal, sig);
446 list_del_init(&q->list);
447 __sigqueue_free(q);
448 }
449 }
450
451 sigorsets(&pending->signal, &signal, &retain);
452 }
453
454 void flush_itimer_signals(void)
455 {
456 struct task_struct *tsk = current;
457 unsigned long flags;
458
459 spin_lock_irqsave(&tsk->sighand->siglock, flags);
460 __flush_itimer_signals(&tsk->pending);
461 __flush_itimer_signals(&tsk->signal->shared_pending);
462 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
463 }
464
465 void ignore_signals(struct task_struct *t)
466 {
467 int i;
468
469 for (i = 0; i < _NSIG; ++i)
470 t->sighand->action[i].sa.sa_handler = SIG_IGN;
471
472 flush_signals(t);
473 }
474
475 /*
476 * Flush all handlers for a task.
477 */
478
479 void
480 flush_signal_handlers(struct task_struct *t, int force_default)
481 {
482 int i;
483 struct k_sigaction *ka = &t->sighand->action[0];
484 for (i = _NSIG ; i != 0 ; i--) {
485 if (force_default || ka->sa.sa_handler != SIG_IGN)
486 ka->sa.sa_handler = SIG_DFL;
487 ka->sa.sa_flags = 0;
488 sigemptyset(&ka->sa.sa_mask);
489 ka++;
490 }
491 }
492
493 int unhandled_signal(struct task_struct *tsk, int sig)
494 {
495 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
496 if (is_global_init(tsk))
497 return 1;
498 if (handler != SIG_IGN && handler != SIG_DFL)
499 return 0;
500 /* if ptraced, let the tracer determine */
501 return !tsk->ptrace;
502 }
503
504 /*
505 * Notify the system that a driver wants to block all signals for this
506 * process, and wants to be notified if any signals at all were to be
507 * sent/acted upon. If the notifier routine returns non-zero, then the
508 * signal will be acted upon after all. If the notifier routine returns 0,
509 * then then signal will be blocked. Only one block per process is
510 * allowed. priv is a pointer to private data that the notifier routine
511 * can use to determine if the signal should be blocked or not.
512 */
513 void
514 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
515 {
516 unsigned long flags;
517
518 spin_lock_irqsave(&current->sighand->siglock, flags);
519 current->notifier_mask = mask;
520 current->notifier_data = priv;
521 current->notifier = notifier;
522 spin_unlock_irqrestore(&current->sighand->siglock, flags);
523 }
524
525 /* Notify the system that blocking has ended. */
526
527 void
528 unblock_all_signals(void)
529 {
530 unsigned long flags;
531
532 spin_lock_irqsave(&current->sighand->siglock, flags);
533 current->notifier = NULL;
534 current->notifier_data = NULL;
535 recalc_sigpending();
536 spin_unlock_irqrestore(&current->sighand->siglock, flags);
537 }
538
539 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
540 {
541 struct sigqueue *q, *first = NULL;
542
543 /*
544 * Collect the siginfo appropriate to this signal. Check if
545 * there is another siginfo for the same signal.
546 */
547 list_for_each_entry(q, &list->list, list) {
548 if (q->info.si_signo == sig) {
549 if (first)
550 goto still_pending;
551 first = q;
552 }
553 }
554
555 sigdelset(&list->signal, sig);
556
557 if (first) {
558 still_pending:
559 list_del_init(&first->list);
560 copy_siginfo(info, &first->info);
561 __sigqueue_free(first);
562 } else {
563 /*
564 * Ok, it wasn't in the queue. This must be
565 * a fast-pathed signal or we must have been
566 * out of queue space. So zero out the info.
567 */
568 info->si_signo = sig;
569 info->si_errno = 0;
570 info->si_code = SI_USER;
571 info->si_pid = 0;
572 info->si_uid = 0;
573 }
574 }
575
576 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
577 siginfo_t *info)
578 {
579 int sig = next_signal(pending, mask);
580
581 if (sig) {
582 if (current->notifier) {
583 if (sigismember(current->notifier_mask, sig)) {
584 if (!(current->notifier)(current->notifier_data)) {
585 clear_thread_flag(TIF_SIGPENDING);
586 return 0;
587 }
588 }
589 }
590
591 collect_signal(sig, pending, info);
592 }
593
594 return sig;
595 }
596
597 /*
598 * Dequeue a signal and return the element to the caller, which is
599 * expected to free it.
600 *
601 * All callers have to hold the siglock.
602 */
603 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
604 {
605 int signr;
606
607 /* We only dequeue private signals from ourselves, we don't let
608 * signalfd steal them
609 */
610 signr = __dequeue_signal(&tsk->pending, mask, info);
611 if (!signr) {
612 signr = __dequeue_signal(&tsk->signal->shared_pending,
613 mask, info);
614 /*
615 * itimer signal ?
616 *
617 * itimers are process shared and we restart periodic
618 * itimers in the signal delivery path to prevent DoS
619 * attacks in the high resolution timer case. This is
620 * compliant with the old way of self-restarting
621 * itimers, as the SIGALRM is a legacy signal and only
622 * queued once. Changing the restart behaviour to
623 * restart the timer in the signal dequeue path is
624 * reducing the timer noise on heavy loaded !highres
625 * systems too.
626 */
627 if (unlikely(signr == SIGALRM)) {
628 struct hrtimer *tmr = &tsk->signal->real_timer;
629
630 if (!hrtimer_is_queued(tmr) &&
631 tsk->signal->it_real_incr.tv64 != 0) {
632 hrtimer_forward(tmr, tmr->base->get_time(),
633 tsk->signal->it_real_incr);
634 hrtimer_restart(tmr);
635 }
636 }
637 }
638
639 recalc_sigpending();
640 if (!signr)
641 return 0;
642
643 if (unlikely(sig_kernel_stop(signr))) {
644 /*
645 * Set a marker that we have dequeued a stop signal. Our
646 * caller might release the siglock and then the pending
647 * stop signal it is about to process is no longer in the
648 * pending bitmasks, but must still be cleared by a SIGCONT
649 * (and overruled by a SIGKILL). So those cases clear this
650 * shared flag after we've set it. Note that this flag may
651 * remain set after the signal we return is ignored or
652 * handled. That doesn't matter because its only purpose
653 * is to alert stop-signal processing code when another
654 * processor has come along and cleared the flag.
655 */
656 current->jobctl |= JOBCTL_STOP_DEQUEUED;
657 }
658 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
659 /*
660 * Release the siglock to ensure proper locking order
661 * of timer locks outside of siglocks. Note, we leave
662 * irqs disabled here, since the posix-timers code is
663 * about to disable them again anyway.
664 */
665 spin_unlock(&tsk->sighand->siglock);
666 do_schedule_next_timer(info);
667 spin_lock(&tsk->sighand->siglock);
668 }
669 return signr;
670 }
671
672 /*
673 * Tell a process that it has a new active signal..
674 *
675 * NOTE! we rely on the previous spin_lock to
676 * lock interrupts for us! We can only be called with
677 * "siglock" held, and the local interrupt must
678 * have been disabled when that got acquired!
679 *
680 * No need to set need_resched since signal event passing
681 * goes through ->blocked
682 */
683 void signal_wake_up(struct task_struct *t, int resume)
684 {
685 unsigned int mask;
686
687 set_tsk_thread_flag(t, TIF_SIGPENDING);
688
689 /*
690 * For SIGKILL, we want to wake it up in the stopped/traced/killable
691 * case. We don't check t->state here because there is a race with it
692 * executing another processor and just now entering stopped state.
693 * By using wake_up_state, we ensure the process will wake up and
694 * handle its death signal.
695 */
696 mask = TASK_INTERRUPTIBLE;
697 if (resume)
698 mask |= TASK_WAKEKILL;
699 if (!wake_up_state(t, mask))
700 kick_process(t);
701 }
702
703 /*
704 * Remove signals in mask from the pending set and queue.
705 * Returns 1 if any signals were found.
706 *
707 * All callers must be holding the siglock.
708 *
709 * This version takes a sigset mask and looks at all signals,
710 * not just those in the first mask word.
711 */
712 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
713 {
714 struct sigqueue *q, *n;
715 sigset_t m;
716
717 sigandsets(&m, mask, &s->signal);
718 if (sigisemptyset(&m))
719 return 0;
720
721 sigandnsets(&s->signal, &s->signal, mask);
722 list_for_each_entry_safe(q, n, &s->list, list) {
723 if (sigismember(mask, q->info.si_signo)) {
724 list_del_init(&q->list);
725 __sigqueue_free(q);
726 }
727 }
728 return 1;
729 }
730 /*
731 * Remove signals in mask from the pending set and queue.
732 * Returns 1 if any signals were found.
733 *
734 * All callers must be holding the siglock.
735 */
736 static int rm_from_queue(unsigned long mask, struct sigpending *s)
737 {
738 struct sigqueue *q, *n;
739
740 if (!sigtestsetmask(&s->signal, mask))
741 return 0;
742
743 sigdelsetmask(&s->signal, mask);
744 list_for_each_entry_safe(q, n, &s->list, list) {
745 if (q->info.si_signo < SIGRTMIN &&
746 (mask & sigmask(q->info.si_signo))) {
747 list_del_init(&q->list);
748 __sigqueue_free(q);
749 }
750 }
751 return 1;
752 }
753
754 static inline int is_si_special(const struct siginfo *info)
755 {
756 return info <= SEND_SIG_FORCED;
757 }
758
759 static inline bool si_fromuser(const struct siginfo *info)
760 {
761 return info == SEND_SIG_NOINFO ||
762 (!is_si_special(info) && SI_FROMUSER(info));
763 }
764
765 /*
766 * called with RCU read lock from check_kill_permission()
767 */
768 static int kill_ok_by_cred(struct task_struct *t)
769 {
770 const struct cred *cred = current_cred();
771 const struct cred *tcred = __task_cred(t);
772
773 if (uid_eq(cred->euid, tcred->suid) ||
774 uid_eq(cred->euid, tcred->uid) ||
775 uid_eq(cred->uid, tcred->suid) ||
776 uid_eq(cred->uid, tcred->uid))
777 return 1;
778
779 if (ns_capable(tcred->user_ns, CAP_KILL))
780 return 1;
781
782 return 0;
783 }
784
785 /*
786 * Bad permissions for sending the signal
787 * - the caller must hold the RCU read lock
788 */
789 static int check_kill_permission(int sig, struct siginfo *info,
790 struct task_struct *t)
791 {
792 struct pid *sid;
793 int error;
794
795 if (!valid_signal(sig))
796 return -EINVAL;
797
798 if (!si_fromuser(info))
799 return 0;
800
801 error = audit_signal_info(sig, t); /* Let audit system see the signal */
802 if (error)
803 return error;
804
805 if (!same_thread_group(current, t) &&
806 !kill_ok_by_cred(t)) {
807 switch (sig) {
808 case SIGCONT:
809 sid = task_session(t);
810 /*
811 * We don't return the error if sid == NULL. The
812 * task was unhashed, the caller must notice this.
813 */
814 if (!sid || sid == task_session(current))
815 break;
816 default:
817 return -EPERM;
818 }
819 }
820
821 return security_task_kill(t, info, sig, 0);
822 }
823
824 /**
825 * ptrace_trap_notify - schedule trap to notify ptracer
826 * @t: tracee wanting to notify tracer
827 *
828 * This function schedules sticky ptrace trap which is cleared on the next
829 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
830 * ptracer.
831 *
832 * If @t is running, STOP trap will be taken. If trapped for STOP and
833 * ptracer is listening for events, tracee is woken up so that it can
834 * re-trap for the new event. If trapped otherwise, STOP trap will be
835 * eventually taken without returning to userland after the existing traps
836 * are finished by PTRACE_CONT.
837 *
838 * CONTEXT:
839 * Must be called with @task->sighand->siglock held.
840 */
841 static void ptrace_trap_notify(struct task_struct *t)
842 {
843 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
844 assert_spin_locked(&t->sighand->siglock);
845
846 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
847 signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
848 }
849
850 /*
851 * Handle magic process-wide effects of stop/continue signals. Unlike
852 * the signal actions, these happen immediately at signal-generation
853 * time regardless of blocking, ignoring, or handling. This does the
854 * actual continuing for SIGCONT, but not the actual stopping for stop
855 * signals. The process stop is done as a signal action for SIG_DFL.
856 *
857 * Returns true if the signal should be actually delivered, otherwise
858 * it should be dropped.
859 */
860 static int prepare_signal(int sig, struct task_struct *p, bool force)
861 {
862 struct signal_struct *signal = p->signal;
863 struct task_struct *t;
864
865 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
866 /*
867 * The process is in the middle of dying, nothing to do.
868 */
869 } else if (sig_kernel_stop(sig)) {
870 /*
871 * This is a stop signal. Remove SIGCONT from all queues.
872 */
873 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
874 t = p;
875 do {
876 rm_from_queue(sigmask(SIGCONT), &t->pending);
877 } while_each_thread(p, t);
878 } else if (sig == SIGCONT) {
879 unsigned int why;
880 /*
881 * Remove all stop signals from all queues, wake all threads.
882 */
883 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
884 t = p;
885 do {
886 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
887 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
888 if (likely(!(t->ptrace & PT_SEIZED)))
889 wake_up_state(t, __TASK_STOPPED);
890 else
891 ptrace_trap_notify(t);
892 } while_each_thread(p, t);
893
894 /*
895 * Notify the parent with CLD_CONTINUED if we were stopped.
896 *
897 * If we were in the middle of a group stop, we pretend it
898 * was already finished, and then continued. Since SIGCHLD
899 * doesn't queue we report only CLD_STOPPED, as if the next
900 * CLD_CONTINUED was dropped.
901 */
902 why = 0;
903 if (signal->flags & SIGNAL_STOP_STOPPED)
904 why |= SIGNAL_CLD_CONTINUED;
905 else if (signal->group_stop_count)
906 why |= SIGNAL_CLD_STOPPED;
907
908 if (why) {
909 /*
910 * The first thread which returns from do_signal_stop()
911 * will take ->siglock, notice SIGNAL_CLD_MASK, and
912 * notify its parent. See get_signal_to_deliver().
913 */
914 signal->flags = why | SIGNAL_STOP_CONTINUED;
915 signal->group_stop_count = 0;
916 signal->group_exit_code = 0;
917 }
918 }
919
920 return !sig_ignored(p, sig, force);
921 }
922
923 /*
924 * Test if P wants to take SIG. After we've checked all threads with this,
925 * it's equivalent to finding no threads not blocking SIG. Any threads not
926 * blocking SIG were ruled out because they are not running and already
927 * have pending signals. Such threads will dequeue from the shared queue
928 * as soon as they're available, so putting the signal on the shared queue
929 * will be equivalent to sending it to one such thread.
930 */
931 static inline int wants_signal(int sig, struct task_struct *p)
932 {
933 if (sigismember(&p->blocked, sig))
934 return 0;
935 if (p->flags & PF_EXITING)
936 return 0;
937 if (sig == SIGKILL)
938 return 1;
939 if (task_is_stopped_or_traced(p))
940 return 0;
941 return task_curr(p) || !signal_pending(p);
942 }
943
944 static void complete_signal(int sig, struct task_struct *p, int group)
945 {
946 struct signal_struct *signal = p->signal;
947 struct task_struct *t;
948
949 /*
950 * Now find a thread we can wake up to take the signal off the queue.
951 *
952 * If the main thread wants the signal, it gets first crack.
953 * Probably the least surprising to the average bear.
954 */
955 if (wants_signal(sig, p))
956 t = p;
957 else if (!group || thread_group_empty(p))
958 /*
959 * There is just one thread and it does not need to be woken.
960 * It will dequeue unblocked signals before it runs again.
961 */
962 return;
963 else {
964 /*
965 * Otherwise try to find a suitable thread.
966 */
967 t = signal->curr_target;
968 while (!wants_signal(sig, t)) {
969 t = next_thread(t);
970 if (t == signal->curr_target)
971 /*
972 * No thread needs to be woken.
973 * Any eligible threads will see
974 * the signal in the queue soon.
975 */
976 return;
977 }
978 signal->curr_target = t;
979 }
980
981 /*
982 * Found a killable thread. If the signal will be fatal,
983 * then start taking the whole group down immediately.
984 */
985 if (sig_fatal(p, sig) &&
986 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
987 !sigismember(&t->real_blocked, sig) &&
988 (sig == SIGKILL || !t->ptrace)) {
989 /*
990 * This signal will be fatal to the whole group.
991 */
992 if (!sig_kernel_coredump(sig)) {
993 /*
994 * Start a group exit and wake everybody up.
995 * This way we don't have other threads
996 * running and doing things after a slower
997 * thread has the fatal signal pending.
998 */
999 signal->flags = SIGNAL_GROUP_EXIT;
1000 signal->group_exit_code = sig;
1001 signal->group_stop_count = 0;
1002 t = p;
1003 do {
1004 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1005 sigaddset(&t->pending.signal, SIGKILL);
1006 signal_wake_up(t, 1);
1007 } while_each_thread(p, t);
1008 return;
1009 }
1010 }
1011
1012 /*
1013 * The signal is already in the shared-pending queue.
1014 * Tell the chosen thread to wake up and dequeue it.
1015 */
1016 signal_wake_up(t, sig == SIGKILL);
1017 return;
1018 }
1019
1020 static inline int legacy_queue(struct sigpending *signals, int sig)
1021 {
1022 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1023 }
1024
1025 #ifdef CONFIG_USER_NS
1026 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1027 {
1028 if (current_user_ns() == task_cred_xxx(t, user_ns))
1029 return;
1030
1031 if (SI_FROMKERNEL(info))
1032 return;
1033
1034 rcu_read_lock();
1035 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1036 make_kuid(current_user_ns(), info->si_uid));
1037 rcu_read_unlock();
1038 }
1039 #else
1040 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1041 {
1042 return;
1043 }
1044 #endif
1045
1046 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1047 int group, int from_ancestor_ns)
1048 {
1049 struct sigpending *pending;
1050 struct sigqueue *q;
1051 int override_rlimit;
1052 int ret = 0, result;
1053
1054 assert_spin_locked(&t->sighand->siglock);
1055
1056 result = TRACE_SIGNAL_IGNORED;
1057 if (!prepare_signal(sig, t,
1058 from_ancestor_ns || (info == SEND_SIG_FORCED)))
1059 goto ret;
1060
1061 pending = group ? &t->signal->shared_pending : &t->pending;
1062 /*
1063 * Short-circuit ignored signals and support queuing
1064 * exactly one non-rt signal, so that we can get more
1065 * detailed information about the cause of the signal.
1066 */
1067 result = TRACE_SIGNAL_ALREADY_PENDING;
1068 if (legacy_queue(pending, sig))
1069 goto ret;
1070
1071 result = TRACE_SIGNAL_DELIVERED;
1072 /*
1073 * fast-pathed signals for kernel-internal things like SIGSTOP
1074 * or SIGKILL.
1075 */
1076 if (info == SEND_SIG_FORCED)
1077 goto out_set;
1078
1079 /*
1080 * Real-time signals must be queued if sent by sigqueue, or
1081 * some other real-time mechanism. It is implementation
1082 * defined whether kill() does so. We attempt to do so, on
1083 * the principle of least surprise, but since kill is not
1084 * allowed to fail with EAGAIN when low on memory we just
1085 * make sure at least one signal gets delivered and don't
1086 * pass on the info struct.
1087 */
1088 if (sig < SIGRTMIN)
1089 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1090 else
1091 override_rlimit = 0;
1092
1093 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1094 override_rlimit);
1095 if (q) {
1096 list_add_tail(&q->list, &pending->list);
1097 switch ((unsigned long) info) {
1098 case (unsigned long) SEND_SIG_NOINFO:
1099 q->info.si_signo = sig;
1100 q->info.si_errno = 0;
1101 q->info.si_code = SI_USER;
1102 q->info.si_pid = task_tgid_nr_ns(current,
1103 task_active_pid_ns(t));
1104 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1105 break;
1106 case (unsigned long) SEND_SIG_PRIV:
1107 q->info.si_signo = sig;
1108 q->info.si_errno = 0;
1109 q->info.si_code = SI_KERNEL;
1110 q->info.si_pid = 0;
1111 q->info.si_uid = 0;
1112 break;
1113 default:
1114 copy_siginfo(&q->info, info);
1115 if (from_ancestor_ns)
1116 q->info.si_pid = 0;
1117 break;
1118 }
1119
1120 userns_fixup_signal_uid(&q->info, t);
1121
1122 } else if (!is_si_special(info)) {
1123 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1124 /*
1125 * Queue overflow, abort. We may abort if the
1126 * signal was rt and sent by user using something
1127 * other than kill().
1128 */
1129 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1130 ret = -EAGAIN;
1131 goto ret;
1132 } else {
1133 /*
1134 * This is a silent loss of information. We still
1135 * send the signal, but the *info bits are lost.
1136 */
1137 result = TRACE_SIGNAL_LOSE_INFO;
1138 }
1139 }
1140
1141 out_set:
1142 signalfd_notify(t, sig);
1143 sigaddset(&pending->signal, sig);
1144 complete_signal(sig, t, group);
1145 ret:
1146 trace_signal_generate(sig, info, t, group, result);
1147 return ret;
1148 }
1149
1150 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1151 int group)
1152 {
1153 int from_ancestor_ns = 0;
1154
1155 #ifdef CONFIG_PID_NS
1156 from_ancestor_ns = si_fromuser(info) &&
1157 !task_pid_nr_ns(current, task_active_pid_ns(t));
1158 #endif
1159
1160 return __send_signal(sig, info, t, group, from_ancestor_ns);
1161 }
1162
1163 static void print_fatal_signal(int signr)
1164 {
1165 struct pt_regs *regs = signal_pt_regs();
1166 printk("%s/%d: potentially unexpected fatal signal %d.\n",
1167 current->comm, task_pid_nr(current), signr);
1168
1169 #if defined(__i386__) && !defined(__arch_um__)
1170 printk("code at %08lx: ", regs->ip);
1171 {
1172 int i;
1173 for (i = 0; i < 16; i++) {
1174 unsigned char insn;
1175
1176 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1177 break;
1178 printk("%02x ", insn);
1179 }
1180 }
1181 #endif
1182 printk("\n");
1183 preempt_disable();
1184 show_regs(regs);
1185 preempt_enable();
1186 }
1187
1188 static int __init setup_print_fatal_signals(char *str)
1189 {
1190 get_option (&str, &print_fatal_signals);
1191
1192 return 1;
1193 }
1194
1195 __setup("print-fatal-signals=", setup_print_fatal_signals);
1196
1197 int
1198 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1199 {
1200 return send_signal(sig, info, p, 1);
1201 }
1202
1203 static int
1204 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1205 {
1206 return send_signal(sig, info, t, 0);
1207 }
1208
1209 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1210 bool group)
1211 {
1212 unsigned long flags;
1213 int ret = -ESRCH;
1214
1215 if (lock_task_sighand(p, &flags)) {
1216 ret = send_signal(sig, info, p, group);
1217 unlock_task_sighand(p, &flags);
1218 }
1219
1220 return ret;
1221 }
1222
1223 /*
1224 * Force a signal that the process can't ignore: if necessary
1225 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1226 *
1227 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1228 * since we do not want to have a signal handler that was blocked
1229 * be invoked when user space had explicitly blocked it.
1230 *
1231 * We don't want to have recursive SIGSEGV's etc, for example,
1232 * that is why we also clear SIGNAL_UNKILLABLE.
1233 */
1234 int
1235 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1236 {
1237 unsigned long int flags;
1238 int ret, blocked, ignored;
1239 struct k_sigaction *action;
1240
1241 spin_lock_irqsave(&t->sighand->siglock, flags);
1242 action = &t->sighand->action[sig-1];
1243 ignored = action->sa.sa_handler == SIG_IGN;
1244 blocked = sigismember(&t->blocked, sig);
1245 if (blocked || ignored) {
1246 action->sa.sa_handler = SIG_DFL;
1247 if (blocked) {
1248 sigdelset(&t->blocked, sig);
1249 recalc_sigpending_and_wake(t);
1250 }
1251 }
1252 if (action->sa.sa_handler == SIG_DFL)
1253 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1254 ret = specific_send_sig_info(sig, info, t);
1255 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1256
1257 return ret;
1258 }
1259
1260 /*
1261 * Nuke all other threads in the group.
1262 */
1263 int zap_other_threads(struct task_struct *p)
1264 {
1265 struct task_struct *t = p;
1266 int count = 0;
1267
1268 p->signal->group_stop_count = 0;
1269
1270 while_each_thread(p, t) {
1271 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1272 count++;
1273
1274 /* Don't bother with already dead threads */
1275 if (t->exit_state)
1276 continue;
1277 sigaddset(&t->pending.signal, SIGKILL);
1278 signal_wake_up(t, 1);
1279 }
1280
1281 return count;
1282 }
1283
1284 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1285 unsigned long *flags)
1286 {
1287 struct sighand_struct *sighand;
1288
1289 for (;;) {
1290 local_irq_save(*flags);
1291 rcu_read_lock();
1292 sighand = rcu_dereference(tsk->sighand);
1293 if (unlikely(sighand == NULL)) {
1294 rcu_read_unlock();
1295 local_irq_restore(*flags);
1296 break;
1297 }
1298
1299 spin_lock(&sighand->siglock);
1300 if (likely(sighand == tsk->sighand)) {
1301 rcu_read_unlock();
1302 break;
1303 }
1304 spin_unlock(&sighand->siglock);
1305 rcu_read_unlock();
1306 local_irq_restore(*flags);
1307 }
1308
1309 return sighand;
1310 }
1311
1312 /*
1313 * send signal info to all the members of a group
1314 */
1315 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1316 {
1317 int ret;
1318
1319 rcu_read_lock();
1320 ret = check_kill_permission(sig, info, p);
1321 rcu_read_unlock();
1322
1323 if (!ret && sig)
1324 ret = do_send_sig_info(sig, info, p, true);
1325
1326 return ret;
1327 }
1328
1329 /*
1330 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1331 * control characters do (^C, ^Z etc)
1332 * - the caller must hold at least a readlock on tasklist_lock
1333 */
1334 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1335 {
1336 struct task_struct *p = NULL;
1337 int retval, success;
1338
1339 success = 0;
1340 retval = -ESRCH;
1341 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1342 int err = group_send_sig_info(sig, info, p);
1343 success |= !err;
1344 retval = err;
1345 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1346 return success ? 0 : retval;
1347 }
1348
1349 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1350 {
1351 int error = -ESRCH;
1352 struct task_struct *p;
1353
1354 rcu_read_lock();
1355 retry:
1356 p = pid_task(pid, PIDTYPE_PID);
1357 if (p) {
1358 error = group_send_sig_info(sig, info, p);
1359 if (unlikely(error == -ESRCH))
1360 /*
1361 * The task was unhashed in between, try again.
1362 * If it is dead, pid_task() will return NULL,
1363 * if we race with de_thread() it will find the
1364 * new leader.
1365 */
1366 goto retry;
1367 }
1368 rcu_read_unlock();
1369
1370 return error;
1371 }
1372
1373 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1374 {
1375 int error;
1376 rcu_read_lock();
1377 error = kill_pid_info(sig, info, find_vpid(pid));
1378 rcu_read_unlock();
1379 return error;
1380 }
1381
1382 static int kill_as_cred_perm(const struct cred *cred,
1383 struct task_struct *target)
1384 {
1385 const struct cred *pcred = __task_cred(target);
1386 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1387 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid))
1388 return 0;
1389 return 1;
1390 }
1391
1392 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1393 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1394 const struct cred *cred, u32 secid)
1395 {
1396 int ret = -EINVAL;
1397 struct task_struct *p;
1398 unsigned long flags;
1399
1400 if (!valid_signal(sig))
1401 return ret;
1402
1403 rcu_read_lock();
1404 p = pid_task(pid, PIDTYPE_PID);
1405 if (!p) {
1406 ret = -ESRCH;
1407 goto out_unlock;
1408 }
1409 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1410 ret = -EPERM;
1411 goto out_unlock;
1412 }
1413 ret = security_task_kill(p, info, sig, secid);
1414 if (ret)
1415 goto out_unlock;
1416
1417 if (sig) {
1418 if (lock_task_sighand(p, &flags)) {
1419 ret = __send_signal(sig, info, p, 1, 0);
1420 unlock_task_sighand(p, &flags);
1421 } else
1422 ret = -ESRCH;
1423 }
1424 out_unlock:
1425 rcu_read_unlock();
1426 return ret;
1427 }
1428 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1429
1430 /*
1431 * kill_something_info() interprets pid in interesting ways just like kill(2).
1432 *
1433 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1434 * is probably wrong. Should make it like BSD or SYSV.
1435 */
1436
1437 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1438 {
1439 int ret;
1440
1441 if (pid > 0) {
1442 rcu_read_lock();
1443 ret = kill_pid_info(sig, info, find_vpid(pid));
1444 rcu_read_unlock();
1445 return ret;
1446 }
1447
1448 read_lock(&tasklist_lock);
1449 if (pid != -1) {
1450 ret = __kill_pgrp_info(sig, info,
1451 pid ? find_vpid(-pid) : task_pgrp(current));
1452 } else {
1453 int retval = 0, count = 0;
1454 struct task_struct * p;
1455
1456 for_each_process(p) {
1457 if (task_pid_vnr(p) > 1 &&
1458 !same_thread_group(p, current)) {
1459 int err = group_send_sig_info(sig, info, p);
1460 ++count;
1461 if (err != -EPERM)
1462 retval = err;
1463 }
1464 }
1465 ret = count ? retval : -ESRCH;
1466 }
1467 read_unlock(&tasklist_lock);
1468
1469 return ret;
1470 }
1471
1472 /*
1473 * These are for backward compatibility with the rest of the kernel source.
1474 */
1475
1476 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1477 {
1478 /*
1479 * Make sure legacy kernel users don't send in bad values
1480 * (normal paths check this in check_kill_permission).
1481 */
1482 if (!valid_signal(sig))
1483 return -EINVAL;
1484
1485 return do_send_sig_info(sig, info, p, false);
1486 }
1487
1488 #define __si_special(priv) \
1489 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1490
1491 int
1492 send_sig(int sig, struct task_struct *p, int priv)
1493 {
1494 return send_sig_info(sig, __si_special(priv), p);
1495 }
1496
1497 void
1498 force_sig(int sig, struct task_struct *p)
1499 {
1500 force_sig_info(sig, SEND_SIG_PRIV, p);
1501 }
1502
1503 /*
1504 * When things go south during signal handling, we
1505 * will force a SIGSEGV. And if the signal that caused
1506 * the problem was already a SIGSEGV, we'll want to
1507 * make sure we don't even try to deliver the signal..
1508 */
1509 int
1510 force_sigsegv(int sig, struct task_struct *p)
1511 {
1512 if (sig == SIGSEGV) {
1513 unsigned long flags;
1514 spin_lock_irqsave(&p->sighand->siglock, flags);
1515 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1516 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1517 }
1518 force_sig(SIGSEGV, p);
1519 return 0;
1520 }
1521
1522 int kill_pgrp(struct pid *pid, int sig, int priv)
1523 {
1524 int ret;
1525
1526 read_lock(&tasklist_lock);
1527 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1528 read_unlock(&tasklist_lock);
1529
1530 return ret;
1531 }
1532 EXPORT_SYMBOL(kill_pgrp);
1533
1534 int kill_pid(struct pid *pid, int sig, int priv)
1535 {
1536 return kill_pid_info(sig, __si_special(priv), pid);
1537 }
1538 EXPORT_SYMBOL(kill_pid);
1539
1540 /*
1541 * These functions support sending signals using preallocated sigqueue
1542 * structures. This is needed "because realtime applications cannot
1543 * afford to lose notifications of asynchronous events, like timer
1544 * expirations or I/O completions". In the case of POSIX Timers
1545 * we allocate the sigqueue structure from the timer_create. If this
1546 * allocation fails we are able to report the failure to the application
1547 * with an EAGAIN error.
1548 */
1549 struct sigqueue *sigqueue_alloc(void)
1550 {
1551 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1552
1553 if (q)
1554 q->flags |= SIGQUEUE_PREALLOC;
1555
1556 return q;
1557 }
1558
1559 void sigqueue_free(struct sigqueue *q)
1560 {
1561 unsigned long flags;
1562 spinlock_t *lock = &current->sighand->siglock;
1563
1564 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1565 /*
1566 * We must hold ->siglock while testing q->list
1567 * to serialize with collect_signal() or with
1568 * __exit_signal()->flush_sigqueue().
1569 */
1570 spin_lock_irqsave(lock, flags);
1571 q->flags &= ~SIGQUEUE_PREALLOC;
1572 /*
1573 * If it is queued it will be freed when dequeued,
1574 * like the "regular" sigqueue.
1575 */
1576 if (!list_empty(&q->list))
1577 q = NULL;
1578 spin_unlock_irqrestore(lock, flags);
1579
1580 if (q)
1581 __sigqueue_free(q);
1582 }
1583
1584 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1585 {
1586 int sig = q->info.si_signo;
1587 struct sigpending *pending;
1588 unsigned long flags;
1589 int ret, result;
1590
1591 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1592
1593 ret = -1;
1594 if (!likely(lock_task_sighand(t, &flags)))
1595 goto ret;
1596
1597 ret = 1; /* the signal is ignored */
1598 result = TRACE_SIGNAL_IGNORED;
1599 if (!prepare_signal(sig, t, false))
1600 goto out;
1601
1602 ret = 0;
1603 if (unlikely(!list_empty(&q->list))) {
1604 /*
1605 * If an SI_TIMER entry is already queue just increment
1606 * the overrun count.
1607 */
1608 BUG_ON(q->info.si_code != SI_TIMER);
1609 q->info.si_overrun++;
1610 result = TRACE_SIGNAL_ALREADY_PENDING;
1611 goto out;
1612 }
1613 q->info.si_overrun = 0;
1614
1615 signalfd_notify(t, sig);
1616 pending = group ? &t->signal->shared_pending : &t->pending;
1617 list_add_tail(&q->list, &pending->list);
1618 sigaddset(&pending->signal, sig);
1619 complete_signal(sig, t, group);
1620 result = TRACE_SIGNAL_DELIVERED;
1621 out:
1622 trace_signal_generate(sig, &q->info, t, group, result);
1623 unlock_task_sighand(t, &flags);
1624 ret:
1625 return ret;
1626 }
1627
1628 /*
1629 * Let a parent know about the death of a child.
1630 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1631 *
1632 * Returns true if our parent ignored us and so we've switched to
1633 * self-reaping.
1634 */
1635 bool do_notify_parent(struct task_struct *tsk, int sig)
1636 {
1637 struct siginfo info;
1638 unsigned long flags;
1639 struct sighand_struct *psig;
1640 bool autoreap = false;
1641 cputime_t utime, stime;
1642
1643 BUG_ON(sig == -1);
1644
1645 /* do_notify_parent_cldstop should have been called instead. */
1646 BUG_ON(task_is_stopped_or_traced(tsk));
1647
1648 BUG_ON(!tsk->ptrace &&
1649 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1650
1651 if (sig != SIGCHLD) {
1652 /*
1653 * This is only possible if parent == real_parent.
1654 * Check if it has changed security domain.
1655 */
1656 if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1657 sig = SIGCHLD;
1658 }
1659
1660 info.si_signo = sig;
1661 info.si_errno = 0;
1662 /*
1663 * We are under tasklist_lock here so our parent is tied to
1664 * us and cannot change.
1665 *
1666 * task_active_pid_ns will always return the same pid namespace
1667 * until a task passes through release_task.
1668 *
1669 * write_lock() currently calls preempt_disable() which is the
1670 * same as rcu_read_lock(), but according to Oleg, this is not
1671 * correct to rely on this
1672 */
1673 rcu_read_lock();
1674 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1675 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1676 task_uid(tsk));
1677 rcu_read_unlock();
1678
1679 task_cputime(tsk, &utime, &stime);
1680 info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1681 info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1682
1683 info.si_status = tsk->exit_code & 0x7f;
1684 if (tsk->exit_code & 0x80)
1685 info.si_code = CLD_DUMPED;
1686 else if (tsk->exit_code & 0x7f)
1687 info.si_code = CLD_KILLED;
1688 else {
1689 info.si_code = CLD_EXITED;
1690 info.si_status = tsk->exit_code >> 8;
1691 }
1692
1693 psig = tsk->parent->sighand;
1694 spin_lock_irqsave(&psig->siglock, flags);
1695 if (!tsk->ptrace && sig == SIGCHLD &&
1696 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1697 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1698 /*
1699 * We are exiting and our parent doesn't care. POSIX.1
1700 * defines special semantics for setting SIGCHLD to SIG_IGN
1701 * or setting the SA_NOCLDWAIT flag: we should be reaped
1702 * automatically and not left for our parent's wait4 call.
1703 * Rather than having the parent do it as a magic kind of
1704 * signal handler, we just set this to tell do_exit that we
1705 * can be cleaned up without becoming a zombie. Note that
1706 * we still call __wake_up_parent in this case, because a
1707 * blocked sys_wait4 might now return -ECHILD.
1708 *
1709 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1710 * is implementation-defined: we do (if you don't want
1711 * it, just use SIG_IGN instead).
1712 */
1713 autoreap = true;
1714 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1715 sig = 0;
1716 }
1717 if (valid_signal(sig) && sig)
1718 __group_send_sig_info(sig, &info, tsk->parent);
1719 __wake_up_parent(tsk, tsk->parent);
1720 spin_unlock_irqrestore(&psig->siglock, flags);
1721
1722 return autoreap;
1723 }
1724
1725 /**
1726 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1727 * @tsk: task reporting the state change
1728 * @for_ptracer: the notification is for ptracer
1729 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1730 *
1731 * Notify @tsk's parent that the stopped/continued state has changed. If
1732 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1733 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1734 *
1735 * CONTEXT:
1736 * Must be called with tasklist_lock at least read locked.
1737 */
1738 static void do_notify_parent_cldstop(struct task_struct *tsk,
1739 bool for_ptracer, int why)
1740 {
1741 struct siginfo info;
1742 unsigned long flags;
1743 struct task_struct *parent;
1744 struct sighand_struct *sighand;
1745 cputime_t utime, stime;
1746
1747 if (for_ptracer) {
1748 parent = tsk->parent;
1749 } else {
1750 tsk = tsk->group_leader;
1751 parent = tsk->real_parent;
1752 }
1753
1754 info.si_signo = SIGCHLD;
1755 info.si_errno = 0;
1756 /*
1757 * see comment in do_notify_parent() about the following 4 lines
1758 */
1759 rcu_read_lock();
1760 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1761 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1762 rcu_read_unlock();
1763
1764 task_cputime(tsk, &utime, &stime);
1765 info.si_utime = cputime_to_clock_t(utime);
1766 info.si_stime = cputime_to_clock_t(stime);
1767
1768 info.si_code = why;
1769 switch (why) {
1770 case CLD_CONTINUED:
1771 info.si_status = SIGCONT;
1772 break;
1773 case CLD_STOPPED:
1774 info.si_status = tsk->signal->group_exit_code & 0x7f;
1775 break;
1776 case CLD_TRAPPED:
1777 info.si_status = tsk->exit_code & 0x7f;
1778 break;
1779 default:
1780 BUG();
1781 }
1782
1783 sighand = parent->sighand;
1784 spin_lock_irqsave(&sighand->siglock, flags);
1785 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1786 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1787 __group_send_sig_info(SIGCHLD, &info, parent);
1788 /*
1789 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1790 */
1791 __wake_up_parent(tsk, parent);
1792 spin_unlock_irqrestore(&sighand->siglock, flags);
1793 }
1794
1795 static inline int may_ptrace_stop(void)
1796 {
1797 if (!likely(current->ptrace))
1798 return 0;
1799 /*
1800 * Are we in the middle of do_coredump?
1801 * If so and our tracer is also part of the coredump stopping
1802 * is a deadlock situation, and pointless because our tracer
1803 * is dead so don't allow us to stop.
1804 * If SIGKILL was already sent before the caller unlocked
1805 * ->siglock we must see ->core_state != NULL. Otherwise it
1806 * is safe to enter schedule().
1807 */
1808 if (unlikely(current->mm->core_state) &&
1809 unlikely(current->mm == current->parent->mm))
1810 return 0;
1811
1812 return 1;
1813 }
1814
1815 /*
1816 * Return non-zero if there is a SIGKILL that should be waking us up.
1817 * Called with the siglock held.
1818 */
1819 static int sigkill_pending(struct task_struct *tsk)
1820 {
1821 return sigismember(&tsk->pending.signal, SIGKILL) ||
1822 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1823 }
1824
1825 /*
1826 * This must be called with current->sighand->siglock held.
1827 *
1828 * This should be the path for all ptrace stops.
1829 * We always set current->last_siginfo while stopped here.
1830 * That makes it a way to test a stopped process for
1831 * being ptrace-stopped vs being job-control-stopped.
1832 *
1833 * If we actually decide not to stop at all because the tracer
1834 * is gone, we keep current->exit_code unless clear_code.
1835 */
1836 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1837 __releases(&current->sighand->siglock)
1838 __acquires(&current->sighand->siglock)
1839 {
1840 bool gstop_done = false;
1841
1842 if (arch_ptrace_stop_needed(exit_code, info)) {
1843 /*
1844 * The arch code has something special to do before a
1845 * ptrace stop. This is allowed to block, e.g. for faults
1846 * on user stack pages. We can't keep the siglock while
1847 * calling arch_ptrace_stop, so we must release it now.
1848 * To preserve proper semantics, we must do this before
1849 * any signal bookkeeping like checking group_stop_count.
1850 * Meanwhile, a SIGKILL could come in before we retake the
1851 * siglock. That must prevent us from sleeping in TASK_TRACED.
1852 * So after regaining the lock, we must check for SIGKILL.
1853 */
1854 spin_unlock_irq(&current->sighand->siglock);
1855 arch_ptrace_stop(exit_code, info);
1856 spin_lock_irq(&current->sighand->siglock);
1857 if (sigkill_pending(current))
1858 return;
1859 }
1860
1861 /*
1862 * We're committing to trapping. TRACED should be visible before
1863 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1864 * Also, transition to TRACED and updates to ->jobctl should be
1865 * atomic with respect to siglock and should be done after the arch
1866 * hook as siglock is released and regrabbed across it.
1867 */
1868 set_current_state(TASK_TRACED);
1869
1870 current->last_siginfo = info;
1871 current->exit_code = exit_code;
1872
1873 /*
1874 * If @why is CLD_STOPPED, we're trapping to participate in a group
1875 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
1876 * across siglock relocks since INTERRUPT was scheduled, PENDING
1877 * could be clear now. We act as if SIGCONT is received after
1878 * TASK_TRACED is entered - ignore it.
1879 */
1880 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1881 gstop_done = task_participate_group_stop(current);
1882
1883 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1884 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1885 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1886 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1887
1888 /* entering a trap, clear TRAPPING */
1889 task_clear_jobctl_trapping(current);
1890
1891 spin_unlock_irq(&current->sighand->siglock);
1892 read_lock(&tasklist_lock);
1893 if (may_ptrace_stop()) {
1894 /*
1895 * Notify parents of the stop.
1896 *
1897 * While ptraced, there are two parents - the ptracer and
1898 * the real_parent of the group_leader. The ptracer should
1899 * know about every stop while the real parent is only
1900 * interested in the completion of group stop. The states
1901 * for the two don't interact with each other. Notify
1902 * separately unless they're gonna be duplicates.
1903 */
1904 do_notify_parent_cldstop(current, true, why);
1905 if (gstop_done && ptrace_reparented(current))
1906 do_notify_parent_cldstop(current, false, why);
1907
1908 /*
1909 * Don't want to allow preemption here, because
1910 * sys_ptrace() needs this task to be inactive.
1911 *
1912 * XXX: implement read_unlock_no_resched().
1913 */
1914 preempt_disable();
1915 read_unlock(&tasklist_lock);
1916 preempt_enable_no_resched();
1917 freezable_schedule();
1918 } else {
1919 /*
1920 * By the time we got the lock, our tracer went away.
1921 * Don't drop the lock yet, another tracer may come.
1922 *
1923 * If @gstop_done, the ptracer went away between group stop
1924 * completion and here. During detach, it would have set
1925 * JOBCTL_STOP_PENDING on us and we'll re-enter
1926 * TASK_STOPPED in do_signal_stop() on return, so notifying
1927 * the real parent of the group stop completion is enough.
1928 */
1929 if (gstop_done)
1930 do_notify_parent_cldstop(current, false, why);
1931
1932 __set_current_state(TASK_RUNNING);
1933 if (clear_code)
1934 current->exit_code = 0;
1935 read_unlock(&tasklist_lock);
1936 }
1937
1938 /*
1939 * We are back. Now reacquire the siglock before touching
1940 * last_siginfo, so that we are sure to have synchronized with
1941 * any signal-sending on another CPU that wants to examine it.
1942 */
1943 spin_lock_irq(&current->sighand->siglock);
1944 current->last_siginfo = NULL;
1945
1946 /* LISTENING can be set only during STOP traps, clear it */
1947 current->jobctl &= ~JOBCTL_LISTENING;
1948
1949 /*
1950 * Queued signals ignored us while we were stopped for tracing.
1951 * So check for any that we should take before resuming user mode.
1952 * This sets TIF_SIGPENDING, but never clears it.
1953 */
1954 recalc_sigpending_tsk(current);
1955 }
1956
1957 static void ptrace_do_notify(int signr, int exit_code, int why)
1958 {
1959 siginfo_t info;
1960
1961 memset(&info, 0, sizeof info);
1962 info.si_signo = signr;
1963 info.si_code = exit_code;
1964 info.si_pid = task_pid_vnr(current);
1965 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1966
1967 /* Let the debugger run. */
1968 ptrace_stop(exit_code, why, 1, &info);
1969 }
1970
1971 void ptrace_notify(int exit_code)
1972 {
1973 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1974 if (unlikely(current->task_works))
1975 task_work_run();
1976
1977 spin_lock_irq(&current->sighand->siglock);
1978 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1979 spin_unlock_irq(&current->sighand->siglock);
1980 }
1981
1982 /**
1983 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1984 * @signr: signr causing group stop if initiating
1985 *
1986 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1987 * and participate in it. If already set, participate in the existing
1988 * group stop. If participated in a group stop (and thus slept), %true is
1989 * returned with siglock released.
1990 *
1991 * If ptraced, this function doesn't handle stop itself. Instead,
1992 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1993 * untouched. The caller must ensure that INTERRUPT trap handling takes
1994 * places afterwards.
1995 *
1996 * CONTEXT:
1997 * Must be called with @current->sighand->siglock held, which is released
1998 * on %true return.
1999 *
2000 * RETURNS:
2001 * %false if group stop is already cancelled or ptrace trap is scheduled.
2002 * %true if participated in group stop.
2003 */
2004 static bool do_signal_stop(int signr)
2005 __releases(&current->sighand->siglock)
2006 {
2007 struct signal_struct *sig = current->signal;
2008
2009 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2010 unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2011 struct task_struct *t;
2012
2013 /* signr will be recorded in task->jobctl for retries */
2014 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2015
2016 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2017 unlikely(signal_group_exit(sig)))
2018 return false;
2019 /*
2020 * There is no group stop already in progress. We must
2021 * initiate one now.
2022 *
2023 * While ptraced, a task may be resumed while group stop is
2024 * still in effect and then receive a stop signal and
2025 * initiate another group stop. This deviates from the
2026 * usual behavior as two consecutive stop signals can't
2027 * cause two group stops when !ptraced. That is why we
2028 * also check !task_is_stopped(t) below.
2029 *
2030 * The condition can be distinguished by testing whether
2031 * SIGNAL_STOP_STOPPED is already set. Don't generate
2032 * group_exit_code in such case.
2033 *
2034 * This is not necessary for SIGNAL_STOP_CONTINUED because
2035 * an intervening stop signal is required to cause two
2036 * continued events regardless of ptrace.
2037 */
2038 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2039 sig->group_exit_code = signr;
2040
2041 sig->group_stop_count = 0;
2042
2043 if (task_set_jobctl_pending(current, signr | gstop))
2044 sig->group_stop_count++;
2045
2046 for (t = next_thread(current); t != current;
2047 t = next_thread(t)) {
2048 /*
2049 * Setting state to TASK_STOPPED for a group
2050 * stop is always done with the siglock held,
2051 * so this check has no races.
2052 */
2053 if (!task_is_stopped(t) &&
2054 task_set_jobctl_pending(t, signr | gstop)) {
2055 sig->group_stop_count++;
2056 if (likely(!(t->ptrace & PT_SEIZED)))
2057 signal_wake_up(t, 0);
2058 else
2059 ptrace_trap_notify(t);
2060 }
2061 }
2062 }
2063
2064 if (likely(!current->ptrace)) {
2065 int notify = 0;
2066
2067 /*
2068 * If there are no other threads in the group, or if there
2069 * is a group stop in progress and we are the last to stop,
2070 * report to the parent.
2071 */
2072 if (task_participate_group_stop(current))
2073 notify = CLD_STOPPED;
2074
2075 __set_current_state(TASK_STOPPED);
2076 spin_unlock_irq(&current->sighand->siglock);
2077
2078 /*
2079 * Notify the parent of the group stop completion. Because
2080 * we're not holding either the siglock or tasklist_lock
2081 * here, ptracer may attach inbetween; however, this is for
2082 * group stop and should always be delivered to the real
2083 * parent of the group leader. The new ptracer will get
2084 * its notification when this task transitions into
2085 * TASK_TRACED.
2086 */
2087 if (notify) {
2088 read_lock(&tasklist_lock);
2089 do_notify_parent_cldstop(current, false, notify);
2090 read_unlock(&tasklist_lock);
2091 }
2092
2093 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2094 freezable_schedule();
2095 return true;
2096 } else {
2097 /*
2098 * While ptraced, group stop is handled by STOP trap.
2099 * Schedule it and let the caller deal with it.
2100 */
2101 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2102 return false;
2103 }
2104 }
2105
2106 /**
2107 * do_jobctl_trap - take care of ptrace jobctl traps
2108 *
2109 * When PT_SEIZED, it's used for both group stop and explicit
2110 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2111 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2112 * the stop signal; otherwise, %SIGTRAP.
2113 *
2114 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2115 * number as exit_code and no siginfo.
2116 *
2117 * CONTEXT:
2118 * Must be called with @current->sighand->siglock held, which may be
2119 * released and re-acquired before returning with intervening sleep.
2120 */
2121 static void do_jobctl_trap(void)
2122 {
2123 struct signal_struct *signal = current->signal;
2124 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2125
2126 if (current->ptrace & PT_SEIZED) {
2127 if (!signal->group_stop_count &&
2128 !(signal->flags & SIGNAL_STOP_STOPPED))
2129 signr = SIGTRAP;
2130 WARN_ON_ONCE(!signr);
2131 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2132 CLD_STOPPED);
2133 } else {
2134 WARN_ON_ONCE(!signr);
2135 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2136 current->exit_code = 0;
2137 }
2138 }
2139
2140 static int ptrace_signal(int signr, siginfo_t *info)
2141 {
2142 ptrace_signal_deliver();
2143 /*
2144 * We do not check sig_kernel_stop(signr) but set this marker
2145 * unconditionally because we do not know whether debugger will
2146 * change signr. This flag has no meaning unless we are going
2147 * to stop after return from ptrace_stop(). In this case it will
2148 * be checked in do_signal_stop(), we should only stop if it was
2149 * not cleared by SIGCONT while we were sleeping. See also the
2150 * comment in dequeue_signal().
2151 */
2152 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2153 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2154
2155 /* We're back. Did the debugger cancel the sig? */
2156 signr = current->exit_code;
2157 if (signr == 0)
2158 return signr;
2159
2160 current->exit_code = 0;
2161
2162 /*
2163 * Update the siginfo structure if the signal has
2164 * changed. If the debugger wanted something
2165 * specific in the siginfo structure then it should
2166 * have updated *info via PTRACE_SETSIGINFO.
2167 */
2168 if (signr != info->si_signo) {
2169 info->si_signo = signr;
2170 info->si_errno = 0;
2171 info->si_code = SI_USER;
2172 rcu_read_lock();
2173 info->si_pid = task_pid_vnr(current->parent);
2174 info->si_uid = from_kuid_munged(current_user_ns(),
2175 task_uid(current->parent));
2176 rcu_read_unlock();
2177 }
2178
2179 /* If the (new) signal is now blocked, requeue it. */
2180 if (sigismember(&current->blocked, signr)) {
2181 specific_send_sig_info(signr, info, current);
2182 signr = 0;
2183 }
2184
2185 return signr;
2186 }
2187
2188 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2189 struct pt_regs *regs, void *cookie)
2190 {
2191 struct sighand_struct *sighand = current->sighand;
2192 struct signal_struct *signal = current->signal;
2193 int signr;
2194
2195 if (unlikely(current->task_works))
2196 task_work_run();
2197
2198 if (unlikely(uprobe_deny_signal()))
2199 return 0;
2200
2201 /*
2202 * Do this once, we can't return to user-mode if freezing() == T.
2203 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2204 * thus do not need another check after return.
2205 */
2206 try_to_freeze();
2207
2208 relock:
2209 spin_lock_irq(&sighand->siglock);
2210 /*
2211 * Every stopped thread goes here after wakeup. Check to see if
2212 * we should notify the parent, prepare_signal(SIGCONT) encodes
2213 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2214 */
2215 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2216 int why;
2217
2218 if (signal->flags & SIGNAL_CLD_CONTINUED)
2219 why = CLD_CONTINUED;
2220 else
2221 why = CLD_STOPPED;
2222
2223 signal->flags &= ~SIGNAL_CLD_MASK;
2224
2225 spin_unlock_irq(&sighand->siglock);
2226
2227 /*
2228 * Notify the parent that we're continuing. This event is
2229 * always per-process and doesn't make whole lot of sense
2230 * for ptracers, who shouldn't consume the state via
2231 * wait(2) either, but, for backward compatibility, notify
2232 * the ptracer of the group leader too unless it's gonna be
2233 * a duplicate.
2234 */
2235 read_lock(&tasklist_lock);
2236 do_notify_parent_cldstop(current, false, why);
2237
2238 if (ptrace_reparented(current->group_leader))
2239 do_notify_parent_cldstop(current->group_leader,
2240 true, why);
2241 read_unlock(&tasklist_lock);
2242
2243 goto relock;
2244 }
2245
2246 for (;;) {
2247 struct k_sigaction *ka;
2248
2249 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2250 do_signal_stop(0))
2251 goto relock;
2252
2253 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2254 do_jobctl_trap();
2255 spin_unlock_irq(&sighand->siglock);
2256 goto relock;
2257 }
2258
2259 signr = dequeue_signal(current, &current->blocked, info);
2260
2261 if (!signr)
2262 break; /* will return 0 */
2263
2264 if (unlikely(current->ptrace) && signr != SIGKILL) {
2265 signr = ptrace_signal(signr, info);
2266 if (!signr)
2267 continue;
2268 }
2269
2270 ka = &sighand->action[signr-1];
2271
2272 /* Trace actually delivered signals. */
2273 trace_signal_deliver(signr, info, ka);
2274
2275 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2276 continue;
2277 if (ka->sa.sa_handler != SIG_DFL) {
2278 /* Run the handler. */
2279 *return_ka = *ka;
2280
2281 if (ka->sa.sa_flags & SA_ONESHOT)
2282 ka->sa.sa_handler = SIG_DFL;
2283
2284 break; /* will return non-zero "signr" value */
2285 }
2286
2287 /*
2288 * Now we are doing the default action for this signal.
2289 */
2290 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2291 continue;
2292
2293 /*
2294 * Global init gets no signals it doesn't want.
2295 * Container-init gets no signals it doesn't want from same
2296 * container.
2297 *
2298 * Note that if global/container-init sees a sig_kernel_only()
2299 * signal here, the signal must have been generated internally
2300 * or must have come from an ancestor namespace. In either
2301 * case, the signal cannot be dropped.
2302 */
2303 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2304 !sig_kernel_only(signr))
2305 continue;
2306
2307 if (sig_kernel_stop(signr)) {
2308 /*
2309 * The default action is to stop all threads in
2310 * the thread group. The job control signals
2311 * do nothing in an orphaned pgrp, but SIGSTOP
2312 * always works. Note that siglock needs to be
2313 * dropped during the call to is_orphaned_pgrp()
2314 * because of lock ordering with tasklist_lock.
2315 * This allows an intervening SIGCONT to be posted.
2316 * We need to check for that and bail out if necessary.
2317 */
2318 if (signr != SIGSTOP) {
2319 spin_unlock_irq(&sighand->siglock);
2320
2321 /* signals can be posted during this window */
2322
2323 if (is_current_pgrp_orphaned())
2324 goto relock;
2325
2326 spin_lock_irq(&sighand->siglock);
2327 }
2328
2329 if (likely(do_signal_stop(info->si_signo))) {
2330 /* It released the siglock. */
2331 goto relock;
2332 }
2333
2334 /*
2335 * We didn't actually stop, due to a race
2336 * with SIGCONT or something like that.
2337 */
2338 continue;
2339 }
2340
2341 spin_unlock_irq(&sighand->siglock);
2342
2343 /*
2344 * Anything else is fatal, maybe with a core dump.
2345 */
2346 current->flags |= PF_SIGNALED;
2347
2348 if (sig_kernel_coredump(signr)) {
2349 if (print_fatal_signals)
2350 print_fatal_signal(info->si_signo);
2351 /*
2352 * If it was able to dump core, this kills all
2353 * other threads in the group and synchronizes with
2354 * their demise. If we lost the race with another
2355 * thread getting here, it set group_exit_code
2356 * first and our do_group_exit call below will use
2357 * that value and ignore the one we pass it.
2358 */
2359 do_coredump(info);
2360 }
2361
2362 /*
2363 * Death signals, no core dump.
2364 */
2365 do_group_exit(info->si_signo);
2366 /* NOTREACHED */
2367 }
2368 spin_unlock_irq(&sighand->siglock);
2369 return signr;
2370 }
2371
2372 /**
2373 * signal_delivered -
2374 * @sig: number of signal being delivered
2375 * @info: siginfo_t of signal being delivered
2376 * @ka: sigaction setting that chose the handler
2377 * @regs: user register state
2378 * @stepping: nonzero if debugger single-step or block-step in use
2379 *
2380 * This function should be called when a signal has succesfully been
2381 * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask
2382 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2383 * is set in @ka->sa.sa_flags. Tracing is notified.
2384 */
2385 void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka,
2386 struct pt_regs *regs, int stepping)
2387 {
2388 sigset_t blocked;
2389
2390 /* A signal was successfully delivered, and the
2391 saved sigmask was stored on the signal frame,
2392 and will be restored by sigreturn. So we can
2393 simply clear the restore sigmask flag. */
2394 clear_restore_sigmask();
2395
2396 sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
2397 if (!(ka->sa.sa_flags & SA_NODEFER))
2398 sigaddset(&blocked, sig);
2399 set_current_blocked(&blocked);
2400 tracehook_signal_handler(sig, info, ka, regs, stepping);
2401 }
2402
2403 /*
2404 * It could be that complete_signal() picked us to notify about the
2405 * group-wide signal. Other threads should be notified now to take
2406 * the shared signals in @which since we will not.
2407 */
2408 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2409 {
2410 sigset_t retarget;
2411 struct task_struct *t;
2412
2413 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2414 if (sigisemptyset(&retarget))
2415 return;
2416
2417 t = tsk;
2418 while_each_thread(tsk, t) {
2419 if (t->flags & PF_EXITING)
2420 continue;
2421
2422 if (!has_pending_signals(&retarget, &t->blocked))
2423 continue;
2424 /* Remove the signals this thread can handle. */
2425 sigandsets(&retarget, &retarget, &t->blocked);
2426
2427 if (!signal_pending(t))
2428 signal_wake_up(t, 0);
2429
2430 if (sigisemptyset(&retarget))
2431 break;
2432 }
2433 }
2434
2435 void exit_signals(struct task_struct *tsk)
2436 {
2437 int group_stop = 0;
2438 sigset_t unblocked;
2439
2440 /*
2441 * @tsk is about to have PF_EXITING set - lock out users which
2442 * expect stable threadgroup.
2443 */
2444 threadgroup_change_begin(tsk);
2445
2446 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2447 tsk->flags |= PF_EXITING;
2448 threadgroup_change_end(tsk);
2449 return;
2450 }
2451
2452 spin_lock_irq(&tsk->sighand->siglock);
2453 /*
2454 * From now this task is not visible for group-wide signals,
2455 * see wants_signal(), do_signal_stop().
2456 */
2457 tsk->flags |= PF_EXITING;
2458
2459 threadgroup_change_end(tsk);
2460
2461 if (!signal_pending(tsk))
2462 goto out;
2463
2464 unblocked = tsk->blocked;
2465 signotset(&unblocked);
2466 retarget_shared_pending(tsk, &unblocked);
2467
2468 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2469 task_participate_group_stop(tsk))
2470 group_stop = CLD_STOPPED;
2471 out:
2472 spin_unlock_irq(&tsk->sighand->siglock);
2473
2474 /*
2475 * If group stop has completed, deliver the notification. This
2476 * should always go to the real parent of the group leader.
2477 */
2478 if (unlikely(group_stop)) {
2479 read_lock(&tasklist_lock);
2480 do_notify_parent_cldstop(tsk, false, group_stop);
2481 read_unlock(&tasklist_lock);
2482 }
2483 }
2484
2485 EXPORT_SYMBOL(recalc_sigpending);
2486 EXPORT_SYMBOL_GPL(dequeue_signal);
2487 EXPORT_SYMBOL(flush_signals);
2488 EXPORT_SYMBOL(force_sig);
2489 EXPORT_SYMBOL(send_sig);
2490 EXPORT_SYMBOL(send_sig_info);
2491 EXPORT_SYMBOL(sigprocmask);
2492 EXPORT_SYMBOL(block_all_signals);
2493 EXPORT_SYMBOL(unblock_all_signals);
2494
2495
2496 /*
2497 * System call entry points.
2498 */
2499
2500 /**
2501 * sys_restart_syscall - restart a system call
2502 */
2503 SYSCALL_DEFINE0(restart_syscall)
2504 {
2505 struct restart_block *restart = &current_thread_info()->restart_block;
2506 return restart->fn(restart);
2507 }
2508
2509 long do_no_restart_syscall(struct restart_block *param)
2510 {
2511 return -EINTR;
2512 }
2513
2514 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2515 {
2516 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2517 sigset_t newblocked;
2518 /* A set of now blocked but previously unblocked signals. */
2519 sigandnsets(&newblocked, newset, &current->blocked);
2520 retarget_shared_pending(tsk, &newblocked);
2521 }
2522 tsk->blocked = *newset;
2523 recalc_sigpending();
2524 }
2525
2526 /**
2527 * set_current_blocked - change current->blocked mask
2528 * @newset: new mask
2529 *
2530 * It is wrong to change ->blocked directly, this helper should be used
2531 * to ensure the process can't miss a shared signal we are going to block.
2532 */
2533 void set_current_blocked(sigset_t *newset)
2534 {
2535 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2536 __set_current_blocked(newset);
2537 }
2538
2539 void __set_current_blocked(const sigset_t *newset)
2540 {
2541 struct task_struct *tsk = current;
2542
2543 spin_lock_irq(&tsk->sighand->siglock);
2544 __set_task_blocked(tsk, newset);
2545 spin_unlock_irq(&tsk->sighand->siglock);
2546 }
2547
2548 /*
2549 * This is also useful for kernel threads that want to temporarily
2550 * (or permanently) block certain signals.
2551 *
2552 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2553 * interface happily blocks "unblockable" signals like SIGKILL
2554 * and friends.
2555 */
2556 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2557 {
2558 struct task_struct *tsk = current;
2559 sigset_t newset;
2560
2561 /* Lockless, only current can change ->blocked, never from irq */
2562 if (oldset)
2563 *oldset = tsk->blocked;
2564
2565 switch (how) {
2566 case SIG_BLOCK:
2567 sigorsets(&newset, &tsk->blocked, set);
2568 break;
2569 case SIG_UNBLOCK:
2570 sigandnsets(&newset, &tsk->blocked, set);
2571 break;
2572 case SIG_SETMASK:
2573 newset = *set;
2574 break;
2575 default:
2576 return -EINVAL;
2577 }
2578
2579 __set_current_blocked(&newset);
2580 return 0;
2581 }
2582
2583 /**
2584 * sys_rt_sigprocmask - change the list of currently blocked signals
2585 * @how: whether to add, remove, or set signals
2586 * @nset: stores pending signals
2587 * @oset: previous value of signal mask if non-null
2588 * @sigsetsize: size of sigset_t type
2589 */
2590 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2591 sigset_t __user *, oset, size_t, sigsetsize)
2592 {
2593 sigset_t old_set, new_set;
2594 int error;
2595
2596 /* XXX: Don't preclude handling different sized sigset_t's. */
2597 if (sigsetsize != sizeof(sigset_t))
2598 return -EINVAL;
2599
2600 old_set = current->blocked;
2601
2602 if (nset) {
2603 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2604 return -EFAULT;
2605 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2606
2607 error = sigprocmask(how, &new_set, NULL);
2608 if (error)
2609 return error;
2610 }
2611
2612 if (oset) {
2613 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2614 return -EFAULT;
2615 }
2616
2617 return 0;
2618 }
2619
2620 long do_sigpending(void __user *set, unsigned long sigsetsize)
2621 {
2622 long error = -EINVAL;
2623 sigset_t pending;
2624
2625 if (sigsetsize > sizeof(sigset_t))
2626 goto out;
2627
2628 spin_lock_irq(&current->sighand->siglock);
2629 sigorsets(&pending, &current->pending.signal,
2630 &current->signal->shared_pending.signal);
2631 spin_unlock_irq(&current->sighand->siglock);
2632
2633 /* Outside the lock because only this thread touches it. */
2634 sigandsets(&pending, &current->blocked, &pending);
2635
2636 error = -EFAULT;
2637 if (!copy_to_user(set, &pending, sigsetsize))
2638 error = 0;
2639
2640 out:
2641 return error;
2642 }
2643
2644 /**
2645 * sys_rt_sigpending - examine a pending signal that has been raised
2646 * while blocked
2647 * @set: stores pending signals
2648 * @sigsetsize: size of sigset_t type or larger
2649 */
2650 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2651 {
2652 return do_sigpending(set, sigsetsize);
2653 }
2654
2655 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2656
2657 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2658 {
2659 int err;
2660
2661 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2662 return -EFAULT;
2663 if (from->si_code < 0)
2664 return __copy_to_user(to, from, sizeof(siginfo_t))
2665 ? -EFAULT : 0;
2666 /*
2667 * If you change siginfo_t structure, please be sure
2668 * this code is fixed accordingly.
2669 * Please remember to update the signalfd_copyinfo() function
2670 * inside fs/signalfd.c too, in case siginfo_t changes.
2671 * It should never copy any pad contained in the structure
2672 * to avoid security leaks, but must copy the generic
2673 * 3 ints plus the relevant union member.
2674 */
2675 err = __put_user(from->si_signo, &to->si_signo);
2676 err |= __put_user(from->si_errno, &to->si_errno);
2677 err |= __put_user((short)from->si_code, &to->si_code);
2678 switch (from->si_code & __SI_MASK) {
2679 case __SI_KILL:
2680 err |= __put_user(from->si_pid, &to->si_pid);
2681 err |= __put_user(from->si_uid, &to->si_uid);
2682 break;
2683 case __SI_TIMER:
2684 err |= __put_user(from->si_tid, &to->si_tid);
2685 err |= __put_user(from->si_overrun, &to->si_overrun);
2686 err |= __put_user(from->si_ptr, &to->si_ptr);
2687 break;
2688 case __SI_POLL:
2689 err |= __put_user(from->si_band, &to->si_band);
2690 err |= __put_user(from->si_fd, &to->si_fd);
2691 break;
2692 case __SI_FAULT:
2693 err |= __put_user(from->si_addr, &to->si_addr);
2694 #ifdef __ARCH_SI_TRAPNO
2695 err |= __put_user(from->si_trapno, &to->si_trapno);
2696 #endif
2697 #ifdef BUS_MCEERR_AO
2698 /*
2699 * Other callers might not initialize the si_lsb field,
2700 * so check explicitly for the right codes here.
2701 */
2702 if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2703 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2704 #endif
2705 break;
2706 case __SI_CHLD:
2707 err |= __put_user(from->si_pid, &to->si_pid);
2708 err |= __put_user(from->si_uid, &to->si_uid);
2709 err |= __put_user(from->si_status, &to->si_status);
2710 err |= __put_user(from->si_utime, &to->si_utime);
2711 err |= __put_user(from->si_stime, &to->si_stime);
2712 break;
2713 case __SI_RT: /* This is not generated by the kernel as of now. */
2714 case __SI_MESGQ: /* But this is */
2715 err |= __put_user(from->si_pid, &to->si_pid);
2716 err |= __put_user(from->si_uid, &to->si_uid);
2717 err |= __put_user(from->si_ptr, &to->si_ptr);
2718 break;
2719 #ifdef __ARCH_SIGSYS
2720 case __SI_SYS:
2721 err |= __put_user(from->si_call_addr, &to->si_call_addr);
2722 err |= __put_user(from->si_syscall, &to->si_syscall);
2723 err |= __put_user(from->si_arch, &to->si_arch);
2724 break;
2725 #endif
2726 default: /* this is just in case for now ... */
2727 err |= __put_user(from->si_pid, &to->si_pid);
2728 err |= __put_user(from->si_uid, &to->si_uid);
2729 break;
2730 }
2731 return err;
2732 }
2733
2734 #endif
2735
2736 /**
2737 * do_sigtimedwait - wait for queued signals specified in @which
2738 * @which: queued signals to wait for
2739 * @info: if non-null, the signal's siginfo is returned here
2740 * @ts: upper bound on process time suspension
2741 */
2742 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2743 const struct timespec *ts)
2744 {
2745 struct task_struct *tsk = current;
2746 long timeout = MAX_SCHEDULE_TIMEOUT;
2747 sigset_t mask = *which;
2748 int sig;
2749
2750 if (ts) {
2751 if (!timespec_valid(ts))
2752 return -EINVAL;
2753 timeout = timespec_to_jiffies(ts);
2754 /*
2755 * We can be close to the next tick, add another one
2756 * to ensure we will wait at least the time asked for.
2757 */
2758 if (ts->tv_sec || ts->tv_nsec)
2759 timeout++;
2760 }
2761
2762 /*
2763 * Invert the set of allowed signals to get those we want to block.
2764 */
2765 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2766 signotset(&mask);
2767
2768 spin_lock_irq(&tsk->sighand->siglock);
2769 sig = dequeue_signal(tsk, &mask, info);
2770 if (!sig && timeout) {
2771 /*
2772 * None ready, temporarily unblock those we're interested
2773 * while we are sleeping in so that we'll be awakened when
2774 * they arrive. Unblocking is always fine, we can avoid
2775 * set_current_blocked().
2776 */
2777 tsk->real_blocked = tsk->blocked;
2778 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2779 recalc_sigpending();
2780 spin_unlock_irq(&tsk->sighand->siglock);
2781
2782 timeout = schedule_timeout_interruptible(timeout);
2783
2784 spin_lock_irq(&tsk->sighand->siglock);
2785 __set_task_blocked(tsk, &tsk->real_blocked);
2786 siginitset(&tsk->real_blocked, 0);
2787 sig = dequeue_signal(tsk, &mask, info);
2788 }
2789 spin_unlock_irq(&tsk->sighand->siglock);
2790
2791 if (sig)
2792 return sig;
2793 return timeout ? -EINTR : -EAGAIN;
2794 }
2795
2796 /**
2797 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
2798 * in @uthese
2799 * @uthese: queued signals to wait for
2800 * @uinfo: if non-null, the signal's siginfo is returned here
2801 * @uts: upper bound on process time suspension
2802 * @sigsetsize: size of sigset_t type
2803 */
2804 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2805 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2806 size_t, sigsetsize)
2807 {
2808 sigset_t these;
2809 struct timespec ts;
2810 siginfo_t info;
2811 int ret;
2812
2813 /* XXX: Don't preclude handling different sized sigset_t's. */
2814 if (sigsetsize != sizeof(sigset_t))
2815 return -EINVAL;
2816
2817 if (copy_from_user(&these, uthese, sizeof(these)))
2818 return -EFAULT;
2819
2820 if (uts) {
2821 if (copy_from_user(&ts, uts, sizeof(ts)))
2822 return -EFAULT;
2823 }
2824
2825 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2826
2827 if (ret > 0 && uinfo) {
2828 if (copy_siginfo_to_user(uinfo, &info))
2829 ret = -EFAULT;
2830 }
2831
2832 return ret;
2833 }
2834
2835 /**
2836 * sys_kill - send a signal to a process
2837 * @pid: the PID of the process
2838 * @sig: signal to be sent
2839 */
2840 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2841 {
2842 struct siginfo info;
2843
2844 info.si_signo = sig;
2845 info.si_errno = 0;
2846 info.si_code = SI_USER;
2847 info.si_pid = task_tgid_vnr(current);
2848 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2849
2850 return kill_something_info(sig, &info, pid);
2851 }
2852
2853 static int
2854 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2855 {
2856 struct task_struct *p;
2857 int error = -ESRCH;
2858
2859 rcu_read_lock();
2860 p = find_task_by_vpid(pid);
2861 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2862 error = check_kill_permission(sig, info, p);
2863 /*
2864 * The null signal is a permissions and process existence
2865 * probe. No signal is actually delivered.
2866 */
2867 if (!error && sig) {
2868 error = do_send_sig_info(sig, info, p, false);
2869 /*
2870 * If lock_task_sighand() failed we pretend the task
2871 * dies after receiving the signal. The window is tiny,
2872 * and the signal is private anyway.
2873 */
2874 if (unlikely(error == -ESRCH))
2875 error = 0;
2876 }
2877 }
2878 rcu_read_unlock();
2879
2880 return error;
2881 }
2882
2883 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2884 {
2885 struct siginfo info;
2886
2887 info.si_signo = sig;
2888 info.si_errno = 0;
2889 info.si_code = SI_TKILL;
2890 info.si_pid = task_tgid_vnr(current);
2891 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2892
2893 return do_send_specific(tgid, pid, sig, &info);
2894 }
2895
2896 /**
2897 * sys_tgkill - send signal to one specific thread
2898 * @tgid: the thread group ID of the thread
2899 * @pid: the PID of the thread
2900 * @sig: signal to be sent
2901 *
2902 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2903 * exists but it's not belonging to the target process anymore. This
2904 * method solves the problem of threads exiting and PIDs getting reused.
2905 */
2906 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2907 {
2908 /* This is only valid for single tasks */
2909 if (pid <= 0 || tgid <= 0)
2910 return -EINVAL;
2911
2912 return do_tkill(tgid, pid, sig);
2913 }
2914
2915 /**
2916 * sys_tkill - send signal to one specific task
2917 * @pid: the PID of the task
2918 * @sig: signal to be sent
2919 *
2920 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2921 */
2922 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2923 {
2924 /* This is only valid for single tasks */
2925 if (pid <= 0)
2926 return -EINVAL;
2927
2928 return do_tkill(0, pid, sig);
2929 }
2930
2931 /**
2932 * sys_rt_sigqueueinfo - send signal information to a signal
2933 * @pid: the PID of the thread
2934 * @sig: signal to be sent
2935 * @uinfo: signal info to be sent
2936 */
2937 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2938 siginfo_t __user *, uinfo)
2939 {
2940 siginfo_t info;
2941
2942 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2943 return -EFAULT;
2944
2945 /* Not even root can pretend to send signals from the kernel.
2946 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2947 */
2948 if (info.si_code >= 0 || info.si_code == SI_TKILL) {
2949 /* We used to allow any < 0 si_code */
2950 WARN_ON_ONCE(info.si_code < 0);
2951 return -EPERM;
2952 }
2953 info.si_signo = sig;
2954
2955 /* POSIX.1b doesn't mention process groups. */
2956 return kill_proc_info(sig, &info, pid);
2957 }
2958
2959 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2960 {
2961 /* This is only valid for single tasks */
2962 if (pid <= 0 || tgid <= 0)
2963 return -EINVAL;
2964
2965 /* Not even root can pretend to send signals from the kernel.
2966 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2967 */
2968 if (info->si_code >= 0 || info->si_code == SI_TKILL) {
2969 /* We used to allow any < 0 si_code */
2970 WARN_ON_ONCE(info->si_code < 0);
2971 return -EPERM;
2972 }
2973 info->si_signo = sig;
2974
2975 return do_send_specific(tgid, pid, sig, info);
2976 }
2977
2978 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2979 siginfo_t __user *, uinfo)
2980 {
2981 siginfo_t info;
2982
2983 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2984 return -EFAULT;
2985
2986 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2987 }
2988
2989 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2990 {
2991 struct task_struct *t = current;
2992 struct k_sigaction *k;
2993 sigset_t mask;
2994
2995 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2996 return -EINVAL;
2997
2998 k = &t->sighand->action[sig-1];
2999
3000 spin_lock_irq(&current->sighand->siglock);
3001 if (oact)
3002 *oact = *k;
3003
3004 if (act) {
3005 sigdelsetmask(&act->sa.sa_mask,
3006 sigmask(SIGKILL) | sigmask(SIGSTOP));
3007 *k = *act;
3008 /*
3009 * POSIX 3.3.1.3:
3010 * "Setting a signal action to SIG_IGN for a signal that is
3011 * pending shall cause the pending signal to be discarded,
3012 * whether or not it is blocked."
3013 *
3014 * "Setting a signal action to SIG_DFL for a signal that is
3015 * pending and whose default action is to ignore the signal
3016 * (for example, SIGCHLD), shall cause the pending signal to
3017 * be discarded, whether or not it is blocked"
3018 */
3019 if (sig_handler_ignored(sig_handler(t, sig), sig)) {
3020 sigemptyset(&mask);
3021 sigaddset(&mask, sig);
3022 rm_from_queue_full(&mask, &t->signal->shared_pending);
3023 do {
3024 rm_from_queue_full(&mask, &t->pending);
3025 t = next_thread(t);
3026 } while (t != current);
3027 }
3028 }
3029
3030 spin_unlock_irq(&current->sighand->siglock);
3031 return 0;
3032 }
3033
3034 int
3035 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3036 {
3037 stack_t oss;
3038 int error;
3039
3040 oss.ss_sp = (void __user *) current->sas_ss_sp;
3041 oss.ss_size = current->sas_ss_size;
3042 oss.ss_flags = sas_ss_flags(sp);
3043
3044 if (uss) {
3045 void __user *ss_sp;
3046 size_t ss_size;
3047 int ss_flags;
3048
3049 error = -EFAULT;
3050 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3051 goto out;
3052 error = __get_user(ss_sp, &uss->ss_sp) |
3053 __get_user(ss_flags, &uss->ss_flags) |
3054 __get_user(ss_size, &uss->ss_size);
3055 if (error)
3056 goto out;
3057
3058 error = -EPERM;
3059 if (on_sig_stack(sp))
3060 goto out;
3061
3062 error = -EINVAL;
3063 /*
3064 * Note - this code used to test ss_flags incorrectly:
3065 * old code may have been written using ss_flags==0
3066 * to mean ss_flags==SS_ONSTACK (as this was the only
3067 * way that worked) - this fix preserves that older
3068 * mechanism.
3069 */
3070 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3071 goto out;
3072
3073 if (ss_flags == SS_DISABLE) {
3074 ss_size = 0;
3075 ss_sp = NULL;
3076 } else {
3077 error = -ENOMEM;
3078 if (ss_size < MINSIGSTKSZ)
3079 goto out;
3080 }
3081
3082 current->sas_ss_sp = (unsigned long) ss_sp;
3083 current->sas_ss_size = ss_size;
3084 }
3085
3086 error = 0;
3087 if (uoss) {
3088 error = -EFAULT;
3089 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3090 goto out;
3091 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3092 __put_user(oss.ss_size, &uoss->ss_size) |
3093 __put_user(oss.ss_flags, &uoss->ss_flags);
3094 }
3095
3096 out:
3097 return error;
3098 }
3099 #ifdef CONFIG_GENERIC_SIGALTSTACK
3100 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3101 {
3102 return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3103 }
3104 #endif
3105
3106 int restore_altstack(const stack_t __user *uss)
3107 {
3108 int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3109 /* squash all but EFAULT for now */
3110 return err == -EFAULT ? err : 0;
3111 }
3112
3113 int __save_altstack(stack_t __user *uss, unsigned long sp)
3114 {
3115 struct task_struct *t = current;
3116 return __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3117 __put_user(sas_ss_flags(sp), &uss->ss_flags) |
3118 __put_user(t->sas_ss_size, &uss->ss_size);
3119 }
3120
3121 #ifdef CONFIG_COMPAT
3122 #ifdef CONFIG_GENERIC_SIGALTSTACK
3123 asmlinkage long compat_sys_sigaltstack(const compat_stack_t __user *uss_ptr,
3124 compat_stack_t __user *uoss_ptr)
3125 {
3126 stack_t uss, uoss;
3127 int ret;
3128 mm_segment_t seg;
3129
3130 if (uss_ptr) {
3131 compat_stack_t uss32;
3132
3133 memset(&uss, 0, sizeof(stack_t));
3134 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3135 return -EFAULT;
3136 uss.ss_sp = compat_ptr(uss32.ss_sp);
3137 uss.ss_flags = uss32.ss_flags;
3138 uss.ss_size = uss32.ss_size;
3139 }
3140 seg = get_fs();
3141 set_fs(KERNEL_DS);
3142 ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3143 (stack_t __force __user *) &uoss,
3144 compat_user_stack_pointer());
3145 set_fs(seg);
3146 if (ret >= 0 && uoss_ptr) {
3147 if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3148 __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3149 __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3150 __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3151 ret = -EFAULT;
3152 }
3153 return ret;
3154 }
3155
3156 int compat_restore_altstack(const compat_stack_t __user *uss)
3157 {
3158 int err = compat_sys_sigaltstack(uss, NULL);
3159 /* squash all but -EFAULT for now */
3160 return err == -EFAULT ? err : 0;
3161 }
3162
3163 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3164 {
3165 struct task_struct *t = current;
3166 return __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) |
3167 __put_user(sas_ss_flags(sp), &uss->ss_flags) |
3168 __put_user(t->sas_ss_size, &uss->ss_size);
3169 }
3170 #endif
3171 #endif
3172
3173 #ifdef __ARCH_WANT_SYS_SIGPENDING
3174
3175 /**
3176 * sys_sigpending - examine pending signals
3177 * @set: where mask of pending signal is returned
3178 */
3179 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3180 {
3181 return do_sigpending(set, sizeof(*set));
3182 }
3183
3184 #endif
3185
3186 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3187 /**
3188 * sys_sigprocmask - examine and change blocked signals
3189 * @how: whether to add, remove, or set signals
3190 * @nset: signals to add or remove (if non-null)
3191 * @oset: previous value of signal mask if non-null
3192 *
3193 * Some platforms have their own version with special arguments;
3194 * others support only sys_rt_sigprocmask.
3195 */
3196
3197 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3198 old_sigset_t __user *, oset)
3199 {
3200 old_sigset_t old_set, new_set;
3201 sigset_t new_blocked;
3202
3203 old_set = current->blocked.sig[0];
3204
3205 if (nset) {
3206 if (copy_from_user(&new_set, nset, sizeof(*nset)))
3207 return -EFAULT;
3208
3209 new_blocked = current->blocked;
3210
3211 switch (how) {
3212 case SIG_BLOCK:
3213 sigaddsetmask(&new_blocked, new_set);
3214 break;
3215 case SIG_UNBLOCK:
3216 sigdelsetmask(&new_blocked, new_set);
3217 break;
3218 case SIG_SETMASK:
3219 new_blocked.sig[0] = new_set;
3220 break;
3221 default:
3222 return -EINVAL;
3223 }
3224
3225 set_current_blocked(&new_blocked);
3226 }
3227
3228 if (oset) {
3229 if (copy_to_user(oset, &old_set, sizeof(*oset)))
3230 return -EFAULT;
3231 }
3232
3233 return 0;
3234 }
3235 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3236
3237 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
3238 /**
3239 * sys_rt_sigaction - alter an action taken by a process
3240 * @sig: signal to be sent
3241 * @act: new sigaction
3242 * @oact: used to save the previous sigaction
3243 * @sigsetsize: size of sigset_t type
3244 */
3245 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3246 const struct sigaction __user *, act,
3247 struct sigaction __user *, oact,
3248 size_t, sigsetsize)
3249 {
3250 struct k_sigaction new_sa, old_sa;
3251 int ret = -EINVAL;
3252
3253 /* XXX: Don't preclude handling different sized sigset_t's. */
3254 if (sigsetsize != sizeof(sigset_t))
3255 goto out;
3256
3257 if (act) {
3258 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3259 return -EFAULT;
3260 }
3261
3262 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3263
3264 if (!ret && oact) {
3265 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3266 return -EFAULT;
3267 }
3268 out:
3269 return ret;
3270 }
3271 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
3272
3273 #ifdef __ARCH_WANT_SYS_SGETMASK
3274
3275 /*
3276 * For backwards compatibility. Functionality superseded by sigprocmask.
3277 */
3278 SYSCALL_DEFINE0(sgetmask)
3279 {
3280 /* SMP safe */
3281 return current->blocked.sig[0];
3282 }
3283
3284 SYSCALL_DEFINE1(ssetmask, int, newmask)
3285 {
3286 int old = current->blocked.sig[0];
3287 sigset_t newset;
3288
3289 siginitset(&newset, newmask);
3290 set_current_blocked(&newset);
3291
3292 return old;
3293 }
3294 #endif /* __ARCH_WANT_SGETMASK */
3295
3296 #ifdef __ARCH_WANT_SYS_SIGNAL
3297 /*
3298 * For backwards compatibility. Functionality superseded by sigaction.
3299 */
3300 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3301 {
3302 struct k_sigaction new_sa, old_sa;
3303 int ret;
3304
3305 new_sa.sa.sa_handler = handler;
3306 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3307 sigemptyset(&new_sa.sa.sa_mask);
3308
3309 ret = do_sigaction(sig, &new_sa, &old_sa);
3310
3311 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3312 }
3313 #endif /* __ARCH_WANT_SYS_SIGNAL */
3314
3315 #ifdef __ARCH_WANT_SYS_PAUSE
3316
3317 SYSCALL_DEFINE0(pause)
3318 {
3319 while (!signal_pending(current)) {
3320 current->state = TASK_INTERRUPTIBLE;
3321 schedule();
3322 }
3323 return -ERESTARTNOHAND;
3324 }
3325
3326 #endif
3327
3328 int sigsuspend(sigset_t *set)
3329 {
3330 current->saved_sigmask = current->blocked;
3331 set_current_blocked(set);
3332
3333 current->state = TASK_INTERRUPTIBLE;
3334 schedule();
3335 set_restore_sigmask();
3336 return -ERESTARTNOHAND;
3337 }
3338
3339 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
3340 /**
3341 * sys_rt_sigsuspend - replace the signal mask for a value with the
3342 * @unewset value until a signal is received
3343 * @unewset: new signal mask value
3344 * @sigsetsize: size of sigset_t type
3345 */
3346 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3347 {
3348 sigset_t newset;
3349
3350 /* XXX: Don't preclude handling different sized sigset_t's. */
3351 if (sigsetsize != sizeof(sigset_t))
3352 return -EINVAL;
3353
3354 if (copy_from_user(&newset, unewset, sizeof(newset)))
3355 return -EFAULT;
3356 return sigsuspend(&newset);
3357 }
3358 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
3359
3360 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3361 {
3362 return NULL;
3363 }
3364
3365 void __init signals_init(void)
3366 {
3367 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3368 }
3369
3370 #ifdef CONFIG_KGDB_KDB
3371 #include <linux/kdb.h>
3372 /*
3373 * kdb_send_sig_info - Allows kdb to send signals without exposing
3374 * signal internals. This function checks if the required locks are
3375 * available before calling the main signal code, to avoid kdb
3376 * deadlocks.
3377 */
3378 void
3379 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3380 {
3381 static struct task_struct *kdb_prev_t;
3382 int sig, new_t;
3383 if (!spin_trylock(&t->sighand->siglock)) {
3384 kdb_printf("Can't do kill command now.\n"
3385 "The sigmask lock is held somewhere else in "
3386 "kernel, try again later\n");
3387 return;
3388 }
3389 spin_unlock(&t->sighand->siglock);
3390 new_t = kdb_prev_t != t;
3391 kdb_prev_t = t;
3392 if (t->state != TASK_RUNNING && new_t) {
3393 kdb_printf("Process is not RUNNING, sending a signal from "
3394 "kdb risks deadlock\n"
3395 "on the run queue locks. "
3396 "The signal has _not_ been sent.\n"
3397 "Reissue the kill command if you want to risk "
3398 "the deadlock.\n");
3399 return;
3400 }
3401 sig = info->si_signo;
3402 if (send_sig_info(sig, info, t))
3403 kdb_printf("Fail to deliver Signal %d to process %d.\n",
3404 sig, t->pid);
3405 else
3406 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3407 }
3408 #endif /* CONFIG_KGDB_KDB */