]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/signal.c
mtd: nand: atmel: Relax tADL_min constraint
[mirror_ubuntu-artful-kernel.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/user.h>
18 #include <linux/sched/debug.h>
19 #include <linux/sched/task.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/sched/cputime.h>
22 #include <linux/fs.h>
23 #include <linux/tty.h>
24 #include <linux/binfmts.h>
25 #include <linux/coredump.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/ptrace.h>
29 #include <linux/signal.h>
30 #include <linux/signalfd.h>
31 #include <linux/ratelimit.h>
32 #include <linux/tracehook.h>
33 #include <linux/capability.h>
34 #include <linux/freezer.h>
35 #include <linux/pid_namespace.h>
36 #include <linux/nsproxy.h>
37 #include <linux/user_namespace.h>
38 #include <linux/uprobes.h>
39 #include <linux/compat.h>
40 #include <linux/cn_proc.h>
41 #include <linux/compiler.h>
42 #include <linux/posix-timers.h>
43
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/signal.h>
46
47 #include <asm/param.h>
48 #include <linux/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/siginfo.h>
51 #include <asm/cacheflush.h>
52 #include "audit.h" /* audit_signal_info() */
53
54 /*
55 * SLAB caches for signal bits.
56 */
57
58 static struct kmem_cache *sigqueue_cachep;
59
60 int print_fatal_signals __read_mostly;
61
62 static void __user *sig_handler(struct task_struct *t, int sig)
63 {
64 return t->sighand->action[sig - 1].sa.sa_handler;
65 }
66
67 static int sig_handler_ignored(void __user *handler, int sig)
68 {
69 /* Is it explicitly or implicitly ignored? */
70 return handler == SIG_IGN ||
71 (handler == SIG_DFL && sig_kernel_ignore(sig));
72 }
73
74 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
75 {
76 void __user *handler;
77
78 handler = sig_handler(t, sig);
79
80 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
81 handler == SIG_DFL && !force)
82 return 1;
83
84 return sig_handler_ignored(handler, sig);
85 }
86
87 static int sig_ignored(struct task_struct *t, int sig, bool force)
88 {
89 /*
90 * Blocked signals are never ignored, since the
91 * signal handler may change by the time it is
92 * unblocked.
93 */
94 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
95 return 0;
96
97 if (!sig_task_ignored(t, sig, force))
98 return 0;
99
100 /*
101 * Tracers may want to know about even ignored signals.
102 */
103 return !t->ptrace;
104 }
105
106 /*
107 * Re-calculate pending state from the set of locally pending
108 * signals, globally pending signals, and blocked signals.
109 */
110 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
111 {
112 unsigned long ready;
113 long i;
114
115 switch (_NSIG_WORDS) {
116 default:
117 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
118 ready |= signal->sig[i] &~ blocked->sig[i];
119 break;
120
121 case 4: ready = signal->sig[3] &~ blocked->sig[3];
122 ready |= signal->sig[2] &~ blocked->sig[2];
123 ready |= signal->sig[1] &~ blocked->sig[1];
124 ready |= signal->sig[0] &~ blocked->sig[0];
125 break;
126
127 case 2: ready = signal->sig[1] &~ blocked->sig[1];
128 ready |= signal->sig[0] &~ blocked->sig[0];
129 break;
130
131 case 1: ready = signal->sig[0] &~ blocked->sig[0];
132 }
133 return ready != 0;
134 }
135
136 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
137
138 static int recalc_sigpending_tsk(struct task_struct *t)
139 {
140 if ((t->jobctl & JOBCTL_PENDING_MASK) ||
141 PENDING(&t->pending, &t->blocked) ||
142 PENDING(&t->signal->shared_pending, &t->blocked)) {
143 set_tsk_thread_flag(t, TIF_SIGPENDING);
144 return 1;
145 }
146 /*
147 * We must never clear the flag in another thread, or in current
148 * when it's possible the current syscall is returning -ERESTART*.
149 * So we don't clear it here, and only callers who know they should do.
150 */
151 return 0;
152 }
153
154 /*
155 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
156 * This is superfluous when called on current, the wakeup is a harmless no-op.
157 */
158 void recalc_sigpending_and_wake(struct task_struct *t)
159 {
160 if (recalc_sigpending_tsk(t))
161 signal_wake_up(t, 0);
162 }
163
164 void recalc_sigpending(void)
165 {
166 if (!recalc_sigpending_tsk(current) && !freezing(current))
167 clear_thread_flag(TIF_SIGPENDING);
168
169 }
170
171 /* Given the mask, find the first available signal that should be serviced. */
172
173 #define SYNCHRONOUS_MASK \
174 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
175 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
176
177 int next_signal(struct sigpending *pending, sigset_t *mask)
178 {
179 unsigned long i, *s, *m, x;
180 int sig = 0;
181
182 s = pending->signal.sig;
183 m = mask->sig;
184
185 /*
186 * Handle the first word specially: it contains the
187 * synchronous signals that need to be dequeued first.
188 */
189 x = *s &~ *m;
190 if (x) {
191 if (x & SYNCHRONOUS_MASK)
192 x &= SYNCHRONOUS_MASK;
193 sig = ffz(~x) + 1;
194 return sig;
195 }
196
197 switch (_NSIG_WORDS) {
198 default:
199 for (i = 1; i < _NSIG_WORDS; ++i) {
200 x = *++s &~ *++m;
201 if (!x)
202 continue;
203 sig = ffz(~x) + i*_NSIG_BPW + 1;
204 break;
205 }
206 break;
207
208 case 2:
209 x = s[1] &~ m[1];
210 if (!x)
211 break;
212 sig = ffz(~x) + _NSIG_BPW + 1;
213 break;
214
215 case 1:
216 /* Nothing to do */
217 break;
218 }
219
220 return sig;
221 }
222
223 static inline void print_dropped_signal(int sig)
224 {
225 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
226
227 if (!print_fatal_signals)
228 return;
229
230 if (!__ratelimit(&ratelimit_state))
231 return;
232
233 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
234 current->comm, current->pid, sig);
235 }
236
237 /**
238 * task_set_jobctl_pending - set jobctl pending bits
239 * @task: target task
240 * @mask: pending bits to set
241 *
242 * Clear @mask from @task->jobctl. @mask must be subset of
243 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
244 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
245 * cleared. If @task is already being killed or exiting, this function
246 * becomes noop.
247 *
248 * CONTEXT:
249 * Must be called with @task->sighand->siglock held.
250 *
251 * RETURNS:
252 * %true if @mask is set, %false if made noop because @task was dying.
253 */
254 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
255 {
256 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
257 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
258 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
259
260 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
261 return false;
262
263 if (mask & JOBCTL_STOP_SIGMASK)
264 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
265
266 task->jobctl |= mask;
267 return true;
268 }
269
270 /**
271 * task_clear_jobctl_trapping - clear jobctl trapping bit
272 * @task: target task
273 *
274 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
275 * Clear it and wake up the ptracer. Note that we don't need any further
276 * locking. @task->siglock guarantees that @task->parent points to the
277 * ptracer.
278 *
279 * CONTEXT:
280 * Must be called with @task->sighand->siglock held.
281 */
282 void task_clear_jobctl_trapping(struct task_struct *task)
283 {
284 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
285 task->jobctl &= ~JOBCTL_TRAPPING;
286 smp_mb(); /* advised by wake_up_bit() */
287 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
288 }
289 }
290
291 /**
292 * task_clear_jobctl_pending - clear jobctl pending bits
293 * @task: target task
294 * @mask: pending bits to clear
295 *
296 * Clear @mask from @task->jobctl. @mask must be subset of
297 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
298 * STOP bits are cleared together.
299 *
300 * If clearing of @mask leaves no stop or trap pending, this function calls
301 * task_clear_jobctl_trapping().
302 *
303 * CONTEXT:
304 * Must be called with @task->sighand->siglock held.
305 */
306 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
307 {
308 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
309
310 if (mask & JOBCTL_STOP_PENDING)
311 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
312
313 task->jobctl &= ~mask;
314
315 if (!(task->jobctl & JOBCTL_PENDING_MASK))
316 task_clear_jobctl_trapping(task);
317 }
318
319 /**
320 * task_participate_group_stop - participate in a group stop
321 * @task: task participating in a group stop
322 *
323 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
324 * Group stop states are cleared and the group stop count is consumed if
325 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
326 * stop, the appropriate %SIGNAL_* flags are set.
327 *
328 * CONTEXT:
329 * Must be called with @task->sighand->siglock held.
330 *
331 * RETURNS:
332 * %true if group stop completion should be notified to the parent, %false
333 * otherwise.
334 */
335 static bool task_participate_group_stop(struct task_struct *task)
336 {
337 struct signal_struct *sig = task->signal;
338 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
339
340 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
341
342 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
343
344 if (!consume)
345 return false;
346
347 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
348 sig->group_stop_count--;
349
350 /*
351 * Tell the caller to notify completion iff we are entering into a
352 * fresh group stop. Read comment in do_signal_stop() for details.
353 */
354 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
355 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
356 return true;
357 }
358 return false;
359 }
360
361 /*
362 * allocate a new signal queue record
363 * - this may be called without locks if and only if t == current, otherwise an
364 * appropriate lock must be held to stop the target task from exiting
365 */
366 static struct sigqueue *
367 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
368 {
369 struct sigqueue *q = NULL;
370 struct user_struct *user;
371
372 /*
373 * Protect access to @t credentials. This can go away when all
374 * callers hold rcu read lock.
375 */
376 rcu_read_lock();
377 user = get_uid(__task_cred(t)->user);
378 atomic_inc(&user->sigpending);
379 rcu_read_unlock();
380
381 if (override_rlimit ||
382 atomic_read(&user->sigpending) <=
383 task_rlimit(t, RLIMIT_SIGPENDING)) {
384 q = kmem_cache_alloc(sigqueue_cachep, flags);
385 } else {
386 print_dropped_signal(sig);
387 }
388
389 if (unlikely(q == NULL)) {
390 atomic_dec(&user->sigpending);
391 free_uid(user);
392 } else {
393 INIT_LIST_HEAD(&q->list);
394 q->flags = 0;
395 q->user = user;
396 }
397
398 return q;
399 }
400
401 static void __sigqueue_free(struct sigqueue *q)
402 {
403 if (q->flags & SIGQUEUE_PREALLOC)
404 return;
405 atomic_dec(&q->user->sigpending);
406 free_uid(q->user);
407 kmem_cache_free(sigqueue_cachep, q);
408 }
409
410 void flush_sigqueue(struct sigpending *queue)
411 {
412 struct sigqueue *q;
413
414 sigemptyset(&queue->signal);
415 while (!list_empty(&queue->list)) {
416 q = list_entry(queue->list.next, struct sigqueue , list);
417 list_del_init(&q->list);
418 __sigqueue_free(q);
419 }
420 }
421
422 /*
423 * Flush all pending signals for this kthread.
424 */
425 void flush_signals(struct task_struct *t)
426 {
427 unsigned long flags;
428
429 spin_lock_irqsave(&t->sighand->siglock, flags);
430 clear_tsk_thread_flag(t, TIF_SIGPENDING);
431 flush_sigqueue(&t->pending);
432 flush_sigqueue(&t->signal->shared_pending);
433 spin_unlock_irqrestore(&t->sighand->siglock, flags);
434 }
435
436 #ifdef CONFIG_POSIX_TIMERS
437 static void __flush_itimer_signals(struct sigpending *pending)
438 {
439 sigset_t signal, retain;
440 struct sigqueue *q, *n;
441
442 signal = pending->signal;
443 sigemptyset(&retain);
444
445 list_for_each_entry_safe(q, n, &pending->list, list) {
446 int sig = q->info.si_signo;
447
448 if (likely(q->info.si_code != SI_TIMER)) {
449 sigaddset(&retain, sig);
450 } else {
451 sigdelset(&signal, sig);
452 list_del_init(&q->list);
453 __sigqueue_free(q);
454 }
455 }
456
457 sigorsets(&pending->signal, &signal, &retain);
458 }
459
460 void flush_itimer_signals(void)
461 {
462 struct task_struct *tsk = current;
463 unsigned long flags;
464
465 spin_lock_irqsave(&tsk->sighand->siglock, flags);
466 __flush_itimer_signals(&tsk->pending);
467 __flush_itimer_signals(&tsk->signal->shared_pending);
468 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
469 }
470 #endif
471
472 void ignore_signals(struct task_struct *t)
473 {
474 int i;
475
476 for (i = 0; i < _NSIG; ++i)
477 t->sighand->action[i].sa.sa_handler = SIG_IGN;
478
479 flush_signals(t);
480 }
481
482 /*
483 * Flush all handlers for a task.
484 */
485
486 void
487 flush_signal_handlers(struct task_struct *t, int force_default)
488 {
489 int i;
490 struct k_sigaction *ka = &t->sighand->action[0];
491 for (i = _NSIG ; i != 0 ; i--) {
492 if (force_default || ka->sa.sa_handler != SIG_IGN)
493 ka->sa.sa_handler = SIG_DFL;
494 ka->sa.sa_flags = 0;
495 #ifdef __ARCH_HAS_SA_RESTORER
496 ka->sa.sa_restorer = NULL;
497 #endif
498 sigemptyset(&ka->sa.sa_mask);
499 ka++;
500 }
501 }
502
503 int unhandled_signal(struct task_struct *tsk, int sig)
504 {
505 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
506 if (is_global_init(tsk))
507 return 1;
508 if (handler != SIG_IGN && handler != SIG_DFL)
509 return 0;
510 /* if ptraced, let the tracer determine */
511 return !tsk->ptrace;
512 }
513
514 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info,
515 bool *resched_timer)
516 {
517 struct sigqueue *q, *first = NULL;
518
519 /*
520 * Collect the siginfo appropriate to this signal. Check if
521 * there is another siginfo for the same signal.
522 */
523 list_for_each_entry(q, &list->list, list) {
524 if (q->info.si_signo == sig) {
525 if (first)
526 goto still_pending;
527 first = q;
528 }
529 }
530
531 sigdelset(&list->signal, sig);
532
533 if (first) {
534 still_pending:
535 list_del_init(&first->list);
536 copy_siginfo(info, &first->info);
537
538 *resched_timer =
539 (first->flags & SIGQUEUE_PREALLOC) &&
540 (info->si_code == SI_TIMER) &&
541 (info->si_sys_private);
542
543 __sigqueue_free(first);
544 } else {
545 /*
546 * Ok, it wasn't in the queue. This must be
547 * a fast-pathed signal or we must have been
548 * out of queue space. So zero out the info.
549 */
550 info->si_signo = sig;
551 info->si_errno = 0;
552 info->si_code = SI_USER;
553 info->si_pid = 0;
554 info->si_uid = 0;
555 }
556 }
557
558 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
559 siginfo_t *info, bool *resched_timer)
560 {
561 int sig = next_signal(pending, mask);
562
563 if (sig)
564 collect_signal(sig, pending, info, resched_timer);
565 return sig;
566 }
567
568 /*
569 * Dequeue a signal and return the element to the caller, which is
570 * expected to free it.
571 *
572 * All callers have to hold the siglock.
573 */
574 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
575 {
576 bool resched_timer = false;
577 int signr;
578
579 /* We only dequeue private signals from ourselves, we don't let
580 * signalfd steal them
581 */
582 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
583 if (!signr) {
584 signr = __dequeue_signal(&tsk->signal->shared_pending,
585 mask, info, &resched_timer);
586 #ifdef CONFIG_POSIX_TIMERS
587 /*
588 * itimer signal ?
589 *
590 * itimers are process shared and we restart periodic
591 * itimers in the signal delivery path to prevent DoS
592 * attacks in the high resolution timer case. This is
593 * compliant with the old way of self-restarting
594 * itimers, as the SIGALRM is a legacy signal and only
595 * queued once. Changing the restart behaviour to
596 * restart the timer in the signal dequeue path is
597 * reducing the timer noise on heavy loaded !highres
598 * systems too.
599 */
600 if (unlikely(signr == SIGALRM)) {
601 struct hrtimer *tmr = &tsk->signal->real_timer;
602
603 if (!hrtimer_is_queued(tmr) &&
604 tsk->signal->it_real_incr != 0) {
605 hrtimer_forward(tmr, tmr->base->get_time(),
606 tsk->signal->it_real_incr);
607 hrtimer_restart(tmr);
608 }
609 }
610 #endif
611 }
612
613 recalc_sigpending();
614 if (!signr)
615 return 0;
616
617 if (unlikely(sig_kernel_stop(signr))) {
618 /*
619 * Set a marker that we have dequeued a stop signal. Our
620 * caller might release the siglock and then the pending
621 * stop signal it is about to process is no longer in the
622 * pending bitmasks, but must still be cleared by a SIGCONT
623 * (and overruled by a SIGKILL). So those cases clear this
624 * shared flag after we've set it. Note that this flag may
625 * remain set after the signal we return is ignored or
626 * handled. That doesn't matter because its only purpose
627 * is to alert stop-signal processing code when another
628 * processor has come along and cleared the flag.
629 */
630 current->jobctl |= JOBCTL_STOP_DEQUEUED;
631 }
632 #ifdef CONFIG_POSIX_TIMERS
633 if (resched_timer) {
634 /*
635 * Release the siglock to ensure proper locking order
636 * of timer locks outside of siglocks. Note, we leave
637 * irqs disabled here, since the posix-timers code is
638 * about to disable them again anyway.
639 */
640 spin_unlock(&tsk->sighand->siglock);
641 posixtimer_rearm(info);
642 spin_lock(&tsk->sighand->siglock);
643 }
644 #endif
645 return signr;
646 }
647
648 /*
649 * Tell a process that it has a new active signal..
650 *
651 * NOTE! we rely on the previous spin_lock to
652 * lock interrupts for us! We can only be called with
653 * "siglock" held, and the local interrupt must
654 * have been disabled when that got acquired!
655 *
656 * No need to set need_resched since signal event passing
657 * goes through ->blocked
658 */
659 void signal_wake_up_state(struct task_struct *t, unsigned int state)
660 {
661 set_tsk_thread_flag(t, TIF_SIGPENDING);
662 /*
663 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
664 * case. We don't check t->state here because there is a race with it
665 * executing another processor and just now entering stopped state.
666 * By using wake_up_state, we ensure the process will wake up and
667 * handle its death signal.
668 */
669 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
670 kick_process(t);
671 }
672
673 /*
674 * Remove signals in mask from the pending set and queue.
675 * Returns 1 if any signals were found.
676 *
677 * All callers must be holding the siglock.
678 */
679 static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
680 {
681 struct sigqueue *q, *n;
682 sigset_t m;
683
684 sigandsets(&m, mask, &s->signal);
685 if (sigisemptyset(&m))
686 return 0;
687
688 sigandnsets(&s->signal, &s->signal, mask);
689 list_for_each_entry_safe(q, n, &s->list, list) {
690 if (sigismember(mask, q->info.si_signo)) {
691 list_del_init(&q->list);
692 __sigqueue_free(q);
693 }
694 }
695 return 1;
696 }
697
698 static inline int is_si_special(const struct siginfo *info)
699 {
700 return info <= SEND_SIG_FORCED;
701 }
702
703 static inline bool si_fromuser(const struct siginfo *info)
704 {
705 return info == SEND_SIG_NOINFO ||
706 (!is_si_special(info) && SI_FROMUSER(info));
707 }
708
709 /*
710 * called with RCU read lock from check_kill_permission()
711 */
712 static int kill_ok_by_cred(struct task_struct *t)
713 {
714 const struct cred *cred = current_cred();
715 const struct cred *tcred = __task_cred(t);
716
717 if (uid_eq(cred->euid, tcred->suid) ||
718 uid_eq(cred->euid, tcred->uid) ||
719 uid_eq(cred->uid, tcred->suid) ||
720 uid_eq(cred->uid, tcred->uid))
721 return 1;
722
723 if (ns_capable(tcred->user_ns, CAP_KILL))
724 return 1;
725
726 return 0;
727 }
728
729 /*
730 * Bad permissions for sending the signal
731 * - the caller must hold the RCU read lock
732 */
733 static int check_kill_permission(int sig, struct siginfo *info,
734 struct task_struct *t)
735 {
736 struct pid *sid;
737 int error;
738
739 if (!valid_signal(sig))
740 return -EINVAL;
741
742 if (!si_fromuser(info))
743 return 0;
744
745 error = audit_signal_info(sig, t); /* Let audit system see the signal */
746 if (error)
747 return error;
748
749 if (!same_thread_group(current, t) &&
750 !kill_ok_by_cred(t)) {
751 switch (sig) {
752 case SIGCONT:
753 sid = task_session(t);
754 /*
755 * We don't return the error if sid == NULL. The
756 * task was unhashed, the caller must notice this.
757 */
758 if (!sid || sid == task_session(current))
759 break;
760 default:
761 return -EPERM;
762 }
763 }
764
765 return security_task_kill(t, info, sig, 0);
766 }
767
768 /**
769 * ptrace_trap_notify - schedule trap to notify ptracer
770 * @t: tracee wanting to notify tracer
771 *
772 * This function schedules sticky ptrace trap which is cleared on the next
773 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
774 * ptracer.
775 *
776 * If @t is running, STOP trap will be taken. If trapped for STOP and
777 * ptracer is listening for events, tracee is woken up so that it can
778 * re-trap for the new event. If trapped otherwise, STOP trap will be
779 * eventually taken without returning to userland after the existing traps
780 * are finished by PTRACE_CONT.
781 *
782 * CONTEXT:
783 * Must be called with @task->sighand->siglock held.
784 */
785 static void ptrace_trap_notify(struct task_struct *t)
786 {
787 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
788 assert_spin_locked(&t->sighand->siglock);
789
790 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
791 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
792 }
793
794 /*
795 * Handle magic process-wide effects of stop/continue signals. Unlike
796 * the signal actions, these happen immediately at signal-generation
797 * time regardless of blocking, ignoring, or handling. This does the
798 * actual continuing for SIGCONT, but not the actual stopping for stop
799 * signals. The process stop is done as a signal action for SIG_DFL.
800 *
801 * Returns true if the signal should be actually delivered, otherwise
802 * it should be dropped.
803 */
804 static bool prepare_signal(int sig, struct task_struct *p, bool force)
805 {
806 struct signal_struct *signal = p->signal;
807 struct task_struct *t;
808 sigset_t flush;
809
810 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
811 if (!(signal->flags & SIGNAL_GROUP_EXIT))
812 return sig == SIGKILL;
813 /*
814 * The process is in the middle of dying, nothing to do.
815 */
816 } else if (sig_kernel_stop(sig)) {
817 /*
818 * This is a stop signal. Remove SIGCONT from all queues.
819 */
820 siginitset(&flush, sigmask(SIGCONT));
821 flush_sigqueue_mask(&flush, &signal->shared_pending);
822 for_each_thread(p, t)
823 flush_sigqueue_mask(&flush, &t->pending);
824 } else if (sig == SIGCONT) {
825 unsigned int why;
826 /*
827 * Remove all stop signals from all queues, wake all threads.
828 */
829 siginitset(&flush, SIG_KERNEL_STOP_MASK);
830 flush_sigqueue_mask(&flush, &signal->shared_pending);
831 for_each_thread(p, t) {
832 flush_sigqueue_mask(&flush, &t->pending);
833 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
834 if (likely(!(t->ptrace & PT_SEIZED)))
835 wake_up_state(t, __TASK_STOPPED);
836 else
837 ptrace_trap_notify(t);
838 }
839
840 /*
841 * Notify the parent with CLD_CONTINUED if we were stopped.
842 *
843 * If we were in the middle of a group stop, we pretend it
844 * was already finished, and then continued. Since SIGCHLD
845 * doesn't queue we report only CLD_STOPPED, as if the next
846 * CLD_CONTINUED was dropped.
847 */
848 why = 0;
849 if (signal->flags & SIGNAL_STOP_STOPPED)
850 why |= SIGNAL_CLD_CONTINUED;
851 else if (signal->group_stop_count)
852 why |= SIGNAL_CLD_STOPPED;
853
854 if (why) {
855 /*
856 * The first thread which returns from do_signal_stop()
857 * will take ->siglock, notice SIGNAL_CLD_MASK, and
858 * notify its parent. See get_signal_to_deliver().
859 */
860 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
861 signal->group_stop_count = 0;
862 signal->group_exit_code = 0;
863 }
864 }
865
866 return !sig_ignored(p, sig, force);
867 }
868
869 /*
870 * Test if P wants to take SIG. After we've checked all threads with this,
871 * it's equivalent to finding no threads not blocking SIG. Any threads not
872 * blocking SIG were ruled out because they are not running and already
873 * have pending signals. Such threads will dequeue from the shared queue
874 * as soon as they're available, so putting the signal on the shared queue
875 * will be equivalent to sending it to one such thread.
876 */
877 static inline int wants_signal(int sig, struct task_struct *p)
878 {
879 if (sigismember(&p->blocked, sig))
880 return 0;
881 if (p->flags & PF_EXITING)
882 return 0;
883 if (sig == SIGKILL)
884 return 1;
885 if (task_is_stopped_or_traced(p))
886 return 0;
887 return task_curr(p) || !signal_pending(p);
888 }
889
890 static void complete_signal(int sig, struct task_struct *p, int group)
891 {
892 struct signal_struct *signal = p->signal;
893 struct task_struct *t;
894
895 /*
896 * Now find a thread we can wake up to take the signal off the queue.
897 *
898 * If the main thread wants the signal, it gets first crack.
899 * Probably the least surprising to the average bear.
900 */
901 if (wants_signal(sig, p))
902 t = p;
903 else if (!group || thread_group_empty(p))
904 /*
905 * There is just one thread and it does not need to be woken.
906 * It will dequeue unblocked signals before it runs again.
907 */
908 return;
909 else {
910 /*
911 * Otherwise try to find a suitable thread.
912 */
913 t = signal->curr_target;
914 while (!wants_signal(sig, t)) {
915 t = next_thread(t);
916 if (t == signal->curr_target)
917 /*
918 * No thread needs to be woken.
919 * Any eligible threads will see
920 * the signal in the queue soon.
921 */
922 return;
923 }
924 signal->curr_target = t;
925 }
926
927 /*
928 * Found a killable thread. If the signal will be fatal,
929 * then start taking the whole group down immediately.
930 */
931 if (sig_fatal(p, sig) &&
932 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
933 !sigismember(&t->real_blocked, sig) &&
934 (sig == SIGKILL || !t->ptrace)) {
935 /*
936 * This signal will be fatal to the whole group.
937 */
938 if (!sig_kernel_coredump(sig)) {
939 /*
940 * Start a group exit and wake everybody up.
941 * This way we don't have other threads
942 * running and doing things after a slower
943 * thread has the fatal signal pending.
944 */
945 signal->flags = SIGNAL_GROUP_EXIT;
946 signal->group_exit_code = sig;
947 signal->group_stop_count = 0;
948 t = p;
949 do {
950 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
951 sigaddset(&t->pending.signal, SIGKILL);
952 signal_wake_up(t, 1);
953 } while_each_thread(p, t);
954 return;
955 }
956 }
957
958 /*
959 * The signal is already in the shared-pending queue.
960 * Tell the chosen thread to wake up and dequeue it.
961 */
962 signal_wake_up(t, sig == SIGKILL);
963 return;
964 }
965
966 static inline int legacy_queue(struct sigpending *signals, int sig)
967 {
968 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
969 }
970
971 #ifdef CONFIG_USER_NS
972 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
973 {
974 if (current_user_ns() == task_cred_xxx(t, user_ns))
975 return;
976
977 if (SI_FROMKERNEL(info))
978 return;
979
980 rcu_read_lock();
981 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
982 make_kuid(current_user_ns(), info->si_uid));
983 rcu_read_unlock();
984 }
985 #else
986 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
987 {
988 return;
989 }
990 #endif
991
992 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
993 int group, int from_ancestor_ns)
994 {
995 struct sigpending *pending;
996 struct sigqueue *q;
997 int override_rlimit;
998 int ret = 0, result;
999
1000 assert_spin_locked(&t->sighand->siglock);
1001
1002 result = TRACE_SIGNAL_IGNORED;
1003 if (!prepare_signal(sig, t,
1004 from_ancestor_ns || (info == SEND_SIG_FORCED)))
1005 goto ret;
1006
1007 pending = group ? &t->signal->shared_pending : &t->pending;
1008 /*
1009 * Short-circuit ignored signals and support queuing
1010 * exactly one non-rt signal, so that we can get more
1011 * detailed information about the cause of the signal.
1012 */
1013 result = TRACE_SIGNAL_ALREADY_PENDING;
1014 if (legacy_queue(pending, sig))
1015 goto ret;
1016
1017 result = TRACE_SIGNAL_DELIVERED;
1018 /*
1019 * fast-pathed signals for kernel-internal things like SIGSTOP
1020 * or SIGKILL.
1021 */
1022 if (info == SEND_SIG_FORCED)
1023 goto out_set;
1024
1025 /*
1026 * Real-time signals must be queued if sent by sigqueue, or
1027 * some other real-time mechanism. It is implementation
1028 * defined whether kill() does so. We attempt to do so, on
1029 * the principle of least surprise, but since kill is not
1030 * allowed to fail with EAGAIN when low on memory we just
1031 * make sure at least one signal gets delivered and don't
1032 * pass on the info struct.
1033 */
1034 if (sig < SIGRTMIN)
1035 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1036 else
1037 override_rlimit = 0;
1038
1039 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1040 override_rlimit);
1041 if (q) {
1042 list_add_tail(&q->list, &pending->list);
1043 switch ((unsigned long) info) {
1044 case (unsigned long) SEND_SIG_NOINFO:
1045 q->info.si_signo = sig;
1046 q->info.si_errno = 0;
1047 q->info.si_code = SI_USER;
1048 q->info.si_pid = task_tgid_nr_ns(current,
1049 task_active_pid_ns(t));
1050 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1051 break;
1052 case (unsigned long) SEND_SIG_PRIV:
1053 q->info.si_signo = sig;
1054 q->info.si_errno = 0;
1055 q->info.si_code = SI_KERNEL;
1056 q->info.si_pid = 0;
1057 q->info.si_uid = 0;
1058 break;
1059 default:
1060 copy_siginfo(&q->info, info);
1061 if (from_ancestor_ns)
1062 q->info.si_pid = 0;
1063 break;
1064 }
1065
1066 userns_fixup_signal_uid(&q->info, t);
1067
1068 } else if (!is_si_special(info)) {
1069 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1070 /*
1071 * Queue overflow, abort. We may abort if the
1072 * signal was rt and sent by user using something
1073 * other than kill().
1074 */
1075 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1076 ret = -EAGAIN;
1077 goto ret;
1078 } else {
1079 /*
1080 * This is a silent loss of information. We still
1081 * send the signal, but the *info bits are lost.
1082 */
1083 result = TRACE_SIGNAL_LOSE_INFO;
1084 }
1085 }
1086
1087 out_set:
1088 signalfd_notify(t, sig);
1089 sigaddset(&pending->signal, sig);
1090 complete_signal(sig, t, group);
1091 ret:
1092 trace_signal_generate(sig, info, t, group, result);
1093 return ret;
1094 }
1095
1096 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1097 int group)
1098 {
1099 int from_ancestor_ns = 0;
1100
1101 #ifdef CONFIG_PID_NS
1102 from_ancestor_ns = si_fromuser(info) &&
1103 !task_pid_nr_ns(current, task_active_pid_ns(t));
1104 #endif
1105
1106 return __send_signal(sig, info, t, group, from_ancestor_ns);
1107 }
1108
1109 static void print_fatal_signal(int signr)
1110 {
1111 struct pt_regs *regs = signal_pt_regs();
1112 pr_info("potentially unexpected fatal signal %d.\n", signr);
1113
1114 #if defined(__i386__) && !defined(__arch_um__)
1115 pr_info("code at %08lx: ", regs->ip);
1116 {
1117 int i;
1118 for (i = 0; i < 16; i++) {
1119 unsigned char insn;
1120
1121 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1122 break;
1123 pr_cont("%02x ", insn);
1124 }
1125 }
1126 pr_cont("\n");
1127 #endif
1128 preempt_disable();
1129 show_regs(regs);
1130 preempt_enable();
1131 }
1132
1133 static int __init setup_print_fatal_signals(char *str)
1134 {
1135 get_option (&str, &print_fatal_signals);
1136
1137 return 1;
1138 }
1139
1140 __setup("print-fatal-signals=", setup_print_fatal_signals);
1141
1142 int
1143 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1144 {
1145 return send_signal(sig, info, p, 1);
1146 }
1147
1148 static int
1149 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1150 {
1151 return send_signal(sig, info, t, 0);
1152 }
1153
1154 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1155 bool group)
1156 {
1157 unsigned long flags;
1158 int ret = -ESRCH;
1159
1160 if (lock_task_sighand(p, &flags)) {
1161 ret = send_signal(sig, info, p, group);
1162 unlock_task_sighand(p, &flags);
1163 }
1164
1165 return ret;
1166 }
1167
1168 /*
1169 * Force a signal that the process can't ignore: if necessary
1170 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1171 *
1172 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1173 * since we do not want to have a signal handler that was blocked
1174 * be invoked when user space had explicitly blocked it.
1175 *
1176 * We don't want to have recursive SIGSEGV's etc, for example,
1177 * that is why we also clear SIGNAL_UNKILLABLE.
1178 */
1179 int
1180 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1181 {
1182 unsigned long int flags;
1183 int ret, blocked, ignored;
1184 struct k_sigaction *action;
1185
1186 spin_lock_irqsave(&t->sighand->siglock, flags);
1187 action = &t->sighand->action[sig-1];
1188 ignored = action->sa.sa_handler == SIG_IGN;
1189 blocked = sigismember(&t->blocked, sig);
1190 if (blocked || ignored) {
1191 action->sa.sa_handler = SIG_DFL;
1192 if (blocked) {
1193 sigdelset(&t->blocked, sig);
1194 recalc_sigpending_and_wake(t);
1195 }
1196 }
1197 if (action->sa.sa_handler == SIG_DFL)
1198 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1199 ret = specific_send_sig_info(sig, info, t);
1200 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1201
1202 return ret;
1203 }
1204
1205 /*
1206 * Nuke all other threads in the group.
1207 */
1208 int zap_other_threads(struct task_struct *p)
1209 {
1210 struct task_struct *t = p;
1211 int count = 0;
1212
1213 p->signal->group_stop_count = 0;
1214
1215 while_each_thread(p, t) {
1216 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1217 count++;
1218
1219 /* Don't bother with already dead threads */
1220 if (t->exit_state)
1221 continue;
1222 sigaddset(&t->pending.signal, SIGKILL);
1223 signal_wake_up(t, 1);
1224 }
1225
1226 return count;
1227 }
1228
1229 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1230 unsigned long *flags)
1231 {
1232 struct sighand_struct *sighand;
1233
1234 for (;;) {
1235 /*
1236 * Disable interrupts early to avoid deadlocks.
1237 * See rcu_read_unlock() comment header for details.
1238 */
1239 local_irq_save(*flags);
1240 rcu_read_lock();
1241 sighand = rcu_dereference(tsk->sighand);
1242 if (unlikely(sighand == NULL)) {
1243 rcu_read_unlock();
1244 local_irq_restore(*flags);
1245 break;
1246 }
1247 /*
1248 * This sighand can be already freed and even reused, but
1249 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1250 * initializes ->siglock: this slab can't go away, it has
1251 * the same object type, ->siglock can't be reinitialized.
1252 *
1253 * We need to ensure that tsk->sighand is still the same
1254 * after we take the lock, we can race with de_thread() or
1255 * __exit_signal(). In the latter case the next iteration
1256 * must see ->sighand == NULL.
1257 */
1258 spin_lock(&sighand->siglock);
1259 if (likely(sighand == tsk->sighand)) {
1260 rcu_read_unlock();
1261 break;
1262 }
1263 spin_unlock(&sighand->siglock);
1264 rcu_read_unlock();
1265 local_irq_restore(*flags);
1266 }
1267
1268 return sighand;
1269 }
1270
1271 /*
1272 * send signal info to all the members of a group
1273 */
1274 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1275 {
1276 int ret;
1277
1278 rcu_read_lock();
1279 ret = check_kill_permission(sig, info, p);
1280 rcu_read_unlock();
1281
1282 if (!ret && sig)
1283 ret = do_send_sig_info(sig, info, p, true);
1284
1285 return ret;
1286 }
1287
1288 /*
1289 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1290 * control characters do (^C, ^Z etc)
1291 * - the caller must hold at least a readlock on tasklist_lock
1292 */
1293 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1294 {
1295 struct task_struct *p = NULL;
1296 int retval, success;
1297
1298 success = 0;
1299 retval = -ESRCH;
1300 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1301 int err = group_send_sig_info(sig, info, p);
1302 success |= !err;
1303 retval = err;
1304 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1305 return success ? 0 : retval;
1306 }
1307
1308 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1309 {
1310 int error = -ESRCH;
1311 struct task_struct *p;
1312
1313 for (;;) {
1314 rcu_read_lock();
1315 p = pid_task(pid, PIDTYPE_PID);
1316 if (p)
1317 error = group_send_sig_info(sig, info, p);
1318 rcu_read_unlock();
1319 if (likely(!p || error != -ESRCH))
1320 return error;
1321
1322 /*
1323 * The task was unhashed in between, try again. If it
1324 * is dead, pid_task() will return NULL, if we race with
1325 * de_thread() it will find the new leader.
1326 */
1327 }
1328 }
1329
1330 static int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1331 {
1332 int error;
1333 rcu_read_lock();
1334 error = kill_pid_info(sig, info, find_vpid(pid));
1335 rcu_read_unlock();
1336 return error;
1337 }
1338
1339 static int kill_as_cred_perm(const struct cred *cred,
1340 struct task_struct *target)
1341 {
1342 const struct cred *pcred = __task_cred(target);
1343 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1344 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid))
1345 return 0;
1346 return 1;
1347 }
1348
1349 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1350 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1351 const struct cred *cred, u32 secid)
1352 {
1353 int ret = -EINVAL;
1354 struct task_struct *p;
1355 unsigned long flags;
1356
1357 if (!valid_signal(sig))
1358 return ret;
1359
1360 rcu_read_lock();
1361 p = pid_task(pid, PIDTYPE_PID);
1362 if (!p) {
1363 ret = -ESRCH;
1364 goto out_unlock;
1365 }
1366 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1367 ret = -EPERM;
1368 goto out_unlock;
1369 }
1370 ret = security_task_kill(p, info, sig, secid);
1371 if (ret)
1372 goto out_unlock;
1373
1374 if (sig) {
1375 if (lock_task_sighand(p, &flags)) {
1376 ret = __send_signal(sig, info, p, 1, 0);
1377 unlock_task_sighand(p, &flags);
1378 } else
1379 ret = -ESRCH;
1380 }
1381 out_unlock:
1382 rcu_read_unlock();
1383 return ret;
1384 }
1385 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1386
1387 /*
1388 * kill_something_info() interprets pid in interesting ways just like kill(2).
1389 *
1390 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1391 * is probably wrong. Should make it like BSD or SYSV.
1392 */
1393
1394 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1395 {
1396 int ret;
1397
1398 if (pid > 0) {
1399 rcu_read_lock();
1400 ret = kill_pid_info(sig, info, find_vpid(pid));
1401 rcu_read_unlock();
1402 return ret;
1403 }
1404
1405 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1406 if (pid == INT_MIN)
1407 return -ESRCH;
1408
1409 read_lock(&tasklist_lock);
1410 if (pid != -1) {
1411 ret = __kill_pgrp_info(sig, info,
1412 pid ? find_vpid(-pid) : task_pgrp(current));
1413 } else {
1414 int retval = 0, count = 0;
1415 struct task_struct * p;
1416
1417 for_each_process(p) {
1418 if (task_pid_vnr(p) > 1 &&
1419 !same_thread_group(p, current)) {
1420 int err = group_send_sig_info(sig, info, p);
1421 ++count;
1422 if (err != -EPERM)
1423 retval = err;
1424 }
1425 }
1426 ret = count ? retval : -ESRCH;
1427 }
1428 read_unlock(&tasklist_lock);
1429
1430 return ret;
1431 }
1432
1433 /*
1434 * These are for backward compatibility with the rest of the kernel source.
1435 */
1436
1437 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1438 {
1439 /*
1440 * Make sure legacy kernel users don't send in bad values
1441 * (normal paths check this in check_kill_permission).
1442 */
1443 if (!valid_signal(sig))
1444 return -EINVAL;
1445
1446 return do_send_sig_info(sig, info, p, false);
1447 }
1448
1449 #define __si_special(priv) \
1450 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1451
1452 int
1453 send_sig(int sig, struct task_struct *p, int priv)
1454 {
1455 return send_sig_info(sig, __si_special(priv), p);
1456 }
1457
1458 void
1459 force_sig(int sig, struct task_struct *p)
1460 {
1461 force_sig_info(sig, SEND_SIG_PRIV, p);
1462 }
1463
1464 /*
1465 * When things go south during signal handling, we
1466 * will force a SIGSEGV. And if the signal that caused
1467 * the problem was already a SIGSEGV, we'll want to
1468 * make sure we don't even try to deliver the signal..
1469 */
1470 int
1471 force_sigsegv(int sig, struct task_struct *p)
1472 {
1473 if (sig == SIGSEGV) {
1474 unsigned long flags;
1475 spin_lock_irqsave(&p->sighand->siglock, flags);
1476 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1477 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1478 }
1479 force_sig(SIGSEGV, p);
1480 return 0;
1481 }
1482
1483 int kill_pgrp(struct pid *pid, int sig, int priv)
1484 {
1485 int ret;
1486
1487 read_lock(&tasklist_lock);
1488 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1489 read_unlock(&tasklist_lock);
1490
1491 return ret;
1492 }
1493 EXPORT_SYMBOL(kill_pgrp);
1494
1495 int kill_pid(struct pid *pid, int sig, int priv)
1496 {
1497 return kill_pid_info(sig, __si_special(priv), pid);
1498 }
1499 EXPORT_SYMBOL(kill_pid);
1500
1501 /*
1502 * These functions support sending signals using preallocated sigqueue
1503 * structures. This is needed "because realtime applications cannot
1504 * afford to lose notifications of asynchronous events, like timer
1505 * expirations or I/O completions". In the case of POSIX Timers
1506 * we allocate the sigqueue structure from the timer_create. If this
1507 * allocation fails we are able to report the failure to the application
1508 * with an EAGAIN error.
1509 */
1510 struct sigqueue *sigqueue_alloc(void)
1511 {
1512 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1513
1514 if (q)
1515 q->flags |= SIGQUEUE_PREALLOC;
1516
1517 return q;
1518 }
1519
1520 void sigqueue_free(struct sigqueue *q)
1521 {
1522 unsigned long flags;
1523 spinlock_t *lock = &current->sighand->siglock;
1524
1525 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1526 /*
1527 * We must hold ->siglock while testing q->list
1528 * to serialize with collect_signal() or with
1529 * __exit_signal()->flush_sigqueue().
1530 */
1531 spin_lock_irqsave(lock, flags);
1532 q->flags &= ~SIGQUEUE_PREALLOC;
1533 /*
1534 * If it is queued it will be freed when dequeued,
1535 * like the "regular" sigqueue.
1536 */
1537 if (!list_empty(&q->list))
1538 q = NULL;
1539 spin_unlock_irqrestore(lock, flags);
1540
1541 if (q)
1542 __sigqueue_free(q);
1543 }
1544
1545 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1546 {
1547 int sig = q->info.si_signo;
1548 struct sigpending *pending;
1549 unsigned long flags;
1550 int ret, result;
1551
1552 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1553
1554 ret = -1;
1555 if (!likely(lock_task_sighand(t, &flags)))
1556 goto ret;
1557
1558 ret = 1; /* the signal is ignored */
1559 result = TRACE_SIGNAL_IGNORED;
1560 if (!prepare_signal(sig, t, false))
1561 goto out;
1562
1563 ret = 0;
1564 if (unlikely(!list_empty(&q->list))) {
1565 /*
1566 * If an SI_TIMER entry is already queue just increment
1567 * the overrun count.
1568 */
1569 BUG_ON(q->info.si_code != SI_TIMER);
1570 q->info.si_overrun++;
1571 result = TRACE_SIGNAL_ALREADY_PENDING;
1572 goto out;
1573 }
1574 q->info.si_overrun = 0;
1575
1576 signalfd_notify(t, sig);
1577 pending = group ? &t->signal->shared_pending : &t->pending;
1578 list_add_tail(&q->list, &pending->list);
1579 sigaddset(&pending->signal, sig);
1580 complete_signal(sig, t, group);
1581 result = TRACE_SIGNAL_DELIVERED;
1582 out:
1583 trace_signal_generate(sig, &q->info, t, group, result);
1584 unlock_task_sighand(t, &flags);
1585 ret:
1586 return ret;
1587 }
1588
1589 /*
1590 * Let a parent know about the death of a child.
1591 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1592 *
1593 * Returns true if our parent ignored us and so we've switched to
1594 * self-reaping.
1595 */
1596 bool do_notify_parent(struct task_struct *tsk, int sig)
1597 {
1598 struct siginfo info;
1599 unsigned long flags;
1600 struct sighand_struct *psig;
1601 bool autoreap = false;
1602 u64 utime, stime;
1603
1604 BUG_ON(sig == -1);
1605
1606 /* do_notify_parent_cldstop should have been called instead. */
1607 BUG_ON(task_is_stopped_or_traced(tsk));
1608
1609 BUG_ON(!tsk->ptrace &&
1610 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1611
1612 if (sig != SIGCHLD) {
1613 /*
1614 * This is only possible if parent == real_parent.
1615 * Check if it has changed security domain.
1616 */
1617 if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1618 sig = SIGCHLD;
1619 }
1620
1621 info.si_signo = sig;
1622 info.si_errno = 0;
1623 /*
1624 * We are under tasklist_lock here so our parent is tied to
1625 * us and cannot change.
1626 *
1627 * task_active_pid_ns will always return the same pid namespace
1628 * until a task passes through release_task.
1629 *
1630 * write_lock() currently calls preempt_disable() which is the
1631 * same as rcu_read_lock(), but according to Oleg, this is not
1632 * correct to rely on this
1633 */
1634 rcu_read_lock();
1635 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1636 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1637 task_uid(tsk));
1638 rcu_read_unlock();
1639
1640 task_cputime(tsk, &utime, &stime);
1641 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1642 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1643
1644 info.si_status = tsk->exit_code & 0x7f;
1645 if (tsk->exit_code & 0x80)
1646 info.si_code = CLD_DUMPED;
1647 else if (tsk->exit_code & 0x7f)
1648 info.si_code = CLD_KILLED;
1649 else {
1650 info.si_code = CLD_EXITED;
1651 info.si_status = tsk->exit_code >> 8;
1652 }
1653
1654 psig = tsk->parent->sighand;
1655 spin_lock_irqsave(&psig->siglock, flags);
1656 if (!tsk->ptrace && sig == SIGCHLD &&
1657 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1658 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1659 /*
1660 * We are exiting and our parent doesn't care. POSIX.1
1661 * defines special semantics for setting SIGCHLD to SIG_IGN
1662 * or setting the SA_NOCLDWAIT flag: we should be reaped
1663 * automatically and not left for our parent's wait4 call.
1664 * Rather than having the parent do it as a magic kind of
1665 * signal handler, we just set this to tell do_exit that we
1666 * can be cleaned up without becoming a zombie. Note that
1667 * we still call __wake_up_parent in this case, because a
1668 * blocked sys_wait4 might now return -ECHILD.
1669 *
1670 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1671 * is implementation-defined: we do (if you don't want
1672 * it, just use SIG_IGN instead).
1673 */
1674 autoreap = true;
1675 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1676 sig = 0;
1677 }
1678 if (valid_signal(sig) && sig)
1679 __group_send_sig_info(sig, &info, tsk->parent);
1680 __wake_up_parent(tsk, tsk->parent);
1681 spin_unlock_irqrestore(&psig->siglock, flags);
1682
1683 return autoreap;
1684 }
1685
1686 /**
1687 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1688 * @tsk: task reporting the state change
1689 * @for_ptracer: the notification is for ptracer
1690 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1691 *
1692 * Notify @tsk's parent that the stopped/continued state has changed. If
1693 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1694 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1695 *
1696 * CONTEXT:
1697 * Must be called with tasklist_lock at least read locked.
1698 */
1699 static void do_notify_parent_cldstop(struct task_struct *tsk,
1700 bool for_ptracer, int why)
1701 {
1702 struct siginfo info;
1703 unsigned long flags;
1704 struct task_struct *parent;
1705 struct sighand_struct *sighand;
1706 u64 utime, stime;
1707
1708 if (for_ptracer) {
1709 parent = tsk->parent;
1710 } else {
1711 tsk = tsk->group_leader;
1712 parent = tsk->real_parent;
1713 }
1714
1715 info.si_signo = SIGCHLD;
1716 info.si_errno = 0;
1717 /*
1718 * see comment in do_notify_parent() about the following 4 lines
1719 */
1720 rcu_read_lock();
1721 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1722 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1723 rcu_read_unlock();
1724
1725 task_cputime(tsk, &utime, &stime);
1726 info.si_utime = nsec_to_clock_t(utime);
1727 info.si_stime = nsec_to_clock_t(stime);
1728
1729 info.si_code = why;
1730 switch (why) {
1731 case CLD_CONTINUED:
1732 info.si_status = SIGCONT;
1733 break;
1734 case CLD_STOPPED:
1735 info.si_status = tsk->signal->group_exit_code & 0x7f;
1736 break;
1737 case CLD_TRAPPED:
1738 info.si_status = tsk->exit_code & 0x7f;
1739 break;
1740 default:
1741 BUG();
1742 }
1743
1744 sighand = parent->sighand;
1745 spin_lock_irqsave(&sighand->siglock, flags);
1746 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1747 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1748 __group_send_sig_info(SIGCHLD, &info, parent);
1749 /*
1750 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1751 */
1752 __wake_up_parent(tsk, parent);
1753 spin_unlock_irqrestore(&sighand->siglock, flags);
1754 }
1755
1756 static inline int may_ptrace_stop(void)
1757 {
1758 if (!likely(current->ptrace))
1759 return 0;
1760 /*
1761 * Are we in the middle of do_coredump?
1762 * If so and our tracer is also part of the coredump stopping
1763 * is a deadlock situation, and pointless because our tracer
1764 * is dead so don't allow us to stop.
1765 * If SIGKILL was already sent before the caller unlocked
1766 * ->siglock we must see ->core_state != NULL. Otherwise it
1767 * is safe to enter schedule().
1768 *
1769 * This is almost outdated, a task with the pending SIGKILL can't
1770 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1771 * after SIGKILL was already dequeued.
1772 */
1773 if (unlikely(current->mm->core_state) &&
1774 unlikely(current->mm == current->parent->mm))
1775 return 0;
1776
1777 return 1;
1778 }
1779
1780 /*
1781 * Return non-zero if there is a SIGKILL that should be waking us up.
1782 * Called with the siglock held.
1783 */
1784 static int sigkill_pending(struct task_struct *tsk)
1785 {
1786 return sigismember(&tsk->pending.signal, SIGKILL) ||
1787 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1788 }
1789
1790 /*
1791 * This must be called with current->sighand->siglock held.
1792 *
1793 * This should be the path for all ptrace stops.
1794 * We always set current->last_siginfo while stopped here.
1795 * That makes it a way to test a stopped process for
1796 * being ptrace-stopped vs being job-control-stopped.
1797 *
1798 * If we actually decide not to stop at all because the tracer
1799 * is gone, we keep current->exit_code unless clear_code.
1800 */
1801 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1802 __releases(&current->sighand->siglock)
1803 __acquires(&current->sighand->siglock)
1804 {
1805 bool gstop_done = false;
1806
1807 if (arch_ptrace_stop_needed(exit_code, info)) {
1808 /*
1809 * The arch code has something special to do before a
1810 * ptrace stop. This is allowed to block, e.g. for faults
1811 * on user stack pages. We can't keep the siglock while
1812 * calling arch_ptrace_stop, so we must release it now.
1813 * To preserve proper semantics, we must do this before
1814 * any signal bookkeeping like checking group_stop_count.
1815 * Meanwhile, a SIGKILL could come in before we retake the
1816 * siglock. That must prevent us from sleeping in TASK_TRACED.
1817 * So after regaining the lock, we must check for SIGKILL.
1818 */
1819 spin_unlock_irq(&current->sighand->siglock);
1820 arch_ptrace_stop(exit_code, info);
1821 spin_lock_irq(&current->sighand->siglock);
1822 if (sigkill_pending(current))
1823 return;
1824 }
1825
1826 /*
1827 * We're committing to trapping. TRACED should be visible before
1828 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1829 * Also, transition to TRACED and updates to ->jobctl should be
1830 * atomic with respect to siglock and should be done after the arch
1831 * hook as siglock is released and regrabbed across it.
1832 */
1833 set_current_state(TASK_TRACED);
1834
1835 current->last_siginfo = info;
1836 current->exit_code = exit_code;
1837
1838 /*
1839 * If @why is CLD_STOPPED, we're trapping to participate in a group
1840 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
1841 * across siglock relocks since INTERRUPT was scheduled, PENDING
1842 * could be clear now. We act as if SIGCONT is received after
1843 * TASK_TRACED is entered - ignore it.
1844 */
1845 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1846 gstop_done = task_participate_group_stop(current);
1847
1848 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1849 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1850 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1851 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1852
1853 /* entering a trap, clear TRAPPING */
1854 task_clear_jobctl_trapping(current);
1855
1856 spin_unlock_irq(&current->sighand->siglock);
1857 read_lock(&tasklist_lock);
1858 if (may_ptrace_stop()) {
1859 /*
1860 * Notify parents of the stop.
1861 *
1862 * While ptraced, there are two parents - the ptracer and
1863 * the real_parent of the group_leader. The ptracer should
1864 * know about every stop while the real parent is only
1865 * interested in the completion of group stop. The states
1866 * for the two don't interact with each other. Notify
1867 * separately unless they're gonna be duplicates.
1868 */
1869 do_notify_parent_cldstop(current, true, why);
1870 if (gstop_done && ptrace_reparented(current))
1871 do_notify_parent_cldstop(current, false, why);
1872
1873 /*
1874 * Don't want to allow preemption here, because
1875 * sys_ptrace() needs this task to be inactive.
1876 *
1877 * XXX: implement read_unlock_no_resched().
1878 */
1879 preempt_disable();
1880 read_unlock(&tasklist_lock);
1881 preempt_enable_no_resched();
1882 freezable_schedule();
1883 } else {
1884 /*
1885 * By the time we got the lock, our tracer went away.
1886 * Don't drop the lock yet, another tracer may come.
1887 *
1888 * If @gstop_done, the ptracer went away between group stop
1889 * completion and here. During detach, it would have set
1890 * JOBCTL_STOP_PENDING on us and we'll re-enter
1891 * TASK_STOPPED in do_signal_stop() on return, so notifying
1892 * the real parent of the group stop completion is enough.
1893 */
1894 if (gstop_done)
1895 do_notify_parent_cldstop(current, false, why);
1896
1897 /* tasklist protects us from ptrace_freeze_traced() */
1898 __set_current_state(TASK_RUNNING);
1899 if (clear_code)
1900 current->exit_code = 0;
1901 read_unlock(&tasklist_lock);
1902 }
1903
1904 /*
1905 * We are back. Now reacquire the siglock before touching
1906 * last_siginfo, so that we are sure to have synchronized with
1907 * any signal-sending on another CPU that wants to examine it.
1908 */
1909 spin_lock_irq(&current->sighand->siglock);
1910 current->last_siginfo = NULL;
1911
1912 /* LISTENING can be set only during STOP traps, clear it */
1913 current->jobctl &= ~JOBCTL_LISTENING;
1914
1915 /*
1916 * Queued signals ignored us while we were stopped for tracing.
1917 * So check for any that we should take before resuming user mode.
1918 * This sets TIF_SIGPENDING, but never clears it.
1919 */
1920 recalc_sigpending_tsk(current);
1921 }
1922
1923 static void ptrace_do_notify(int signr, int exit_code, int why)
1924 {
1925 siginfo_t info;
1926
1927 memset(&info, 0, sizeof info);
1928 info.si_signo = signr;
1929 info.si_code = exit_code;
1930 info.si_pid = task_pid_vnr(current);
1931 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1932
1933 /* Let the debugger run. */
1934 ptrace_stop(exit_code, why, 1, &info);
1935 }
1936
1937 void ptrace_notify(int exit_code)
1938 {
1939 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1940 if (unlikely(current->task_works))
1941 task_work_run();
1942
1943 spin_lock_irq(&current->sighand->siglock);
1944 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1945 spin_unlock_irq(&current->sighand->siglock);
1946 }
1947
1948 /**
1949 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1950 * @signr: signr causing group stop if initiating
1951 *
1952 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1953 * and participate in it. If already set, participate in the existing
1954 * group stop. If participated in a group stop (and thus slept), %true is
1955 * returned with siglock released.
1956 *
1957 * If ptraced, this function doesn't handle stop itself. Instead,
1958 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1959 * untouched. The caller must ensure that INTERRUPT trap handling takes
1960 * places afterwards.
1961 *
1962 * CONTEXT:
1963 * Must be called with @current->sighand->siglock held, which is released
1964 * on %true return.
1965 *
1966 * RETURNS:
1967 * %false if group stop is already cancelled or ptrace trap is scheduled.
1968 * %true if participated in group stop.
1969 */
1970 static bool do_signal_stop(int signr)
1971 __releases(&current->sighand->siglock)
1972 {
1973 struct signal_struct *sig = current->signal;
1974
1975 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1976 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1977 struct task_struct *t;
1978
1979 /* signr will be recorded in task->jobctl for retries */
1980 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
1981
1982 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
1983 unlikely(signal_group_exit(sig)))
1984 return false;
1985 /*
1986 * There is no group stop already in progress. We must
1987 * initiate one now.
1988 *
1989 * While ptraced, a task may be resumed while group stop is
1990 * still in effect and then receive a stop signal and
1991 * initiate another group stop. This deviates from the
1992 * usual behavior as two consecutive stop signals can't
1993 * cause two group stops when !ptraced. That is why we
1994 * also check !task_is_stopped(t) below.
1995 *
1996 * The condition can be distinguished by testing whether
1997 * SIGNAL_STOP_STOPPED is already set. Don't generate
1998 * group_exit_code in such case.
1999 *
2000 * This is not necessary for SIGNAL_STOP_CONTINUED because
2001 * an intervening stop signal is required to cause two
2002 * continued events regardless of ptrace.
2003 */
2004 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2005 sig->group_exit_code = signr;
2006
2007 sig->group_stop_count = 0;
2008
2009 if (task_set_jobctl_pending(current, signr | gstop))
2010 sig->group_stop_count++;
2011
2012 t = current;
2013 while_each_thread(current, t) {
2014 /*
2015 * Setting state to TASK_STOPPED for a group
2016 * stop is always done with the siglock held,
2017 * so this check has no races.
2018 */
2019 if (!task_is_stopped(t) &&
2020 task_set_jobctl_pending(t, signr | gstop)) {
2021 sig->group_stop_count++;
2022 if (likely(!(t->ptrace & PT_SEIZED)))
2023 signal_wake_up(t, 0);
2024 else
2025 ptrace_trap_notify(t);
2026 }
2027 }
2028 }
2029
2030 if (likely(!current->ptrace)) {
2031 int notify = 0;
2032
2033 /*
2034 * If there are no other threads in the group, or if there
2035 * is a group stop in progress and we are the last to stop,
2036 * report to the parent.
2037 */
2038 if (task_participate_group_stop(current))
2039 notify = CLD_STOPPED;
2040
2041 __set_current_state(TASK_STOPPED);
2042 spin_unlock_irq(&current->sighand->siglock);
2043
2044 /*
2045 * Notify the parent of the group stop completion. Because
2046 * we're not holding either the siglock or tasklist_lock
2047 * here, ptracer may attach inbetween; however, this is for
2048 * group stop and should always be delivered to the real
2049 * parent of the group leader. The new ptracer will get
2050 * its notification when this task transitions into
2051 * TASK_TRACED.
2052 */
2053 if (notify) {
2054 read_lock(&tasklist_lock);
2055 do_notify_parent_cldstop(current, false, notify);
2056 read_unlock(&tasklist_lock);
2057 }
2058
2059 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2060 freezable_schedule();
2061 return true;
2062 } else {
2063 /*
2064 * While ptraced, group stop is handled by STOP trap.
2065 * Schedule it and let the caller deal with it.
2066 */
2067 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2068 return false;
2069 }
2070 }
2071
2072 /**
2073 * do_jobctl_trap - take care of ptrace jobctl traps
2074 *
2075 * When PT_SEIZED, it's used for both group stop and explicit
2076 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2077 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2078 * the stop signal; otherwise, %SIGTRAP.
2079 *
2080 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2081 * number as exit_code and no siginfo.
2082 *
2083 * CONTEXT:
2084 * Must be called with @current->sighand->siglock held, which may be
2085 * released and re-acquired before returning with intervening sleep.
2086 */
2087 static void do_jobctl_trap(void)
2088 {
2089 struct signal_struct *signal = current->signal;
2090 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2091
2092 if (current->ptrace & PT_SEIZED) {
2093 if (!signal->group_stop_count &&
2094 !(signal->flags & SIGNAL_STOP_STOPPED))
2095 signr = SIGTRAP;
2096 WARN_ON_ONCE(!signr);
2097 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2098 CLD_STOPPED);
2099 } else {
2100 WARN_ON_ONCE(!signr);
2101 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2102 current->exit_code = 0;
2103 }
2104 }
2105
2106 static int ptrace_signal(int signr, siginfo_t *info)
2107 {
2108 /*
2109 * We do not check sig_kernel_stop(signr) but set this marker
2110 * unconditionally because we do not know whether debugger will
2111 * change signr. This flag has no meaning unless we are going
2112 * to stop after return from ptrace_stop(). In this case it will
2113 * be checked in do_signal_stop(), we should only stop if it was
2114 * not cleared by SIGCONT while we were sleeping. See also the
2115 * comment in dequeue_signal().
2116 */
2117 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2118 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2119
2120 /* We're back. Did the debugger cancel the sig? */
2121 signr = current->exit_code;
2122 if (signr == 0)
2123 return signr;
2124
2125 current->exit_code = 0;
2126
2127 /*
2128 * Update the siginfo structure if the signal has
2129 * changed. If the debugger wanted something
2130 * specific in the siginfo structure then it should
2131 * have updated *info via PTRACE_SETSIGINFO.
2132 */
2133 if (signr != info->si_signo) {
2134 info->si_signo = signr;
2135 info->si_errno = 0;
2136 info->si_code = SI_USER;
2137 rcu_read_lock();
2138 info->si_pid = task_pid_vnr(current->parent);
2139 info->si_uid = from_kuid_munged(current_user_ns(),
2140 task_uid(current->parent));
2141 rcu_read_unlock();
2142 }
2143
2144 /* If the (new) signal is now blocked, requeue it. */
2145 if (sigismember(&current->blocked, signr)) {
2146 specific_send_sig_info(signr, info, current);
2147 signr = 0;
2148 }
2149
2150 return signr;
2151 }
2152
2153 int get_signal(struct ksignal *ksig)
2154 {
2155 struct sighand_struct *sighand = current->sighand;
2156 struct signal_struct *signal = current->signal;
2157 int signr;
2158
2159 if (unlikely(current->task_works))
2160 task_work_run();
2161
2162 if (unlikely(uprobe_deny_signal()))
2163 return 0;
2164
2165 /*
2166 * Do this once, we can't return to user-mode if freezing() == T.
2167 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2168 * thus do not need another check after return.
2169 */
2170 try_to_freeze();
2171
2172 relock:
2173 spin_lock_irq(&sighand->siglock);
2174 /*
2175 * Every stopped thread goes here after wakeup. Check to see if
2176 * we should notify the parent, prepare_signal(SIGCONT) encodes
2177 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2178 */
2179 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2180 int why;
2181
2182 if (signal->flags & SIGNAL_CLD_CONTINUED)
2183 why = CLD_CONTINUED;
2184 else
2185 why = CLD_STOPPED;
2186
2187 signal->flags &= ~SIGNAL_CLD_MASK;
2188
2189 spin_unlock_irq(&sighand->siglock);
2190
2191 /*
2192 * Notify the parent that we're continuing. This event is
2193 * always per-process and doesn't make whole lot of sense
2194 * for ptracers, who shouldn't consume the state via
2195 * wait(2) either, but, for backward compatibility, notify
2196 * the ptracer of the group leader too unless it's gonna be
2197 * a duplicate.
2198 */
2199 read_lock(&tasklist_lock);
2200 do_notify_parent_cldstop(current, false, why);
2201
2202 if (ptrace_reparented(current->group_leader))
2203 do_notify_parent_cldstop(current->group_leader,
2204 true, why);
2205 read_unlock(&tasklist_lock);
2206
2207 goto relock;
2208 }
2209
2210 for (;;) {
2211 struct k_sigaction *ka;
2212
2213 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2214 do_signal_stop(0))
2215 goto relock;
2216
2217 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2218 do_jobctl_trap();
2219 spin_unlock_irq(&sighand->siglock);
2220 goto relock;
2221 }
2222
2223 signr = dequeue_signal(current, &current->blocked, &ksig->info);
2224
2225 if (!signr)
2226 break; /* will return 0 */
2227
2228 if (unlikely(current->ptrace) && signr != SIGKILL) {
2229 signr = ptrace_signal(signr, &ksig->info);
2230 if (!signr)
2231 continue;
2232 }
2233
2234 ka = &sighand->action[signr-1];
2235
2236 /* Trace actually delivered signals. */
2237 trace_signal_deliver(signr, &ksig->info, ka);
2238
2239 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2240 continue;
2241 if (ka->sa.sa_handler != SIG_DFL) {
2242 /* Run the handler. */
2243 ksig->ka = *ka;
2244
2245 if (ka->sa.sa_flags & SA_ONESHOT)
2246 ka->sa.sa_handler = SIG_DFL;
2247
2248 break; /* will return non-zero "signr" value */
2249 }
2250
2251 /*
2252 * Now we are doing the default action for this signal.
2253 */
2254 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2255 continue;
2256
2257 /*
2258 * Global init gets no signals it doesn't want.
2259 * Container-init gets no signals it doesn't want from same
2260 * container.
2261 *
2262 * Note that if global/container-init sees a sig_kernel_only()
2263 * signal here, the signal must have been generated internally
2264 * or must have come from an ancestor namespace. In either
2265 * case, the signal cannot be dropped.
2266 */
2267 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2268 !sig_kernel_only(signr))
2269 continue;
2270
2271 if (sig_kernel_stop(signr)) {
2272 /*
2273 * The default action is to stop all threads in
2274 * the thread group. The job control signals
2275 * do nothing in an orphaned pgrp, but SIGSTOP
2276 * always works. Note that siglock needs to be
2277 * dropped during the call to is_orphaned_pgrp()
2278 * because of lock ordering with tasklist_lock.
2279 * This allows an intervening SIGCONT to be posted.
2280 * We need to check for that and bail out if necessary.
2281 */
2282 if (signr != SIGSTOP) {
2283 spin_unlock_irq(&sighand->siglock);
2284
2285 /* signals can be posted during this window */
2286
2287 if (is_current_pgrp_orphaned())
2288 goto relock;
2289
2290 spin_lock_irq(&sighand->siglock);
2291 }
2292
2293 if (likely(do_signal_stop(ksig->info.si_signo))) {
2294 /* It released the siglock. */
2295 goto relock;
2296 }
2297
2298 /*
2299 * We didn't actually stop, due to a race
2300 * with SIGCONT or something like that.
2301 */
2302 continue;
2303 }
2304
2305 spin_unlock_irq(&sighand->siglock);
2306
2307 /*
2308 * Anything else is fatal, maybe with a core dump.
2309 */
2310 current->flags |= PF_SIGNALED;
2311
2312 if (sig_kernel_coredump(signr)) {
2313 if (print_fatal_signals)
2314 print_fatal_signal(ksig->info.si_signo);
2315 proc_coredump_connector(current);
2316 /*
2317 * If it was able to dump core, this kills all
2318 * other threads in the group and synchronizes with
2319 * their demise. If we lost the race with another
2320 * thread getting here, it set group_exit_code
2321 * first and our do_group_exit call below will use
2322 * that value and ignore the one we pass it.
2323 */
2324 do_coredump(&ksig->info);
2325 }
2326
2327 /*
2328 * Death signals, no core dump.
2329 */
2330 do_group_exit(ksig->info.si_signo);
2331 /* NOTREACHED */
2332 }
2333 spin_unlock_irq(&sighand->siglock);
2334
2335 ksig->sig = signr;
2336 return ksig->sig > 0;
2337 }
2338
2339 /**
2340 * signal_delivered -
2341 * @ksig: kernel signal struct
2342 * @stepping: nonzero if debugger single-step or block-step in use
2343 *
2344 * This function should be called when a signal has successfully been
2345 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2346 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2347 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2348 */
2349 static void signal_delivered(struct ksignal *ksig, int stepping)
2350 {
2351 sigset_t blocked;
2352
2353 /* A signal was successfully delivered, and the
2354 saved sigmask was stored on the signal frame,
2355 and will be restored by sigreturn. So we can
2356 simply clear the restore sigmask flag. */
2357 clear_restore_sigmask();
2358
2359 sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2360 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2361 sigaddset(&blocked, ksig->sig);
2362 set_current_blocked(&blocked);
2363 tracehook_signal_handler(stepping);
2364 }
2365
2366 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2367 {
2368 if (failed)
2369 force_sigsegv(ksig->sig, current);
2370 else
2371 signal_delivered(ksig, stepping);
2372 }
2373
2374 /*
2375 * It could be that complete_signal() picked us to notify about the
2376 * group-wide signal. Other threads should be notified now to take
2377 * the shared signals in @which since we will not.
2378 */
2379 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2380 {
2381 sigset_t retarget;
2382 struct task_struct *t;
2383
2384 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2385 if (sigisemptyset(&retarget))
2386 return;
2387
2388 t = tsk;
2389 while_each_thread(tsk, t) {
2390 if (t->flags & PF_EXITING)
2391 continue;
2392
2393 if (!has_pending_signals(&retarget, &t->blocked))
2394 continue;
2395 /* Remove the signals this thread can handle. */
2396 sigandsets(&retarget, &retarget, &t->blocked);
2397
2398 if (!signal_pending(t))
2399 signal_wake_up(t, 0);
2400
2401 if (sigisemptyset(&retarget))
2402 break;
2403 }
2404 }
2405
2406 void exit_signals(struct task_struct *tsk)
2407 {
2408 int group_stop = 0;
2409 sigset_t unblocked;
2410
2411 /*
2412 * @tsk is about to have PF_EXITING set - lock out users which
2413 * expect stable threadgroup.
2414 */
2415 cgroup_threadgroup_change_begin(tsk);
2416
2417 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2418 tsk->flags |= PF_EXITING;
2419 cgroup_threadgroup_change_end(tsk);
2420 return;
2421 }
2422
2423 spin_lock_irq(&tsk->sighand->siglock);
2424 /*
2425 * From now this task is not visible for group-wide signals,
2426 * see wants_signal(), do_signal_stop().
2427 */
2428 tsk->flags |= PF_EXITING;
2429
2430 cgroup_threadgroup_change_end(tsk);
2431
2432 if (!signal_pending(tsk))
2433 goto out;
2434
2435 unblocked = tsk->blocked;
2436 signotset(&unblocked);
2437 retarget_shared_pending(tsk, &unblocked);
2438
2439 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2440 task_participate_group_stop(tsk))
2441 group_stop = CLD_STOPPED;
2442 out:
2443 spin_unlock_irq(&tsk->sighand->siglock);
2444
2445 /*
2446 * If group stop has completed, deliver the notification. This
2447 * should always go to the real parent of the group leader.
2448 */
2449 if (unlikely(group_stop)) {
2450 read_lock(&tasklist_lock);
2451 do_notify_parent_cldstop(tsk, false, group_stop);
2452 read_unlock(&tasklist_lock);
2453 }
2454 }
2455
2456 EXPORT_SYMBOL(recalc_sigpending);
2457 EXPORT_SYMBOL_GPL(dequeue_signal);
2458 EXPORT_SYMBOL(flush_signals);
2459 EXPORT_SYMBOL(force_sig);
2460 EXPORT_SYMBOL(send_sig);
2461 EXPORT_SYMBOL(send_sig_info);
2462 EXPORT_SYMBOL(sigprocmask);
2463
2464 /*
2465 * System call entry points.
2466 */
2467
2468 /**
2469 * sys_restart_syscall - restart a system call
2470 */
2471 SYSCALL_DEFINE0(restart_syscall)
2472 {
2473 struct restart_block *restart = &current->restart_block;
2474 return restart->fn(restart);
2475 }
2476
2477 long do_no_restart_syscall(struct restart_block *param)
2478 {
2479 return -EINTR;
2480 }
2481
2482 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2483 {
2484 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2485 sigset_t newblocked;
2486 /* A set of now blocked but previously unblocked signals. */
2487 sigandnsets(&newblocked, newset, &current->blocked);
2488 retarget_shared_pending(tsk, &newblocked);
2489 }
2490 tsk->blocked = *newset;
2491 recalc_sigpending();
2492 }
2493
2494 /**
2495 * set_current_blocked - change current->blocked mask
2496 * @newset: new mask
2497 *
2498 * It is wrong to change ->blocked directly, this helper should be used
2499 * to ensure the process can't miss a shared signal we are going to block.
2500 */
2501 void set_current_blocked(sigset_t *newset)
2502 {
2503 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2504 __set_current_blocked(newset);
2505 }
2506
2507 void __set_current_blocked(const sigset_t *newset)
2508 {
2509 struct task_struct *tsk = current;
2510
2511 /*
2512 * In case the signal mask hasn't changed, there is nothing we need
2513 * to do. The current->blocked shouldn't be modified by other task.
2514 */
2515 if (sigequalsets(&tsk->blocked, newset))
2516 return;
2517
2518 spin_lock_irq(&tsk->sighand->siglock);
2519 __set_task_blocked(tsk, newset);
2520 spin_unlock_irq(&tsk->sighand->siglock);
2521 }
2522
2523 /*
2524 * This is also useful for kernel threads that want to temporarily
2525 * (or permanently) block certain signals.
2526 *
2527 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2528 * interface happily blocks "unblockable" signals like SIGKILL
2529 * and friends.
2530 */
2531 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2532 {
2533 struct task_struct *tsk = current;
2534 sigset_t newset;
2535
2536 /* Lockless, only current can change ->blocked, never from irq */
2537 if (oldset)
2538 *oldset = tsk->blocked;
2539
2540 switch (how) {
2541 case SIG_BLOCK:
2542 sigorsets(&newset, &tsk->blocked, set);
2543 break;
2544 case SIG_UNBLOCK:
2545 sigandnsets(&newset, &tsk->blocked, set);
2546 break;
2547 case SIG_SETMASK:
2548 newset = *set;
2549 break;
2550 default:
2551 return -EINVAL;
2552 }
2553
2554 __set_current_blocked(&newset);
2555 return 0;
2556 }
2557
2558 /**
2559 * sys_rt_sigprocmask - change the list of currently blocked signals
2560 * @how: whether to add, remove, or set signals
2561 * @nset: stores pending signals
2562 * @oset: previous value of signal mask if non-null
2563 * @sigsetsize: size of sigset_t type
2564 */
2565 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2566 sigset_t __user *, oset, size_t, sigsetsize)
2567 {
2568 sigset_t old_set, new_set;
2569 int error;
2570
2571 /* XXX: Don't preclude handling different sized sigset_t's. */
2572 if (sigsetsize != sizeof(sigset_t))
2573 return -EINVAL;
2574
2575 old_set = current->blocked;
2576
2577 if (nset) {
2578 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2579 return -EFAULT;
2580 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2581
2582 error = sigprocmask(how, &new_set, NULL);
2583 if (error)
2584 return error;
2585 }
2586
2587 if (oset) {
2588 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2589 return -EFAULT;
2590 }
2591
2592 return 0;
2593 }
2594
2595 #ifdef CONFIG_COMPAT
2596 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2597 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2598 {
2599 #ifdef __BIG_ENDIAN
2600 sigset_t old_set = current->blocked;
2601
2602 /* XXX: Don't preclude handling different sized sigset_t's. */
2603 if (sigsetsize != sizeof(sigset_t))
2604 return -EINVAL;
2605
2606 if (nset) {
2607 compat_sigset_t new32;
2608 sigset_t new_set;
2609 int error;
2610 if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2611 return -EFAULT;
2612
2613 sigset_from_compat(&new_set, &new32);
2614 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2615
2616 error = sigprocmask(how, &new_set, NULL);
2617 if (error)
2618 return error;
2619 }
2620 if (oset) {
2621 compat_sigset_t old32;
2622 sigset_to_compat(&old32, &old_set);
2623 if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2624 return -EFAULT;
2625 }
2626 return 0;
2627 #else
2628 return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2629 (sigset_t __user *)oset, sigsetsize);
2630 #endif
2631 }
2632 #endif
2633
2634 static int do_sigpending(void *set, unsigned long sigsetsize)
2635 {
2636 if (sigsetsize > sizeof(sigset_t))
2637 return -EINVAL;
2638
2639 spin_lock_irq(&current->sighand->siglock);
2640 sigorsets(set, &current->pending.signal,
2641 &current->signal->shared_pending.signal);
2642 spin_unlock_irq(&current->sighand->siglock);
2643
2644 /* Outside the lock because only this thread touches it. */
2645 sigandsets(set, &current->blocked, set);
2646 return 0;
2647 }
2648
2649 /**
2650 * sys_rt_sigpending - examine a pending signal that has been raised
2651 * while blocked
2652 * @uset: stores pending signals
2653 * @sigsetsize: size of sigset_t type or larger
2654 */
2655 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2656 {
2657 sigset_t set;
2658 int err = do_sigpending(&set, sigsetsize);
2659 if (!err && copy_to_user(uset, &set, sigsetsize))
2660 err = -EFAULT;
2661 return err;
2662 }
2663
2664 #ifdef CONFIG_COMPAT
2665 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2666 compat_size_t, sigsetsize)
2667 {
2668 #ifdef __BIG_ENDIAN
2669 sigset_t set;
2670 int err = do_sigpending(&set, sigsetsize);
2671 if (!err) {
2672 compat_sigset_t set32;
2673 sigset_to_compat(&set32, &set);
2674 /* we can get here only if sigsetsize <= sizeof(set) */
2675 if (copy_to_user(uset, &set32, sigsetsize))
2676 err = -EFAULT;
2677 }
2678 return err;
2679 #else
2680 return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2681 #endif
2682 }
2683 #endif
2684
2685 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2686
2687 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2688 {
2689 int err;
2690
2691 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2692 return -EFAULT;
2693 if (from->si_code < 0)
2694 return __copy_to_user(to, from, sizeof(siginfo_t))
2695 ? -EFAULT : 0;
2696 /*
2697 * If you change siginfo_t structure, please be sure
2698 * this code is fixed accordingly.
2699 * Please remember to update the signalfd_copyinfo() function
2700 * inside fs/signalfd.c too, in case siginfo_t changes.
2701 * It should never copy any pad contained in the structure
2702 * to avoid security leaks, but must copy the generic
2703 * 3 ints plus the relevant union member.
2704 */
2705 err = __put_user(from->si_signo, &to->si_signo);
2706 err |= __put_user(from->si_errno, &to->si_errno);
2707 err |= __put_user((short)from->si_code, &to->si_code);
2708 switch (from->si_code & __SI_MASK) {
2709 case __SI_KILL:
2710 err |= __put_user(from->si_pid, &to->si_pid);
2711 err |= __put_user(from->si_uid, &to->si_uid);
2712 break;
2713 case __SI_TIMER:
2714 err |= __put_user(from->si_tid, &to->si_tid);
2715 err |= __put_user(from->si_overrun, &to->si_overrun);
2716 err |= __put_user(from->si_ptr, &to->si_ptr);
2717 break;
2718 case __SI_POLL:
2719 err |= __put_user(from->si_band, &to->si_band);
2720 err |= __put_user(from->si_fd, &to->si_fd);
2721 break;
2722 case __SI_FAULT:
2723 err |= __put_user(from->si_addr, &to->si_addr);
2724 #ifdef __ARCH_SI_TRAPNO
2725 err |= __put_user(from->si_trapno, &to->si_trapno);
2726 #endif
2727 #ifdef BUS_MCEERR_AO
2728 /*
2729 * Other callers might not initialize the si_lsb field,
2730 * so check explicitly for the right codes here.
2731 */
2732 if (from->si_signo == SIGBUS &&
2733 (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO))
2734 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2735 #endif
2736 #ifdef SEGV_BNDERR
2737 if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2738 err |= __put_user(from->si_lower, &to->si_lower);
2739 err |= __put_user(from->si_upper, &to->si_upper);
2740 }
2741 #endif
2742 #ifdef SEGV_PKUERR
2743 if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR)
2744 err |= __put_user(from->si_pkey, &to->si_pkey);
2745 #endif
2746 break;
2747 case __SI_CHLD:
2748 err |= __put_user(from->si_pid, &to->si_pid);
2749 err |= __put_user(from->si_uid, &to->si_uid);
2750 err |= __put_user(from->si_status, &to->si_status);
2751 err |= __put_user(from->si_utime, &to->si_utime);
2752 err |= __put_user(from->si_stime, &to->si_stime);
2753 break;
2754 case __SI_RT: /* This is not generated by the kernel as of now. */
2755 case __SI_MESGQ: /* But this is */
2756 err |= __put_user(from->si_pid, &to->si_pid);
2757 err |= __put_user(from->si_uid, &to->si_uid);
2758 err |= __put_user(from->si_ptr, &to->si_ptr);
2759 break;
2760 #ifdef __ARCH_SIGSYS
2761 case __SI_SYS:
2762 err |= __put_user(from->si_call_addr, &to->si_call_addr);
2763 err |= __put_user(from->si_syscall, &to->si_syscall);
2764 err |= __put_user(from->si_arch, &to->si_arch);
2765 break;
2766 #endif
2767 default: /* this is just in case for now ... */
2768 err |= __put_user(from->si_pid, &to->si_pid);
2769 err |= __put_user(from->si_uid, &to->si_uid);
2770 break;
2771 }
2772 return err;
2773 }
2774
2775 #endif
2776
2777 /**
2778 * do_sigtimedwait - wait for queued signals specified in @which
2779 * @which: queued signals to wait for
2780 * @info: if non-null, the signal's siginfo is returned here
2781 * @ts: upper bound on process time suspension
2782 */
2783 static int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2784 const struct timespec *ts)
2785 {
2786 ktime_t *to = NULL, timeout = KTIME_MAX;
2787 struct task_struct *tsk = current;
2788 sigset_t mask = *which;
2789 int sig, ret = 0;
2790
2791 if (ts) {
2792 if (!timespec_valid(ts))
2793 return -EINVAL;
2794 timeout = timespec_to_ktime(*ts);
2795 to = &timeout;
2796 }
2797
2798 /*
2799 * Invert the set of allowed signals to get those we want to block.
2800 */
2801 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2802 signotset(&mask);
2803
2804 spin_lock_irq(&tsk->sighand->siglock);
2805 sig = dequeue_signal(tsk, &mask, info);
2806 if (!sig && timeout) {
2807 /*
2808 * None ready, temporarily unblock those we're interested
2809 * while we are sleeping in so that we'll be awakened when
2810 * they arrive. Unblocking is always fine, we can avoid
2811 * set_current_blocked().
2812 */
2813 tsk->real_blocked = tsk->blocked;
2814 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2815 recalc_sigpending();
2816 spin_unlock_irq(&tsk->sighand->siglock);
2817
2818 __set_current_state(TASK_INTERRUPTIBLE);
2819 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
2820 HRTIMER_MODE_REL);
2821 spin_lock_irq(&tsk->sighand->siglock);
2822 __set_task_blocked(tsk, &tsk->real_blocked);
2823 sigemptyset(&tsk->real_blocked);
2824 sig = dequeue_signal(tsk, &mask, info);
2825 }
2826 spin_unlock_irq(&tsk->sighand->siglock);
2827
2828 if (sig)
2829 return sig;
2830 return ret ? -EINTR : -EAGAIN;
2831 }
2832
2833 /**
2834 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
2835 * in @uthese
2836 * @uthese: queued signals to wait for
2837 * @uinfo: if non-null, the signal's siginfo is returned here
2838 * @uts: upper bound on process time suspension
2839 * @sigsetsize: size of sigset_t type
2840 */
2841 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2842 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2843 size_t, sigsetsize)
2844 {
2845 sigset_t these;
2846 struct timespec ts;
2847 siginfo_t info;
2848 int ret;
2849
2850 /* XXX: Don't preclude handling different sized sigset_t's. */
2851 if (sigsetsize != sizeof(sigset_t))
2852 return -EINVAL;
2853
2854 if (copy_from_user(&these, uthese, sizeof(these)))
2855 return -EFAULT;
2856
2857 if (uts) {
2858 if (copy_from_user(&ts, uts, sizeof(ts)))
2859 return -EFAULT;
2860 }
2861
2862 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2863
2864 if (ret > 0 && uinfo) {
2865 if (copy_siginfo_to_user(uinfo, &info))
2866 ret = -EFAULT;
2867 }
2868
2869 return ret;
2870 }
2871
2872 #ifdef CONFIG_COMPAT
2873 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait, compat_sigset_t __user *, uthese,
2874 struct compat_siginfo __user *, uinfo,
2875 struct compat_timespec __user *, uts, compat_size_t, sigsetsize)
2876 {
2877 compat_sigset_t s32;
2878 sigset_t s;
2879 struct timespec t;
2880 siginfo_t info;
2881 long ret;
2882
2883 if (sigsetsize != sizeof(sigset_t))
2884 return -EINVAL;
2885
2886 if (copy_from_user(&s32, uthese, sizeof(compat_sigset_t)))
2887 return -EFAULT;
2888 sigset_from_compat(&s, &s32);
2889
2890 if (uts) {
2891 if (compat_get_timespec(&t, uts))
2892 return -EFAULT;
2893 }
2894
2895 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
2896
2897 if (ret > 0 && uinfo) {
2898 if (copy_siginfo_to_user32(uinfo, &info))
2899 ret = -EFAULT;
2900 }
2901
2902 return ret;
2903 }
2904 #endif
2905
2906 /**
2907 * sys_kill - send a signal to a process
2908 * @pid: the PID of the process
2909 * @sig: signal to be sent
2910 */
2911 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2912 {
2913 struct siginfo info;
2914
2915 info.si_signo = sig;
2916 info.si_errno = 0;
2917 info.si_code = SI_USER;
2918 info.si_pid = task_tgid_vnr(current);
2919 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2920
2921 return kill_something_info(sig, &info, pid);
2922 }
2923
2924 static int
2925 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2926 {
2927 struct task_struct *p;
2928 int error = -ESRCH;
2929
2930 rcu_read_lock();
2931 p = find_task_by_vpid(pid);
2932 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2933 error = check_kill_permission(sig, info, p);
2934 /*
2935 * The null signal is a permissions and process existence
2936 * probe. No signal is actually delivered.
2937 */
2938 if (!error && sig) {
2939 error = do_send_sig_info(sig, info, p, false);
2940 /*
2941 * If lock_task_sighand() failed we pretend the task
2942 * dies after receiving the signal. The window is tiny,
2943 * and the signal is private anyway.
2944 */
2945 if (unlikely(error == -ESRCH))
2946 error = 0;
2947 }
2948 }
2949 rcu_read_unlock();
2950
2951 return error;
2952 }
2953
2954 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2955 {
2956 struct siginfo info = {};
2957
2958 info.si_signo = sig;
2959 info.si_errno = 0;
2960 info.si_code = SI_TKILL;
2961 info.si_pid = task_tgid_vnr(current);
2962 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2963
2964 return do_send_specific(tgid, pid, sig, &info);
2965 }
2966
2967 /**
2968 * sys_tgkill - send signal to one specific thread
2969 * @tgid: the thread group ID of the thread
2970 * @pid: the PID of the thread
2971 * @sig: signal to be sent
2972 *
2973 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2974 * exists but it's not belonging to the target process anymore. This
2975 * method solves the problem of threads exiting and PIDs getting reused.
2976 */
2977 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2978 {
2979 /* This is only valid for single tasks */
2980 if (pid <= 0 || tgid <= 0)
2981 return -EINVAL;
2982
2983 return do_tkill(tgid, pid, sig);
2984 }
2985
2986 /**
2987 * sys_tkill - send signal to one specific task
2988 * @pid: the PID of the task
2989 * @sig: signal to be sent
2990 *
2991 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2992 */
2993 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2994 {
2995 /* This is only valid for single tasks */
2996 if (pid <= 0)
2997 return -EINVAL;
2998
2999 return do_tkill(0, pid, sig);
3000 }
3001
3002 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
3003 {
3004 /* Not even root can pretend to send signals from the kernel.
3005 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3006 */
3007 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3008 (task_pid_vnr(current) != pid))
3009 return -EPERM;
3010
3011 info->si_signo = sig;
3012
3013 /* POSIX.1b doesn't mention process groups. */
3014 return kill_proc_info(sig, info, pid);
3015 }
3016
3017 /**
3018 * sys_rt_sigqueueinfo - send signal information to a signal
3019 * @pid: the PID of the thread
3020 * @sig: signal to be sent
3021 * @uinfo: signal info to be sent
3022 */
3023 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3024 siginfo_t __user *, uinfo)
3025 {
3026 siginfo_t info;
3027 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3028 return -EFAULT;
3029 return do_rt_sigqueueinfo(pid, sig, &info);
3030 }
3031
3032 #ifdef CONFIG_COMPAT
3033 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3034 compat_pid_t, pid,
3035 int, sig,
3036 struct compat_siginfo __user *, uinfo)
3037 {
3038 siginfo_t info = {};
3039 int ret = copy_siginfo_from_user32(&info, uinfo);
3040 if (unlikely(ret))
3041 return ret;
3042 return do_rt_sigqueueinfo(pid, sig, &info);
3043 }
3044 #endif
3045
3046 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3047 {
3048 /* This is only valid for single tasks */
3049 if (pid <= 0 || tgid <= 0)
3050 return -EINVAL;
3051
3052 /* Not even root can pretend to send signals from the kernel.
3053 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3054 */
3055 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3056 (task_pid_vnr(current) != pid))
3057 return -EPERM;
3058
3059 info->si_signo = sig;
3060
3061 return do_send_specific(tgid, pid, sig, info);
3062 }
3063
3064 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3065 siginfo_t __user *, uinfo)
3066 {
3067 siginfo_t info;
3068
3069 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3070 return -EFAULT;
3071
3072 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3073 }
3074
3075 #ifdef CONFIG_COMPAT
3076 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3077 compat_pid_t, tgid,
3078 compat_pid_t, pid,
3079 int, sig,
3080 struct compat_siginfo __user *, uinfo)
3081 {
3082 siginfo_t info = {};
3083
3084 if (copy_siginfo_from_user32(&info, uinfo))
3085 return -EFAULT;
3086 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3087 }
3088 #endif
3089
3090 /*
3091 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3092 */
3093 void kernel_sigaction(int sig, __sighandler_t action)
3094 {
3095 spin_lock_irq(&current->sighand->siglock);
3096 current->sighand->action[sig - 1].sa.sa_handler = action;
3097 if (action == SIG_IGN) {
3098 sigset_t mask;
3099
3100 sigemptyset(&mask);
3101 sigaddset(&mask, sig);
3102
3103 flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3104 flush_sigqueue_mask(&mask, &current->pending);
3105 recalc_sigpending();
3106 }
3107 spin_unlock_irq(&current->sighand->siglock);
3108 }
3109 EXPORT_SYMBOL(kernel_sigaction);
3110
3111 void __weak sigaction_compat_abi(struct k_sigaction *act,
3112 struct k_sigaction *oact)
3113 {
3114 }
3115
3116 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3117 {
3118 struct task_struct *p = current, *t;
3119 struct k_sigaction *k;
3120 sigset_t mask;
3121
3122 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3123 return -EINVAL;
3124
3125 k = &p->sighand->action[sig-1];
3126
3127 spin_lock_irq(&p->sighand->siglock);
3128 if (oact)
3129 *oact = *k;
3130
3131 sigaction_compat_abi(act, oact);
3132
3133 if (act) {
3134 sigdelsetmask(&act->sa.sa_mask,
3135 sigmask(SIGKILL) | sigmask(SIGSTOP));
3136 *k = *act;
3137 /*
3138 * POSIX 3.3.1.3:
3139 * "Setting a signal action to SIG_IGN for a signal that is
3140 * pending shall cause the pending signal to be discarded,
3141 * whether or not it is blocked."
3142 *
3143 * "Setting a signal action to SIG_DFL for a signal that is
3144 * pending and whose default action is to ignore the signal
3145 * (for example, SIGCHLD), shall cause the pending signal to
3146 * be discarded, whether or not it is blocked"
3147 */
3148 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3149 sigemptyset(&mask);
3150 sigaddset(&mask, sig);
3151 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3152 for_each_thread(p, t)
3153 flush_sigqueue_mask(&mask, &t->pending);
3154 }
3155 }
3156
3157 spin_unlock_irq(&p->sighand->siglock);
3158 return 0;
3159 }
3160
3161 static int
3162 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp)
3163 {
3164 struct task_struct *t = current;
3165
3166 if (oss) {
3167 memset(oss, 0, sizeof(stack_t));
3168 oss->ss_sp = (void __user *) t->sas_ss_sp;
3169 oss->ss_size = t->sas_ss_size;
3170 oss->ss_flags = sas_ss_flags(sp) |
3171 (current->sas_ss_flags & SS_FLAG_BITS);
3172 }
3173
3174 if (ss) {
3175 void __user *ss_sp = ss->ss_sp;
3176 size_t ss_size = ss->ss_size;
3177 unsigned ss_flags = ss->ss_flags;
3178 int ss_mode;
3179
3180 if (unlikely(on_sig_stack(sp)))
3181 return -EPERM;
3182
3183 ss_mode = ss_flags & ~SS_FLAG_BITS;
3184 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3185 ss_mode != 0))
3186 return -EINVAL;
3187
3188 if (ss_mode == SS_DISABLE) {
3189 ss_size = 0;
3190 ss_sp = NULL;
3191 } else {
3192 if (unlikely(ss_size < MINSIGSTKSZ))
3193 return -ENOMEM;
3194 }
3195
3196 t->sas_ss_sp = (unsigned long) ss_sp;
3197 t->sas_ss_size = ss_size;
3198 t->sas_ss_flags = ss_flags;
3199 }
3200 return 0;
3201 }
3202
3203 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3204 {
3205 stack_t new, old;
3206 int err;
3207 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
3208 return -EFAULT;
3209 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
3210 current_user_stack_pointer());
3211 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
3212 err = -EFAULT;
3213 return err;
3214 }
3215
3216 int restore_altstack(const stack_t __user *uss)
3217 {
3218 stack_t new;
3219 if (copy_from_user(&new, uss, sizeof(stack_t)))
3220 return -EFAULT;
3221 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer());
3222 /* squash all but EFAULT for now */
3223 return 0;
3224 }
3225
3226 int __save_altstack(stack_t __user *uss, unsigned long sp)
3227 {
3228 struct task_struct *t = current;
3229 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3230 __put_user(t->sas_ss_flags, &uss->ss_flags) |
3231 __put_user(t->sas_ss_size, &uss->ss_size);
3232 if (err)
3233 return err;
3234 if (t->sas_ss_flags & SS_AUTODISARM)
3235 sas_ss_reset(t);
3236 return 0;
3237 }
3238
3239 #ifdef CONFIG_COMPAT
3240 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3241 const compat_stack_t __user *, uss_ptr,
3242 compat_stack_t __user *, uoss_ptr)
3243 {
3244 stack_t uss, uoss;
3245 int ret;
3246
3247 if (uss_ptr) {
3248 compat_stack_t uss32;
3249 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3250 return -EFAULT;
3251 uss.ss_sp = compat_ptr(uss32.ss_sp);
3252 uss.ss_flags = uss32.ss_flags;
3253 uss.ss_size = uss32.ss_size;
3254 }
3255 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
3256 compat_user_stack_pointer());
3257 if (ret >= 0 && uoss_ptr) {
3258 compat_stack_t old;
3259 memset(&old, 0, sizeof(old));
3260 old.ss_sp = ptr_to_compat(uoss.ss_sp);
3261 old.ss_flags = uoss.ss_flags;
3262 old.ss_size = uoss.ss_size;
3263 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
3264 ret = -EFAULT;
3265 }
3266 return ret;
3267 }
3268
3269 int compat_restore_altstack(const compat_stack_t __user *uss)
3270 {
3271 int err = compat_sys_sigaltstack(uss, NULL);
3272 /* squash all but -EFAULT for now */
3273 return err == -EFAULT ? err : 0;
3274 }
3275
3276 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3277 {
3278 int err;
3279 struct task_struct *t = current;
3280 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
3281 &uss->ss_sp) |
3282 __put_user(t->sas_ss_flags, &uss->ss_flags) |
3283 __put_user(t->sas_ss_size, &uss->ss_size);
3284 if (err)
3285 return err;
3286 if (t->sas_ss_flags & SS_AUTODISARM)
3287 sas_ss_reset(t);
3288 return 0;
3289 }
3290 #endif
3291
3292 #ifdef __ARCH_WANT_SYS_SIGPENDING
3293
3294 /**
3295 * sys_sigpending - examine pending signals
3296 * @set: where mask of pending signal is returned
3297 */
3298 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3299 {
3300 return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t));
3301 }
3302
3303 #ifdef CONFIG_COMPAT
3304 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
3305 {
3306 sigset_t set;
3307 int err = do_sigpending(&set, sizeof(old_sigset_t));
3308 if (err == 0)
3309 if (copy_to_user(set32, &set, sizeof(old_sigset_t)))
3310 err = -EFAULT;
3311 return err;
3312 }
3313 #endif
3314
3315 #endif
3316
3317 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3318 /**
3319 * sys_sigprocmask - examine and change blocked signals
3320 * @how: whether to add, remove, or set signals
3321 * @nset: signals to add or remove (if non-null)
3322 * @oset: previous value of signal mask if non-null
3323 *
3324 * Some platforms have their own version with special arguments;
3325 * others support only sys_rt_sigprocmask.
3326 */
3327
3328 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3329 old_sigset_t __user *, oset)
3330 {
3331 old_sigset_t old_set, new_set;
3332 sigset_t new_blocked;
3333
3334 old_set = current->blocked.sig[0];
3335
3336 if (nset) {
3337 if (copy_from_user(&new_set, nset, sizeof(*nset)))
3338 return -EFAULT;
3339
3340 new_blocked = current->blocked;
3341
3342 switch (how) {
3343 case SIG_BLOCK:
3344 sigaddsetmask(&new_blocked, new_set);
3345 break;
3346 case SIG_UNBLOCK:
3347 sigdelsetmask(&new_blocked, new_set);
3348 break;
3349 case SIG_SETMASK:
3350 new_blocked.sig[0] = new_set;
3351 break;
3352 default:
3353 return -EINVAL;
3354 }
3355
3356 set_current_blocked(&new_blocked);
3357 }
3358
3359 if (oset) {
3360 if (copy_to_user(oset, &old_set, sizeof(*oset)))
3361 return -EFAULT;
3362 }
3363
3364 return 0;
3365 }
3366 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3367
3368 #ifndef CONFIG_ODD_RT_SIGACTION
3369 /**
3370 * sys_rt_sigaction - alter an action taken by a process
3371 * @sig: signal to be sent
3372 * @act: new sigaction
3373 * @oact: used to save the previous sigaction
3374 * @sigsetsize: size of sigset_t type
3375 */
3376 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3377 const struct sigaction __user *, act,
3378 struct sigaction __user *, oact,
3379 size_t, sigsetsize)
3380 {
3381 struct k_sigaction new_sa, old_sa;
3382 int ret = -EINVAL;
3383
3384 /* XXX: Don't preclude handling different sized sigset_t's. */
3385 if (sigsetsize != sizeof(sigset_t))
3386 goto out;
3387
3388 if (act) {
3389 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3390 return -EFAULT;
3391 }
3392
3393 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3394
3395 if (!ret && oact) {
3396 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3397 return -EFAULT;
3398 }
3399 out:
3400 return ret;
3401 }
3402 #ifdef CONFIG_COMPAT
3403 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3404 const struct compat_sigaction __user *, act,
3405 struct compat_sigaction __user *, oact,
3406 compat_size_t, sigsetsize)
3407 {
3408 struct k_sigaction new_ka, old_ka;
3409 compat_sigset_t mask;
3410 #ifdef __ARCH_HAS_SA_RESTORER
3411 compat_uptr_t restorer;
3412 #endif
3413 int ret;
3414
3415 /* XXX: Don't preclude handling different sized sigset_t's. */
3416 if (sigsetsize != sizeof(compat_sigset_t))
3417 return -EINVAL;
3418
3419 if (act) {
3420 compat_uptr_t handler;
3421 ret = get_user(handler, &act->sa_handler);
3422 new_ka.sa.sa_handler = compat_ptr(handler);
3423 #ifdef __ARCH_HAS_SA_RESTORER
3424 ret |= get_user(restorer, &act->sa_restorer);
3425 new_ka.sa.sa_restorer = compat_ptr(restorer);
3426 #endif
3427 ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3428 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3429 if (ret)
3430 return -EFAULT;
3431 sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3432 }
3433
3434 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3435 if (!ret && oact) {
3436 sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3437 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3438 &oact->sa_handler);
3439 ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3440 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3441 #ifdef __ARCH_HAS_SA_RESTORER
3442 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3443 &oact->sa_restorer);
3444 #endif
3445 }
3446 return ret;
3447 }
3448 #endif
3449 #endif /* !CONFIG_ODD_RT_SIGACTION */
3450
3451 #ifdef CONFIG_OLD_SIGACTION
3452 SYSCALL_DEFINE3(sigaction, int, sig,
3453 const struct old_sigaction __user *, act,
3454 struct old_sigaction __user *, oact)
3455 {
3456 struct k_sigaction new_ka, old_ka;
3457 int ret;
3458
3459 if (act) {
3460 old_sigset_t mask;
3461 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3462 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3463 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3464 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3465 __get_user(mask, &act->sa_mask))
3466 return -EFAULT;
3467 #ifdef __ARCH_HAS_KA_RESTORER
3468 new_ka.ka_restorer = NULL;
3469 #endif
3470 siginitset(&new_ka.sa.sa_mask, mask);
3471 }
3472
3473 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3474
3475 if (!ret && oact) {
3476 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3477 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3478 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3479 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3480 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3481 return -EFAULT;
3482 }
3483
3484 return ret;
3485 }
3486 #endif
3487 #ifdef CONFIG_COMPAT_OLD_SIGACTION
3488 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3489 const struct compat_old_sigaction __user *, act,
3490 struct compat_old_sigaction __user *, oact)
3491 {
3492 struct k_sigaction new_ka, old_ka;
3493 int ret;
3494 compat_old_sigset_t mask;
3495 compat_uptr_t handler, restorer;
3496
3497 if (act) {
3498 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3499 __get_user(handler, &act->sa_handler) ||
3500 __get_user(restorer, &act->sa_restorer) ||
3501 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3502 __get_user(mask, &act->sa_mask))
3503 return -EFAULT;
3504
3505 #ifdef __ARCH_HAS_KA_RESTORER
3506 new_ka.ka_restorer = NULL;
3507 #endif
3508 new_ka.sa.sa_handler = compat_ptr(handler);
3509 new_ka.sa.sa_restorer = compat_ptr(restorer);
3510 siginitset(&new_ka.sa.sa_mask, mask);
3511 }
3512
3513 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3514
3515 if (!ret && oact) {
3516 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3517 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3518 &oact->sa_handler) ||
3519 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3520 &oact->sa_restorer) ||
3521 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3522 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3523 return -EFAULT;
3524 }
3525 return ret;
3526 }
3527 #endif
3528
3529 #ifdef CONFIG_SGETMASK_SYSCALL
3530
3531 /*
3532 * For backwards compatibility. Functionality superseded by sigprocmask.
3533 */
3534 SYSCALL_DEFINE0(sgetmask)
3535 {
3536 /* SMP safe */
3537 return current->blocked.sig[0];
3538 }
3539
3540 SYSCALL_DEFINE1(ssetmask, int, newmask)
3541 {
3542 int old = current->blocked.sig[0];
3543 sigset_t newset;
3544
3545 siginitset(&newset, newmask);
3546 set_current_blocked(&newset);
3547
3548 return old;
3549 }
3550 #endif /* CONFIG_SGETMASK_SYSCALL */
3551
3552 #ifdef __ARCH_WANT_SYS_SIGNAL
3553 /*
3554 * For backwards compatibility. Functionality superseded by sigaction.
3555 */
3556 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3557 {
3558 struct k_sigaction new_sa, old_sa;
3559 int ret;
3560
3561 new_sa.sa.sa_handler = handler;
3562 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3563 sigemptyset(&new_sa.sa.sa_mask);
3564
3565 ret = do_sigaction(sig, &new_sa, &old_sa);
3566
3567 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3568 }
3569 #endif /* __ARCH_WANT_SYS_SIGNAL */
3570
3571 #ifdef __ARCH_WANT_SYS_PAUSE
3572
3573 SYSCALL_DEFINE0(pause)
3574 {
3575 while (!signal_pending(current)) {
3576 __set_current_state(TASK_INTERRUPTIBLE);
3577 schedule();
3578 }
3579 return -ERESTARTNOHAND;
3580 }
3581
3582 #endif
3583
3584 static int sigsuspend(sigset_t *set)
3585 {
3586 current->saved_sigmask = current->blocked;
3587 set_current_blocked(set);
3588
3589 while (!signal_pending(current)) {
3590 __set_current_state(TASK_INTERRUPTIBLE);
3591 schedule();
3592 }
3593 set_restore_sigmask();
3594 return -ERESTARTNOHAND;
3595 }
3596
3597 /**
3598 * sys_rt_sigsuspend - replace the signal mask for a value with the
3599 * @unewset value until a signal is received
3600 * @unewset: new signal mask value
3601 * @sigsetsize: size of sigset_t type
3602 */
3603 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3604 {
3605 sigset_t newset;
3606
3607 /* XXX: Don't preclude handling different sized sigset_t's. */
3608 if (sigsetsize != sizeof(sigset_t))
3609 return -EINVAL;
3610
3611 if (copy_from_user(&newset, unewset, sizeof(newset)))
3612 return -EFAULT;
3613 return sigsuspend(&newset);
3614 }
3615
3616 #ifdef CONFIG_COMPAT
3617 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3618 {
3619 #ifdef __BIG_ENDIAN
3620 sigset_t newset;
3621 compat_sigset_t newset32;
3622
3623 /* XXX: Don't preclude handling different sized sigset_t's. */
3624 if (sigsetsize != sizeof(sigset_t))
3625 return -EINVAL;
3626
3627 if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3628 return -EFAULT;
3629 sigset_from_compat(&newset, &newset32);
3630 return sigsuspend(&newset);
3631 #else
3632 /* on little-endian bitmaps don't care about granularity */
3633 return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3634 #endif
3635 }
3636 #endif
3637
3638 #ifdef CONFIG_OLD_SIGSUSPEND
3639 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3640 {
3641 sigset_t blocked;
3642 siginitset(&blocked, mask);
3643 return sigsuspend(&blocked);
3644 }
3645 #endif
3646 #ifdef CONFIG_OLD_SIGSUSPEND3
3647 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3648 {
3649 sigset_t blocked;
3650 siginitset(&blocked, mask);
3651 return sigsuspend(&blocked);
3652 }
3653 #endif
3654
3655 __weak const char *arch_vma_name(struct vm_area_struct *vma)
3656 {
3657 return NULL;
3658 }
3659
3660 void __init signals_init(void)
3661 {
3662 /* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
3663 BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
3664 != offsetof(struct siginfo, _sifields._pad));
3665
3666 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3667 }
3668
3669 #ifdef CONFIG_KGDB_KDB
3670 #include <linux/kdb.h>
3671 /*
3672 * kdb_send_sig_info - Allows kdb to send signals without exposing
3673 * signal internals. This function checks if the required locks are
3674 * available before calling the main signal code, to avoid kdb
3675 * deadlocks.
3676 */
3677 void
3678 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3679 {
3680 static struct task_struct *kdb_prev_t;
3681 int sig, new_t;
3682 if (!spin_trylock(&t->sighand->siglock)) {
3683 kdb_printf("Can't do kill command now.\n"
3684 "The sigmask lock is held somewhere else in "
3685 "kernel, try again later\n");
3686 return;
3687 }
3688 spin_unlock(&t->sighand->siglock);
3689 new_t = kdb_prev_t != t;
3690 kdb_prev_t = t;
3691 if (t->state != TASK_RUNNING && new_t) {
3692 kdb_printf("Process is not RUNNING, sending a signal from "
3693 "kdb risks deadlock\n"
3694 "on the run queue locks. "
3695 "The signal has _not_ been sent.\n"
3696 "Reissue the kill command if you want to risk "
3697 "the deadlock.\n");
3698 return;
3699 }
3700 sig = info->si_signo;
3701 if (send_sig_info(sig, info, t))
3702 kdb_printf("Fail to deliver Signal %d to process %d.\n",
3703 sig, t->pid);
3704 else
3705 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3706 }
3707 #endif /* CONFIG_KGDB_KDB */