]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/signal.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
[mirror_ubuntu-hirsute-kernel.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/user.h>
18 #include <linux/sched/debug.h>
19 #include <linux/sched/task.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/sched/cputime.h>
22 #include <linux/fs.h>
23 #include <linux/tty.h>
24 #include <linux/binfmts.h>
25 #include <linux/coredump.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/ptrace.h>
29 #include <linux/signal.h>
30 #include <linux/signalfd.h>
31 #include <linux/ratelimit.h>
32 #include <linux/tracehook.h>
33 #include <linux/capability.h>
34 #include <linux/freezer.h>
35 #include <linux/pid_namespace.h>
36 #include <linux/nsproxy.h>
37 #include <linux/user_namespace.h>
38 #include <linux/uprobes.h>
39 #include <linux/compat.h>
40 #include <linux/cn_proc.h>
41 #include <linux/compiler.h>
42 #include <linux/posix-timers.h>
43 #include <linux/livepatch.h>
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/signal.h>
47
48 #include <asm/param.h>
49 #include <linux/uaccess.h>
50 #include <asm/unistd.h>
51 #include <asm/siginfo.h>
52 #include <asm/cacheflush.h>
53 #include "audit.h" /* audit_signal_info() */
54
55 /*
56 * SLAB caches for signal bits.
57 */
58
59 static struct kmem_cache *sigqueue_cachep;
60
61 int print_fatal_signals __read_mostly;
62
63 static void __user *sig_handler(struct task_struct *t, int sig)
64 {
65 return t->sighand->action[sig - 1].sa.sa_handler;
66 }
67
68 static int sig_handler_ignored(void __user *handler, int sig)
69 {
70 /* Is it explicitly or implicitly ignored? */
71 return handler == SIG_IGN ||
72 (handler == SIG_DFL && sig_kernel_ignore(sig));
73 }
74
75 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
76 {
77 void __user *handler;
78
79 handler = sig_handler(t, sig);
80
81 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
82 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
83 return 1;
84
85 return sig_handler_ignored(handler, sig);
86 }
87
88 static int sig_ignored(struct task_struct *t, int sig, bool force)
89 {
90 /*
91 * Blocked signals are never ignored, since the
92 * signal handler may change by the time it is
93 * unblocked.
94 */
95 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
96 return 0;
97
98 /*
99 * Tracers may want to know about even ignored signal unless it
100 * is SIGKILL which can't be reported anyway but can be ignored
101 * by SIGNAL_UNKILLABLE task.
102 */
103 if (t->ptrace && sig != SIGKILL)
104 return 0;
105
106 return sig_task_ignored(t, sig, force);
107 }
108
109 /*
110 * Re-calculate pending state from the set of locally pending
111 * signals, globally pending signals, and blocked signals.
112 */
113 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
114 {
115 unsigned long ready;
116 long i;
117
118 switch (_NSIG_WORDS) {
119 default:
120 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
121 ready |= signal->sig[i] &~ blocked->sig[i];
122 break;
123
124 case 4: ready = signal->sig[3] &~ blocked->sig[3];
125 ready |= signal->sig[2] &~ blocked->sig[2];
126 ready |= signal->sig[1] &~ blocked->sig[1];
127 ready |= signal->sig[0] &~ blocked->sig[0];
128 break;
129
130 case 2: ready = signal->sig[1] &~ blocked->sig[1];
131 ready |= signal->sig[0] &~ blocked->sig[0];
132 break;
133
134 case 1: ready = signal->sig[0] &~ blocked->sig[0];
135 }
136 return ready != 0;
137 }
138
139 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
140
141 static int recalc_sigpending_tsk(struct task_struct *t)
142 {
143 if ((t->jobctl & JOBCTL_PENDING_MASK) ||
144 PENDING(&t->pending, &t->blocked) ||
145 PENDING(&t->signal->shared_pending, &t->blocked)) {
146 set_tsk_thread_flag(t, TIF_SIGPENDING);
147 return 1;
148 }
149 /*
150 * We must never clear the flag in another thread, or in current
151 * when it's possible the current syscall is returning -ERESTART*.
152 * So we don't clear it here, and only callers who know they should do.
153 */
154 return 0;
155 }
156
157 /*
158 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
159 * This is superfluous when called on current, the wakeup is a harmless no-op.
160 */
161 void recalc_sigpending_and_wake(struct task_struct *t)
162 {
163 if (recalc_sigpending_tsk(t))
164 signal_wake_up(t, 0);
165 }
166
167 void recalc_sigpending(void)
168 {
169 if (!recalc_sigpending_tsk(current) && !freezing(current) &&
170 !klp_patch_pending(current))
171 clear_thread_flag(TIF_SIGPENDING);
172
173 }
174
175 /* Given the mask, find the first available signal that should be serviced. */
176
177 #define SYNCHRONOUS_MASK \
178 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
179 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
180
181 int next_signal(struct sigpending *pending, sigset_t *mask)
182 {
183 unsigned long i, *s, *m, x;
184 int sig = 0;
185
186 s = pending->signal.sig;
187 m = mask->sig;
188
189 /*
190 * Handle the first word specially: it contains the
191 * synchronous signals that need to be dequeued first.
192 */
193 x = *s &~ *m;
194 if (x) {
195 if (x & SYNCHRONOUS_MASK)
196 x &= SYNCHRONOUS_MASK;
197 sig = ffz(~x) + 1;
198 return sig;
199 }
200
201 switch (_NSIG_WORDS) {
202 default:
203 for (i = 1; i < _NSIG_WORDS; ++i) {
204 x = *++s &~ *++m;
205 if (!x)
206 continue;
207 sig = ffz(~x) + i*_NSIG_BPW + 1;
208 break;
209 }
210 break;
211
212 case 2:
213 x = s[1] &~ m[1];
214 if (!x)
215 break;
216 sig = ffz(~x) + _NSIG_BPW + 1;
217 break;
218
219 case 1:
220 /* Nothing to do */
221 break;
222 }
223
224 return sig;
225 }
226
227 static inline void print_dropped_signal(int sig)
228 {
229 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
230
231 if (!print_fatal_signals)
232 return;
233
234 if (!__ratelimit(&ratelimit_state))
235 return;
236
237 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
238 current->comm, current->pid, sig);
239 }
240
241 /**
242 * task_set_jobctl_pending - set jobctl pending bits
243 * @task: target task
244 * @mask: pending bits to set
245 *
246 * Clear @mask from @task->jobctl. @mask must be subset of
247 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
248 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
249 * cleared. If @task is already being killed or exiting, this function
250 * becomes noop.
251 *
252 * CONTEXT:
253 * Must be called with @task->sighand->siglock held.
254 *
255 * RETURNS:
256 * %true if @mask is set, %false if made noop because @task was dying.
257 */
258 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
259 {
260 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
261 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
262 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
263
264 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
265 return false;
266
267 if (mask & JOBCTL_STOP_SIGMASK)
268 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
269
270 task->jobctl |= mask;
271 return true;
272 }
273
274 /**
275 * task_clear_jobctl_trapping - clear jobctl trapping bit
276 * @task: target task
277 *
278 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
279 * Clear it and wake up the ptracer. Note that we don't need any further
280 * locking. @task->siglock guarantees that @task->parent points to the
281 * ptracer.
282 *
283 * CONTEXT:
284 * Must be called with @task->sighand->siglock held.
285 */
286 void task_clear_jobctl_trapping(struct task_struct *task)
287 {
288 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
289 task->jobctl &= ~JOBCTL_TRAPPING;
290 smp_mb(); /* advised by wake_up_bit() */
291 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
292 }
293 }
294
295 /**
296 * task_clear_jobctl_pending - clear jobctl pending bits
297 * @task: target task
298 * @mask: pending bits to clear
299 *
300 * Clear @mask from @task->jobctl. @mask must be subset of
301 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
302 * STOP bits are cleared together.
303 *
304 * If clearing of @mask leaves no stop or trap pending, this function calls
305 * task_clear_jobctl_trapping().
306 *
307 * CONTEXT:
308 * Must be called with @task->sighand->siglock held.
309 */
310 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
311 {
312 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
313
314 if (mask & JOBCTL_STOP_PENDING)
315 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
316
317 task->jobctl &= ~mask;
318
319 if (!(task->jobctl & JOBCTL_PENDING_MASK))
320 task_clear_jobctl_trapping(task);
321 }
322
323 /**
324 * task_participate_group_stop - participate in a group stop
325 * @task: task participating in a group stop
326 *
327 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
328 * Group stop states are cleared and the group stop count is consumed if
329 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
330 * stop, the appropriate %SIGNAL_* flags are set.
331 *
332 * CONTEXT:
333 * Must be called with @task->sighand->siglock held.
334 *
335 * RETURNS:
336 * %true if group stop completion should be notified to the parent, %false
337 * otherwise.
338 */
339 static bool task_participate_group_stop(struct task_struct *task)
340 {
341 struct signal_struct *sig = task->signal;
342 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
343
344 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
345
346 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
347
348 if (!consume)
349 return false;
350
351 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
352 sig->group_stop_count--;
353
354 /*
355 * Tell the caller to notify completion iff we are entering into a
356 * fresh group stop. Read comment in do_signal_stop() for details.
357 */
358 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
359 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
360 return true;
361 }
362 return false;
363 }
364
365 /*
366 * allocate a new signal queue record
367 * - this may be called without locks if and only if t == current, otherwise an
368 * appropriate lock must be held to stop the target task from exiting
369 */
370 static struct sigqueue *
371 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
372 {
373 struct sigqueue *q = NULL;
374 struct user_struct *user;
375
376 /*
377 * Protect access to @t credentials. This can go away when all
378 * callers hold rcu read lock.
379 */
380 rcu_read_lock();
381 user = get_uid(__task_cred(t)->user);
382 atomic_inc(&user->sigpending);
383 rcu_read_unlock();
384
385 if (override_rlimit ||
386 atomic_read(&user->sigpending) <=
387 task_rlimit(t, RLIMIT_SIGPENDING)) {
388 q = kmem_cache_alloc(sigqueue_cachep, flags);
389 } else {
390 print_dropped_signal(sig);
391 }
392
393 if (unlikely(q == NULL)) {
394 atomic_dec(&user->sigpending);
395 free_uid(user);
396 } else {
397 INIT_LIST_HEAD(&q->list);
398 q->flags = 0;
399 q->user = user;
400 }
401
402 return q;
403 }
404
405 static void __sigqueue_free(struct sigqueue *q)
406 {
407 if (q->flags & SIGQUEUE_PREALLOC)
408 return;
409 atomic_dec(&q->user->sigpending);
410 free_uid(q->user);
411 kmem_cache_free(sigqueue_cachep, q);
412 }
413
414 void flush_sigqueue(struct sigpending *queue)
415 {
416 struct sigqueue *q;
417
418 sigemptyset(&queue->signal);
419 while (!list_empty(&queue->list)) {
420 q = list_entry(queue->list.next, struct sigqueue , list);
421 list_del_init(&q->list);
422 __sigqueue_free(q);
423 }
424 }
425
426 /*
427 * Flush all pending signals for this kthread.
428 */
429 void flush_signals(struct task_struct *t)
430 {
431 unsigned long flags;
432
433 spin_lock_irqsave(&t->sighand->siglock, flags);
434 clear_tsk_thread_flag(t, TIF_SIGPENDING);
435 flush_sigqueue(&t->pending);
436 flush_sigqueue(&t->signal->shared_pending);
437 spin_unlock_irqrestore(&t->sighand->siglock, flags);
438 }
439
440 #ifdef CONFIG_POSIX_TIMERS
441 static void __flush_itimer_signals(struct sigpending *pending)
442 {
443 sigset_t signal, retain;
444 struct sigqueue *q, *n;
445
446 signal = pending->signal;
447 sigemptyset(&retain);
448
449 list_for_each_entry_safe(q, n, &pending->list, list) {
450 int sig = q->info.si_signo;
451
452 if (likely(q->info.si_code != SI_TIMER)) {
453 sigaddset(&retain, sig);
454 } else {
455 sigdelset(&signal, sig);
456 list_del_init(&q->list);
457 __sigqueue_free(q);
458 }
459 }
460
461 sigorsets(&pending->signal, &signal, &retain);
462 }
463
464 void flush_itimer_signals(void)
465 {
466 struct task_struct *tsk = current;
467 unsigned long flags;
468
469 spin_lock_irqsave(&tsk->sighand->siglock, flags);
470 __flush_itimer_signals(&tsk->pending);
471 __flush_itimer_signals(&tsk->signal->shared_pending);
472 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
473 }
474 #endif
475
476 void ignore_signals(struct task_struct *t)
477 {
478 int i;
479
480 for (i = 0; i < _NSIG; ++i)
481 t->sighand->action[i].sa.sa_handler = SIG_IGN;
482
483 flush_signals(t);
484 }
485
486 /*
487 * Flush all handlers for a task.
488 */
489
490 void
491 flush_signal_handlers(struct task_struct *t, int force_default)
492 {
493 int i;
494 struct k_sigaction *ka = &t->sighand->action[0];
495 for (i = _NSIG ; i != 0 ; i--) {
496 if (force_default || ka->sa.sa_handler != SIG_IGN)
497 ka->sa.sa_handler = SIG_DFL;
498 ka->sa.sa_flags = 0;
499 #ifdef __ARCH_HAS_SA_RESTORER
500 ka->sa.sa_restorer = NULL;
501 #endif
502 sigemptyset(&ka->sa.sa_mask);
503 ka++;
504 }
505 }
506
507 int unhandled_signal(struct task_struct *tsk, int sig)
508 {
509 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
510 if (is_global_init(tsk))
511 return 1;
512 if (handler != SIG_IGN && handler != SIG_DFL)
513 return 0;
514 /* if ptraced, let the tracer determine */
515 return !tsk->ptrace;
516 }
517
518 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info,
519 bool *resched_timer)
520 {
521 struct sigqueue *q, *first = NULL;
522
523 /*
524 * Collect the siginfo appropriate to this signal. Check if
525 * there is another siginfo for the same signal.
526 */
527 list_for_each_entry(q, &list->list, list) {
528 if (q->info.si_signo == sig) {
529 if (first)
530 goto still_pending;
531 first = q;
532 }
533 }
534
535 sigdelset(&list->signal, sig);
536
537 if (first) {
538 still_pending:
539 list_del_init(&first->list);
540 copy_siginfo(info, &first->info);
541
542 *resched_timer =
543 (first->flags & SIGQUEUE_PREALLOC) &&
544 (info->si_code == SI_TIMER) &&
545 (info->si_sys_private);
546
547 __sigqueue_free(first);
548 } else {
549 /*
550 * Ok, it wasn't in the queue. This must be
551 * a fast-pathed signal or we must have been
552 * out of queue space. So zero out the info.
553 */
554 clear_siginfo(info);
555 info->si_signo = sig;
556 info->si_errno = 0;
557 info->si_code = SI_USER;
558 info->si_pid = 0;
559 info->si_uid = 0;
560 }
561 }
562
563 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
564 siginfo_t *info, bool *resched_timer)
565 {
566 int sig = next_signal(pending, mask);
567
568 if (sig)
569 collect_signal(sig, pending, info, resched_timer);
570 return sig;
571 }
572
573 /*
574 * Dequeue a signal and return the element to the caller, which is
575 * expected to free it.
576 *
577 * All callers have to hold the siglock.
578 */
579 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
580 {
581 bool resched_timer = false;
582 int signr;
583
584 /* We only dequeue private signals from ourselves, we don't let
585 * signalfd steal them
586 */
587 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
588 if (!signr) {
589 signr = __dequeue_signal(&tsk->signal->shared_pending,
590 mask, info, &resched_timer);
591 #ifdef CONFIG_POSIX_TIMERS
592 /*
593 * itimer signal ?
594 *
595 * itimers are process shared and we restart periodic
596 * itimers in the signal delivery path to prevent DoS
597 * attacks in the high resolution timer case. This is
598 * compliant with the old way of self-restarting
599 * itimers, as the SIGALRM is a legacy signal and only
600 * queued once. Changing the restart behaviour to
601 * restart the timer in the signal dequeue path is
602 * reducing the timer noise on heavy loaded !highres
603 * systems too.
604 */
605 if (unlikely(signr == SIGALRM)) {
606 struct hrtimer *tmr = &tsk->signal->real_timer;
607
608 if (!hrtimer_is_queued(tmr) &&
609 tsk->signal->it_real_incr != 0) {
610 hrtimer_forward(tmr, tmr->base->get_time(),
611 tsk->signal->it_real_incr);
612 hrtimer_restart(tmr);
613 }
614 }
615 #endif
616 }
617
618 recalc_sigpending();
619 if (!signr)
620 return 0;
621
622 if (unlikely(sig_kernel_stop(signr))) {
623 /*
624 * Set a marker that we have dequeued a stop signal. Our
625 * caller might release the siglock and then the pending
626 * stop signal it is about to process is no longer in the
627 * pending bitmasks, but must still be cleared by a SIGCONT
628 * (and overruled by a SIGKILL). So those cases clear this
629 * shared flag after we've set it. Note that this flag may
630 * remain set after the signal we return is ignored or
631 * handled. That doesn't matter because its only purpose
632 * is to alert stop-signal processing code when another
633 * processor has come along and cleared the flag.
634 */
635 current->jobctl |= JOBCTL_STOP_DEQUEUED;
636 }
637 #ifdef CONFIG_POSIX_TIMERS
638 if (resched_timer) {
639 /*
640 * Release the siglock to ensure proper locking order
641 * of timer locks outside of siglocks. Note, we leave
642 * irqs disabled here, since the posix-timers code is
643 * about to disable them again anyway.
644 */
645 spin_unlock(&tsk->sighand->siglock);
646 posixtimer_rearm(info);
647 spin_lock(&tsk->sighand->siglock);
648
649 /* Don't expose the si_sys_private value to userspace */
650 info->si_sys_private = 0;
651 }
652 #endif
653 return signr;
654 }
655
656 /*
657 * Tell a process that it has a new active signal..
658 *
659 * NOTE! we rely on the previous spin_lock to
660 * lock interrupts for us! We can only be called with
661 * "siglock" held, and the local interrupt must
662 * have been disabled when that got acquired!
663 *
664 * No need to set need_resched since signal event passing
665 * goes through ->blocked
666 */
667 void signal_wake_up_state(struct task_struct *t, unsigned int state)
668 {
669 set_tsk_thread_flag(t, TIF_SIGPENDING);
670 /*
671 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
672 * case. We don't check t->state here because there is a race with it
673 * executing another processor and just now entering stopped state.
674 * By using wake_up_state, we ensure the process will wake up and
675 * handle its death signal.
676 */
677 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
678 kick_process(t);
679 }
680
681 /*
682 * Remove signals in mask from the pending set and queue.
683 * Returns 1 if any signals were found.
684 *
685 * All callers must be holding the siglock.
686 */
687 static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
688 {
689 struct sigqueue *q, *n;
690 sigset_t m;
691
692 sigandsets(&m, mask, &s->signal);
693 if (sigisemptyset(&m))
694 return 0;
695
696 sigandnsets(&s->signal, &s->signal, mask);
697 list_for_each_entry_safe(q, n, &s->list, list) {
698 if (sigismember(mask, q->info.si_signo)) {
699 list_del_init(&q->list);
700 __sigqueue_free(q);
701 }
702 }
703 return 1;
704 }
705
706 static inline int is_si_special(const struct siginfo *info)
707 {
708 return info <= SEND_SIG_FORCED;
709 }
710
711 static inline bool si_fromuser(const struct siginfo *info)
712 {
713 return info == SEND_SIG_NOINFO ||
714 (!is_si_special(info) && SI_FROMUSER(info));
715 }
716
717 /*
718 * called with RCU read lock from check_kill_permission()
719 */
720 static int kill_ok_by_cred(struct task_struct *t)
721 {
722 const struct cred *cred = current_cred();
723 const struct cred *tcred = __task_cred(t);
724
725 if (uid_eq(cred->euid, tcred->suid) ||
726 uid_eq(cred->euid, tcred->uid) ||
727 uid_eq(cred->uid, tcred->suid) ||
728 uid_eq(cred->uid, tcred->uid))
729 return 1;
730
731 if (ns_capable(tcred->user_ns, CAP_KILL))
732 return 1;
733
734 return 0;
735 }
736
737 /*
738 * Bad permissions for sending the signal
739 * - the caller must hold the RCU read lock
740 */
741 static int check_kill_permission(int sig, struct siginfo *info,
742 struct task_struct *t)
743 {
744 struct pid *sid;
745 int error;
746
747 if (!valid_signal(sig))
748 return -EINVAL;
749
750 if (!si_fromuser(info))
751 return 0;
752
753 error = audit_signal_info(sig, t); /* Let audit system see the signal */
754 if (error)
755 return error;
756
757 if (!same_thread_group(current, t) &&
758 !kill_ok_by_cred(t)) {
759 switch (sig) {
760 case SIGCONT:
761 sid = task_session(t);
762 /*
763 * We don't return the error if sid == NULL. The
764 * task was unhashed, the caller must notice this.
765 */
766 if (!sid || sid == task_session(current))
767 break;
768 default:
769 return -EPERM;
770 }
771 }
772
773 return security_task_kill(t, info, sig, NULL);
774 }
775
776 /**
777 * ptrace_trap_notify - schedule trap to notify ptracer
778 * @t: tracee wanting to notify tracer
779 *
780 * This function schedules sticky ptrace trap which is cleared on the next
781 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
782 * ptracer.
783 *
784 * If @t is running, STOP trap will be taken. If trapped for STOP and
785 * ptracer is listening for events, tracee is woken up so that it can
786 * re-trap for the new event. If trapped otherwise, STOP trap will be
787 * eventually taken without returning to userland after the existing traps
788 * are finished by PTRACE_CONT.
789 *
790 * CONTEXT:
791 * Must be called with @task->sighand->siglock held.
792 */
793 static void ptrace_trap_notify(struct task_struct *t)
794 {
795 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
796 assert_spin_locked(&t->sighand->siglock);
797
798 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
799 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
800 }
801
802 /*
803 * Handle magic process-wide effects of stop/continue signals. Unlike
804 * the signal actions, these happen immediately at signal-generation
805 * time regardless of blocking, ignoring, or handling. This does the
806 * actual continuing for SIGCONT, but not the actual stopping for stop
807 * signals. The process stop is done as a signal action for SIG_DFL.
808 *
809 * Returns true if the signal should be actually delivered, otherwise
810 * it should be dropped.
811 */
812 static bool prepare_signal(int sig, struct task_struct *p, bool force)
813 {
814 struct signal_struct *signal = p->signal;
815 struct task_struct *t;
816 sigset_t flush;
817
818 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
819 if (!(signal->flags & SIGNAL_GROUP_EXIT))
820 return sig == SIGKILL;
821 /*
822 * The process is in the middle of dying, nothing to do.
823 */
824 } else if (sig_kernel_stop(sig)) {
825 /*
826 * This is a stop signal. Remove SIGCONT from all queues.
827 */
828 siginitset(&flush, sigmask(SIGCONT));
829 flush_sigqueue_mask(&flush, &signal->shared_pending);
830 for_each_thread(p, t)
831 flush_sigqueue_mask(&flush, &t->pending);
832 } else if (sig == SIGCONT) {
833 unsigned int why;
834 /*
835 * Remove all stop signals from all queues, wake all threads.
836 */
837 siginitset(&flush, SIG_KERNEL_STOP_MASK);
838 flush_sigqueue_mask(&flush, &signal->shared_pending);
839 for_each_thread(p, t) {
840 flush_sigqueue_mask(&flush, &t->pending);
841 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
842 if (likely(!(t->ptrace & PT_SEIZED)))
843 wake_up_state(t, __TASK_STOPPED);
844 else
845 ptrace_trap_notify(t);
846 }
847
848 /*
849 * Notify the parent with CLD_CONTINUED if we were stopped.
850 *
851 * If we were in the middle of a group stop, we pretend it
852 * was already finished, and then continued. Since SIGCHLD
853 * doesn't queue we report only CLD_STOPPED, as if the next
854 * CLD_CONTINUED was dropped.
855 */
856 why = 0;
857 if (signal->flags & SIGNAL_STOP_STOPPED)
858 why |= SIGNAL_CLD_CONTINUED;
859 else if (signal->group_stop_count)
860 why |= SIGNAL_CLD_STOPPED;
861
862 if (why) {
863 /*
864 * The first thread which returns from do_signal_stop()
865 * will take ->siglock, notice SIGNAL_CLD_MASK, and
866 * notify its parent. See get_signal_to_deliver().
867 */
868 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
869 signal->group_stop_count = 0;
870 signal->group_exit_code = 0;
871 }
872 }
873
874 return !sig_ignored(p, sig, force);
875 }
876
877 /*
878 * Test if P wants to take SIG. After we've checked all threads with this,
879 * it's equivalent to finding no threads not blocking SIG. Any threads not
880 * blocking SIG were ruled out because they are not running and already
881 * have pending signals. Such threads will dequeue from the shared queue
882 * as soon as they're available, so putting the signal on the shared queue
883 * will be equivalent to sending it to one such thread.
884 */
885 static inline int wants_signal(int sig, struct task_struct *p)
886 {
887 if (sigismember(&p->blocked, sig))
888 return 0;
889 if (p->flags & PF_EXITING)
890 return 0;
891 if (sig == SIGKILL)
892 return 1;
893 if (task_is_stopped_or_traced(p))
894 return 0;
895 return task_curr(p) || !signal_pending(p);
896 }
897
898 static void complete_signal(int sig, struct task_struct *p, int group)
899 {
900 struct signal_struct *signal = p->signal;
901 struct task_struct *t;
902
903 /*
904 * Now find a thread we can wake up to take the signal off the queue.
905 *
906 * If the main thread wants the signal, it gets first crack.
907 * Probably the least surprising to the average bear.
908 */
909 if (wants_signal(sig, p))
910 t = p;
911 else if (!group || thread_group_empty(p))
912 /*
913 * There is just one thread and it does not need to be woken.
914 * It will dequeue unblocked signals before it runs again.
915 */
916 return;
917 else {
918 /*
919 * Otherwise try to find a suitable thread.
920 */
921 t = signal->curr_target;
922 while (!wants_signal(sig, t)) {
923 t = next_thread(t);
924 if (t == signal->curr_target)
925 /*
926 * No thread needs to be woken.
927 * Any eligible threads will see
928 * the signal in the queue soon.
929 */
930 return;
931 }
932 signal->curr_target = t;
933 }
934
935 /*
936 * Found a killable thread. If the signal will be fatal,
937 * then start taking the whole group down immediately.
938 */
939 if (sig_fatal(p, sig) &&
940 !(signal->flags & SIGNAL_GROUP_EXIT) &&
941 !sigismember(&t->real_blocked, sig) &&
942 (sig == SIGKILL || !p->ptrace)) {
943 /*
944 * This signal will be fatal to the whole group.
945 */
946 if (!sig_kernel_coredump(sig)) {
947 /*
948 * Start a group exit and wake everybody up.
949 * This way we don't have other threads
950 * running and doing things after a slower
951 * thread has the fatal signal pending.
952 */
953 signal->flags = SIGNAL_GROUP_EXIT;
954 signal->group_exit_code = sig;
955 signal->group_stop_count = 0;
956 t = p;
957 do {
958 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
959 sigaddset(&t->pending.signal, SIGKILL);
960 signal_wake_up(t, 1);
961 } while_each_thread(p, t);
962 return;
963 }
964 }
965
966 /*
967 * The signal is already in the shared-pending queue.
968 * Tell the chosen thread to wake up and dequeue it.
969 */
970 signal_wake_up(t, sig == SIGKILL);
971 return;
972 }
973
974 static inline int legacy_queue(struct sigpending *signals, int sig)
975 {
976 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
977 }
978
979 #ifdef CONFIG_USER_NS
980 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
981 {
982 if (current_user_ns() == task_cred_xxx(t, user_ns))
983 return;
984
985 if (SI_FROMKERNEL(info))
986 return;
987
988 rcu_read_lock();
989 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
990 make_kuid(current_user_ns(), info->si_uid));
991 rcu_read_unlock();
992 }
993 #else
994 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
995 {
996 return;
997 }
998 #endif
999
1000 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1001 int group, int from_ancestor_ns)
1002 {
1003 struct sigpending *pending;
1004 struct sigqueue *q;
1005 int override_rlimit;
1006 int ret = 0, result;
1007
1008 assert_spin_locked(&t->sighand->siglock);
1009
1010 result = TRACE_SIGNAL_IGNORED;
1011 if (!prepare_signal(sig, t,
1012 from_ancestor_ns || (info == SEND_SIG_FORCED)))
1013 goto ret;
1014
1015 pending = group ? &t->signal->shared_pending : &t->pending;
1016 /*
1017 * Short-circuit ignored signals and support queuing
1018 * exactly one non-rt signal, so that we can get more
1019 * detailed information about the cause of the signal.
1020 */
1021 result = TRACE_SIGNAL_ALREADY_PENDING;
1022 if (legacy_queue(pending, sig))
1023 goto ret;
1024
1025 result = TRACE_SIGNAL_DELIVERED;
1026 /*
1027 * fast-pathed signals for kernel-internal things like SIGSTOP
1028 * or SIGKILL.
1029 */
1030 if (info == SEND_SIG_FORCED)
1031 goto out_set;
1032
1033 /*
1034 * Real-time signals must be queued if sent by sigqueue, or
1035 * some other real-time mechanism. It is implementation
1036 * defined whether kill() does so. We attempt to do so, on
1037 * the principle of least surprise, but since kill is not
1038 * allowed to fail with EAGAIN when low on memory we just
1039 * make sure at least one signal gets delivered and don't
1040 * pass on the info struct.
1041 */
1042 if (sig < SIGRTMIN)
1043 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1044 else
1045 override_rlimit = 0;
1046
1047 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1048 if (q) {
1049 list_add_tail(&q->list, &pending->list);
1050 switch ((unsigned long) info) {
1051 case (unsigned long) SEND_SIG_NOINFO:
1052 clear_siginfo(&q->info);
1053 q->info.si_signo = sig;
1054 q->info.si_errno = 0;
1055 q->info.si_code = SI_USER;
1056 q->info.si_pid = task_tgid_nr_ns(current,
1057 task_active_pid_ns(t));
1058 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1059 break;
1060 case (unsigned long) SEND_SIG_PRIV:
1061 clear_siginfo(&q->info);
1062 q->info.si_signo = sig;
1063 q->info.si_errno = 0;
1064 q->info.si_code = SI_KERNEL;
1065 q->info.si_pid = 0;
1066 q->info.si_uid = 0;
1067 break;
1068 default:
1069 copy_siginfo(&q->info, info);
1070 if (from_ancestor_ns)
1071 q->info.si_pid = 0;
1072 break;
1073 }
1074
1075 userns_fixup_signal_uid(&q->info, t);
1076
1077 } else if (!is_si_special(info)) {
1078 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1079 /*
1080 * Queue overflow, abort. We may abort if the
1081 * signal was rt and sent by user using something
1082 * other than kill().
1083 */
1084 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1085 ret = -EAGAIN;
1086 goto ret;
1087 } else {
1088 /*
1089 * This is a silent loss of information. We still
1090 * send the signal, but the *info bits are lost.
1091 */
1092 result = TRACE_SIGNAL_LOSE_INFO;
1093 }
1094 }
1095
1096 out_set:
1097 signalfd_notify(t, sig);
1098 sigaddset(&pending->signal, sig);
1099 complete_signal(sig, t, group);
1100 ret:
1101 trace_signal_generate(sig, info, t, group, result);
1102 return ret;
1103 }
1104
1105 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1106 int group)
1107 {
1108 int from_ancestor_ns = 0;
1109
1110 #ifdef CONFIG_PID_NS
1111 from_ancestor_ns = si_fromuser(info) &&
1112 !task_pid_nr_ns(current, task_active_pid_ns(t));
1113 #endif
1114
1115 return __send_signal(sig, info, t, group, from_ancestor_ns);
1116 }
1117
1118 static void print_fatal_signal(int signr)
1119 {
1120 struct pt_regs *regs = signal_pt_regs();
1121 pr_info("potentially unexpected fatal signal %d.\n", signr);
1122
1123 #if defined(__i386__) && !defined(__arch_um__)
1124 pr_info("code at %08lx: ", regs->ip);
1125 {
1126 int i;
1127 for (i = 0; i < 16; i++) {
1128 unsigned char insn;
1129
1130 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1131 break;
1132 pr_cont("%02x ", insn);
1133 }
1134 }
1135 pr_cont("\n");
1136 #endif
1137 preempt_disable();
1138 show_regs(regs);
1139 preempt_enable();
1140 }
1141
1142 static int __init setup_print_fatal_signals(char *str)
1143 {
1144 get_option (&str, &print_fatal_signals);
1145
1146 return 1;
1147 }
1148
1149 __setup("print-fatal-signals=", setup_print_fatal_signals);
1150
1151 int
1152 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1153 {
1154 return send_signal(sig, info, p, 1);
1155 }
1156
1157 static int
1158 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1159 {
1160 return send_signal(sig, info, t, 0);
1161 }
1162
1163 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1164 bool group)
1165 {
1166 unsigned long flags;
1167 int ret = -ESRCH;
1168
1169 if (lock_task_sighand(p, &flags)) {
1170 ret = send_signal(sig, info, p, group);
1171 unlock_task_sighand(p, &flags);
1172 }
1173
1174 return ret;
1175 }
1176
1177 /*
1178 * Force a signal that the process can't ignore: if necessary
1179 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1180 *
1181 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1182 * since we do not want to have a signal handler that was blocked
1183 * be invoked when user space had explicitly blocked it.
1184 *
1185 * We don't want to have recursive SIGSEGV's etc, for example,
1186 * that is why we also clear SIGNAL_UNKILLABLE.
1187 */
1188 int
1189 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1190 {
1191 unsigned long int flags;
1192 int ret, blocked, ignored;
1193 struct k_sigaction *action;
1194
1195 spin_lock_irqsave(&t->sighand->siglock, flags);
1196 action = &t->sighand->action[sig-1];
1197 ignored = action->sa.sa_handler == SIG_IGN;
1198 blocked = sigismember(&t->blocked, sig);
1199 if (blocked || ignored) {
1200 action->sa.sa_handler = SIG_DFL;
1201 if (blocked) {
1202 sigdelset(&t->blocked, sig);
1203 recalc_sigpending_and_wake(t);
1204 }
1205 }
1206 /*
1207 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1208 * debugging to leave init killable.
1209 */
1210 if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1211 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1212 ret = specific_send_sig_info(sig, info, t);
1213 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1214
1215 return ret;
1216 }
1217
1218 /*
1219 * Nuke all other threads in the group.
1220 */
1221 int zap_other_threads(struct task_struct *p)
1222 {
1223 struct task_struct *t = p;
1224 int count = 0;
1225
1226 p->signal->group_stop_count = 0;
1227
1228 while_each_thread(p, t) {
1229 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1230 count++;
1231
1232 /* Don't bother with already dead threads */
1233 if (t->exit_state)
1234 continue;
1235 sigaddset(&t->pending.signal, SIGKILL);
1236 signal_wake_up(t, 1);
1237 }
1238
1239 return count;
1240 }
1241
1242 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1243 unsigned long *flags)
1244 {
1245 struct sighand_struct *sighand;
1246
1247 for (;;) {
1248 /*
1249 * Disable interrupts early to avoid deadlocks.
1250 * See rcu_read_unlock() comment header for details.
1251 */
1252 local_irq_save(*flags);
1253 rcu_read_lock();
1254 sighand = rcu_dereference(tsk->sighand);
1255 if (unlikely(sighand == NULL)) {
1256 rcu_read_unlock();
1257 local_irq_restore(*flags);
1258 break;
1259 }
1260 /*
1261 * This sighand can be already freed and even reused, but
1262 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1263 * initializes ->siglock: this slab can't go away, it has
1264 * the same object type, ->siglock can't be reinitialized.
1265 *
1266 * We need to ensure that tsk->sighand is still the same
1267 * after we take the lock, we can race with de_thread() or
1268 * __exit_signal(). In the latter case the next iteration
1269 * must see ->sighand == NULL.
1270 */
1271 spin_lock(&sighand->siglock);
1272 if (likely(sighand == tsk->sighand)) {
1273 rcu_read_unlock();
1274 break;
1275 }
1276 spin_unlock(&sighand->siglock);
1277 rcu_read_unlock();
1278 local_irq_restore(*flags);
1279 }
1280
1281 return sighand;
1282 }
1283
1284 /*
1285 * send signal info to all the members of a group
1286 */
1287 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1288 {
1289 int ret;
1290
1291 rcu_read_lock();
1292 ret = check_kill_permission(sig, info, p);
1293 rcu_read_unlock();
1294
1295 if (!ret && sig)
1296 ret = do_send_sig_info(sig, info, p, true);
1297
1298 return ret;
1299 }
1300
1301 /*
1302 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1303 * control characters do (^C, ^Z etc)
1304 * - the caller must hold at least a readlock on tasklist_lock
1305 */
1306 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1307 {
1308 struct task_struct *p = NULL;
1309 int retval, success;
1310
1311 success = 0;
1312 retval = -ESRCH;
1313 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1314 int err = group_send_sig_info(sig, info, p);
1315 success |= !err;
1316 retval = err;
1317 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1318 return success ? 0 : retval;
1319 }
1320
1321 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1322 {
1323 int error = -ESRCH;
1324 struct task_struct *p;
1325
1326 for (;;) {
1327 rcu_read_lock();
1328 p = pid_task(pid, PIDTYPE_PID);
1329 if (p)
1330 error = group_send_sig_info(sig, info, p);
1331 rcu_read_unlock();
1332 if (likely(!p || error != -ESRCH))
1333 return error;
1334
1335 /*
1336 * The task was unhashed in between, try again. If it
1337 * is dead, pid_task() will return NULL, if we race with
1338 * de_thread() it will find the new leader.
1339 */
1340 }
1341 }
1342
1343 static int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1344 {
1345 int error;
1346 rcu_read_lock();
1347 error = kill_pid_info(sig, info, find_vpid(pid));
1348 rcu_read_unlock();
1349 return error;
1350 }
1351
1352 static int kill_as_cred_perm(const struct cred *cred,
1353 struct task_struct *target)
1354 {
1355 const struct cred *pcred = __task_cred(target);
1356 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1357 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid))
1358 return 0;
1359 return 1;
1360 }
1361
1362 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1363 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1364 const struct cred *cred)
1365 {
1366 int ret = -EINVAL;
1367 struct task_struct *p;
1368 unsigned long flags;
1369
1370 if (!valid_signal(sig))
1371 return ret;
1372
1373 rcu_read_lock();
1374 p = pid_task(pid, PIDTYPE_PID);
1375 if (!p) {
1376 ret = -ESRCH;
1377 goto out_unlock;
1378 }
1379 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1380 ret = -EPERM;
1381 goto out_unlock;
1382 }
1383 ret = security_task_kill(p, info, sig, cred);
1384 if (ret)
1385 goto out_unlock;
1386
1387 if (sig) {
1388 if (lock_task_sighand(p, &flags)) {
1389 ret = __send_signal(sig, info, p, 1, 0);
1390 unlock_task_sighand(p, &flags);
1391 } else
1392 ret = -ESRCH;
1393 }
1394 out_unlock:
1395 rcu_read_unlock();
1396 return ret;
1397 }
1398 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1399
1400 /*
1401 * kill_something_info() interprets pid in interesting ways just like kill(2).
1402 *
1403 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1404 * is probably wrong. Should make it like BSD or SYSV.
1405 */
1406
1407 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1408 {
1409 int ret;
1410
1411 if (pid > 0) {
1412 rcu_read_lock();
1413 ret = kill_pid_info(sig, info, find_vpid(pid));
1414 rcu_read_unlock();
1415 return ret;
1416 }
1417
1418 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1419 if (pid == INT_MIN)
1420 return -ESRCH;
1421
1422 read_lock(&tasklist_lock);
1423 if (pid != -1) {
1424 ret = __kill_pgrp_info(sig, info,
1425 pid ? find_vpid(-pid) : task_pgrp(current));
1426 } else {
1427 int retval = 0, count = 0;
1428 struct task_struct * p;
1429
1430 for_each_process(p) {
1431 if (task_pid_vnr(p) > 1 &&
1432 !same_thread_group(p, current)) {
1433 int err = group_send_sig_info(sig, info, p);
1434 ++count;
1435 if (err != -EPERM)
1436 retval = err;
1437 }
1438 }
1439 ret = count ? retval : -ESRCH;
1440 }
1441 read_unlock(&tasklist_lock);
1442
1443 return ret;
1444 }
1445
1446 /*
1447 * These are for backward compatibility with the rest of the kernel source.
1448 */
1449
1450 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1451 {
1452 /*
1453 * Make sure legacy kernel users don't send in bad values
1454 * (normal paths check this in check_kill_permission).
1455 */
1456 if (!valid_signal(sig))
1457 return -EINVAL;
1458
1459 return do_send_sig_info(sig, info, p, false);
1460 }
1461
1462 #define __si_special(priv) \
1463 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1464
1465 int
1466 send_sig(int sig, struct task_struct *p, int priv)
1467 {
1468 return send_sig_info(sig, __si_special(priv), p);
1469 }
1470
1471 void
1472 force_sig(int sig, struct task_struct *p)
1473 {
1474 force_sig_info(sig, SEND_SIG_PRIV, p);
1475 }
1476
1477 /*
1478 * When things go south during signal handling, we
1479 * will force a SIGSEGV. And if the signal that caused
1480 * the problem was already a SIGSEGV, we'll want to
1481 * make sure we don't even try to deliver the signal..
1482 */
1483 int
1484 force_sigsegv(int sig, struct task_struct *p)
1485 {
1486 if (sig == SIGSEGV) {
1487 unsigned long flags;
1488 spin_lock_irqsave(&p->sighand->siglock, flags);
1489 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1490 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1491 }
1492 force_sig(SIGSEGV, p);
1493 return 0;
1494 }
1495
1496 int force_sig_fault(int sig, int code, void __user *addr
1497 ___ARCH_SI_TRAPNO(int trapno)
1498 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1499 , struct task_struct *t)
1500 {
1501 struct siginfo info;
1502
1503 clear_siginfo(&info);
1504 info.si_signo = sig;
1505 info.si_errno = 0;
1506 info.si_code = code;
1507 info.si_addr = addr;
1508 #ifdef __ARCH_SI_TRAPNO
1509 info.si_trapno = trapno;
1510 #endif
1511 #ifdef __ia64__
1512 info.si_imm = imm;
1513 info.si_flags = flags;
1514 info.si_isr = isr;
1515 #endif
1516 return force_sig_info(info.si_signo, &info, t);
1517 }
1518
1519 int send_sig_fault(int sig, int code, void __user *addr
1520 ___ARCH_SI_TRAPNO(int trapno)
1521 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1522 , struct task_struct *t)
1523 {
1524 struct siginfo info;
1525
1526 clear_siginfo(&info);
1527 info.si_signo = sig;
1528 info.si_errno = 0;
1529 info.si_code = code;
1530 info.si_addr = addr;
1531 #ifdef __ARCH_SI_TRAPNO
1532 info.si_trapno = trapno;
1533 #endif
1534 #ifdef __ia64__
1535 info.si_imm = imm;
1536 info.si_flags = flags;
1537 info.si_isr = isr;
1538 #endif
1539 return send_sig_info(info.si_signo, &info, t);
1540 }
1541
1542 #if defined(BUS_MCEERR_AO) && defined(BUS_MCEERR_AR)
1543 int force_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1544 {
1545 struct siginfo info;
1546
1547 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1548 clear_siginfo(&info);
1549 info.si_signo = SIGBUS;
1550 info.si_errno = 0;
1551 info.si_code = code;
1552 info.si_addr = addr;
1553 info.si_addr_lsb = lsb;
1554 return force_sig_info(info.si_signo, &info, t);
1555 }
1556
1557 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1558 {
1559 struct siginfo info;
1560
1561 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1562 clear_siginfo(&info);
1563 info.si_signo = SIGBUS;
1564 info.si_errno = 0;
1565 info.si_code = code;
1566 info.si_addr = addr;
1567 info.si_addr_lsb = lsb;
1568 return send_sig_info(info.si_signo, &info, t);
1569 }
1570 EXPORT_SYMBOL(send_sig_mceerr);
1571 #endif
1572
1573 #ifdef SEGV_BNDERR
1574 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1575 {
1576 struct siginfo info;
1577
1578 clear_siginfo(&info);
1579 info.si_signo = SIGSEGV;
1580 info.si_errno = 0;
1581 info.si_code = SEGV_BNDERR;
1582 info.si_addr = addr;
1583 info.si_lower = lower;
1584 info.si_upper = upper;
1585 return force_sig_info(info.si_signo, &info, current);
1586 }
1587 #endif
1588
1589 #ifdef SEGV_PKUERR
1590 int force_sig_pkuerr(void __user *addr, u32 pkey)
1591 {
1592 struct siginfo info;
1593
1594 clear_siginfo(&info);
1595 info.si_signo = SIGSEGV;
1596 info.si_errno = 0;
1597 info.si_code = SEGV_PKUERR;
1598 info.si_addr = addr;
1599 info.si_pkey = pkey;
1600 return force_sig_info(info.si_signo, &info, current);
1601 }
1602 #endif
1603
1604 /* For the crazy architectures that include trap information in
1605 * the errno field, instead of an actual errno value.
1606 */
1607 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1608 {
1609 struct siginfo info;
1610
1611 clear_siginfo(&info);
1612 info.si_signo = SIGTRAP;
1613 info.si_errno = errno;
1614 info.si_code = TRAP_HWBKPT;
1615 info.si_addr = addr;
1616 return force_sig_info(info.si_signo, &info, current);
1617 }
1618
1619 int kill_pgrp(struct pid *pid, int sig, int priv)
1620 {
1621 int ret;
1622
1623 read_lock(&tasklist_lock);
1624 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1625 read_unlock(&tasklist_lock);
1626
1627 return ret;
1628 }
1629 EXPORT_SYMBOL(kill_pgrp);
1630
1631 int kill_pid(struct pid *pid, int sig, int priv)
1632 {
1633 return kill_pid_info(sig, __si_special(priv), pid);
1634 }
1635 EXPORT_SYMBOL(kill_pid);
1636
1637 /*
1638 * These functions support sending signals using preallocated sigqueue
1639 * structures. This is needed "because realtime applications cannot
1640 * afford to lose notifications of asynchronous events, like timer
1641 * expirations or I/O completions". In the case of POSIX Timers
1642 * we allocate the sigqueue structure from the timer_create. If this
1643 * allocation fails we are able to report the failure to the application
1644 * with an EAGAIN error.
1645 */
1646 struct sigqueue *sigqueue_alloc(void)
1647 {
1648 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1649
1650 if (q)
1651 q->flags |= SIGQUEUE_PREALLOC;
1652
1653 return q;
1654 }
1655
1656 void sigqueue_free(struct sigqueue *q)
1657 {
1658 unsigned long flags;
1659 spinlock_t *lock = &current->sighand->siglock;
1660
1661 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1662 /*
1663 * We must hold ->siglock while testing q->list
1664 * to serialize with collect_signal() or with
1665 * __exit_signal()->flush_sigqueue().
1666 */
1667 spin_lock_irqsave(lock, flags);
1668 q->flags &= ~SIGQUEUE_PREALLOC;
1669 /*
1670 * If it is queued it will be freed when dequeued,
1671 * like the "regular" sigqueue.
1672 */
1673 if (!list_empty(&q->list))
1674 q = NULL;
1675 spin_unlock_irqrestore(lock, flags);
1676
1677 if (q)
1678 __sigqueue_free(q);
1679 }
1680
1681 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1682 {
1683 int sig = q->info.si_signo;
1684 struct sigpending *pending;
1685 unsigned long flags;
1686 int ret, result;
1687
1688 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1689
1690 ret = -1;
1691 if (!likely(lock_task_sighand(t, &flags)))
1692 goto ret;
1693
1694 ret = 1; /* the signal is ignored */
1695 result = TRACE_SIGNAL_IGNORED;
1696 if (!prepare_signal(sig, t, false))
1697 goto out;
1698
1699 ret = 0;
1700 if (unlikely(!list_empty(&q->list))) {
1701 /*
1702 * If an SI_TIMER entry is already queue just increment
1703 * the overrun count.
1704 */
1705 BUG_ON(q->info.si_code != SI_TIMER);
1706 q->info.si_overrun++;
1707 result = TRACE_SIGNAL_ALREADY_PENDING;
1708 goto out;
1709 }
1710 q->info.si_overrun = 0;
1711
1712 signalfd_notify(t, sig);
1713 pending = group ? &t->signal->shared_pending : &t->pending;
1714 list_add_tail(&q->list, &pending->list);
1715 sigaddset(&pending->signal, sig);
1716 complete_signal(sig, t, group);
1717 result = TRACE_SIGNAL_DELIVERED;
1718 out:
1719 trace_signal_generate(sig, &q->info, t, group, result);
1720 unlock_task_sighand(t, &flags);
1721 ret:
1722 return ret;
1723 }
1724
1725 /*
1726 * Let a parent know about the death of a child.
1727 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1728 *
1729 * Returns true if our parent ignored us and so we've switched to
1730 * self-reaping.
1731 */
1732 bool do_notify_parent(struct task_struct *tsk, int sig)
1733 {
1734 struct siginfo info;
1735 unsigned long flags;
1736 struct sighand_struct *psig;
1737 bool autoreap = false;
1738 u64 utime, stime;
1739
1740 BUG_ON(sig == -1);
1741
1742 /* do_notify_parent_cldstop should have been called instead. */
1743 BUG_ON(task_is_stopped_or_traced(tsk));
1744
1745 BUG_ON(!tsk->ptrace &&
1746 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1747
1748 if (sig != SIGCHLD) {
1749 /*
1750 * This is only possible if parent == real_parent.
1751 * Check if it has changed security domain.
1752 */
1753 if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1754 sig = SIGCHLD;
1755 }
1756
1757 clear_siginfo(&info);
1758 info.si_signo = sig;
1759 info.si_errno = 0;
1760 /*
1761 * We are under tasklist_lock here so our parent is tied to
1762 * us and cannot change.
1763 *
1764 * task_active_pid_ns will always return the same pid namespace
1765 * until a task passes through release_task.
1766 *
1767 * write_lock() currently calls preempt_disable() which is the
1768 * same as rcu_read_lock(), but according to Oleg, this is not
1769 * correct to rely on this
1770 */
1771 rcu_read_lock();
1772 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1773 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1774 task_uid(tsk));
1775 rcu_read_unlock();
1776
1777 task_cputime(tsk, &utime, &stime);
1778 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1779 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1780
1781 info.si_status = tsk->exit_code & 0x7f;
1782 if (tsk->exit_code & 0x80)
1783 info.si_code = CLD_DUMPED;
1784 else if (tsk->exit_code & 0x7f)
1785 info.si_code = CLD_KILLED;
1786 else {
1787 info.si_code = CLD_EXITED;
1788 info.si_status = tsk->exit_code >> 8;
1789 }
1790
1791 psig = tsk->parent->sighand;
1792 spin_lock_irqsave(&psig->siglock, flags);
1793 if (!tsk->ptrace && sig == SIGCHLD &&
1794 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1795 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1796 /*
1797 * We are exiting and our parent doesn't care. POSIX.1
1798 * defines special semantics for setting SIGCHLD to SIG_IGN
1799 * or setting the SA_NOCLDWAIT flag: we should be reaped
1800 * automatically and not left for our parent's wait4 call.
1801 * Rather than having the parent do it as a magic kind of
1802 * signal handler, we just set this to tell do_exit that we
1803 * can be cleaned up without becoming a zombie. Note that
1804 * we still call __wake_up_parent in this case, because a
1805 * blocked sys_wait4 might now return -ECHILD.
1806 *
1807 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1808 * is implementation-defined: we do (if you don't want
1809 * it, just use SIG_IGN instead).
1810 */
1811 autoreap = true;
1812 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1813 sig = 0;
1814 }
1815 if (valid_signal(sig) && sig)
1816 __group_send_sig_info(sig, &info, tsk->parent);
1817 __wake_up_parent(tsk, tsk->parent);
1818 spin_unlock_irqrestore(&psig->siglock, flags);
1819
1820 return autoreap;
1821 }
1822
1823 /**
1824 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1825 * @tsk: task reporting the state change
1826 * @for_ptracer: the notification is for ptracer
1827 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1828 *
1829 * Notify @tsk's parent that the stopped/continued state has changed. If
1830 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1831 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1832 *
1833 * CONTEXT:
1834 * Must be called with tasklist_lock at least read locked.
1835 */
1836 static void do_notify_parent_cldstop(struct task_struct *tsk,
1837 bool for_ptracer, int why)
1838 {
1839 struct siginfo info;
1840 unsigned long flags;
1841 struct task_struct *parent;
1842 struct sighand_struct *sighand;
1843 u64 utime, stime;
1844
1845 if (for_ptracer) {
1846 parent = tsk->parent;
1847 } else {
1848 tsk = tsk->group_leader;
1849 parent = tsk->real_parent;
1850 }
1851
1852 clear_siginfo(&info);
1853 info.si_signo = SIGCHLD;
1854 info.si_errno = 0;
1855 /*
1856 * see comment in do_notify_parent() about the following 4 lines
1857 */
1858 rcu_read_lock();
1859 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1860 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1861 rcu_read_unlock();
1862
1863 task_cputime(tsk, &utime, &stime);
1864 info.si_utime = nsec_to_clock_t(utime);
1865 info.si_stime = nsec_to_clock_t(stime);
1866
1867 info.si_code = why;
1868 switch (why) {
1869 case CLD_CONTINUED:
1870 info.si_status = SIGCONT;
1871 break;
1872 case CLD_STOPPED:
1873 info.si_status = tsk->signal->group_exit_code & 0x7f;
1874 break;
1875 case CLD_TRAPPED:
1876 info.si_status = tsk->exit_code & 0x7f;
1877 break;
1878 default:
1879 BUG();
1880 }
1881
1882 sighand = parent->sighand;
1883 spin_lock_irqsave(&sighand->siglock, flags);
1884 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1885 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1886 __group_send_sig_info(SIGCHLD, &info, parent);
1887 /*
1888 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1889 */
1890 __wake_up_parent(tsk, parent);
1891 spin_unlock_irqrestore(&sighand->siglock, flags);
1892 }
1893
1894 static inline int may_ptrace_stop(void)
1895 {
1896 if (!likely(current->ptrace))
1897 return 0;
1898 /*
1899 * Are we in the middle of do_coredump?
1900 * If so and our tracer is also part of the coredump stopping
1901 * is a deadlock situation, and pointless because our tracer
1902 * is dead so don't allow us to stop.
1903 * If SIGKILL was already sent before the caller unlocked
1904 * ->siglock we must see ->core_state != NULL. Otherwise it
1905 * is safe to enter schedule().
1906 *
1907 * This is almost outdated, a task with the pending SIGKILL can't
1908 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1909 * after SIGKILL was already dequeued.
1910 */
1911 if (unlikely(current->mm->core_state) &&
1912 unlikely(current->mm == current->parent->mm))
1913 return 0;
1914
1915 return 1;
1916 }
1917
1918 /*
1919 * Return non-zero if there is a SIGKILL that should be waking us up.
1920 * Called with the siglock held.
1921 */
1922 static int sigkill_pending(struct task_struct *tsk)
1923 {
1924 return sigismember(&tsk->pending.signal, SIGKILL) ||
1925 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1926 }
1927
1928 /*
1929 * This must be called with current->sighand->siglock held.
1930 *
1931 * This should be the path for all ptrace stops.
1932 * We always set current->last_siginfo while stopped here.
1933 * That makes it a way to test a stopped process for
1934 * being ptrace-stopped vs being job-control-stopped.
1935 *
1936 * If we actually decide not to stop at all because the tracer
1937 * is gone, we keep current->exit_code unless clear_code.
1938 */
1939 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1940 __releases(&current->sighand->siglock)
1941 __acquires(&current->sighand->siglock)
1942 {
1943 bool gstop_done = false;
1944
1945 if (arch_ptrace_stop_needed(exit_code, info)) {
1946 /*
1947 * The arch code has something special to do before a
1948 * ptrace stop. This is allowed to block, e.g. for faults
1949 * on user stack pages. We can't keep the siglock while
1950 * calling arch_ptrace_stop, so we must release it now.
1951 * To preserve proper semantics, we must do this before
1952 * any signal bookkeeping like checking group_stop_count.
1953 * Meanwhile, a SIGKILL could come in before we retake the
1954 * siglock. That must prevent us from sleeping in TASK_TRACED.
1955 * So after regaining the lock, we must check for SIGKILL.
1956 */
1957 spin_unlock_irq(&current->sighand->siglock);
1958 arch_ptrace_stop(exit_code, info);
1959 spin_lock_irq(&current->sighand->siglock);
1960 if (sigkill_pending(current))
1961 return;
1962 }
1963
1964 /*
1965 * We're committing to trapping. TRACED should be visible before
1966 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1967 * Also, transition to TRACED and updates to ->jobctl should be
1968 * atomic with respect to siglock and should be done after the arch
1969 * hook as siglock is released and regrabbed across it.
1970 */
1971 set_current_state(TASK_TRACED);
1972
1973 current->last_siginfo = info;
1974 current->exit_code = exit_code;
1975
1976 /*
1977 * If @why is CLD_STOPPED, we're trapping to participate in a group
1978 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
1979 * across siglock relocks since INTERRUPT was scheduled, PENDING
1980 * could be clear now. We act as if SIGCONT is received after
1981 * TASK_TRACED is entered - ignore it.
1982 */
1983 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1984 gstop_done = task_participate_group_stop(current);
1985
1986 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1987 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1988 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1989 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1990
1991 /* entering a trap, clear TRAPPING */
1992 task_clear_jobctl_trapping(current);
1993
1994 spin_unlock_irq(&current->sighand->siglock);
1995 read_lock(&tasklist_lock);
1996 if (may_ptrace_stop()) {
1997 /*
1998 * Notify parents of the stop.
1999 *
2000 * While ptraced, there are two parents - the ptracer and
2001 * the real_parent of the group_leader. The ptracer should
2002 * know about every stop while the real parent is only
2003 * interested in the completion of group stop. The states
2004 * for the two don't interact with each other. Notify
2005 * separately unless they're gonna be duplicates.
2006 */
2007 do_notify_parent_cldstop(current, true, why);
2008 if (gstop_done && ptrace_reparented(current))
2009 do_notify_parent_cldstop(current, false, why);
2010
2011 /*
2012 * Don't want to allow preemption here, because
2013 * sys_ptrace() needs this task to be inactive.
2014 *
2015 * XXX: implement read_unlock_no_resched().
2016 */
2017 preempt_disable();
2018 read_unlock(&tasklist_lock);
2019 preempt_enable_no_resched();
2020 freezable_schedule();
2021 } else {
2022 /*
2023 * By the time we got the lock, our tracer went away.
2024 * Don't drop the lock yet, another tracer may come.
2025 *
2026 * If @gstop_done, the ptracer went away between group stop
2027 * completion and here. During detach, it would have set
2028 * JOBCTL_STOP_PENDING on us and we'll re-enter
2029 * TASK_STOPPED in do_signal_stop() on return, so notifying
2030 * the real parent of the group stop completion is enough.
2031 */
2032 if (gstop_done)
2033 do_notify_parent_cldstop(current, false, why);
2034
2035 /* tasklist protects us from ptrace_freeze_traced() */
2036 __set_current_state(TASK_RUNNING);
2037 if (clear_code)
2038 current->exit_code = 0;
2039 read_unlock(&tasklist_lock);
2040 }
2041
2042 /*
2043 * We are back. Now reacquire the siglock before touching
2044 * last_siginfo, so that we are sure to have synchronized with
2045 * any signal-sending on another CPU that wants to examine it.
2046 */
2047 spin_lock_irq(&current->sighand->siglock);
2048 current->last_siginfo = NULL;
2049
2050 /* LISTENING can be set only during STOP traps, clear it */
2051 current->jobctl &= ~JOBCTL_LISTENING;
2052
2053 /*
2054 * Queued signals ignored us while we were stopped for tracing.
2055 * So check for any that we should take before resuming user mode.
2056 * This sets TIF_SIGPENDING, but never clears it.
2057 */
2058 recalc_sigpending_tsk(current);
2059 }
2060
2061 static void ptrace_do_notify(int signr, int exit_code, int why)
2062 {
2063 siginfo_t info;
2064
2065 clear_siginfo(&info);
2066 info.si_signo = signr;
2067 info.si_code = exit_code;
2068 info.si_pid = task_pid_vnr(current);
2069 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2070
2071 /* Let the debugger run. */
2072 ptrace_stop(exit_code, why, 1, &info);
2073 }
2074
2075 void ptrace_notify(int exit_code)
2076 {
2077 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2078 if (unlikely(current->task_works))
2079 task_work_run();
2080
2081 spin_lock_irq(&current->sighand->siglock);
2082 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2083 spin_unlock_irq(&current->sighand->siglock);
2084 }
2085
2086 /**
2087 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2088 * @signr: signr causing group stop if initiating
2089 *
2090 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2091 * and participate in it. If already set, participate in the existing
2092 * group stop. If participated in a group stop (and thus slept), %true is
2093 * returned with siglock released.
2094 *
2095 * If ptraced, this function doesn't handle stop itself. Instead,
2096 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2097 * untouched. The caller must ensure that INTERRUPT trap handling takes
2098 * places afterwards.
2099 *
2100 * CONTEXT:
2101 * Must be called with @current->sighand->siglock held, which is released
2102 * on %true return.
2103 *
2104 * RETURNS:
2105 * %false if group stop is already cancelled or ptrace trap is scheduled.
2106 * %true if participated in group stop.
2107 */
2108 static bool do_signal_stop(int signr)
2109 __releases(&current->sighand->siglock)
2110 {
2111 struct signal_struct *sig = current->signal;
2112
2113 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2114 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2115 struct task_struct *t;
2116
2117 /* signr will be recorded in task->jobctl for retries */
2118 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2119
2120 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2121 unlikely(signal_group_exit(sig)))
2122 return false;
2123 /*
2124 * There is no group stop already in progress. We must
2125 * initiate one now.
2126 *
2127 * While ptraced, a task may be resumed while group stop is
2128 * still in effect and then receive a stop signal and
2129 * initiate another group stop. This deviates from the
2130 * usual behavior as two consecutive stop signals can't
2131 * cause two group stops when !ptraced. That is why we
2132 * also check !task_is_stopped(t) below.
2133 *
2134 * The condition can be distinguished by testing whether
2135 * SIGNAL_STOP_STOPPED is already set. Don't generate
2136 * group_exit_code in such case.
2137 *
2138 * This is not necessary for SIGNAL_STOP_CONTINUED because
2139 * an intervening stop signal is required to cause two
2140 * continued events regardless of ptrace.
2141 */
2142 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2143 sig->group_exit_code = signr;
2144
2145 sig->group_stop_count = 0;
2146
2147 if (task_set_jobctl_pending(current, signr | gstop))
2148 sig->group_stop_count++;
2149
2150 t = current;
2151 while_each_thread(current, t) {
2152 /*
2153 * Setting state to TASK_STOPPED for a group
2154 * stop is always done with the siglock held,
2155 * so this check has no races.
2156 */
2157 if (!task_is_stopped(t) &&
2158 task_set_jobctl_pending(t, signr | gstop)) {
2159 sig->group_stop_count++;
2160 if (likely(!(t->ptrace & PT_SEIZED)))
2161 signal_wake_up(t, 0);
2162 else
2163 ptrace_trap_notify(t);
2164 }
2165 }
2166 }
2167
2168 if (likely(!current->ptrace)) {
2169 int notify = 0;
2170
2171 /*
2172 * If there are no other threads in the group, or if there
2173 * is a group stop in progress and we are the last to stop,
2174 * report to the parent.
2175 */
2176 if (task_participate_group_stop(current))
2177 notify = CLD_STOPPED;
2178
2179 __set_current_state(TASK_STOPPED);
2180 spin_unlock_irq(&current->sighand->siglock);
2181
2182 /*
2183 * Notify the parent of the group stop completion. Because
2184 * we're not holding either the siglock or tasklist_lock
2185 * here, ptracer may attach inbetween; however, this is for
2186 * group stop and should always be delivered to the real
2187 * parent of the group leader. The new ptracer will get
2188 * its notification when this task transitions into
2189 * TASK_TRACED.
2190 */
2191 if (notify) {
2192 read_lock(&tasklist_lock);
2193 do_notify_parent_cldstop(current, false, notify);
2194 read_unlock(&tasklist_lock);
2195 }
2196
2197 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2198 freezable_schedule();
2199 return true;
2200 } else {
2201 /*
2202 * While ptraced, group stop is handled by STOP trap.
2203 * Schedule it and let the caller deal with it.
2204 */
2205 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2206 return false;
2207 }
2208 }
2209
2210 /**
2211 * do_jobctl_trap - take care of ptrace jobctl traps
2212 *
2213 * When PT_SEIZED, it's used for both group stop and explicit
2214 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2215 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2216 * the stop signal; otherwise, %SIGTRAP.
2217 *
2218 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2219 * number as exit_code and no siginfo.
2220 *
2221 * CONTEXT:
2222 * Must be called with @current->sighand->siglock held, which may be
2223 * released and re-acquired before returning with intervening sleep.
2224 */
2225 static void do_jobctl_trap(void)
2226 {
2227 struct signal_struct *signal = current->signal;
2228 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2229
2230 if (current->ptrace & PT_SEIZED) {
2231 if (!signal->group_stop_count &&
2232 !(signal->flags & SIGNAL_STOP_STOPPED))
2233 signr = SIGTRAP;
2234 WARN_ON_ONCE(!signr);
2235 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2236 CLD_STOPPED);
2237 } else {
2238 WARN_ON_ONCE(!signr);
2239 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2240 current->exit_code = 0;
2241 }
2242 }
2243
2244 static int ptrace_signal(int signr, siginfo_t *info)
2245 {
2246 /*
2247 * We do not check sig_kernel_stop(signr) but set this marker
2248 * unconditionally because we do not know whether debugger will
2249 * change signr. This flag has no meaning unless we are going
2250 * to stop after return from ptrace_stop(). In this case it will
2251 * be checked in do_signal_stop(), we should only stop if it was
2252 * not cleared by SIGCONT while we were sleeping. See also the
2253 * comment in dequeue_signal().
2254 */
2255 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2256 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2257
2258 /* We're back. Did the debugger cancel the sig? */
2259 signr = current->exit_code;
2260 if (signr == 0)
2261 return signr;
2262
2263 current->exit_code = 0;
2264
2265 /*
2266 * Update the siginfo structure if the signal has
2267 * changed. If the debugger wanted something
2268 * specific in the siginfo structure then it should
2269 * have updated *info via PTRACE_SETSIGINFO.
2270 */
2271 if (signr != info->si_signo) {
2272 clear_siginfo(info);
2273 info->si_signo = signr;
2274 info->si_errno = 0;
2275 info->si_code = SI_USER;
2276 rcu_read_lock();
2277 info->si_pid = task_pid_vnr(current->parent);
2278 info->si_uid = from_kuid_munged(current_user_ns(),
2279 task_uid(current->parent));
2280 rcu_read_unlock();
2281 }
2282
2283 /* If the (new) signal is now blocked, requeue it. */
2284 if (sigismember(&current->blocked, signr)) {
2285 specific_send_sig_info(signr, info, current);
2286 signr = 0;
2287 }
2288
2289 return signr;
2290 }
2291
2292 int get_signal(struct ksignal *ksig)
2293 {
2294 struct sighand_struct *sighand = current->sighand;
2295 struct signal_struct *signal = current->signal;
2296 int signr;
2297
2298 if (unlikely(current->task_works))
2299 task_work_run();
2300
2301 if (unlikely(uprobe_deny_signal()))
2302 return 0;
2303
2304 /*
2305 * Do this once, we can't return to user-mode if freezing() == T.
2306 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2307 * thus do not need another check after return.
2308 */
2309 try_to_freeze();
2310
2311 relock:
2312 spin_lock_irq(&sighand->siglock);
2313 /*
2314 * Every stopped thread goes here after wakeup. Check to see if
2315 * we should notify the parent, prepare_signal(SIGCONT) encodes
2316 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2317 */
2318 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2319 int why;
2320
2321 if (signal->flags & SIGNAL_CLD_CONTINUED)
2322 why = CLD_CONTINUED;
2323 else
2324 why = CLD_STOPPED;
2325
2326 signal->flags &= ~SIGNAL_CLD_MASK;
2327
2328 spin_unlock_irq(&sighand->siglock);
2329
2330 /*
2331 * Notify the parent that we're continuing. This event is
2332 * always per-process and doesn't make whole lot of sense
2333 * for ptracers, who shouldn't consume the state via
2334 * wait(2) either, but, for backward compatibility, notify
2335 * the ptracer of the group leader too unless it's gonna be
2336 * a duplicate.
2337 */
2338 read_lock(&tasklist_lock);
2339 do_notify_parent_cldstop(current, false, why);
2340
2341 if (ptrace_reparented(current->group_leader))
2342 do_notify_parent_cldstop(current->group_leader,
2343 true, why);
2344 read_unlock(&tasklist_lock);
2345
2346 goto relock;
2347 }
2348
2349 for (;;) {
2350 struct k_sigaction *ka;
2351
2352 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2353 do_signal_stop(0))
2354 goto relock;
2355
2356 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2357 do_jobctl_trap();
2358 spin_unlock_irq(&sighand->siglock);
2359 goto relock;
2360 }
2361
2362 signr = dequeue_signal(current, &current->blocked, &ksig->info);
2363
2364 if (!signr)
2365 break; /* will return 0 */
2366
2367 if (unlikely(current->ptrace) && signr != SIGKILL) {
2368 signr = ptrace_signal(signr, &ksig->info);
2369 if (!signr)
2370 continue;
2371 }
2372
2373 ka = &sighand->action[signr-1];
2374
2375 /* Trace actually delivered signals. */
2376 trace_signal_deliver(signr, &ksig->info, ka);
2377
2378 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2379 continue;
2380 if (ka->sa.sa_handler != SIG_DFL) {
2381 /* Run the handler. */
2382 ksig->ka = *ka;
2383
2384 if (ka->sa.sa_flags & SA_ONESHOT)
2385 ka->sa.sa_handler = SIG_DFL;
2386
2387 break; /* will return non-zero "signr" value */
2388 }
2389
2390 /*
2391 * Now we are doing the default action for this signal.
2392 */
2393 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2394 continue;
2395
2396 /*
2397 * Global init gets no signals it doesn't want.
2398 * Container-init gets no signals it doesn't want from same
2399 * container.
2400 *
2401 * Note that if global/container-init sees a sig_kernel_only()
2402 * signal here, the signal must have been generated internally
2403 * or must have come from an ancestor namespace. In either
2404 * case, the signal cannot be dropped.
2405 */
2406 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2407 !sig_kernel_only(signr))
2408 continue;
2409
2410 if (sig_kernel_stop(signr)) {
2411 /*
2412 * The default action is to stop all threads in
2413 * the thread group. The job control signals
2414 * do nothing in an orphaned pgrp, but SIGSTOP
2415 * always works. Note that siglock needs to be
2416 * dropped during the call to is_orphaned_pgrp()
2417 * because of lock ordering with tasklist_lock.
2418 * This allows an intervening SIGCONT to be posted.
2419 * We need to check for that and bail out if necessary.
2420 */
2421 if (signr != SIGSTOP) {
2422 spin_unlock_irq(&sighand->siglock);
2423
2424 /* signals can be posted during this window */
2425
2426 if (is_current_pgrp_orphaned())
2427 goto relock;
2428
2429 spin_lock_irq(&sighand->siglock);
2430 }
2431
2432 if (likely(do_signal_stop(ksig->info.si_signo))) {
2433 /* It released the siglock. */
2434 goto relock;
2435 }
2436
2437 /*
2438 * We didn't actually stop, due to a race
2439 * with SIGCONT or something like that.
2440 */
2441 continue;
2442 }
2443
2444 spin_unlock_irq(&sighand->siglock);
2445
2446 /*
2447 * Anything else is fatal, maybe with a core dump.
2448 */
2449 current->flags |= PF_SIGNALED;
2450
2451 if (sig_kernel_coredump(signr)) {
2452 if (print_fatal_signals)
2453 print_fatal_signal(ksig->info.si_signo);
2454 proc_coredump_connector(current);
2455 /*
2456 * If it was able to dump core, this kills all
2457 * other threads in the group and synchronizes with
2458 * their demise. If we lost the race with another
2459 * thread getting here, it set group_exit_code
2460 * first and our do_group_exit call below will use
2461 * that value and ignore the one we pass it.
2462 */
2463 do_coredump(&ksig->info);
2464 }
2465
2466 /*
2467 * Death signals, no core dump.
2468 */
2469 do_group_exit(ksig->info.si_signo);
2470 /* NOTREACHED */
2471 }
2472 spin_unlock_irq(&sighand->siglock);
2473
2474 ksig->sig = signr;
2475 return ksig->sig > 0;
2476 }
2477
2478 /**
2479 * signal_delivered -
2480 * @ksig: kernel signal struct
2481 * @stepping: nonzero if debugger single-step or block-step in use
2482 *
2483 * This function should be called when a signal has successfully been
2484 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2485 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2486 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2487 */
2488 static void signal_delivered(struct ksignal *ksig, int stepping)
2489 {
2490 sigset_t blocked;
2491
2492 /* A signal was successfully delivered, and the
2493 saved sigmask was stored on the signal frame,
2494 and will be restored by sigreturn. So we can
2495 simply clear the restore sigmask flag. */
2496 clear_restore_sigmask();
2497
2498 sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2499 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2500 sigaddset(&blocked, ksig->sig);
2501 set_current_blocked(&blocked);
2502 tracehook_signal_handler(stepping);
2503 }
2504
2505 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2506 {
2507 if (failed)
2508 force_sigsegv(ksig->sig, current);
2509 else
2510 signal_delivered(ksig, stepping);
2511 }
2512
2513 /*
2514 * It could be that complete_signal() picked us to notify about the
2515 * group-wide signal. Other threads should be notified now to take
2516 * the shared signals in @which since we will not.
2517 */
2518 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2519 {
2520 sigset_t retarget;
2521 struct task_struct *t;
2522
2523 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2524 if (sigisemptyset(&retarget))
2525 return;
2526
2527 t = tsk;
2528 while_each_thread(tsk, t) {
2529 if (t->flags & PF_EXITING)
2530 continue;
2531
2532 if (!has_pending_signals(&retarget, &t->blocked))
2533 continue;
2534 /* Remove the signals this thread can handle. */
2535 sigandsets(&retarget, &retarget, &t->blocked);
2536
2537 if (!signal_pending(t))
2538 signal_wake_up(t, 0);
2539
2540 if (sigisemptyset(&retarget))
2541 break;
2542 }
2543 }
2544
2545 void exit_signals(struct task_struct *tsk)
2546 {
2547 int group_stop = 0;
2548 sigset_t unblocked;
2549
2550 /*
2551 * @tsk is about to have PF_EXITING set - lock out users which
2552 * expect stable threadgroup.
2553 */
2554 cgroup_threadgroup_change_begin(tsk);
2555
2556 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2557 tsk->flags |= PF_EXITING;
2558 cgroup_threadgroup_change_end(tsk);
2559 return;
2560 }
2561
2562 spin_lock_irq(&tsk->sighand->siglock);
2563 /*
2564 * From now this task is not visible for group-wide signals,
2565 * see wants_signal(), do_signal_stop().
2566 */
2567 tsk->flags |= PF_EXITING;
2568
2569 cgroup_threadgroup_change_end(tsk);
2570
2571 if (!signal_pending(tsk))
2572 goto out;
2573
2574 unblocked = tsk->blocked;
2575 signotset(&unblocked);
2576 retarget_shared_pending(tsk, &unblocked);
2577
2578 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2579 task_participate_group_stop(tsk))
2580 group_stop = CLD_STOPPED;
2581 out:
2582 spin_unlock_irq(&tsk->sighand->siglock);
2583
2584 /*
2585 * If group stop has completed, deliver the notification. This
2586 * should always go to the real parent of the group leader.
2587 */
2588 if (unlikely(group_stop)) {
2589 read_lock(&tasklist_lock);
2590 do_notify_parent_cldstop(tsk, false, group_stop);
2591 read_unlock(&tasklist_lock);
2592 }
2593 }
2594
2595 EXPORT_SYMBOL(recalc_sigpending);
2596 EXPORT_SYMBOL_GPL(dequeue_signal);
2597 EXPORT_SYMBOL(flush_signals);
2598 EXPORT_SYMBOL(force_sig);
2599 EXPORT_SYMBOL(send_sig);
2600 EXPORT_SYMBOL(send_sig_info);
2601 EXPORT_SYMBOL(sigprocmask);
2602
2603 /*
2604 * System call entry points.
2605 */
2606
2607 /**
2608 * sys_restart_syscall - restart a system call
2609 */
2610 SYSCALL_DEFINE0(restart_syscall)
2611 {
2612 struct restart_block *restart = &current->restart_block;
2613 return restart->fn(restart);
2614 }
2615
2616 long do_no_restart_syscall(struct restart_block *param)
2617 {
2618 return -EINTR;
2619 }
2620
2621 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2622 {
2623 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2624 sigset_t newblocked;
2625 /* A set of now blocked but previously unblocked signals. */
2626 sigandnsets(&newblocked, newset, &current->blocked);
2627 retarget_shared_pending(tsk, &newblocked);
2628 }
2629 tsk->blocked = *newset;
2630 recalc_sigpending();
2631 }
2632
2633 /**
2634 * set_current_blocked - change current->blocked mask
2635 * @newset: new mask
2636 *
2637 * It is wrong to change ->blocked directly, this helper should be used
2638 * to ensure the process can't miss a shared signal we are going to block.
2639 */
2640 void set_current_blocked(sigset_t *newset)
2641 {
2642 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2643 __set_current_blocked(newset);
2644 }
2645
2646 void __set_current_blocked(const sigset_t *newset)
2647 {
2648 struct task_struct *tsk = current;
2649
2650 /*
2651 * In case the signal mask hasn't changed, there is nothing we need
2652 * to do. The current->blocked shouldn't be modified by other task.
2653 */
2654 if (sigequalsets(&tsk->blocked, newset))
2655 return;
2656
2657 spin_lock_irq(&tsk->sighand->siglock);
2658 __set_task_blocked(tsk, newset);
2659 spin_unlock_irq(&tsk->sighand->siglock);
2660 }
2661
2662 /*
2663 * This is also useful for kernel threads that want to temporarily
2664 * (or permanently) block certain signals.
2665 *
2666 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2667 * interface happily blocks "unblockable" signals like SIGKILL
2668 * and friends.
2669 */
2670 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2671 {
2672 struct task_struct *tsk = current;
2673 sigset_t newset;
2674
2675 /* Lockless, only current can change ->blocked, never from irq */
2676 if (oldset)
2677 *oldset = tsk->blocked;
2678
2679 switch (how) {
2680 case SIG_BLOCK:
2681 sigorsets(&newset, &tsk->blocked, set);
2682 break;
2683 case SIG_UNBLOCK:
2684 sigandnsets(&newset, &tsk->blocked, set);
2685 break;
2686 case SIG_SETMASK:
2687 newset = *set;
2688 break;
2689 default:
2690 return -EINVAL;
2691 }
2692
2693 __set_current_blocked(&newset);
2694 return 0;
2695 }
2696
2697 /**
2698 * sys_rt_sigprocmask - change the list of currently blocked signals
2699 * @how: whether to add, remove, or set signals
2700 * @nset: stores pending signals
2701 * @oset: previous value of signal mask if non-null
2702 * @sigsetsize: size of sigset_t type
2703 */
2704 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2705 sigset_t __user *, oset, size_t, sigsetsize)
2706 {
2707 sigset_t old_set, new_set;
2708 int error;
2709
2710 /* XXX: Don't preclude handling different sized sigset_t's. */
2711 if (sigsetsize != sizeof(sigset_t))
2712 return -EINVAL;
2713
2714 old_set = current->blocked;
2715
2716 if (nset) {
2717 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2718 return -EFAULT;
2719 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2720
2721 error = sigprocmask(how, &new_set, NULL);
2722 if (error)
2723 return error;
2724 }
2725
2726 if (oset) {
2727 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2728 return -EFAULT;
2729 }
2730
2731 return 0;
2732 }
2733
2734 #ifdef CONFIG_COMPAT
2735 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2736 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2737 {
2738 sigset_t old_set = current->blocked;
2739
2740 /* XXX: Don't preclude handling different sized sigset_t's. */
2741 if (sigsetsize != sizeof(sigset_t))
2742 return -EINVAL;
2743
2744 if (nset) {
2745 sigset_t new_set;
2746 int error;
2747 if (get_compat_sigset(&new_set, nset))
2748 return -EFAULT;
2749 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2750
2751 error = sigprocmask(how, &new_set, NULL);
2752 if (error)
2753 return error;
2754 }
2755 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
2756 }
2757 #endif
2758
2759 static int do_sigpending(sigset_t *set)
2760 {
2761 spin_lock_irq(&current->sighand->siglock);
2762 sigorsets(set, &current->pending.signal,
2763 &current->signal->shared_pending.signal);
2764 spin_unlock_irq(&current->sighand->siglock);
2765
2766 /* Outside the lock because only this thread touches it. */
2767 sigandsets(set, &current->blocked, set);
2768 return 0;
2769 }
2770
2771 /**
2772 * sys_rt_sigpending - examine a pending signal that has been raised
2773 * while blocked
2774 * @uset: stores pending signals
2775 * @sigsetsize: size of sigset_t type or larger
2776 */
2777 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2778 {
2779 sigset_t set;
2780 int err;
2781
2782 if (sigsetsize > sizeof(*uset))
2783 return -EINVAL;
2784
2785 err = do_sigpending(&set);
2786 if (!err && copy_to_user(uset, &set, sigsetsize))
2787 err = -EFAULT;
2788 return err;
2789 }
2790
2791 #ifdef CONFIG_COMPAT
2792 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2793 compat_size_t, sigsetsize)
2794 {
2795 sigset_t set;
2796 int err;
2797
2798 if (sigsetsize > sizeof(*uset))
2799 return -EINVAL;
2800
2801 err = do_sigpending(&set);
2802 if (!err)
2803 err = put_compat_sigset(uset, &set, sigsetsize);
2804 return err;
2805 }
2806 #endif
2807
2808 enum siginfo_layout siginfo_layout(int sig, int si_code)
2809 {
2810 enum siginfo_layout layout = SIL_KILL;
2811 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
2812 static const struct {
2813 unsigned char limit, layout;
2814 } filter[] = {
2815 [SIGILL] = { NSIGILL, SIL_FAULT },
2816 [SIGFPE] = { NSIGFPE, SIL_FAULT },
2817 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
2818 [SIGBUS] = { NSIGBUS, SIL_FAULT },
2819 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
2820 #if defined(SIGEMT) && defined(NSIGEMT)
2821 [SIGEMT] = { NSIGEMT, SIL_FAULT },
2822 #endif
2823 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
2824 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
2825 [SIGSYS] = { NSIGSYS, SIL_SYS },
2826 };
2827 if ((sig < ARRAY_SIZE(filter)) && (si_code <= filter[sig].limit))
2828 layout = filter[sig].layout;
2829 else if (si_code <= NSIGPOLL)
2830 layout = SIL_POLL;
2831 } else {
2832 if (si_code == SI_TIMER)
2833 layout = SIL_TIMER;
2834 else if (si_code == SI_SIGIO)
2835 layout = SIL_POLL;
2836 else if (si_code < 0)
2837 layout = SIL_RT;
2838 /* Tests to support buggy kernel ABIs */
2839 #ifdef TRAP_FIXME
2840 if ((sig == SIGTRAP) && (si_code == TRAP_FIXME))
2841 layout = SIL_FAULT;
2842 #endif
2843 #ifdef FPE_FIXME
2844 if ((sig == SIGFPE) && (si_code == FPE_FIXME))
2845 layout = SIL_FAULT;
2846 #endif
2847 }
2848 return layout;
2849 }
2850
2851 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2852 {
2853 int err;
2854
2855 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2856 return -EFAULT;
2857 if (from->si_code < 0)
2858 return __copy_to_user(to, from, sizeof(siginfo_t))
2859 ? -EFAULT : 0;
2860 /*
2861 * If you change siginfo_t structure, please be sure
2862 * this code is fixed accordingly.
2863 * Please remember to update the signalfd_copyinfo() function
2864 * inside fs/signalfd.c too, in case siginfo_t changes.
2865 * It should never copy any pad contained in the structure
2866 * to avoid security leaks, but must copy the generic
2867 * 3 ints plus the relevant union member.
2868 */
2869 err = __put_user(from->si_signo, &to->si_signo);
2870 err |= __put_user(from->si_errno, &to->si_errno);
2871 err |= __put_user(from->si_code, &to->si_code);
2872 switch (siginfo_layout(from->si_signo, from->si_code)) {
2873 case SIL_KILL:
2874 err |= __put_user(from->si_pid, &to->si_pid);
2875 err |= __put_user(from->si_uid, &to->si_uid);
2876 break;
2877 case SIL_TIMER:
2878 /* Unreached SI_TIMER is negative */
2879 break;
2880 case SIL_POLL:
2881 err |= __put_user(from->si_band, &to->si_band);
2882 err |= __put_user(from->si_fd, &to->si_fd);
2883 break;
2884 case SIL_FAULT:
2885 err |= __put_user(from->si_addr, &to->si_addr);
2886 #ifdef __ARCH_SI_TRAPNO
2887 err |= __put_user(from->si_trapno, &to->si_trapno);
2888 #endif
2889 #ifdef __ia64__
2890 err |= __put_user(from->si_imm, &to->si_imm);
2891 err |= __put_user(from->si_flags, &to->si_flags);
2892 err |= __put_user(from->si_isr, &to->si_isr);
2893 #endif
2894 /*
2895 * Other callers might not initialize the si_lsb field,
2896 * so check explicitly for the right codes here.
2897 */
2898 #ifdef BUS_MCEERR_AR
2899 if (from->si_signo == SIGBUS && from->si_code == BUS_MCEERR_AR)
2900 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2901 #endif
2902 #ifdef BUS_MCEERR_AO
2903 if (from->si_signo == SIGBUS && from->si_code == BUS_MCEERR_AO)
2904 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2905 #endif
2906 #ifdef SEGV_BNDERR
2907 if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2908 err |= __put_user(from->si_lower, &to->si_lower);
2909 err |= __put_user(from->si_upper, &to->si_upper);
2910 }
2911 #endif
2912 #ifdef SEGV_PKUERR
2913 if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR)
2914 err |= __put_user(from->si_pkey, &to->si_pkey);
2915 #endif
2916 break;
2917 case SIL_CHLD:
2918 err |= __put_user(from->si_pid, &to->si_pid);
2919 err |= __put_user(from->si_uid, &to->si_uid);
2920 err |= __put_user(from->si_status, &to->si_status);
2921 err |= __put_user(from->si_utime, &to->si_utime);
2922 err |= __put_user(from->si_stime, &to->si_stime);
2923 break;
2924 case SIL_RT:
2925 err |= __put_user(from->si_pid, &to->si_pid);
2926 err |= __put_user(from->si_uid, &to->si_uid);
2927 err |= __put_user(from->si_ptr, &to->si_ptr);
2928 break;
2929 case SIL_SYS:
2930 err |= __put_user(from->si_call_addr, &to->si_call_addr);
2931 err |= __put_user(from->si_syscall, &to->si_syscall);
2932 err |= __put_user(from->si_arch, &to->si_arch);
2933 break;
2934 }
2935 return err;
2936 }
2937
2938 #ifdef CONFIG_COMPAT
2939 int copy_siginfo_to_user32(struct compat_siginfo __user *to,
2940 const struct siginfo *from)
2941 #if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
2942 {
2943 return __copy_siginfo_to_user32(to, from, in_x32_syscall());
2944 }
2945 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
2946 const struct siginfo *from, bool x32_ABI)
2947 #endif
2948 {
2949 struct compat_siginfo new;
2950 memset(&new, 0, sizeof(new));
2951
2952 new.si_signo = from->si_signo;
2953 new.si_errno = from->si_errno;
2954 new.si_code = from->si_code;
2955 switch(siginfo_layout(from->si_signo, from->si_code)) {
2956 case SIL_KILL:
2957 new.si_pid = from->si_pid;
2958 new.si_uid = from->si_uid;
2959 break;
2960 case SIL_TIMER:
2961 new.si_tid = from->si_tid;
2962 new.si_overrun = from->si_overrun;
2963 new.si_int = from->si_int;
2964 break;
2965 case SIL_POLL:
2966 new.si_band = from->si_band;
2967 new.si_fd = from->si_fd;
2968 break;
2969 case SIL_FAULT:
2970 new.si_addr = ptr_to_compat(from->si_addr);
2971 #ifdef __ARCH_SI_TRAPNO
2972 new.si_trapno = from->si_trapno;
2973 #endif
2974 #ifdef BUS_MCEERR_AR
2975 if ((from->si_signo == SIGBUS) && (from->si_code == BUS_MCEERR_AR))
2976 new.si_addr_lsb = from->si_addr_lsb;
2977 #endif
2978 #ifdef BUS_MCEERR_AO
2979 if ((from->si_signo == SIGBUS) && (from->si_code == BUS_MCEERR_AO))
2980 new.si_addr_lsb = from->si_addr_lsb;
2981 #endif
2982 #ifdef SEGV_BNDERR
2983 if ((from->si_signo == SIGSEGV) &&
2984 (from->si_code == SEGV_BNDERR)) {
2985 new.si_lower = ptr_to_compat(from->si_lower);
2986 new.si_upper = ptr_to_compat(from->si_upper);
2987 }
2988 #endif
2989 #ifdef SEGV_PKUERR
2990 if ((from->si_signo == SIGSEGV) &&
2991 (from->si_code == SEGV_PKUERR))
2992 new.si_pkey = from->si_pkey;
2993 #endif
2994
2995 break;
2996 case SIL_CHLD:
2997 new.si_pid = from->si_pid;
2998 new.si_uid = from->si_uid;
2999 new.si_status = from->si_status;
3000 #ifdef CONFIG_X86_X32_ABI
3001 if (x32_ABI) {
3002 new._sifields._sigchld_x32._utime = from->si_utime;
3003 new._sifields._sigchld_x32._stime = from->si_stime;
3004 } else
3005 #endif
3006 {
3007 new.si_utime = from->si_utime;
3008 new.si_stime = from->si_stime;
3009 }
3010 break;
3011 case SIL_RT:
3012 new.si_pid = from->si_pid;
3013 new.si_uid = from->si_uid;
3014 new.si_int = from->si_int;
3015 break;
3016 case SIL_SYS:
3017 new.si_call_addr = ptr_to_compat(from->si_call_addr);
3018 new.si_syscall = from->si_syscall;
3019 new.si_arch = from->si_arch;
3020 break;
3021 }
3022
3023 if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3024 return -EFAULT;
3025
3026 return 0;
3027 }
3028
3029 int copy_siginfo_from_user32(struct siginfo *to,
3030 const struct compat_siginfo __user *ufrom)
3031 {
3032 struct compat_siginfo from;
3033
3034 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3035 return -EFAULT;
3036
3037 clear_siginfo(to);
3038 to->si_signo = from.si_signo;
3039 to->si_errno = from.si_errno;
3040 to->si_code = from.si_code;
3041 switch(siginfo_layout(from.si_signo, from.si_code)) {
3042 case SIL_KILL:
3043 to->si_pid = from.si_pid;
3044 to->si_uid = from.si_uid;
3045 break;
3046 case SIL_TIMER:
3047 to->si_tid = from.si_tid;
3048 to->si_overrun = from.si_overrun;
3049 to->si_int = from.si_int;
3050 break;
3051 case SIL_POLL:
3052 to->si_band = from.si_band;
3053 to->si_fd = from.si_fd;
3054 break;
3055 case SIL_FAULT:
3056 to->si_addr = compat_ptr(from.si_addr);
3057 #ifdef __ARCH_SI_TRAPNO
3058 to->si_trapno = from.si_trapno;
3059 #endif
3060 #ifdef BUS_MCEERR_AR
3061 if ((from.si_signo == SIGBUS) && (from.si_code == BUS_MCEERR_AR))
3062 to->si_addr_lsb = from.si_addr_lsb;
3063 #endif
3064 #ifdef BUS_MCEER_AO
3065 if ((from.si_signo == SIGBUS) && (from.si_code == BUS_MCEERR_AO))
3066 to->si_addr_lsb = from.si_addr_lsb;
3067 #endif
3068 #ifdef SEGV_BNDERR
3069 if ((from.si_signo == SIGSEGV) && (from.si_code == SEGV_BNDERR)) {
3070 to->si_lower = compat_ptr(from.si_lower);
3071 to->si_upper = compat_ptr(from.si_upper);
3072 }
3073 #endif
3074 #ifdef SEGV_PKUERR
3075 if ((from.si_signo == SIGSEGV) && (from.si_code == SEGV_PKUERR))
3076 to->si_pkey = from.si_pkey;
3077 #endif
3078 break;
3079 case SIL_CHLD:
3080 to->si_pid = from.si_pid;
3081 to->si_uid = from.si_uid;
3082 to->si_status = from.si_status;
3083 #ifdef CONFIG_X86_X32_ABI
3084 if (in_x32_syscall()) {
3085 to->si_utime = from._sifields._sigchld_x32._utime;
3086 to->si_stime = from._sifields._sigchld_x32._stime;
3087 } else
3088 #endif
3089 {
3090 to->si_utime = from.si_utime;
3091 to->si_stime = from.si_stime;
3092 }
3093 break;
3094 case SIL_RT:
3095 to->si_pid = from.si_pid;
3096 to->si_uid = from.si_uid;
3097 to->si_int = from.si_int;
3098 break;
3099 case SIL_SYS:
3100 to->si_call_addr = compat_ptr(from.si_call_addr);
3101 to->si_syscall = from.si_syscall;
3102 to->si_arch = from.si_arch;
3103 break;
3104 }
3105 return 0;
3106 }
3107 #endif /* CONFIG_COMPAT */
3108
3109 /**
3110 * do_sigtimedwait - wait for queued signals specified in @which
3111 * @which: queued signals to wait for
3112 * @info: if non-null, the signal's siginfo is returned here
3113 * @ts: upper bound on process time suspension
3114 */
3115 static int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
3116 const struct timespec *ts)
3117 {
3118 ktime_t *to = NULL, timeout = KTIME_MAX;
3119 struct task_struct *tsk = current;
3120 sigset_t mask = *which;
3121 int sig, ret = 0;
3122
3123 if (ts) {
3124 if (!timespec_valid(ts))
3125 return -EINVAL;
3126 timeout = timespec_to_ktime(*ts);
3127 to = &timeout;
3128 }
3129
3130 /*
3131 * Invert the set of allowed signals to get those we want to block.
3132 */
3133 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3134 signotset(&mask);
3135
3136 spin_lock_irq(&tsk->sighand->siglock);
3137 sig = dequeue_signal(tsk, &mask, info);
3138 if (!sig && timeout) {
3139 /*
3140 * None ready, temporarily unblock those we're interested
3141 * while we are sleeping in so that we'll be awakened when
3142 * they arrive. Unblocking is always fine, we can avoid
3143 * set_current_blocked().
3144 */
3145 tsk->real_blocked = tsk->blocked;
3146 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3147 recalc_sigpending();
3148 spin_unlock_irq(&tsk->sighand->siglock);
3149
3150 __set_current_state(TASK_INTERRUPTIBLE);
3151 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3152 HRTIMER_MODE_REL);
3153 spin_lock_irq(&tsk->sighand->siglock);
3154 __set_task_blocked(tsk, &tsk->real_blocked);
3155 sigemptyset(&tsk->real_blocked);
3156 sig = dequeue_signal(tsk, &mask, info);
3157 }
3158 spin_unlock_irq(&tsk->sighand->siglock);
3159
3160 if (sig)
3161 return sig;
3162 return ret ? -EINTR : -EAGAIN;
3163 }
3164
3165 /**
3166 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3167 * in @uthese
3168 * @uthese: queued signals to wait for
3169 * @uinfo: if non-null, the signal's siginfo is returned here
3170 * @uts: upper bound on process time suspension
3171 * @sigsetsize: size of sigset_t type
3172 */
3173 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3174 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
3175 size_t, sigsetsize)
3176 {
3177 sigset_t these;
3178 struct timespec ts;
3179 siginfo_t info;
3180 int ret;
3181
3182 /* XXX: Don't preclude handling different sized sigset_t's. */
3183 if (sigsetsize != sizeof(sigset_t))
3184 return -EINVAL;
3185
3186 if (copy_from_user(&these, uthese, sizeof(these)))
3187 return -EFAULT;
3188
3189 if (uts) {
3190 if (copy_from_user(&ts, uts, sizeof(ts)))
3191 return -EFAULT;
3192 }
3193
3194 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3195
3196 if (ret > 0 && uinfo) {
3197 if (copy_siginfo_to_user(uinfo, &info))
3198 ret = -EFAULT;
3199 }
3200
3201 return ret;
3202 }
3203
3204 #ifdef CONFIG_COMPAT
3205 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait, compat_sigset_t __user *, uthese,
3206 struct compat_siginfo __user *, uinfo,
3207 struct compat_timespec __user *, uts, compat_size_t, sigsetsize)
3208 {
3209 sigset_t s;
3210 struct timespec t;
3211 siginfo_t info;
3212 long ret;
3213
3214 if (sigsetsize != sizeof(sigset_t))
3215 return -EINVAL;
3216
3217 if (get_compat_sigset(&s, uthese))
3218 return -EFAULT;
3219
3220 if (uts) {
3221 if (compat_get_timespec(&t, uts))
3222 return -EFAULT;
3223 }
3224
3225 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3226
3227 if (ret > 0 && uinfo) {
3228 if (copy_siginfo_to_user32(uinfo, &info))
3229 ret = -EFAULT;
3230 }
3231
3232 return ret;
3233 }
3234 #endif
3235
3236 /**
3237 * sys_kill - send a signal to a process
3238 * @pid: the PID of the process
3239 * @sig: signal to be sent
3240 */
3241 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3242 {
3243 struct siginfo info;
3244
3245 clear_siginfo(&info);
3246 info.si_signo = sig;
3247 info.si_errno = 0;
3248 info.si_code = SI_USER;
3249 info.si_pid = task_tgid_vnr(current);
3250 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3251
3252 return kill_something_info(sig, &info, pid);
3253 }
3254
3255 static int
3256 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
3257 {
3258 struct task_struct *p;
3259 int error = -ESRCH;
3260
3261 rcu_read_lock();
3262 p = find_task_by_vpid(pid);
3263 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3264 error = check_kill_permission(sig, info, p);
3265 /*
3266 * The null signal is a permissions and process existence
3267 * probe. No signal is actually delivered.
3268 */
3269 if (!error && sig) {
3270 error = do_send_sig_info(sig, info, p, false);
3271 /*
3272 * If lock_task_sighand() failed we pretend the task
3273 * dies after receiving the signal. The window is tiny,
3274 * and the signal is private anyway.
3275 */
3276 if (unlikely(error == -ESRCH))
3277 error = 0;
3278 }
3279 }
3280 rcu_read_unlock();
3281
3282 return error;
3283 }
3284
3285 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3286 {
3287 struct siginfo info;
3288
3289 clear_siginfo(&info);
3290 info.si_signo = sig;
3291 info.si_errno = 0;
3292 info.si_code = SI_TKILL;
3293 info.si_pid = task_tgid_vnr(current);
3294 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3295
3296 return do_send_specific(tgid, pid, sig, &info);
3297 }
3298
3299 /**
3300 * sys_tgkill - send signal to one specific thread
3301 * @tgid: the thread group ID of the thread
3302 * @pid: the PID of the thread
3303 * @sig: signal to be sent
3304 *
3305 * This syscall also checks the @tgid and returns -ESRCH even if the PID
3306 * exists but it's not belonging to the target process anymore. This
3307 * method solves the problem of threads exiting and PIDs getting reused.
3308 */
3309 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3310 {
3311 /* This is only valid for single tasks */
3312 if (pid <= 0 || tgid <= 0)
3313 return -EINVAL;
3314
3315 return do_tkill(tgid, pid, sig);
3316 }
3317
3318 /**
3319 * sys_tkill - send signal to one specific task
3320 * @pid: the PID of the task
3321 * @sig: signal to be sent
3322 *
3323 * Send a signal to only one task, even if it's a CLONE_THREAD task.
3324 */
3325 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3326 {
3327 /* This is only valid for single tasks */
3328 if (pid <= 0)
3329 return -EINVAL;
3330
3331 return do_tkill(0, pid, sig);
3332 }
3333
3334 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
3335 {
3336 /* Not even root can pretend to send signals from the kernel.
3337 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3338 */
3339 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3340 (task_pid_vnr(current) != pid))
3341 return -EPERM;
3342
3343 info->si_signo = sig;
3344
3345 /* POSIX.1b doesn't mention process groups. */
3346 return kill_proc_info(sig, info, pid);
3347 }
3348
3349 /**
3350 * sys_rt_sigqueueinfo - send signal information to a signal
3351 * @pid: the PID of the thread
3352 * @sig: signal to be sent
3353 * @uinfo: signal info to be sent
3354 */
3355 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3356 siginfo_t __user *, uinfo)
3357 {
3358 siginfo_t info;
3359 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3360 return -EFAULT;
3361 return do_rt_sigqueueinfo(pid, sig, &info);
3362 }
3363
3364 #ifdef CONFIG_COMPAT
3365 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3366 compat_pid_t, pid,
3367 int, sig,
3368 struct compat_siginfo __user *, uinfo)
3369 {
3370 siginfo_t info;
3371 int ret = copy_siginfo_from_user32(&info, uinfo);
3372 if (unlikely(ret))
3373 return ret;
3374 return do_rt_sigqueueinfo(pid, sig, &info);
3375 }
3376 #endif
3377
3378 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3379 {
3380 /* This is only valid for single tasks */
3381 if (pid <= 0 || tgid <= 0)
3382 return -EINVAL;
3383
3384 /* Not even root can pretend to send signals from the kernel.
3385 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3386 */
3387 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3388 (task_pid_vnr(current) != pid))
3389 return -EPERM;
3390
3391 info->si_signo = sig;
3392
3393 return do_send_specific(tgid, pid, sig, info);
3394 }
3395
3396 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3397 siginfo_t __user *, uinfo)
3398 {
3399 siginfo_t info;
3400
3401 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3402 return -EFAULT;
3403
3404 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3405 }
3406
3407 #ifdef CONFIG_COMPAT
3408 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3409 compat_pid_t, tgid,
3410 compat_pid_t, pid,
3411 int, sig,
3412 struct compat_siginfo __user *, uinfo)
3413 {
3414 siginfo_t info;
3415
3416 if (copy_siginfo_from_user32(&info, uinfo))
3417 return -EFAULT;
3418 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3419 }
3420 #endif
3421
3422 /*
3423 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3424 */
3425 void kernel_sigaction(int sig, __sighandler_t action)
3426 {
3427 spin_lock_irq(&current->sighand->siglock);
3428 current->sighand->action[sig - 1].sa.sa_handler = action;
3429 if (action == SIG_IGN) {
3430 sigset_t mask;
3431
3432 sigemptyset(&mask);
3433 sigaddset(&mask, sig);
3434
3435 flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3436 flush_sigqueue_mask(&mask, &current->pending);
3437 recalc_sigpending();
3438 }
3439 spin_unlock_irq(&current->sighand->siglock);
3440 }
3441 EXPORT_SYMBOL(kernel_sigaction);
3442
3443 void __weak sigaction_compat_abi(struct k_sigaction *act,
3444 struct k_sigaction *oact)
3445 {
3446 }
3447
3448 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3449 {
3450 struct task_struct *p = current, *t;
3451 struct k_sigaction *k;
3452 sigset_t mask;
3453
3454 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3455 return -EINVAL;
3456
3457 k = &p->sighand->action[sig-1];
3458
3459 spin_lock_irq(&p->sighand->siglock);
3460 if (oact)
3461 *oact = *k;
3462
3463 sigaction_compat_abi(act, oact);
3464
3465 if (act) {
3466 sigdelsetmask(&act->sa.sa_mask,
3467 sigmask(SIGKILL) | sigmask(SIGSTOP));
3468 *k = *act;
3469 /*
3470 * POSIX 3.3.1.3:
3471 * "Setting a signal action to SIG_IGN for a signal that is
3472 * pending shall cause the pending signal to be discarded,
3473 * whether or not it is blocked."
3474 *
3475 * "Setting a signal action to SIG_DFL for a signal that is
3476 * pending and whose default action is to ignore the signal
3477 * (for example, SIGCHLD), shall cause the pending signal to
3478 * be discarded, whether or not it is blocked"
3479 */
3480 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3481 sigemptyset(&mask);
3482 sigaddset(&mask, sig);
3483 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3484 for_each_thread(p, t)
3485 flush_sigqueue_mask(&mask, &t->pending);
3486 }
3487 }
3488
3489 spin_unlock_irq(&p->sighand->siglock);
3490 return 0;
3491 }
3492
3493 static int
3494 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp)
3495 {
3496 struct task_struct *t = current;
3497
3498 if (oss) {
3499 memset(oss, 0, sizeof(stack_t));
3500 oss->ss_sp = (void __user *) t->sas_ss_sp;
3501 oss->ss_size = t->sas_ss_size;
3502 oss->ss_flags = sas_ss_flags(sp) |
3503 (current->sas_ss_flags & SS_FLAG_BITS);
3504 }
3505
3506 if (ss) {
3507 void __user *ss_sp = ss->ss_sp;
3508 size_t ss_size = ss->ss_size;
3509 unsigned ss_flags = ss->ss_flags;
3510 int ss_mode;
3511
3512 if (unlikely(on_sig_stack(sp)))
3513 return -EPERM;
3514
3515 ss_mode = ss_flags & ~SS_FLAG_BITS;
3516 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3517 ss_mode != 0))
3518 return -EINVAL;
3519
3520 if (ss_mode == SS_DISABLE) {
3521 ss_size = 0;
3522 ss_sp = NULL;
3523 } else {
3524 if (unlikely(ss_size < MINSIGSTKSZ))
3525 return -ENOMEM;
3526 }
3527
3528 t->sas_ss_sp = (unsigned long) ss_sp;
3529 t->sas_ss_size = ss_size;
3530 t->sas_ss_flags = ss_flags;
3531 }
3532 return 0;
3533 }
3534
3535 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3536 {
3537 stack_t new, old;
3538 int err;
3539 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
3540 return -EFAULT;
3541 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
3542 current_user_stack_pointer());
3543 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
3544 err = -EFAULT;
3545 return err;
3546 }
3547
3548 int restore_altstack(const stack_t __user *uss)
3549 {
3550 stack_t new;
3551 if (copy_from_user(&new, uss, sizeof(stack_t)))
3552 return -EFAULT;
3553 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer());
3554 /* squash all but EFAULT for now */
3555 return 0;
3556 }
3557
3558 int __save_altstack(stack_t __user *uss, unsigned long sp)
3559 {
3560 struct task_struct *t = current;
3561 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3562 __put_user(t->sas_ss_flags, &uss->ss_flags) |
3563 __put_user(t->sas_ss_size, &uss->ss_size);
3564 if (err)
3565 return err;
3566 if (t->sas_ss_flags & SS_AUTODISARM)
3567 sas_ss_reset(t);
3568 return 0;
3569 }
3570
3571 #ifdef CONFIG_COMPAT
3572 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
3573 compat_stack_t __user *uoss_ptr)
3574 {
3575 stack_t uss, uoss;
3576 int ret;
3577
3578 if (uss_ptr) {
3579 compat_stack_t uss32;
3580 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3581 return -EFAULT;
3582 uss.ss_sp = compat_ptr(uss32.ss_sp);
3583 uss.ss_flags = uss32.ss_flags;
3584 uss.ss_size = uss32.ss_size;
3585 }
3586 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
3587 compat_user_stack_pointer());
3588 if (ret >= 0 && uoss_ptr) {
3589 compat_stack_t old;
3590 memset(&old, 0, sizeof(old));
3591 old.ss_sp = ptr_to_compat(uoss.ss_sp);
3592 old.ss_flags = uoss.ss_flags;
3593 old.ss_size = uoss.ss_size;
3594 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
3595 ret = -EFAULT;
3596 }
3597 return ret;
3598 }
3599
3600 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3601 const compat_stack_t __user *, uss_ptr,
3602 compat_stack_t __user *, uoss_ptr)
3603 {
3604 return do_compat_sigaltstack(uss_ptr, uoss_ptr);
3605 }
3606
3607 int compat_restore_altstack(const compat_stack_t __user *uss)
3608 {
3609 int err = do_compat_sigaltstack(uss, NULL);
3610 /* squash all but -EFAULT for now */
3611 return err == -EFAULT ? err : 0;
3612 }
3613
3614 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3615 {
3616 int err;
3617 struct task_struct *t = current;
3618 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
3619 &uss->ss_sp) |
3620 __put_user(t->sas_ss_flags, &uss->ss_flags) |
3621 __put_user(t->sas_ss_size, &uss->ss_size);
3622 if (err)
3623 return err;
3624 if (t->sas_ss_flags & SS_AUTODISARM)
3625 sas_ss_reset(t);
3626 return 0;
3627 }
3628 #endif
3629
3630 #ifdef __ARCH_WANT_SYS_SIGPENDING
3631
3632 /**
3633 * sys_sigpending - examine pending signals
3634 * @uset: where mask of pending signal is returned
3635 */
3636 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
3637 {
3638 sigset_t set;
3639 int err;
3640
3641 if (sizeof(old_sigset_t) > sizeof(*uset))
3642 return -EINVAL;
3643
3644 err = do_sigpending(&set);
3645 if (!err && copy_to_user(uset, &set, sizeof(old_sigset_t)))
3646 err = -EFAULT;
3647 return err;
3648 }
3649
3650 #ifdef CONFIG_COMPAT
3651 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
3652 {
3653 sigset_t set;
3654 int err = do_sigpending(&set);
3655 if (!err)
3656 err = put_user(set.sig[0], set32);
3657 return err;
3658 }
3659 #endif
3660
3661 #endif
3662
3663 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3664 /**
3665 * sys_sigprocmask - examine and change blocked signals
3666 * @how: whether to add, remove, or set signals
3667 * @nset: signals to add or remove (if non-null)
3668 * @oset: previous value of signal mask if non-null
3669 *
3670 * Some platforms have their own version with special arguments;
3671 * others support only sys_rt_sigprocmask.
3672 */
3673
3674 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3675 old_sigset_t __user *, oset)
3676 {
3677 old_sigset_t old_set, new_set;
3678 sigset_t new_blocked;
3679
3680 old_set = current->blocked.sig[0];
3681
3682 if (nset) {
3683 if (copy_from_user(&new_set, nset, sizeof(*nset)))
3684 return -EFAULT;
3685
3686 new_blocked = current->blocked;
3687
3688 switch (how) {
3689 case SIG_BLOCK:
3690 sigaddsetmask(&new_blocked, new_set);
3691 break;
3692 case SIG_UNBLOCK:
3693 sigdelsetmask(&new_blocked, new_set);
3694 break;
3695 case SIG_SETMASK:
3696 new_blocked.sig[0] = new_set;
3697 break;
3698 default:
3699 return -EINVAL;
3700 }
3701
3702 set_current_blocked(&new_blocked);
3703 }
3704
3705 if (oset) {
3706 if (copy_to_user(oset, &old_set, sizeof(*oset)))
3707 return -EFAULT;
3708 }
3709
3710 return 0;
3711 }
3712 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3713
3714 #ifndef CONFIG_ODD_RT_SIGACTION
3715 /**
3716 * sys_rt_sigaction - alter an action taken by a process
3717 * @sig: signal to be sent
3718 * @act: new sigaction
3719 * @oact: used to save the previous sigaction
3720 * @sigsetsize: size of sigset_t type
3721 */
3722 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3723 const struct sigaction __user *, act,
3724 struct sigaction __user *, oact,
3725 size_t, sigsetsize)
3726 {
3727 struct k_sigaction new_sa, old_sa;
3728 int ret = -EINVAL;
3729
3730 /* XXX: Don't preclude handling different sized sigset_t's. */
3731 if (sigsetsize != sizeof(sigset_t))
3732 goto out;
3733
3734 if (act) {
3735 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3736 return -EFAULT;
3737 }
3738
3739 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3740
3741 if (!ret && oact) {
3742 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3743 return -EFAULT;
3744 }
3745 out:
3746 return ret;
3747 }
3748 #ifdef CONFIG_COMPAT
3749 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3750 const struct compat_sigaction __user *, act,
3751 struct compat_sigaction __user *, oact,
3752 compat_size_t, sigsetsize)
3753 {
3754 struct k_sigaction new_ka, old_ka;
3755 #ifdef __ARCH_HAS_SA_RESTORER
3756 compat_uptr_t restorer;
3757 #endif
3758 int ret;
3759
3760 /* XXX: Don't preclude handling different sized sigset_t's. */
3761 if (sigsetsize != sizeof(compat_sigset_t))
3762 return -EINVAL;
3763
3764 if (act) {
3765 compat_uptr_t handler;
3766 ret = get_user(handler, &act->sa_handler);
3767 new_ka.sa.sa_handler = compat_ptr(handler);
3768 #ifdef __ARCH_HAS_SA_RESTORER
3769 ret |= get_user(restorer, &act->sa_restorer);
3770 new_ka.sa.sa_restorer = compat_ptr(restorer);
3771 #endif
3772 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
3773 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3774 if (ret)
3775 return -EFAULT;
3776 }
3777
3778 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3779 if (!ret && oact) {
3780 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3781 &oact->sa_handler);
3782 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
3783 sizeof(oact->sa_mask));
3784 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3785 #ifdef __ARCH_HAS_SA_RESTORER
3786 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3787 &oact->sa_restorer);
3788 #endif
3789 }
3790 return ret;
3791 }
3792 #endif
3793 #endif /* !CONFIG_ODD_RT_SIGACTION */
3794
3795 #ifdef CONFIG_OLD_SIGACTION
3796 SYSCALL_DEFINE3(sigaction, int, sig,
3797 const struct old_sigaction __user *, act,
3798 struct old_sigaction __user *, oact)
3799 {
3800 struct k_sigaction new_ka, old_ka;
3801 int ret;
3802
3803 if (act) {
3804 old_sigset_t mask;
3805 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3806 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3807 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3808 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3809 __get_user(mask, &act->sa_mask))
3810 return -EFAULT;
3811 #ifdef __ARCH_HAS_KA_RESTORER
3812 new_ka.ka_restorer = NULL;
3813 #endif
3814 siginitset(&new_ka.sa.sa_mask, mask);
3815 }
3816
3817 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3818
3819 if (!ret && oact) {
3820 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3821 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3822 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3823 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3824 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3825 return -EFAULT;
3826 }
3827
3828 return ret;
3829 }
3830 #endif
3831 #ifdef CONFIG_COMPAT_OLD_SIGACTION
3832 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3833 const struct compat_old_sigaction __user *, act,
3834 struct compat_old_sigaction __user *, oact)
3835 {
3836 struct k_sigaction new_ka, old_ka;
3837 int ret;
3838 compat_old_sigset_t mask;
3839 compat_uptr_t handler, restorer;
3840
3841 if (act) {
3842 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3843 __get_user(handler, &act->sa_handler) ||
3844 __get_user(restorer, &act->sa_restorer) ||
3845 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3846 __get_user(mask, &act->sa_mask))
3847 return -EFAULT;
3848
3849 #ifdef __ARCH_HAS_KA_RESTORER
3850 new_ka.ka_restorer = NULL;
3851 #endif
3852 new_ka.sa.sa_handler = compat_ptr(handler);
3853 new_ka.sa.sa_restorer = compat_ptr(restorer);
3854 siginitset(&new_ka.sa.sa_mask, mask);
3855 }
3856
3857 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3858
3859 if (!ret && oact) {
3860 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3861 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3862 &oact->sa_handler) ||
3863 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3864 &oact->sa_restorer) ||
3865 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3866 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3867 return -EFAULT;
3868 }
3869 return ret;
3870 }
3871 #endif
3872
3873 #ifdef CONFIG_SGETMASK_SYSCALL
3874
3875 /*
3876 * For backwards compatibility. Functionality superseded by sigprocmask.
3877 */
3878 SYSCALL_DEFINE0(sgetmask)
3879 {
3880 /* SMP safe */
3881 return current->blocked.sig[0];
3882 }
3883
3884 SYSCALL_DEFINE1(ssetmask, int, newmask)
3885 {
3886 int old = current->blocked.sig[0];
3887 sigset_t newset;
3888
3889 siginitset(&newset, newmask);
3890 set_current_blocked(&newset);
3891
3892 return old;
3893 }
3894 #endif /* CONFIG_SGETMASK_SYSCALL */
3895
3896 #ifdef __ARCH_WANT_SYS_SIGNAL
3897 /*
3898 * For backwards compatibility. Functionality superseded by sigaction.
3899 */
3900 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3901 {
3902 struct k_sigaction new_sa, old_sa;
3903 int ret;
3904
3905 new_sa.sa.sa_handler = handler;
3906 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3907 sigemptyset(&new_sa.sa.sa_mask);
3908
3909 ret = do_sigaction(sig, &new_sa, &old_sa);
3910
3911 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3912 }
3913 #endif /* __ARCH_WANT_SYS_SIGNAL */
3914
3915 #ifdef __ARCH_WANT_SYS_PAUSE
3916
3917 SYSCALL_DEFINE0(pause)
3918 {
3919 while (!signal_pending(current)) {
3920 __set_current_state(TASK_INTERRUPTIBLE);
3921 schedule();
3922 }
3923 return -ERESTARTNOHAND;
3924 }
3925
3926 #endif
3927
3928 static int sigsuspend(sigset_t *set)
3929 {
3930 current->saved_sigmask = current->blocked;
3931 set_current_blocked(set);
3932
3933 while (!signal_pending(current)) {
3934 __set_current_state(TASK_INTERRUPTIBLE);
3935 schedule();
3936 }
3937 set_restore_sigmask();
3938 return -ERESTARTNOHAND;
3939 }
3940
3941 /**
3942 * sys_rt_sigsuspend - replace the signal mask for a value with the
3943 * @unewset value until a signal is received
3944 * @unewset: new signal mask value
3945 * @sigsetsize: size of sigset_t type
3946 */
3947 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3948 {
3949 sigset_t newset;
3950
3951 /* XXX: Don't preclude handling different sized sigset_t's. */
3952 if (sigsetsize != sizeof(sigset_t))
3953 return -EINVAL;
3954
3955 if (copy_from_user(&newset, unewset, sizeof(newset)))
3956 return -EFAULT;
3957 return sigsuspend(&newset);
3958 }
3959
3960 #ifdef CONFIG_COMPAT
3961 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3962 {
3963 sigset_t newset;
3964
3965 /* XXX: Don't preclude handling different sized sigset_t's. */
3966 if (sigsetsize != sizeof(sigset_t))
3967 return -EINVAL;
3968
3969 if (get_compat_sigset(&newset, unewset))
3970 return -EFAULT;
3971 return sigsuspend(&newset);
3972 }
3973 #endif
3974
3975 #ifdef CONFIG_OLD_SIGSUSPEND
3976 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3977 {
3978 sigset_t blocked;
3979 siginitset(&blocked, mask);
3980 return sigsuspend(&blocked);
3981 }
3982 #endif
3983 #ifdef CONFIG_OLD_SIGSUSPEND3
3984 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3985 {
3986 sigset_t blocked;
3987 siginitset(&blocked, mask);
3988 return sigsuspend(&blocked);
3989 }
3990 #endif
3991
3992 __weak const char *arch_vma_name(struct vm_area_struct *vma)
3993 {
3994 return NULL;
3995 }
3996
3997 void __init signals_init(void)
3998 {
3999 /* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
4000 BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
4001 != offsetof(struct siginfo, _sifields._pad));
4002 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4003
4004 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4005 }
4006
4007 #ifdef CONFIG_KGDB_KDB
4008 #include <linux/kdb.h>
4009 /*
4010 * kdb_send_sig - Allows kdb to send signals without exposing
4011 * signal internals. This function checks if the required locks are
4012 * available before calling the main signal code, to avoid kdb
4013 * deadlocks.
4014 */
4015 void kdb_send_sig(struct task_struct *t, int sig)
4016 {
4017 static struct task_struct *kdb_prev_t;
4018 int new_t, ret;
4019 if (!spin_trylock(&t->sighand->siglock)) {
4020 kdb_printf("Can't do kill command now.\n"
4021 "The sigmask lock is held somewhere else in "
4022 "kernel, try again later\n");
4023 return;
4024 }
4025 new_t = kdb_prev_t != t;
4026 kdb_prev_t = t;
4027 if (t->state != TASK_RUNNING && new_t) {
4028 spin_unlock(&t->sighand->siglock);
4029 kdb_printf("Process is not RUNNING, sending a signal from "
4030 "kdb risks deadlock\n"
4031 "on the run queue locks. "
4032 "The signal has _not_ been sent.\n"
4033 "Reissue the kill command if you want to risk "
4034 "the deadlock.\n");
4035 return;
4036 }
4037 ret = send_signal(sig, SEND_SIG_PRIV, t, false);
4038 spin_unlock(&t->sighand->siglock);
4039 if (ret)
4040 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4041 sig, t->pid);
4042 else
4043 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4044 }
4045 #endif /* CONFIG_KGDB_KDB */