]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/signal.c
[PATCH] hrtimers: prevent possible itimer DoS
[mirror_ubuntu-bionic-kernel.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/smp_lock.h>
16 #include <linux/init.h>
17 #include <linux/sched.h>
18 #include <linux/fs.h>
19 #include <linux/tty.h>
20 #include <linux/binfmts.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/ptrace.h>
24 #include <linux/signal.h>
25 #include <linux/capability.h>
26 #include <linux/freezer.h>
27 #include <linux/pid_namespace.h>
28 #include <linux/nsproxy.h>
29
30 #include <asm/param.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
33 #include <asm/siginfo.h>
34 #include "audit.h" /* audit_signal_info() */
35
36 /*
37 * SLAB caches for signal bits.
38 */
39
40 static struct kmem_cache *sigqueue_cachep;
41
42 /*
43 * In POSIX a signal is sent either to a specific thread (Linux task)
44 * or to the process as a whole (Linux thread group). How the signal
45 * is sent determines whether it's to one thread or the whole group,
46 * which determines which signal mask(s) are involved in blocking it
47 * from being delivered until later. When the signal is delivered,
48 * either it's caught or ignored by a user handler or it has a default
49 * effect that applies to the whole thread group (POSIX process).
50 *
51 * The possible effects an unblocked signal set to SIG_DFL can have are:
52 * ignore - Nothing Happens
53 * terminate - kill the process, i.e. all threads in the group,
54 * similar to exit_group. The group leader (only) reports
55 * WIFSIGNALED status to its parent.
56 * coredump - write a core dump file describing all threads using
57 * the same mm and then kill all those threads
58 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
59 *
60 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
61 * Other signals when not blocked and set to SIG_DFL behaves as follows.
62 * The job control signals also have other special effects.
63 *
64 * +--------------------+------------------+
65 * | POSIX signal | default action |
66 * +--------------------+------------------+
67 * | SIGHUP | terminate |
68 * | SIGINT | terminate |
69 * | SIGQUIT | coredump |
70 * | SIGILL | coredump |
71 * | SIGTRAP | coredump |
72 * | SIGABRT/SIGIOT | coredump |
73 * | SIGBUS | coredump |
74 * | SIGFPE | coredump |
75 * | SIGKILL | terminate(+) |
76 * | SIGUSR1 | terminate |
77 * | SIGSEGV | coredump |
78 * | SIGUSR2 | terminate |
79 * | SIGPIPE | terminate |
80 * | SIGALRM | terminate |
81 * | SIGTERM | terminate |
82 * | SIGCHLD | ignore |
83 * | SIGCONT | ignore(*) |
84 * | SIGSTOP | stop(*)(+) |
85 * | SIGTSTP | stop(*) |
86 * | SIGTTIN | stop(*) |
87 * | SIGTTOU | stop(*) |
88 * | SIGURG | ignore |
89 * | SIGXCPU | coredump |
90 * | SIGXFSZ | coredump |
91 * | SIGVTALRM | terminate |
92 * | SIGPROF | terminate |
93 * | SIGPOLL/SIGIO | terminate |
94 * | SIGSYS/SIGUNUSED | coredump |
95 * | SIGSTKFLT | terminate |
96 * | SIGWINCH | ignore |
97 * | SIGPWR | terminate |
98 * | SIGRTMIN-SIGRTMAX | terminate |
99 * +--------------------+------------------+
100 * | non-POSIX signal | default action |
101 * +--------------------+------------------+
102 * | SIGEMT | coredump |
103 * +--------------------+------------------+
104 *
105 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
106 * (*) Special job control effects:
107 * When SIGCONT is sent, it resumes the process (all threads in the group)
108 * from TASK_STOPPED state and also clears any pending/queued stop signals
109 * (any of those marked with "stop(*)"). This happens regardless of blocking,
110 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
111 * any pending/queued SIGCONT signals; this happens regardless of blocking,
112 * catching, or ignored the stop signal, though (except for SIGSTOP) the
113 * default action of stopping the process may happen later or never.
114 */
115
116 #ifdef SIGEMT
117 #define M_SIGEMT M(SIGEMT)
118 #else
119 #define M_SIGEMT 0
120 #endif
121
122 #if SIGRTMIN > BITS_PER_LONG
123 #define M(sig) (1ULL << ((sig)-1))
124 #else
125 #define M(sig) (1UL << ((sig)-1))
126 #endif
127 #define T(sig, mask) (M(sig) & (mask))
128
129 #define SIG_KERNEL_ONLY_MASK (\
130 M(SIGKILL) | M(SIGSTOP) )
131
132 #define SIG_KERNEL_STOP_MASK (\
133 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
134
135 #define SIG_KERNEL_COREDUMP_MASK (\
136 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
137 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
138 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
139
140 #define SIG_KERNEL_IGNORE_MASK (\
141 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
142
143 #define sig_kernel_only(sig) \
144 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
145 #define sig_kernel_coredump(sig) \
146 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
147 #define sig_kernel_ignore(sig) \
148 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
149 #define sig_kernel_stop(sig) \
150 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
151
152 #define sig_needs_tasklist(sig) ((sig) == SIGCONT)
153
154 #define sig_user_defined(t, signr) \
155 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
156 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
157
158 #define sig_fatal(t, signr) \
159 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
160 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
161
162 static int sig_ignored(struct task_struct *t, int sig)
163 {
164 void __user * handler;
165
166 /*
167 * Tracers always want to know about signals..
168 */
169 if (t->ptrace & PT_PTRACED)
170 return 0;
171
172 /*
173 * Blocked signals are never ignored, since the
174 * signal handler may change by the time it is
175 * unblocked.
176 */
177 if (sigismember(&t->blocked, sig))
178 return 0;
179
180 /* Is it explicitly or implicitly ignored? */
181 handler = t->sighand->action[sig-1].sa.sa_handler;
182 return handler == SIG_IGN ||
183 (handler == SIG_DFL && sig_kernel_ignore(sig));
184 }
185
186 /*
187 * Re-calculate pending state from the set of locally pending
188 * signals, globally pending signals, and blocked signals.
189 */
190 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
191 {
192 unsigned long ready;
193 long i;
194
195 switch (_NSIG_WORDS) {
196 default:
197 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
198 ready |= signal->sig[i] &~ blocked->sig[i];
199 break;
200
201 case 4: ready = signal->sig[3] &~ blocked->sig[3];
202 ready |= signal->sig[2] &~ blocked->sig[2];
203 ready |= signal->sig[1] &~ blocked->sig[1];
204 ready |= signal->sig[0] &~ blocked->sig[0];
205 break;
206
207 case 2: ready = signal->sig[1] &~ blocked->sig[1];
208 ready |= signal->sig[0] &~ blocked->sig[0];
209 break;
210
211 case 1: ready = signal->sig[0] &~ blocked->sig[0];
212 }
213 return ready != 0;
214 }
215
216 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
217
218 fastcall void recalc_sigpending_tsk(struct task_struct *t)
219 {
220 if (t->signal->group_stop_count > 0 ||
221 (freezing(t)) ||
222 PENDING(&t->pending, &t->blocked) ||
223 PENDING(&t->signal->shared_pending, &t->blocked))
224 set_tsk_thread_flag(t, TIF_SIGPENDING);
225 else
226 clear_tsk_thread_flag(t, TIF_SIGPENDING);
227 }
228
229 void recalc_sigpending(void)
230 {
231 recalc_sigpending_tsk(current);
232 }
233
234 /* Given the mask, find the first available signal that should be serviced. */
235
236 static int
237 next_signal(struct sigpending *pending, sigset_t *mask)
238 {
239 unsigned long i, *s, *m, x;
240 int sig = 0;
241
242 s = pending->signal.sig;
243 m = mask->sig;
244 switch (_NSIG_WORDS) {
245 default:
246 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
247 if ((x = *s &~ *m) != 0) {
248 sig = ffz(~x) + i*_NSIG_BPW + 1;
249 break;
250 }
251 break;
252
253 case 2: if ((x = s[0] &~ m[0]) != 0)
254 sig = 1;
255 else if ((x = s[1] &~ m[1]) != 0)
256 sig = _NSIG_BPW + 1;
257 else
258 break;
259 sig += ffz(~x);
260 break;
261
262 case 1: if ((x = *s &~ *m) != 0)
263 sig = ffz(~x) + 1;
264 break;
265 }
266
267 return sig;
268 }
269
270 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
271 int override_rlimit)
272 {
273 struct sigqueue *q = NULL;
274 struct user_struct *user;
275
276 /*
277 * In order to avoid problems with "switch_user()", we want to make
278 * sure that the compiler doesn't re-load "t->user"
279 */
280 user = t->user;
281 barrier();
282 atomic_inc(&user->sigpending);
283 if (override_rlimit ||
284 atomic_read(&user->sigpending) <=
285 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
286 q = kmem_cache_alloc(sigqueue_cachep, flags);
287 if (unlikely(q == NULL)) {
288 atomic_dec(&user->sigpending);
289 } else {
290 INIT_LIST_HEAD(&q->list);
291 q->flags = 0;
292 q->user = get_uid(user);
293 }
294 return(q);
295 }
296
297 static void __sigqueue_free(struct sigqueue *q)
298 {
299 if (q->flags & SIGQUEUE_PREALLOC)
300 return;
301 atomic_dec(&q->user->sigpending);
302 free_uid(q->user);
303 kmem_cache_free(sigqueue_cachep, q);
304 }
305
306 void flush_sigqueue(struct sigpending *queue)
307 {
308 struct sigqueue *q;
309
310 sigemptyset(&queue->signal);
311 while (!list_empty(&queue->list)) {
312 q = list_entry(queue->list.next, struct sigqueue , list);
313 list_del_init(&q->list);
314 __sigqueue_free(q);
315 }
316 }
317
318 /*
319 * Flush all pending signals for a task.
320 */
321 void flush_signals(struct task_struct *t)
322 {
323 unsigned long flags;
324
325 spin_lock_irqsave(&t->sighand->siglock, flags);
326 clear_tsk_thread_flag(t,TIF_SIGPENDING);
327 flush_sigqueue(&t->pending);
328 flush_sigqueue(&t->signal->shared_pending);
329 spin_unlock_irqrestore(&t->sighand->siglock, flags);
330 }
331
332 /*
333 * Flush all handlers for a task.
334 */
335
336 void
337 flush_signal_handlers(struct task_struct *t, int force_default)
338 {
339 int i;
340 struct k_sigaction *ka = &t->sighand->action[0];
341 for (i = _NSIG ; i != 0 ; i--) {
342 if (force_default || ka->sa.sa_handler != SIG_IGN)
343 ka->sa.sa_handler = SIG_DFL;
344 ka->sa.sa_flags = 0;
345 sigemptyset(&ka->sa.sa_mask);
346 ka++;
347 }
348 }
349
350
351 /* Notify the system that a driver wants to block all signals for this
352 * process, and wants to be notified if any signals at all were to be
353 * sent/acted upon. If the notifier routine returns non-zero, then the
354 * signal will be acted upon after all. If the notifier routine returns 0,
355 * then then signal will be blocked. Only one block per process is
356 * allowed. priv is a pointer to private data that the notifier routine
357 * can use to determine if the signal should be blocked or not. */
358
359 void
360 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
361 {
362 unsigned long flags;
363
364 spin_lock_irqsave(&current->sighand->siglock, flags);
365 current->notifier_mask = mask;
366 current->notifier_data = priv;
367 current->notifier = notifier;
368 spin_unlock_irqrestore(&current->sighand->siglock, flags);
369 }
370
371 /* Notify the system that blocking has ended. */
372
373 void
374 unblock_all_signals(void)
375 {
376 unsigned long flags;
377
378 spin_lock_irqsave(&current->sighand->siglock, flags);
379 current->notifier = NULL;
380 current->notifier_data = NULL;
381 recalc_sigpending();
382 spin_unlock_irqrestore(&current->sighand->siglock, flags);
383 }
384
385 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
386 {
387 struct sigqueue *q, *first = NULL;
388 int still_pending = 0;
389
390 if (unlikely(!sigismember(&list->signal, sig)))
391 return 0;
392
393 /*
394 * Collect the siginfo appropriate to this signal. Check if
395 * there is another siginfo for the same signal.
396 */
397 list_for_each_entry(q, &list->list, list) {
398 if (q->info.si_signo == sig) {
399 if (first) {
400 still_pending = 1;
401 break;
402 }
403 first = q;
404 }
405 }
406 if (first) {
407 list_del_init(&first->list);
408 copy_siginfo(info, &first->info);
409 __sigqueue_free(first);
410 if (!still_pending)
411 sigdelset(&list->signal, sig);
412 } else {
413
414 /* Ok, it wasn't in the queue. This must be
415 a fast-pathed signal or we must have been
416 out of queue space. So zero out the info.
417 */
418 sigdelset(&list->signal, sig);
419 info->si_signo = sig;
420 info->si_errno = 0;
421 info->si_code = 0;
422 info->si_pid = 0;
423 info->si_uid = 0;
424 }
425 return 1;
426 }
427
428 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
429 siginfo_t *info)
430 {
431 int sig = next_signal(pending, mask);
432
433 if (sig) {
434 if (current->notifier) {
435 if (sigismember(current->notifier_mask, sig)) {
436 if (!(current->notifier)(current->notifier_data)) {
437 clear_thread_flag(TIF_SIGPENDING);
438 return 0;
439 }
440 }
441 }
442
443 if (!collect_signal(sig, pending, info))
444 sig = 0;
445 }
446
447 return sig;
448 }
449
450 /*
451 * Dequeue a signal and return the element to the caller, which is
452 * expected to free it.
453 *
454 * All callers have to hold the siglock.
455 */
456 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
457 {
458 int signr = __dequeue_signal(&tsk->pending, mask, info);
459 if (!signr) {
460 signr = __dequeue_signal(&tsk->signal->shared_pending,
461 mask, info);
462 /*
463 * itimer signal ?
464 *
465 * itimers are process shared and we restart periodic
466 * itimers in the signal delivery path to prevent DoS
467 * attacks in the high resolution timer case. This is
468 * compliant with the old way of self restarting
469 * itimers, as the SIGALRM is a legacy signal and only
470 * queued once. Changing the restart behaviour to
471 * restart the timer in the signal dequeue path is
472 * reducing the timer noise on heavy loaded !highres
473 * systems too.
474 */
475 if (unlikely(signr == SIGALRM)) {
476 struct hrtimer *tmr = &tsk->signal->real_timer;
477
478 if (!hrtimer_is_queued(tmr) &&
479 tsk->signal->it_real_incr.tv64 != 0) {
480 hrtimer_forward(tmr, tmr->base->get_time(),
481 tsk->signal->it_real_incr);
482 hrtimer_restart(tmr);
483 }
484 }
485 }
486 recalc_sigpending_tsk(tsk);
487 if (signr && unlikely(sig_kernel_stop(signr))) {
488 /*
489 * Set a marker that we have dequeued a stop signal. Our
490 * caller might release the siglock and then the pending
491 * stop signal it is about to process is no longer in the
492 * pending bitmasks, but must still be cleared by a SIGCONT
493 * (and overruled by a SIGKILL). So those cases clear this
494 * shared flag after we've set it. Note that this flag may
495 * remain set after the signal we return is ignored or
496 * handled. That doesn't matter because its only purpose
497 * is to alert stop-signal processing code when another
498 * processor has come along and cleared the flag.
499 */
500 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
501 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
502 }
503 if ( signr &&
504 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
505 info->si_sys_private){
506 /*
507 * Release the siglock to ensure proper locking order
508 * of timer locks outside of siglocks. Note, we leave
509 * irqs disabled here, since the posix-timers code is
510 * about to disable them again anyway.
511 */
512 spin_unlock(&tsk->sighand->siglock);
513 do_schedule_next_timer(info);
514 spin_lock(&tsk->sighand->siglock);
515 }
516 return signr;
517 }
518
519 /*
520 * Tell a process that it has a new active signal..
521 *
522 * NOTE! we rely on the previous spin_lock to
523 * lock interrupts for us! We can only be called with
524 * "siglock" held, and the local interrupt must
525 * have been disabled when that got acquired!
526 *
527 * No need to set need_resched since signal event passing
528 * goes through ->blocked
529 */
530 void signal_wake_up(struct task_struct *t, int resume)
531 {
532 unsigned int mask;
533
534 set_tsk_thread_flag(t, TIF_SIGPENDING);
535
536 /*
537 * For SIGKILL, we want to wake it up in the stopped/traced case.
538 * We don't check t->state here because there is a race with it
539 * executing another processor and just now entering stopped state.
540 * By using wake_up_state, we ensure the process will wake up and
541 * handle its death signal.
542 */
543 mask = TASK_INTERRUPTIBLE;
544 if (resume)
545 mask |= TASK_STOPPED | TASK_TRACED;
546 if (!wake_up_state(t, mask))
547 kick_process(t);
548 }
549
550 /*
551 * Remove signals in mask from the pending set and queue.
552 * Returns 1 if any signals were found.
553 *
554 * All callers must be holding the siglock.
555 *
556 * This version takes a sigset mask and looks at all signals,
557 * not just those in the first mask word.
558 */
559 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
560 {
561 struct sigqueue *q, *n;
562 sigset_t m;
563
564 sigandsets(&m, mask, &s->signal);
565 if (sigisemptyset(&m))
566 return 0;
567
568 signandsets(&s->signal, &s->signal, mask);
569 list_for_each_entry_safe(q, n, &s->list, list) {
570 if (sigismember(mask, q->info.si_signo)) {
571 list_del_init(&q->list);
572 __sigqueue_free(q);
573 }
574 }
575 return 1;
576 }
577 /*
578 * Remove signals in mask from the pending set and queue.
579 * Returns 1 if any signals were found.
580 *
581 * All callers must be holding the siglock.
582 */
583 static int rm_from_queue(unsigned long mask, struct sigpending *s)
584 {
585 struct sigqueue *q, *n;
586
587 if (!sigtestsetmask(&s->signal, mask))
588 return 0;
589
590 sigdelsetmask(&s->signal, mask);
591 list_for_each_entry_safe(q, n, &s->list, list) {
592 if (q->info.si_signo < SIGRTMIN &&
593 (mask & sigmask(q->info.si_signo))) {
594 list_del_init(&q->list);
595 __sigqueue_free(q);
596 }
597 }
598 return 1;
599 }
600
601 /*
602 * Bad permissions for sending the signal
603 */
604 static int check_kill_permission(int sig, struct siginfo *info,
605 struct task_struct *t)
606 {
607 int error = -EINVAL;
608 if (!valid_signal(sig))
609 return error;
610 error = -EPERM;
611 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
612 && ((sig != SIGCONT) ||
613 (process_session(current) != process_session(t)))
614 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
615 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
616 && !capable(CAP_KILL))
617 return error;
618
619 error = security_task_kill(t, info, sig, 0);
620 if (!error)
621 audit_signal_info(sig, t); /* Let audit system see the signal */
622 return error;
623 }
624
625 /* forward decl */
626 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
627
628 /*
629 * Handle magic process-wide effects of stop/continue signals.
630 * Unlike the signal actions, these happen immediately at signal-generation
631 * time regardless of blocking, ignoring, or handling. This does the
632 * actual continuing for SIGCONT, but not the actual stopping for stop
633 * signals. The process stop is done as a signal action for SIG_DFL.
634 */
635 static void handle_stop_signal(int sig, struct task_struct *p)
636 {
637 struct task_struct *t;
638
639 if (p->signal->flags & SIGNAL_GROUP_EXIT)
640 /*
641 * The process is in the middle of dying already.
642 */
643 return;
644
645 if (sig_kernel_stop(sig)) {
646 /*
647 * This is a stop signal. Remove SIGCONT from all queues.
648 */
649 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
650 t = p;
651 do {
652 rm_from_queue(sigmask(SIGCONT), &t->pending);
653 t = next_thread(t);
654 } while (t != p);
655 } else if (sig == SIGCONT) {
656 /*
657 * Remove all stop signals from all queues,
658 * and wake all threads.
659 */
660 if (unlikely(p->signal->group_stop_count > 0)) {
661 /*
662 * There was a group stop in progress. We'll
663 * pretend it finished before we got here. We are
664 * obliged to report it to the parent: if the
665 * SIGSTOP happened "after" this SIGCONT, then it
666 * would have cleared this pending SIGCONT. If it
667 * happened "before" this SIGCONT, then the parent
668 * got the SIGCHLD about the stop finishing before
669 * the continue happened. We do the notification
670 * now, and it's as if the stop had finished and
671 * the SIGCHLD was pending on entry to this kill.
672 */
673 p->signal->group_stop_count = 0;
674 p->signal->flags = SIGNAL_STOP_CONTINUED;
675 spin_unlock(&p->sighand->siglock);
676 do_notify_parent_cldstop(p, CLD_STOPPED);
677 spin_lock(&p->sighand->siglock);
678 }
679 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
680 t = p;
681 do {
682 unsigned int state;
683 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
684
685 /*
686 * If there is a handler for SIGCONT, we must make
687 * sure that no thread returns to user mode before
688 * we post the signal, in case it was the only
689 * thread eligible to run the signal handler--then
690 * it must not do anything between resuming and
691 * running the handler. With the TIF_SIGPENDING
692 * flag set, the thread will pause and acquire the
693 * siglock that we hold now and until we've queued
694 * the pending signal.
695 *
696 * Wake up the stopped thread _after_ setting
697 * TIF_SIGPENDING
698 */
699 state = TASK_STOPPED;
700 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
701 set_tsk_thread_flag(t, TIF_SIGPENDING);
702 state |= TASK_INTERRUPTIBLE;
703 }
704 wake_up_state(t, state);
705
706 t = next_thread(t);
707 } while (t != p);
708
709 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
710 /*
711 * We were in fact stopped, and are now continued.
712 * Notify the parent with CLD_CONTINUED.
713 */
714 p->signal->flags = SIGNAL_STOP_CONTINUED;
715 p->signal->group_exit_code = 0;
716 spin_unlock(&p->sighand->siglock);
717 do_notify_parent_cldstop(p, CLD_CONTINUED);
718 spin_lock(&p->sighand->siglock);
719 } else {
720 /*
721 * We are not stopped, but there could be a stop
722 * signal in the middle of being processed after
723 * being removed from the queue. Clear that too.
724 */
725 p->signal->flags = 0;
726 }
727 } else if (sig == SIGKILL) {
728 /*
729 * Make sure that any pending stop signal already dequeued
730 * is undone by the wakeup for SIGKILL.
731 */
732 p->signal->flags = 0;
733 }
734 }
735
736 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
737 struct sigpending *signals)
738 {
739 struct sigqueue * q = NULL;
740 int ret = 0;
741
742 /*
743 * fast-pathed signals for kernel-internal things like SIGSTOP
744 * or SIGKILL.
745 */
746 if (info == SEND_SIG_FORCED)
747 goto out_set;
748
749 /* Real-time signals must be queued if sent by sigqueue, or
750 some other real-time mechanism. It is implementation
751 defined whether kill() does so. We attempt to do so, on
752 the principle of least surprise, but since kill is not
753 allowed to fail with EAGAIN when low on memory we just
754 make sure at least one signal gets delivered and don't
755 pass on the info struct. */
756
757 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
758 (is_si_special(info) ||
759 info->si_code >= 0)));
760 if (q) {
761 list_add_tail(&q->list, &signals->list);
762 switch ((unsigned long) info) {
763 case (unsigned long) SEND_SIG_NOINFO:
764 q->info.si_signo = sig;
765 q->info.si_errno = 0;
766 q->info.si_code = SI_USER;
767 q->info.si_pid = current->pid;
768 q->info.si_uid = current->uid;
769 break;
770 case (unsigned long) SEND_SIG_PRIV:
771 q->info.si_signo = sig;
772 q->info.si_errno = 0;
773 q->info.si_code = SI_KERNEL;
774 q->info.si_pid = 0;
775 q->info.si_uid = 0;
776 break;
777 default:
778 copy_siginfo(&q->info, info);
779 break;
780 }
781 } else if (!is_si_special(info)) {
782 if (sig >= SIGRTMIN && info->si_code != SI_USER)
783 /*
784 * Queue overflow, abort. We may abort if the signal was rt
785 * and sent by user using something other than kill().
786 */
787 return -EAGAIN;
788 }
789
790 out_set:
791 sigaddset(&signals->signal, sig);
792 return ret;
793 }
794
795 #define LEGACY_QUEUE(sigptr, sig) \
796 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
797
798
799 static int
800 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
801 {
802 int ret = 0;
803
804 BUG_ON(!irqs_disabled());
805 assert_spin_locked(&t->sighand->siglock);
806
807 /* Short-circuit ignored signals. */
808 if (sig_ignored(t, sig))
809 goto out;
810
811 /* Support queueing exactly one non-rt signal, so that we
812 can get more detailed information about the cause of
813 the signal. */
814 if (LEGACY_QUEUE(&t->pending, sig))
815 goto out;
816
817 ret = send_signal(sig, info, t, &t->pending);
818 if (!ret && !sigismember(&t->blocked, sig))
819 signal_wake_up(t, sig == SIGKILL);
820 out:
821 return ret;
822 }
823
824 /*
825 * Force a signal that the process can't ignore: if necessary
826 * we unblock the signal and change any SIG_IGN to SIG_DFL.
827 *
828 * Note: If we unblock the signal, we always reset it to SIG_DFL,
829 * since we do not want to have a signal handler that was blocked
830 * be invoked when user space had explicitly blocked it.
831 *
832 * We don't want to have recursive SIGSEGV's etc, for example.
833 */
834 int
835 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
836 {
837 unsigned long int flags;
838 int ret, blocked, ignored;
839 struct k_sigaction *action;
840
841 spin_lock_irqsave(&t->sighand->siglock, flags);
842 action = &t->sighand->action[sig-1];
843 ignored = action->sa.sa_handler == SIG_IGN;
844 blocked = sigismember(&t->blocked, sig);
845 if (blocked || ignored) {
846 action->sa.sa_handler = SIG_DFL;
847 if (blocked) {
848 sigdelset(&t->blocked, sig);
849 recalc_sigpending_tsk(t);
850 }
851 }
852 ret = specific_send_sig_info(sig, info, t);
853 spin_unlock_irqrestore(&t->sighand->siglock, flags);
854
855 return ret;
856 }
857
858 void
859 force_sig_specific(int sig, struct task_struct *t)
860 {
861 force_sig_info(sig, SEND_SIG_FORCED, t);
862 }
863
864 /*
865 * Test if P wants to take SIG. After we've checked all threads with this,
866 * it's equivalent to finding no threads not blocking SIG. Any threads not
867 * blocking SIG were ruled out because they are not running and already
868 * have pending signals. Such threads will dequeue from the shared queue
869 * as soon as they're available, so putting the signal on the shared queue
870 * will be equivalent to sending it to one such thread.
871 */
872 static inline int wants_signal(int sig, struct task_struct *p)
873 {
874 if (sigismember(&p->blocked, sig))
875 return 0;
876 if (p->flags & PF_EXITING)
877 return 0;
878 if (sig == SIGKILL)
879 return 1;
880 if (p->state & (TASK_STOPPED | TASK_TRACED))
881 return 0;
882 return task_curr(p) || !signal_pending(p);
883 }
884
885 static void
886 __group_complete_signal(int sig, struct task_struct *p)
887 {
888 struct task_struct *t;
889
890 /*
891 * Now find a thread we can wake up to take the signal off the queue.
892 *
893 * If the main thread wants the signal, it gets first crack.
894 * Probably the least surprising to the average bear.
895 */
896 if (wants_signal(sig, p))
897 t = p;
898 else if (thread_group_empty(p))
899 /*
900 * There is just one thread and it does not need to be woken.
901 * It will dequeue unblocked signals before it runs again.
902 */
903 return;
904 else {
905 /*
906 * Otherwise try to find a suitable thread.
907 */
908 t = p->signal->curr_target;
909 if (t == NULL)
910 /* restart balancing at this thread */
911 t = p->signal->curr_target = p;
912
913 while (!wants_signal(sig, t)) {
914 t = next_thread(t);
915 if (t == p->signal->curr_target)
916 /*
917 * No thread needs to be woken.
918 * Any eligible threads will see
919 * the signal in the queue soon.
920 */
921 return;
922 }
923 p->signal->curr_target = t;
924 }
925
926 /*
927 * Found a killable thread. If the signal will be fatal,
928 * then start taking the whole group down immediately.
929 */
930 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
931 !sigismember(&t->real_blocked, sig) &&
932 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
933 /*
934 * This signal will be fatal to the whole group.
935 */
936 if (!sig_kernel_coredump(sig)) {
937 /*
938 * Start a group exit and wake everybody up.
939 * This way we don't have other threads
940 * running and doing things after a slower
941 * thread has the fatal signal pending.
942 */
943 p->signal->flags = SIGNAL_GROUP_EXIT;
944 p->signal->group_exit_code = sig;
945 p->signal->group_stop_count = 0;
946 t = p;
947 do {
948 sigaddset(&t->pending.signal, SIGKILL);
949 signal_wake_up(t, 1);
950 t = next_thread(t);
951 } while (t != p);
952 return;
953 }
954
955 /*
956 * There will be a core dump. We make all threads other
957 * than the chosen one go into a group stop so that nothing
958 * happens until it gets scheduled, takes the signal off
959 * the shared queue, and does the core dump. This is a
960 * little more complicated than strictly necessary, but it
961 * keeps the signal state that winds up in the core dump
962 * unchanged from the death state, e.g. which thread had
963 * the core-dump signal unblocked.
964 */
965 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
966 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
967 p->signal->group_stop_count = 0;
968 p->signal->group_exit_task = t;
969 t = p;
970 do {
971 p->signal->group_stop_count++;
972 signal_wake_up(t, 0);
973 t = next_thread(t);
974 } while (t != p);
975 wake_up_process(p->signal->group_exit_task);
976 return;
977 }
978
979 /*
980 * The signal is already in the shared-pending queue.
981 * Tell the chosen thread to wake up and dequeue it.
982 */
983 signal_wake_up(t, sig == SIGKILL);
984 return;
985 }
986
987 int
988 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
989 {
990 int ret = 0;
991
992 assert_spin_locked(&p->sighand->siglock);
993 handle_stop_signal(sig, p);
994
995 /* Short-circuit ignored signals. */
996 if (sig_ignored(p, sig))
997 return ret;
998
999 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
1000 /* This is a non-RT signal and we already have one queued. */
1001 return ret;
1002
1003 /*
1004 * Put this signal on the shared-pending queue, or fail with EAGAIN.
1005 * We always use the shared queue for process-wide signals,
1006 * to avoid several races.
1007 */
1008 ret = send_signal(sig, info, p, &p->signal->shared_pending);
1009 if (unlikely(ret))
1010 return ret;
1011
1012 __group_complete_signal(sig, p);
1013 return 0;
1014 }
1015
1016 /*
1017 * Nuke all other threads in the group.
1018 */
1019 void zap_other_threads(struct task_struct *p)
1020 {
1021 struct task_struct *t;
1022
1023 p->signal->flags = SIGNAL_GROUP_EXIT;
1024 p->signal->group_stop_count = 0;
1025
1026 if (thread_group_empty(p))
1027 return;
1028
1029 for (t = next_thread(p); t != p; t = next_thread(t)) {
1030 /*
1031 * Don't bother with already dead threads
1032 */
1033 if (t->exit_state)
1034 continue;
1035
1036 /*
1037 * We don't want to notify the parent, since we are
1038 * killed as part of a thread group due to another
1039 * thread doing an execve() or similar. So set the
1040 * exit signal to -1 to allow immediate reaping of
1041 * the process. But don't detach the thread group
1042 * leader.
1043 */
1044 if (t != p->group_leader)
1045 t->exit_signal = -1;
1046
1047 /* SIGKILL will be handled before any pending SIGSTOP */
1048 sigaddset(&t->pending.signal, SIGKILL);
1049 signal_wake_up(t, 1);
1050 }
1051 }
1052
1053 /*
1054 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
1055 */
1056 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1057 {
1058 struct sighand_struct *sighand;
1059
1060 for (;;) {
1061 sighand = rcu_dereference(tsk->sighand);
1062 if (unlikely(sighand == NULL))
1063 break;
1064
1065 spin_lock_irqsave(&sighand->siglock, *flags);
1066 if (likely(sighand == tsk->sighand))
1067 break;
1068 spin_unlock_irqrestore(&sighand->siglock, *flags);
1069 }
1070
1071 return sighand;
1072 }
1073
1074 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1075 {
1076 unsigned long flags;
1077 int ret;
1078
1079 ret = check_kill_permission(sig, info, p);
1080
1081 if (!ret && sig) {
1082 ret = -ESRCH;
1083 if (lock_task_sighand(p, &flags)) {
1084 ret = __group_send_sig_info(sig, info, p);
1085 unlock_task_sighand(p, &flags);
1086 }
1087 }
1088
1089 return ret;
1090 }
1091
1092 /*
1093 * kill_pgrp_info() sends a signal to a process group: this is what the tty
1094 * control characters do (^C, ^Z etc)
1095 */
1096
1097 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1098 {
1099 struct task_struct *p = NULL;
1100 int retval, success;
1101
1102 success = 0;
1103 retval = -ESRCH;
1104 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1105 int err = group_send_sig_info(sig, info, p);
1106 success |= !err;
1107 retval = err;
1108 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1109 return success ? 0 : retval;
1110 }
1111
1112 int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1113 {
1114 int retval;
1115
1116 read_lock(&tasklist_lock);
1117 retval = __kill_pgrp_info(sig, info, pgrp);
1118 read_unlock(&tasklist_lock);
1119
1120 return retval;
1121 }
1122
1123 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1124 {
1125 int error;
1126 struct task_struct *p;
1127
1128 rcu_read_lock();
1129 if (unlikely(sig_needs_tasklist(sig)))
1130 read_lock(&tasklist_lock);
1131
1132 p = pid_task(pid, PIDTYPE_PID);
1133 error = -ESRCH;
1134 if (p)
1135 error = group_send_sig_info(sig, info, p);
1136
1137 if (unlikely(sig_needs_tasklist(sig)))
1138 read_unlock(&tasklist_lock);
1139 rcu_read_unlock();
1140 return error;
1141 }
1142
1143 static int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1144 {
1145 int error;
1146 rcu_read_lock();
1147 error = kill_pid_info(sig, info, find_pid(pid));
1148 rcu_read_unlock();
1149 return error;
1150 }
1151
1152 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1153 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1154 uid_t uid, uid_t euid, u32 secid)
1155 {
1156 int ret = -EINVAL;
1157 struct task_struct *p;
1158
1159 if (!valid_signal(sig))
1160 return ret;
1161
1162 read_lock(&tasklist_lock);
1163 p = pid_task(pid, PIDTYPE_PID);
1164 if (!p) {
1165 ret = -ESRCH;
1166 goto out_unlock;
1167 }
1168 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1169 && (euid != p->suid) && (euid != p->uid)
1170 && (uid != p->suid) && (uid != p->uid)) {
1171 ret = -EPERM;
1172 goto out_unlock;
1173 }
1174 ret = security_task_kill(p, info, sig, secid);
1175 if (ret)
1176 goto out_unlock;
1177 if (sig && p->sighand) {
1178 unsigned long flags;
1179 spin_lock_irqsave(&p->sighand->siglock, flags);
1180 ret = __group_send_sig_info(sig, info, p);
1181 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1182 }
1183 out_unlock:
1184 read_unlock(&tasklist_lock);
1185 return ret;
1186 }
1187 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1188
1189 /*
1190 * kill_something_info() interprets pid in interesting ways just like kill(2).
1191 *
1192 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1193 * is probably wrong. Should make it like BSD or SYSV.
1194 */
1195
1196 static int kill_something_info(int sig, struct siginfo *info, int pid)
1197 {
1198 int ret;
1199 rcu_read_lock();
1200 if (!pid) {
1201 ret = kill_pgrp_info(sig, info, task_pgrp(current));
1202 } else if (pid == -1) {
1203 int retval = 0, count = 0;
1204 struct task_struct * p;
1205
1206 read_lock(&tasklist_lock);
1207 for_each_process(p) {
1208 if (p->pid > 1 && p->tgid != current->tgid) {
1209 int err = group_send_sig_info(sig, info, p);
1210 ++count;
1211 if (err != -EPERM)
1212 retval = err;
1213 }
1214 }
1215 read_unlock(&tasklist_lock);
1216 ret = count ? retval : -ESRCH;
1217 } else if (pid < 0) {
1218 ret = kill_pgrp_info(sig, info, find_pid(-pid));
1219 } else {
1220 ret = kill_pid_info(sig, info, find_pid(pid));
1221 }
1222 rcu_read_unlock();
1223 return ret;
1224 }
1225
1226 /*
1227 * These are for backward compatibility with the rest of the kernel source.
1228 */
1229
1230 /*
1231 * These two are the most common entry points. They send a signal
1232 * just to the specific thread.
1233 */
1234 int
1235 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1236 {
1237 int ret;
1238 unsigned long flags;
1239
1240 /*
1241 * Make sure legacy kernel users don't send in bad values
1242 * (normal paths check this in check_kill_permission).
1243 */
1244 if (!valid_signal(sig))
1245 return -EINVAL;
1246
1247 /*
1248 * We need the tasklist lock even for the specific
1249 * thread case (when we don't need to follow the group
1250 * lists) in order to avoid races with "p->sighand"
1251 * going away or changing from under us.
1252 */
1253 read_lock(&tasklist_lock);
1254 spin_lock_irqsave(&p->sighand->siglock, flags);
1255 ret = specific_send_sig_info(sig, info, p);
1256 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1257 read_unlock(&tasklist_lock);
1258 return ret;
1259 }
1260
1261 #define __si_special(priv) \
1262 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1263
1264 int
1265 send_sig(int sig, struct task_struct *p, int priv)
1266 {
1267 return send_sig_info(sig, __si_special(priv), p);
1268 }
1269
1270 /*
1271 * This is the entry point for "process-wide" signals.
1272 * They will go to an appropriate thread in the thread group.
1273 */
1274 int
1275 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1276 {
1277 int ret;
1278 read_lock(&tasklist_lock);
1279 ret = group_send_sig_info(sig, info, p);
1280 read_unlock(&tasklist_lock);
1281 return ret;
1282 }
1283
1284 void
1285 force_sig(int sig, struct task_struct *p)
1286 {
1287 force_sig_info(sig, SEND_SIG_PRIV, p);
1288 }
1289
1290 /*
1291 * When things go south during signal handling, we
1292 * will force a SIGSEGV. And if the signal that caused
1293 * the problem was already a SIGSEGV, we'll want to
1294 * make sure we don't even try to deliver the signal..
1295 */
1296 int
1297 force_sigsegv(int sig, struct task_struct *p)
1298 {
1299 if (sig == SIGSEGV) {
1300 unsigned long flags;
1301 spin_lock_irqsave(&p->sighand->siglock, flags);
1302 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1303 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1304 }
1305 force_sig(SIGSEGV, p);
1306 return 0;
1307 }
1308
1309 int kill_pgrp(struct pid *pid, int sig, int priv)
1310 {
1311 return kill_pgrp_info(sig, __si_special(priv), pid);
1312 }
1313 EXPORT_SYMBOL(kill_pgrp);
1314
1315 int kill_pid(struct pid *pid, int sig, int priv)
1316 {
1317 return kill_pid_info(sig, __si_special(priv), pid);
1318 }
1319 EXPORT_SYMBOL(kill_pid);
1320
1321 int
1322 kill_proc(pid_t pid, int sig, int priv)
1323 {
1324 return kill_proc_info(sig, __si_special(priv), pid);
1325 }
1326
1327 /*
1328 * These functions support sending signals using preallocated sigqueue
1329 * structures. This is needed "because realtime applications cannot
1330 * afford to lose notifications of asynchronous events, like timer
1331 * expirations or I/O completions". In the case of Posix Timers
1332 * we allocate the sigqueue structure from the timer_create. If this
1333 * allocation fails we are able to report the failure to the application
1334 * with an EAGAIN error.
1335 */
1336
1337 struct sigqueue *sigqueue_alloc(void)
1338 {
1339 struct sigqueue *q;
1340
1341 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1342 q->flags |= SIGQUEUE_PREALLOC;
1343 return(q);
1344 }
1345
1346 void sigqueue_free(struct sigqueue *q)
1347 {
1348 unsigned long flags;
1349 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1350 /*
1351 * If the signal is still pending remove it from the
1352 * pending queue.
1353 */
1354 if (unlikely(!list_empty(&q->list))) {
1355 spinlock_t *lock = &current->sighand->siglock;
1356 read_lock(&tasklist_lock);
1357 spin_lock_irqsave(lock, flags);
1358 if (!list_empty(&q->list))
1359 list_del_init(&q->list);
1360 spin_unlock_irqrestore(lock, flags);
1361 read_unlock(&tasklist_lock);
1362 }
1363 q->flags &= ~SIGQUEUE_PREALLOC;
1364 __sigqueue_free(q);
1365 }
1366
1367 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1368 {
1369 unsigned long flags;
1370 int ret = 0;
1371
1372 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1373
1374 /*
1375 * The rcu based delayed sighand destroy makes it possible to
1376 * run this without tasklist lock held. The task struct itself
1377 * cannot go away as create_timer did get_task_struct().
1378 *
1379 * We return -1, when the task is marked exiting, so
1380 * posix_timer_event can redirect it to the group leader
1381 */
1382 rcu_read_lock();
1383
1384 if (!likely(lock_task_sighand(p, &flags))) {
1385 ret = -1;
1386 goto out_err;
1387 }
1388
1389 if (unlikely(!list_empty(&q->list))) {
1390 /*
1391 * If an SI_TIMER entry is already queue just increment
1392 * the overrun count.
1393 */
1394 BUG_ON(q->info.si_code != SI_TIMER);
1395 q->info.si_overrun++;
1396 goto out;
1397 }
1398 /* Short-circuit ignored signals. */
1399 if (sig_ignored(p, sig)) {
1400 ret = 1;
1401 goto out;
1402 }
1403
1404 list_add_tail(&q->list, &p->pending.list);
1405 sigaddset(&p->pending.signal, sig);
1406 if (!sigismember(&p->blocked, sig))
1407 signal_wake_up(p, sig == SIGKILL);
1408
1409 out:
1410 unlock_task_sighand(p, &flags);
1411 out_err:
1412 rcu_read_unlock();
1413
1414 return ret;
1415 }
1416
1417 int
1418 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1419 {
1420 unsigned long flags;
1421 int ret = 0;
1422
1423 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1424
1425 read_lock(&tasklist_lock);
1426 /* Since it_lock is held, p->sighand cannot be NULL. */
1427 spin_lock_irqsave(&p->sighand->siglock, flags);
1428 handle_stop_signal(sig, p);
1429
1430 /* Short-circuit ignored signals. */
1431 if (sig_ignored(p, sig)) {
1432 ret = 1;
1433 goto out;
1434 }
1435
1436 if (unlikely(!list_empty(&q->list))) {
1437 /*
1438 * If an SI_TIMER entry is already queue just increment
1439 * the overrun count. Other uses should not try to
1440 * send the signal multiple times.
1441 */
1442 BUG_ON(q->info.si_code != SI_TIMER);
1443 q->info.si_overrun++;
1444 goto out;
1445 }
1446
1447 /*
1448 * Put this signal on the shared-pending queue.
1449 * We always use the shared queue for process-wide signals,
1450 * to avoid several races.
1451 */
1452 list_add_tail(&q->list, &p->signal->shared_pending.list);
1453 sigaddset(&p->signal->shared_pending.signal, sig);
1454
1455 __group_complete_signal(sig, p);
1456 out:
1457 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1458 read_unlock(&tasklist_lock);
1459 return ret;
1460 }
1461
1462 /*
1463 * Wake up any threads in the parent blocked in wait* syscalls.
1464 */
1465 static inline void __wake_up_parent(struct task_struct *p,
1466 struct task_struct *parent)
1467 {
1468 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1469 }
1470
1471 /*
1472 * Let a parent know about the death of a child.
1473 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1474 */
1475
1476 void do_notify_parent(struct task_struct *tsk, int sig)
1477 {
1478 struct siginfo info;
1479 unsigned long flags;
1480 struct sighand_struct *psig;
1481
1482 BUG_ON(sig == -1);
1483
1484 /* do_notify_parent_cldstop should have been called instead. */
1485 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1486
1487 BUG_ON(!tsk->ptrace &&
1488 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1489
1490 info.si_signo = sig;
1491 info.si_errno = 0;
1492 info.si_pid = tsk->pid;
1493 info.si_uid = tsk->uid;
1494
1495 /* FIXME: find out whether or not this is supposed to be c*time. */
1496 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1497 tsk->signal->utime));
1498 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1499 tsk->signal->stime));
1500
1501 info.si_status = tsk->exit_code & 0x7f;
1502 if (tsk->exit_code & 0x80)
1503 info.si_code = CLD_DUMPED;
1504 else if (tsk->exit_code & 0x7f)
1505 info.si_code = CLD_KILLED;
1506 else {
1507 info.si_code = CLD_EXITED;
1508 info.si_status = tsk->exit_code >> 8;
1509 }
1510
1511 psig = tsk->parent->sighand;
1512 spin_lock_irqsave(&psig->siglock, flags);
1513 if (!tsk->ptrace && sig == SIGCHLD &&
1514 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1515 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1516 /*
1517 * We are exiting and our parent doesn't care. POSIX.1
1518 * defines special semantics for setting SIGCHLD to SIG_IGN
1519 * or setting the SA_NOCLDWAIT flag: we should be reaped
1520 * automatically and not left for our parent's wait4 call.
1521 * Rather than having the parent do it as a magic kind of
1522 * signal handler, we just set this to tell do_exit that we
1523 * can be cleaned up without becoming a zombie. Note that
1524 * we still call __wake_up_parent in this case, because a
1525 * blocked sys_wait4 might now return -ECHILD.
1526 *
1527 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1528 * is implementation-defined: we do (if you don't want
1529 * it, just use SIG_IGN instead).
1530 */
1531 tsk->exit_signal = -1;
1532 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1533 sig = 0;
1534 }
1535 if (valid_signal(sig) && sig > 0)
1536 __group_send_sig_info(sig, &info, tsk->parent);
1537 __wake_up_parent(tsk, tsk->parent);
1538 spin_unlock_irqrestore(&psig->siglock, flags);
1539 }
1540
1541 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1542 {
1543 struct siginfo info;
1544 unsigned long flags;
1545 struct task_struct *parent;
1546 struct sighand_struct *sighand;
1547
1548 if (tsk->ptrace & PT_PTRACED)
1549 parent = tsk->parent;
1550 else {
1551 tsk = tsk->group_leader;
1552 parent = tsk->real_parent;
1553 }
1554
1555 info.si_signo = SIGCHLD;
1556 info.si_errno = 0;
1557 info.si_pid = tsk->pid;
1558 info.si_uid = tsk->uid;
1559
1560 /* FIXME: find out whether or not this is supposed to be c*time. */
1561 info.si_utime = cputime_to_jiffies(tsk->utime);
1562 info.si_stime = cputime_to_jiffies(tsk->stime);
1563
1564 info.si_code = why;
1565 switch (why) {
1566 case CLD_CONTINUED:
1567 info.si_status = SIGCONT;
1568 break;
1569 case CLD_STOPPED:
1570 info.si_status = tsk->signal->group_exit_code & 0x7f;
1571 break;
1572 case CLD_TRAPPED:
1573 info.si_status = tsk->exit_code & 0x7f;
1574 break;
1575 default:
1576 BUG();
1577 }
1578
1579 sighand = parent->sighand;
1580 spin_lock_irqsave(&sighand->siglock, flags);
1581 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1582 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1583 __group_send_sig_info(SIGCHLD, &info, parent);
1584 /*
1585 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1586 */
1587 __wake_up_parent(tsk, parent);
1588 spin_unlock_irqrestore(&sighand->siglock, flags);
1589 }
1590
1591 static inline int may_ptrace_stop(void)
1592 {
1593 if (!likely(current->ptrace & PT_PTRACED))
1594 return 0;
1595
1596 if (unlikely(current->parent == current->real_parent &&
1597 (current->ptrace & PT_ATTACHED)))
1598 return 0;
1599
1600 if (unlikely(current->signal == current->parent->signal) &&
1601 unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))
1602 return 0;
1603
1604 /*
1605 * Are we in the middle of do_coredump?
1606 * If so and our tracer is also part of the coredump stopping
1607 * is a deadlock situation, and pointless because our tracer
1608 * is dead so don't allow us to stop.
1609 * If SIGKILL was already sent before the caller unlocked
1610 * ->siglock we must see ->core_waiters != 0. Otherwise it
1611 * is safe to enter schedule().
1612 */
1613 if (unlikely(current->mm->core_waiters) &&
1614 unlikely(current->mm == current->parent->mm))
1615 return 0;
1616
1617 return 1;
1618 }
1619
1620 /*
1621 * This must be called with current->sighand->siglock held.
1622 *
1623 * This should be the path for all ptrace stops.
1624 * We always set current->last_siginfo while stopped here.
1625 * That makes it a way to test a stopped process for
1626 * being ptrace-stopped vs being job-control-stopped.
1627 *
1628 * If we actually decide not to stop at all because the tracer is gone,
1629 * we leave nostop_code in current->exit_code.
1630 */
1631 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1632 {
1633 /*
1634 * If there is a group stop in progress,
1635 * we must participate in the bookkeeping.
1636 */
1637 if (current->signal->group_stop_count > 0)
1638 --current->signal->group_stop_count;
1639
1640 current->last_siginfo = info;
1641 current->exit_code = exit_code;
1642
1643 /* Let the debugger run. */
1644 set_current_state(TASK_TRACED);
1645 spin_unlock_irq(&current->sighand->siglock);
1646 try_to_freeze();
1647 read_lock(&tasklist_lock);
1648 if (may_ptrace_stop()) {
1649 do_notify_parent_cldstop(current, CLD_TRAPPED);
1650 read_unlock(&tasklist_lock);
1651 schedule();
1652 } else {
1653 /*
1654 * By the time we got the lock, our tracer went away.
1655 * Don't stop here.
1656 */
1657 read_unlock(&tasklist_lock);
1658 set_current_state(TASK_RUNNING);
1659 current->exit_code = nostop_code;
1660 }
1661
1662 /*
1663 * We are back. Now reacquire the siglock before touching
1664 * last_siginfo, so that we are sure to have synchronized with
1665 * any signal-sending on another CPU that wants to examine it.
1666 */
1667 spin_lock_irq(&current->sighand->siglock);
1668 current->last_siginfo = NULL;
1669
1670 /*
1671 * Queued signals ignored us while we were stopped for tracing.
1672 * So check for any that we should take before resuming user mode.
1673 */
1674 recalc_sigpending();
1675 }
1676
1677 void ptrace_notify(int exit_code)
1678 {
1679 siginfo_t info;
1680
1681 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1682
1683 memset(&info, 0, sizeof info);
1684 info.si_signo = SIGTRAP;
1685 info.si_code = exit_code;
1686 info.si_pid = current->pid;
1687 info.si_uid = current->uid;
1688
1689 /* Let the debugger run. */
1690 spin_lock_irq(&current->sighand->siglock);
1691 ptrace_stop(exit_code, 0, &info);
1692 spin_unlock_irq(&current->sighand->siglock);
1693 }
1694
1695 static void
1696 finish_stop(int stop_count)
1697 {
1698 /*
1699 * If there are no other threads in the group, or if there is
1700 * a group stop in progress and we are the last to stop,
1701 * report to the parent. When ptraced, every thread reports itself.
1702 */
1703 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1704 read_lock(&tasklist_lock);
1705 do_notify_parent_cldstop(current, CLD_STOPPED);
1706 read_unlock(&tasklist_lock);
1707 }
1708
1709 do {
1710 schedule();
1711 } while (try_to_freeze());
1712 /*
1713 * Now we don't run again until continued.
1714 */
1715 current->exit_code = 0;
1716 }
1717
1718 /*
1719 * This performs the stopping for SIGSTOP and other stop signals.
1720 * We have to stop all threads in the thread group.
1721 * Returns nonzero if we've actually stopped and released the siglock.
1722 * Returns zero if we didn't stop and still hold the siglock.
1723 */
1724 static int do_signal_stop(int signr)
1725 {
1726 struct signal_struct *sig = current->signal;
1727 int stop_count;
1728
1729 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1730 return 0;
1731
1732 if (sig->group_stop_count > 0) {
1733 /*
1734 * There is a group stop in progress. We don't need to
1735 * start another one.
1736 */
1737 stop_count = --sig->group_stop_count;
1738 } else {
1739 /*
1740 * There is no group stop already in progress.
1741 * We must initiate one now.
1742 */
1743 struct task_struct *t;
1744
1745 sig->group_exit_code = signr;
1746
1747 stop_count = 0;
1748 for (t = next_thread(current); t != current; t = next_thread(t))
1749 /*
1750 * Setting state to TASK_STOPPED for a group
1751 * stop is always done with the siglock held,
1752 * so this check has no races.
1753 */
1754 if (!t->exit_state &&
1755 !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1756 stop_count++;
1757 signal_wake_up(t, 0);
1758 }
1759 sig->group_stop_count = stop_count;
1760 }
1761
1762 if (stop_count == 0)
1763 sig->flags = SIGNAL_STOP_STOPPED;
1764 current->exit_code = sig->group_exit_code;
1765 __set_current_state(TASK_STOPPED);
1766
1767 spin_unlock_irq(&current->sighand->siglock);
1768 finish_stop(stop_count);
1769 return 1;
1770 }
1771
1772 /*
1773 * Do appropriate magic when group_stop_count > 0.
1774 * We return nonzero if we stopped, after releasing the siglock.
1775 * We return zero if we still hold the siglock and should look
1776 * for another signal without checking group_stop_count again.
1777 */
1778 static int handle_group_stop(void)
1779 {
1780 int stop_count;
1781
1782 if (current->signal->group_exit_task == current) {
1783 /*
1784 * Group stop is so we can do a core dump,
1785 * We are the initiating thread, so get on with it.
1786 */
1787 current->signal->group_exit_task = NULL;
1788 return 0;
1789 }
1790
1791 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1792 /*
1793 * Group stop is so another thread can do a core dump,
1794 * or else we are racing against a death signal.
1795 * Just punt the stop so we can get the next signal.
1796 */
1797 return 0;
1798
1799 /*
1800 * There is a group stop in progress. We stop
1801 * without any associated signal being in our queue.
1802 */
1803 stop_count = --current->signal->group_stop_count;
1804 if (stop_count == 0)
1805 current->signal->flags = SIGNAL_STOP_STOPPED;
1806 current->exit_code = current->signal->group_exit_code;
1807 set_current_state(TASK_STOPPED);
1808 spin_unlock_irq(&current->sighand->siglock);
1809 finish_stop(stop_count);
1810 return 1;
1811 }
1812
1813 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1814 struct pt_regs *regs, void *cookie)
1815 {
1816 sigset_t *mask = &current->blocked;
1817 int signr = 0;
1818
1819 try_to_freeze();
1820
1821 relock:
1822 spin_lock_irq(&current->sighand->siglock);
1823 for (;;) {
1824 struct k_sigaction *ka;
1825
1826 if (unlikely(current->signal->group_stop_count > 0) &&
1827 handle_group_stop())
1828 goto relock;
1829
1830 signr = dequeue_signal(current, mask, info);
1831
1832 if (!signr)
1833 break; /* will return 0 */
1834
1835 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1836 ptrace_signal_deliver(regs, cookie);
1837
1838 /* Let the debugger run. */
1839 ptrace_stop(signr, signr, info);
1840
1841 /* We're back. Did the debugger cancel the sig? */
1842 signr = current->exit_code;
1843 if (signr == 0)
1844 continue;
1845
1846 current->exit_code = 0;
1847
1848 /* Update the siginfo structure if the signal has
1849 changed. If the debugger wanted something
1850 specific in the siginfo structure then it should
1851 have updated *info via PTRACE_SETSIGINFO. */
1852 if (signr != info->si_signo) {
1853 info->si_signo = signr;
1854 info->si_errno = 0;
1855 info->si_code = SI_USER;
1856 info->si_pid = current->parent->pid;
1857 info->si_uid = current->parent->uid;
1858 }
1859
1860 /* If the (new) signal is now blocked, requeue it. */
1861 if (sigismember(&current->blocked, signr)) {
1862 specific_send_sig_info(signr, info, current);
1863 continue;
1864 }
1865 }
1866
1867 ka = &current->sighand->action[signr-1];
1868 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1869 continue;
1870 if (ka->sa.sa_handler != SIG_DFL) {
1871 /* Run the handler. */
1872 *return_ka = *ka;
1873
1874 if (ka->sa.sa_flags & SA_ONESHOT)
1875 ka->sa.sa_handler = SIG_DFL;
1876
1877 break; /* will return non-zero "signr" value */
1878 }
1879
1880 /*
1881 * Now we are doing the default action for this signal.
1882 */
1883 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1884 continue;
1885
1886 /*
1887 * Init of a pid space gets no signals it doesn't want from
1888 * within that pid space. It can of course get signals from
1889 * its parent pid space.
1890 */
1891 if (current == child_reaper(current))
1892 continue;
1893
1894 if (sig_kernel_stop(signr)) {
1895 /*
1896 * The default action is to stop all threads in
1897 * the thread group. The job control signals
1898 * do nothing in an orphaned pgrp, but SIGSTOP
1899 * always works. Note that siglock needs to be
1900 * dropped during the call to is_orphaned_pgrp()
1901 * because of lock ordering with tasklist_lock.
1902 * This allows an intervening SIGCONT to be posted.
1903 * We need to check for that and bail out if necessary.
1904 */
1905 if (signr != SIGSTOP) {
1906 spin_unlock_irq(&current->sighand->siglock);
1907
1908 /* signals can be posted during this window */
1909
1910 if (is_current_pgrp_orphaned())
1911 goto relock;
1912
1913 spin_lock_irq(&current->sighand->siglock);
1914 }
1915
1916 if (likely(do_signal_stop(signr))) {
1917 /* It released the siglock. */
1918 goto relock;
1919 }
1920
1921 /*
1922 * We didn't actually stop, due to a race
1923 * with SIGCONT or something like that.
1924 */
1925 continue;
1926 }
1927
1928 spin_unlock_irq(&current->sighand->siglock);
1929
1930 /*
1931 * Anything else is fatal, maybe with a core dump.
1932 */
1933 current->flags |= PF_SIGNALED;
1934 if (sig_kernel_coredump(signr)) {
1935 /*
1936 * If it was able to dump core, this kills all
1937 * other threads in the group and synchronizes with
1938 * their demise. If we lost the race with another
1939 * thread getting here, it set group_exit_code
1940 * first and our do_group_exit call below will use
1941 * that value and ignore the one we pass it.
1942 */
1943 do_coredump((long)signr, signr, regs);
1944 }
1945
1946 /*
1947 * Death signals, no core dump.
1948 */
1949 do_group_exit(signr);
1950 /* NOTREACHED */
1951 }
1952 spin_unlock_irq(&current->sighand->siglock);
1953 return signr;
1954 }
1955
1956 EXPORT_SYMBOL(recalc_sigpending);
1957 EXPORT_SYMBOL_GPL(dequeue_signal);
1958 EXPORT_SYMBOL(flush_signals);
1959 EXPORT_SYMBOL(force_sig);
1960 EXPORT_SYMBOL(kill_proc);
1961 EXPORT_SYMBOL(ptrace_notify);
1962 EXPORT_SYMBOL(send_sig);
1963 EXPORT_SYMBOL(send_sig_info);
1964 EXPORT_SYMBOL(sigprocmask);
1965 EXPORT_SYMBOL(block_all_signals);
1966 EXPORT_SYMBOL(unblock_all_signals);
1967
1968
1969 /*
1970 * System call entry points.
1971 */
1972
1973 asmlinkage long sys_restart_syscall(void)
1974 {
1975 struct restart_block *restart = &current_thread_info()->restart_block;
1976 return restart->fn(restart);
1977 }
1978
1979 long do_no_restart_syscall(struct restart_block *param)
1980 {
1981 return -EINTR;
1982 }
1983
1984 /*
1985 * We don't need to get the kernel lock - this is all local to this
1986 * particular thread.. (and that's good, because this is _heavily_
1987 * used by various programs)
1988 */
1989
1990 /*
1991 * This is also useful for kernel threads that want to temporarily
1992 * (or permanently) block certain signals.
1993 *
1994 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1995 * interface happily blocks "unblockable" signals like SIGKILL
1996 * and friends.
1997 */
1998 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1999 {
2000 int error;
2001
2002 spin_lock_irq(&current->sighand->siglock);
2003 if (oldset)
2004 *oldset = current->blocked;
2005
2006 error = 0;
2007 switch (how) {
2008 case SIG_BLOCK:
2009 sigorsets(&current->blocked, &current->blocked, set);
2010 break;
2011 case SIG_UNBLOCK:
2012 signandsets(&current->blocked, &current->blocked, set);
2013 break;
2014 case SIG_SETMASK:
2015 current->blocked = *set;
2016 break;
2017 default:
2018 error = -EINVAL;
2019 }
2020 recalc_sigpending();
2021 spin_unlock_irq(&current->sighand->siglock);
2022
2023 return error;
2024 }
2025
2026 asmlinkage long
2027 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2028 {
2029 int error = -EINVAL;
2030 sigset_t old_set, new_set;
2031
2032 /* XXX: Don't preclude handling different sized sigset_t's. */
2033 if (sigsetsize != sizeof(sigset_t))
2034 goto out;
2035
2036 if (set) {
2037 error = -EFAULT;
2038 if (copy_from_user(&new_set, set, sizeof(*set)))
2039 goto out;
2040 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2041
2042 error = sigprocmask(how, &new_set, &old_set);
2043 if (error)
2044 goto out;
2045 if (oset)
2046 goto set_old;
2047 } else if (oset) {
2048 spin_lock_irq(&current->sighand->siglock);
2049 old_set = current->blocked;
2050 spin_unlock_irq(&current->sighand->siglock);
2051
2052 set_old:
2053 error = -EFAULT;
2054 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2055 goto out;
2056 }
2057 error = 0;
2058 out:
2059 return error;
2060 }
2061
2062 long do_sigpending(void __user *set, unsigned long sigsetsize)
2063 {
2064 long error = -EINVAL;
2065 sigset_t pending;
2066
2067 if (sigsetsize > sizeof(sigset_t))
2068 goto out;
2069
2070 spin_lock_irq(&current->sighand->siglock);
2071 sigorsets(&pending, &current->pending.signal,
2072 &current->signal->shared_pending.signal);
2073 spin_unlock_irq(&current->sighand->siglock);
2074
2075 /* Outside the lock because only this thread touches it. */
2076 sigandsets(&pending, &current->blocked, &pending);
2077
2078 error = -EFAULT;
2079 if (!copy_to_user(set, &pending, sigsetsize))
2080 error = 0;
2081
2082 out:
2083 return error;
2084 }
2085
2086 asmlinkage long
2087 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2088 {
2089 return do_sigpending(set, sigsetsize);
2090 }
2091
2092 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2093
2094 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2095 {
2096 int err;
2097
2098 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2099 return -EFAULT;
2100 if (from->si_code < 0)
2101 return __copy_to_user(to, from, sizeof(siginfo_t))
2102 ? -EFAULT : 0;
2103 /*
2104 * If you change siginfo_t structure, please be sure
2105 * this code is fixed accordingly.
2106 * It should never copy any pad contained in the structure
2107 * to avoid security leaks, but must copy the generic
2108 * 3 ints plus the relevant union member.
2109 */
2110 err = __put_user(from->si_signo, &to->si_signo);
2111 err |= __put_user(from->si_errno, &to->si_errno);
2112 err |= __put_user((short)from->si_code, &to->si_code);
2113 switch (from->si_code & __SI_MASK) {
2114 case __SI_KILL:
2115 err |= __put_user(from->si_pid, &to->si_pid);
2116 err |= __put_user(from->si_uid, &to->si_uid);
2117 break;
2118 case __SI_TIMER:
2119 err |= __put_user(from->si_tid, &to->si_tid);
2120 err |= __put_user(from->si_overrun, &to->si_overrun);
2121 err |= __put_user(from->si_ptr, &to->si_ptr);
2122 break;
2123 case __SI_POLL:
2124 err |= __put_user(from->si_band, &to->si_band);
2125 err |= __put_user(from->si_fd, &to->si_fd);
2126 break;
2127 case __SI_FAULT:
2128 err |= __put_user(from->si_addr, &to->si_addr);
2129 #ifdef __ARCH_SI_TRAPNO
2130 err |= __put_user(from->si_trapno, &to->si_trapno);
2131 #endif
2132 break;
2133 case __SI_CHLD:
2134 err |= __put_user(from->si_pid, &to->si_pid);
2135 err |= __put_user(from->si_uid, &to->si_uid);
2136 err |= __put_user(from->si_status, &to->si_status);
2137 err |= __put_user(from->si_utime, &to->si_utime);
2138 err |= __put_user(from->si_stime, &to->si_stime);
2139 break;
2140 case __SI_RT: /* This is not generated by the kernel as of now. */
2141 case __SI_MESGQ: /* But this is */
2142 err |= __put_user(from->si_pid, &to->si_pid);
2143 err |= __put_user(from->si_uid, &to->si_uid);
2144 err |= __put_user(from->si_ptr, &to->si_ptr);
2145 break;
2146 default: /* this is just in case for now ... */
2147 err |= __put_user(from->si_pid, &to->si_pid);
2148 err |= __put_user(from->si_uid, &to->si_uid);
2149 break;
2150 }
2151 return err;
2152 }
2153
2154 #endif
2155
2156 asmlinkage long
2157 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2158 siginfo_t __user *uinfo,
2159 const struct timespec __user *uts,
2160 size_t sigsetsize)
2161 {
2162 int ret, sig;
2163 sigset_t these;
2164 struct timespec ts;
2165 siginfo_t info;
2166 long timeout = 0;
2167
2168 /* XXX: Don't preclude handling different sized sigset_t's. */
2169 if (sigsetsize != sizeof(sigset_t))
2170 return -EINVAL;
2171
2172 if (copy_from_user(&these, uthese, sizeof(these)))
2173 return -EFAULT;
2174
2175 /*
2176 * Invert the set of allowed signals to get those we
2177 * want to block.
2178 */
2179 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2180 signotset(&these);
2181
2182 if (uts) {
2183 if (copy_from_user(&ts, uts, sizeof(ts)))
2184 return -EFAULT;
2185 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2186 || ts.tv_sec < 0)
2187 return -EINVAL;
2188 }
2189
2190 spin_lock_irq(&current->sighand->siglock);
2191 sig = dequeue_signal(current, &these, &info);
2192 if (!sig) {
2193 timeout = MAX_SCHEDULE_TIMEOUT;
2194 if (uts)
2195 timeout = (timespec_to_jiffies(&ts)
2196 + (ts.tv_sec || ts.tv_nsec));
2197
2198 if (timeout) {
2199 /* None ready -- temporarily unblock those we're
2200 * interested while we are sleeping in so that we'll
2201 * be awakened when they arrive. */
2202 current->real_blocked = current->blocked;
2203 sigandsets(&current->blocked, &current->blocked, &these);
2204 recalc_sigpending();
2205 spin_unlock_irq(&current->sighand->siglock);
2206
2207 timeout = schedule_timeout_interruptible(timeout);
2208
2209 spin_lock_irq(&current->sighand->siglock);
2210 sig = dequeue_signal(current, &these, &info);
2211 current->blocked = current->real_blocked;
2212 siginitset(&current->real_blocked, 0);
2213 recalc_sigpending();
2214 }
2215 }
2216 spin_unlock_irq(&current->sighand->siglock);
2217
2218 if (sig) {
2219 ret = sig;
2220 if (uinfo) {
2221 if (copy_siginfo_to_user(uinfo, &info))
2222 ret = -EFAULT;
2223 }
2224 } else {
2225 ret = -EAGAIN;
2226 if (timeout)
2227 ret = -EINTR;
2228 }
2229
2230 return ret;
2231 }
2232
2233 asmlinkage long
2234 sys_kill(int pid, int sig)
2235 {
2236 struct siginfo info;
2237
2238 info.si_signo = sig;
2239 info.si_errno = 0;
2240 info.si_code = SI_USER;
2241 info.si_pid = current->tgid;
2242 info.si_uid = current->uid;
2243
2244 return kill_something_info(sig, &info, pid);
2245 }
2246
2247 static int do_tkill(int tgid, int pid, int sig)
2248 {
2249 int error;
2250 struct siginfo info;
2251 struct task_struct *p;
2252
2253 error = -ESRCH;
2254 info.si_signo = sig;
2255 info.si_errno = 0;
2256 info.si_code = SI_TKILL;
2257 info.si_pid = current->tgid;
2258 info.si_uid = current->uid;
2259
2260 read_lock(&tasklist_lock);
2261 p = find_task_by_pid(pid);
2262 if (p && (tgid <= 0 || p->tgid == tgid)) {
2263 error = check_kill_permission(sig, &info, p);
2264 /*
2265 * The null signal is a permissions and process existence
2266 * probe. No signal is actually delivered.
2267 */
2268 if (!error && sig && p->sighand) {
2269 spin_lock_irq(&p->sighand->siglock);
2270 handle_stop_signal(sig, p);
2271 error = specific_send_sig_info(sig, &info, p);
2272 spin_unlock_irq(&p->sighand->siglock);
2273 }
2274 }
2275 read_unlock(&tasklist_lock);
2276
2277 return error;
2278 }
2279
2280 /**
2281 * sys_tgkill - send signal to one specific thread
2282 * @tgid: the thread group ID of the thread
2283 * @pid: the PID of the thread
2284 * @sig: signal to be sent
2285 *
2286 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2287 * exists but it's not belonging to the target process anymore. This
2288 * method solves the problem of threads exiting and PIDs getting reused.
2289 */
2290 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2291 {
2292 /* This is only valid for single tasks */
2293 if (pid <= 0 || tgid <= 0)
2294 return -EINVAL;
2295
2296 return do_tkill(tgid, pid, sig);
2297 }
2298
2299 /*
2300 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2301 */
2302 asmlinkage long
2303 sys_tkill(int pid, int sig)
2304 {
2305 /* This is only valid for single tasks */
2306 if (pid <= 0)
2307 return -EINVAL;
2308
2309 return do_tkill(0, pid, sig);
2310 }
2311
2312 asmlinkage long
2313 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2314 {
2315 siginfo_t info;
2316
2317 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2318 return -EFAULT;
2319
2320 /* Not even root can pretend to send signals from the kernel.
2321 Nor can they impersonate a kill(), which adds source info. */
2322 if (info.si_code >= 0)
2323 return -EPERM;
2324 info.si_signo = sig;
2325
2326 /* POSIX.1b doesn't mention process groups. */
2327 return kill_proc_info(sig, &info, pid);
2328 }
2329
2330 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2331 {
2332 struct k_sigaction *k;
2333 sigset_t mask;
2334
2335 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2336 return -EINVAL;
2337
2338 k = &current->sighand->action[sig-1];
2339
2340 spin_lock_irq(&current->sighand->siglock);
2341 if (signal_pending(current)) {
2342 /*
2343 * If there might be a fatal signal pending on multiple
2344 * threads, make sure we take it before changing the action.
2345 */
2346 spin_unlock_irq(&current->sighand->siglock);
2347 return -ERESTARTNOINTR;
2348 }
2349
2350 if (oact)
2351 *oact = *k;
2352
2353 if (act) {
2354 sigdelsetmask(&act->sa.sa_mask,
2355 sigmask(SIGKILL) | sigmask(SIGSTOP));
2356 *k = *act;
2357 /*
2358 * POSIX 3.3.1.3:
2359 * "Setting a signal action to SIG_IGN for a signal that is
2360 * pending shall cause the pending signal to be discarded,
2361 * whether or not it is blocked."
2362 *
2363 * "Setting a signal action to SIG_DFL for a signal that is
2364 * pending and whose default action is to ignore the signal
2365 * (for example, SIGCHLD), shall cause the pending signal to
2366 * be discarded, whether or not it is blocked"
2367 */
2368 if (act->sa.sa_handler == SIG_IGN ||
2369 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2370 struct task_struct *t = current;
2371 sigemptyset(&mask);
2372 sigaddset(&mask, sig);
2373 rm_from_queue_full(&mask, &t->signal->shared_pending);
2374 do {
2375 rm_from_queue_full(&mask, &t->pending);
2376 recalc_sigpending_tsk(t);
2377 t = next_thread(t);
2378 } while (t != current);
2379 }
2380 }
2381
2382 spin_unlock_irq(&current->sighand->siglock);
2383 return 0;
2384 }
2385
2386 int
2387 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2388 {
2389 stack_t oss;
2390 int error;
2391
2392 if (uoss) {
2393 oss.ss_sp = (void __user *) current->sas_ss_sp;
2394 oss.ss_size = current->sas_ss_size;
2395 oss.ss_flags = sas_ss_flags(sp);
2396 }
2397
2398 if (uss) {
2399 void __user *ss_sp;
2400 size_t ss_size;
2401 int ss_flags;
2402
2403 error = -EFAULT;
2404 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2405 || __get_user(ss_sp, &uss->ss_sp)
2406 || __get_user(ss_flags, &uss->ss_flags)
2407 || __get_user(ss_size, &uss->ss_size))
2408 goto out;
2409
2410 error = -EPERM;
2411 if (on_sig_stack(sp))
2412 goto out;
2413
2414 error = -EINVAL;
2415 /*
2416 *
2417 * Note - this code used to test ss_flags incorrectly
2418 * old code may have been written using ss_flags==0
2419 * to mean ss_flags==SS_ONSTACK (as this was the only
2420 * way that worked) - this fix preserves that older
2421 * mechanism
2422 */
2423 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2424 goto out;
2425
2426 if (ss_flags == SS_DISABLE) {
2427 ss_size = 0;
2428 ss_sp = NULL;
2429 } else {
2430 error = -ENOMEM;
2431 if (ss_size < MINSIGSTKSZ)
2432 goto out;
2433 }
2434
2435 current->sas_ss_sp = (unsigned long) ss_sp;
2436 current->sas_ss_size = ss_size;
2437 }
2438
2439 if (uoss) {
2440 error = -EFAULT;
2441 if (copy_to_user(uoss, &oss, sizeof(oss)))
2442 goto out;
2443 }
2444
2445 error = 0;
2446 out:
2447 return error;
2448 }
2449
2450 #ifdef __ARCH_WANT_SYS_SIGPENDING
2451
2452 asmlinkage long
2453 sys_sigpending(old_sigset_t __user *set)
2454 {
2455 return do_sigpending(set, sizeof(*set));
2456 }
2457
2458 #endif
2459
2460 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2461 /* Some platforms have their own version with special arguments others
2462 support only sys_rt_sigprocmask. */
2463
2464 asmlinkage long
2465 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2466 {
2467 int error;
2468 old_sigset_t old_set, new_set;
2469
2470 if (set) {
2471 error = -EFAULT;
2472 if (copy_from_user(&new_set, set, sizeof(*set)))
2473 goto out;
2474 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2475
2476 spin_lock_irq(&current->sighand->siglock);
2477 old_set = current->blocked.sig[0];
2478
2479 error = 0;
2480 switch (how) {
2481 default:
2482 error = -EINVAL;
2483 break;
2484 case SIG_BLOCK:
2485 sigaddsetmask(&current->blocked, new_set);
2486 break;
2487 case SIG_UNBLOCK:
2488 sigdelsetmask(&current->blocked, new_set);
2489 break;
2490 case SIG_SETMASK:
2491 current->blocked.sig[0] = new_set;
2492 break;
2493 }
2494
2495 recalc_sigpending();
2496 spin_unlock_irq(&current->sighand->siglock);
2497 if (error)
2498 goto out;
2499 if (oset)
2500 goto set_old;
2501 } else if (oset) {
2502 old_set = current->blocked.sig[0];
2503 set_old:
2504 error = -EFAULT;
2505 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2506 goto out;
2507 }
2508 error = 0;
2509 out:
2510 return error;
2511 }
2512 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2513
2514 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2515 asmlinkage long
2516 sys_rt_sigaction(int sig,
2517 const struct sigaction __user *act,
2518 struct sigaction __user *oact,
2519 size_t sigsetsize)
2520 {
2521 struct k_sigaction new_sa, old_sa;
2522 int ret = -EINVAL;
2523
2524 /* XXX: Don't preclude handling different sized sigset_t's. */
2525 if (sigsetsize != sizeof(sigset_t))
2526 goto out;
2527
2528 if (act) {
2529 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2530 return -EFAULT;
2531 }
2532
2533 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2534
2535 if (!ret && oact) {
2536 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2537 return -EFAULT;
2538 }
2539 out:
2540 return ret;
2541 }
2542 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2543
2544 #ifdef __ARCH_WANT_SYS_SGETMASK
2545
2546 /*
2547 * For backwards compatibility. Functionality superseded by sigprocmask.
2548 */
2549 asmlinkage long
2550 sys_sgetmask(void)
2551 {
2552 /* SMP safe */
2553 return current->blocked.sig[0];
2554 }
2555
2556 asmlinkage long
2557 sys_ssetmask(int newmask)
2558 {
2559 int old;
2560
2561 spin_lock_irq(&current->sighand->siglock);
2562 old = current->blocked.sig[0];
2563
2564 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2565 sigmask(SIGSTOP)));
2566 recalc_sigpending();
2567 spin_unlock_irq(&current->sighand->siglock);
2568
2569 return old;
2570 }
2571 #endif /* __ARCH_WANT_SGETMASK */
2572
2573 #ifdef __ARCH_WANT_SYS_SIGNAL
2574 /*
2575 * For backwards compatibility. Functionality superseded by sigaction.
2576 */
2577 asmlinkage unsigned long
2578 sys_signal(int sig, __sighandler_t handler)
2579 {
2580 struct k_sigaction new_sa, old_sa;
2581 int ret;
2582
2583 new_sa.sa.sa_handler = handler;
2584 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2585 sigemptyset(&new_sa.sa.sa_mask);
2586
2587 ret = do_sigaction(sig, &new_sa, &old_sa);
2588
2589 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2590 }
2591 #endif /* __ARCH_WANT_SYS_SIGNAL */
2592
2593 #ifdef __ARCH_WANT_SYS_PAUSE
2594
2595 asmlinkage long
2596 sys_pause(void)
2597 {
2598 current->state = TASK_INTERRUPTIBLE;
2599 schedule();
2600 return -ERESTARTNOHAND;
2601 }
2602
2603 #endif
2604
2605 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2606 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2607 {
2608 sigset_t newset;
2609
2610 /* XXX: Don't preclude handling different sized sigset_t's. */
2611 if (sigsetsize != sizeof(sigset_t))
2612 return -EINVAL;
2613
2614 if (copy_from_user(&newset, unewset, sizeof(newset)))
2615 return -EFAULT;
2616 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2617
2618 spin_lock_irq(&current->sighand->siglock);
2619 current->saved_sigmask = current->blocked;
2620 current->blocked = newset;
2621 recalc_sigpending();
2622 spin_unlock_irq(&current->sighand->siglock);
2623
2624 current->state = TASK_INTERRUPTIBLE;
2625 schedule();
2626 set_thread_flag(TIF_RESTORE_SIGMASK);
2627 return -ERESTARTNOHAND;
2628 }
2629 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2630
2631 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2632 {
2633 return NULL;
2634 }
2635
2636 void __init signals_init(void)
2637 {
2638 sigqueue_cachep =
2639 kmem_cache_create("sigqueue",
2640 sizeof(struct sigqueue),
2641 __alignof__(struct sigqueue),
2642 SLAB_PANIC, NULL, NULL);
2643 }