]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/signal.c
signal: Restore the stop PTRACE_EVENT_EXIT
[mirror_ubuntu-bionic-kernel.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/user.h>
18 #include <linux/sched/debug.h>
19 #include <linux/sched/task.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/sched/cputime.h>
22 #include <linux/fs.h>
23 #include <linux/tty.h>
24 #include <linux/binfmts.h>
25 #include <linux/coredump.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/ptrace.h>
29 #include <linux/signal.h>
30 #include <linux/signalfd.h>
31 #include <linux/ratelimit.h>
32 #include <linux/tracehook.h>
33 #include <linux/capability.h>
34 #include <linux/freezer.h>
35 #include <linux/pid_namespace.h>
36 #include <linux/nsproxy.h>
37 #include <linux/user_namespace.h>
38 #include <linux/uprobes.h>
39 #include <linux/compat.h>
40 #include <linux/cn_proc.h>
41 #include <linux/compiler.h>
42 #include <linux/posix-timers.h>
43
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/signal.h>
46
47 #include <asm/param.h>
48 #include <linux/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/siginfo.h>
51 #include <asm/cacheflush.h>
52 #include "audit.h" /* audit_signal_info() */
53
54 /*
55 * SLAB caches for signal bits.
56 */
57
58 static struct kmem_cache *sigqueue_cachep;
59
60 int print_fatal_signals __read_mostly;
61
62 static void __user *sig_handler(struct task_struct *t, int sig)
63 {
64 return t->sighand->action[sig - 1].sa.sa_handler;
65 }
66
67 static int sig_handler_ignored(void __user *handler, int sig)
68 {
69 /* Is it explicitly or implicitly ignored? */
70 return handler == SIG_IGN ||
71 (handler == SIG_DFL && sig_kernel_ignore(sig));
72 }
73
74 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
75 {
76 void __user *handler;
77
78 handler = sig_handler(t, sig);
79
80 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
81 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
82 return 1;
83
84 return sig_handler_ignored(handler, sig);
85 }
86
87 static int sig_ignored(struct task_struct *t, int sig, bool force)
88 {
89 /*
90 * Blocked signals are never ignored, since the
91 * signal handler may change by the time it is
92 * unblocked.
93 */
94 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
95 return 0;
96
97 /*
98 * Tracers may want to know about even ignored signal unless it
99 * is SIGKILL which can't be reported anyway but can be ignored
100 * by SIGNAL_UNKILLABLE task.
101 */
102 if (t->ptrace && sig != SIGKILL)
103 return 0;
104
105 return sig_task_ignored(t, sig, force);
106 }
107
108 /*
109 * Re-calculate pending state from the set of locally pending
110 * signals, globally pending signals, and blocked signals.
111 */
112 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
113 {
114 unsigned long ready;
115 long i;
116
117 switch (_NSIG_WORDS) {
118 default:
119 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
120 ready |= signal->sig[i] &~ blocked->sig[i];
121 break;
122
123 case 4: ready = signal->sig[3] &~ blocked->sig[3];
124 ready |= signal->sig[2] &~ blocked->sig[2];
125 ready |= signal->sig[1] &~ blocked->sig[1];
126 ready |= signal->sig[0] &~ blocked->sig[0];
127 break;
128
129 case 2: ready = signal->sig[1] &~ blocked->sig[1];
130 ready |= signal->sig[0] &~ blocked->sig[0];
131 break;
132
133 case 1: ready = signal->sig[0] &~ blocked->sig[0];
134 }
135 return ready != 0;
136 }
137
138 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
139
140 static int recalc_sigpending_tsk(struct task_struct *t)
141 {
142 if ((t->jobctl & JOBCTL_PENDING_MASK) ||
143 PENDING(&t->pending, &t->blocked) ||
144 PENDING(&t->signal->shared_pending, &t->blocked)) {
145 set_tsk_thread_flag(t, TIF_SIGPENDING);
146 return 1;
147 }
148 /*
149 * We must never clear the flag in another thread, or in current
150 * when it's possible the current syscall is returning -ERESTART*.
151 * So we don't clear it here, and only callers who know they should do.
152 */
153 return 0;
154 }
155
156 /*
157 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
158 * This is superfluous when called on current, the wakeup is a harmless no-op.
159 */
160 void recalc_sigpending_and_wake(struct task_struct *t)
161 {
162 if (recalc_sigpending_tsk(t))
163 signal_wake_up(t, 0);
164 }
165
166 void recalc_sigpending(void)
167 {
168 if (!recalc_sigpending_tsk(current) && !freezing(current))
169 clear_thread_flag(TIF_SIGPENDING);
170
171 }
172
173 /* Given the mask, find the first available signal that should be serviced. */
174
175 #define SYNCHRONOUS_MASK \
176 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
177 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
178
179 int next_signal(struct sigpending *pending, sigset_t *mask)
180 {
181 unsigned long i, *s, *m, x;
182 int sig = 0;
183
184 s = pending->signal.sig;
185 m = mask->sig;
186
187 /*
188 * Handle the first word specially: it contains the
189 * synchronous signals that need to be dequeued first.
190 */
191 x = *s &~ *m;
192 if (x) {
193 if (x & SYNCHRONOUS_MASK)
194 x &= SYNCHRONOUS_MASK;
195 sig = ffz(~x) + 1;
196 return sig;
197 }
198
199 switch (_NSIG_WORDS) {
200 default:
201 for (i = 1; i < _NSIG_WORDS; ++i) {
202 x = *++s &~ *++m;
203 if (!x)
204 continue;
205 sig = ffz(~x) + i*_NSIG_BPW + 1;
206 break;
207 }
208 break;
209
210 case 2:
211 x = s[1] &~ m[1];
212 if (!x)
213 break;
214 sig = ffz(~x) + _NSIG_BPW + 1;
215 break;
216
217 case 1:
218 /* Nothing to do */
219 break;
220 }
221
222 return sig;
223 }
224
225 static inline void print_dropped_signal(int sig)
226 {
227 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
228
229 if (!print_fatal_signals)
230 return;
231
232 if (!__ratelimit(&ratelimit_state))
233 return;
234
235 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
236 current->comm, current->pid, sig);
237 }
238
239 /**
240 * task_set_jobctl_pending - set jobctl pending bits
241 * @task: target task
242 * @mask: pending bits to set
243 *
244 * Clear @mask from @task->jobctl. @mask must be subset of
245 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
246 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
247 * cleared. If @task is already being killed or exiting, this function
248 * becomes noop.
249 *
250 * CONTEXT:
251 * Must be called with @task->sighand->siglock held.
252 *
253 * RETURNS:
254 * %true if @mask is set, %false if made noop because @task was dying.
255 */
256 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
257 {
258 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
259 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
260 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
261
262 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
263 return false;
264
265 if (mask & JOBCTL_STOP_SIGMASK)
266 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
267
268 task->jobctl |= mask;
269 return true;
270 }
271
272 /**
273 * task_clear_jobctl_trapping - clear jobctl trapping bit
274 * @task: target task
275 *
276 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
277 * Clear it and wake up the ptracer. Note that we don't need any further
278 * locking. @task->siglock guarantees that @task->parent points to the
279 * ptracer.
280 *
281 * CONTEXT:
282 * Must be called with @task->sighand->siglock held.
283 */
284 void task_clear_jobctl_trapping(struct task_struct *task)
285 {
286 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
287 task->jobctl &= ~JOBCTL_TRAPPING;
288 smp_mb(); /* advised by wake_up_bit() */
289 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
290 }
291 }
292
293 /**
294 * task_clear_jobctl_pending - clear jobctl pending bits
295 * @task: target task
296 * @mask: pending bits to clear
297 *
298 * Clear @mask from @task->jobctl. @mask must be subset of
299 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
300 * STOP bits are cleared together.
301 *
302 * If clearing of @mask leaves no stop or trap pending, this function calls
303 * task_clear_jobctl_trapping().
304 *
305 * CONTEXT:
306 * Must be called with @task->sighand->siglock held.
307 */
308 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
309 {
310 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
311
312 if (mask & JOBCTL_STOP_PENDING)
313 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
314
315 task->jobctl &= ~mask;
316
317 if (!(task->jobctl & JOBCTL_PENDING_MASK))
318 task_clear_jobctl_trapping(task);
319 }
320
321 /**
322 * task_participate_group_stop - participate in a group stop
323 * @task: task participating in a group stop
324 *
325 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
326 * Group stop states are cleared and the group stop count is consumed if
327 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
328 * stop, the appropriate %SIGNAL_* flags are set.
329 *
330 * CONTEXT:
331 * Must be called with @task->sighand->siglock held.
332 *
333 * RETURNS:
334 * %true if group stop completion should be notified to the parent, %false
335 * otherwise.
336 */
337 static bool task_participate_group_stop(struct task_struct *task)
338 {
339 struct signal_struct *sig = task->signal;
340 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
341
342 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
343
344 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
345
346 if (!consume)
347 return false;
348
349 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
350 sig->group_stop_count--;
351
352 /*
353 * Tell the caller to notify completion iff we are entering into a
354 * fresh group stop. Read comment in do_signal_stop() for details.
355 */
356 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
357 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
358 return true;
359 }
360 return false;
361 }
362
363 /*
364 * allocate a new signal queue record
365 * - this may be called without locks if and only if t == current, otherwise an
366 * appropriate lock must be held to stop the target task from exiting
367 */
368 static struct sigqueue *
369 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
370 {
371 struct sigqueue *q = NULL;
372 struct user_struct *user;
373
374 /*
375 * Protect access to @t credentials. This can go away when all
376 * callers hold rcu read lock.
377 */
378 rcu_read_lock();
379 user = get_uid(__task_cred(t)->user);
380 atomic_inc(&user->sigpending);
381 rcu_read_unlock();
382
383 if (override_rlimit ||
384 atomic_read(&user->sigpending) <=
385 task_rlimit(t, RLIMIT_SIGPENDING)) {
386 q = kmem_cache_alloc(sigqueue_cachep, flags);
387 } else {
388 print_dropped_signal(sig);
389 }
390
391 if (unlikely(q == NULL)) {
392 atomic_dec(&user->sigpending);
393 free_uid(user);
394 } else {
395 INIT_LIST_HEAD(&q->list);
396 q->flags = 0;
397 q->user = user;
398 }
399
400 return q;
401 }
402
403 static void __sigqueue_free(struct sigqueue *q)
404 {
405 if (q->flags & SIGQUEUE_PREALLOC)
406 return;
407 atomic_dec(&q->user->sigpending);
408 free_uid(q->user);
409 kmem_cache_free(sigqueue_cachep, q);
410 }
411
412 void flush_sigqueue(struct sigpending *queue)
413 {
414 struct sigqueue *q;
415
416 sigemptyset(&queue->signal);
417 while (!list_empty(&queue->list)) {
418 q = list_entry(queue->list.next, struct sigqueue , list);
419 list_del_init(&q->list);
420 __sigqueue_free(q);
421 }
422 }
423
424 /*
425 * Flush all pending signals for this kthread.
426 */
427 void flush_signals(struct task_struct *t)
428 {
429 unsigned long flags;
430
431 spin_lock_irqsave(&t->sighand->siglock, flags);
432 clear_tsk_thread_flag(t, TIF_SIGPENDING);
433 flush_sigqueue(&t->pending);
434 flush_sigqueue(&t->signal->shared_pending);
435 spin_unlock_irqrestore(&t->sighand->siglock, flags);
436 }
437
438 #ifdef CONFIG_POSIX_TIMERS
439 static void __flush_itimer_signals(struct sigpending *pending)
440 {
441 sigset_t signal, retain;
442 struct sigqueue *q, *n;
443
444 signal = pending->signal;
445 sigemptyset(&retain);
446
447 list_for_each_entry_safe(q, n, &pending->list, list) {
448 int sig = q->info.si_signo;
449
450 if (likely(q->info.si_code != SI_TIMER)) {
451 sigaddset(&retain, sig);
452 } else {
453 sigdelset(&signal, sig);
454 list_del_init(&q->list);
455 __sigqueue_free(q);
456 }
457 }
458
459 sigorsets(&pending->signal, &signal, &retain);
460 }
461
462 void flush_itimer_signals(void)
463 {
464 struct task_struct *tsk = current;
465 unsigned long flags;
466
467 spin_lock_irqsave(&tsk->sighand->siglock, flags);
468 __flush_itimer_signals(&tsk->pending);
469 __flush_itimer_signals(&tsk->signal->shared_pending);
470 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
471 }
472 #endif
473
474 void ignore_signals(struct task_struct *t)
475 {
476 int i;
477
478 for (i = 0; i < _NSIG; ++i)
479 t->sighand->action[i].sa.sa_handler = SIG_IGN;
480
481 flush_signals(t);
482 }
483
484 /*
485 * Flush all handlers for a task.
486 */
487
488 void
489 flush_signal_handlers(struct task_struct *t, int force_default)
490 {
491 int i;
492 struct k_sigaction *ka = &t->sighand->action[0];
493 for (i = _NSIG ; i != 0 ; i--) {
494 if (force_default || ka->sa.sa_handler != SIG_IGN)
495 ka->sa.sa_handler = SIG_DFL;
496 ka->sa.sa_flags = 0;
497 #ifdef __ARCH_HAS_SA_RESTORER
498 ka->sa.sa_restorer = NULL;
499 #endif
500 sigemptyset(&ka->sa.sa_mask);
501 ka++;
502 }
503 }
504
505 int unhandled_signal(struct task_struct *tsk, int sig)
506 {
507 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
508 if (is_global_init(tsk))
509 return 1;
510 if (handler != SIG_IGN && handler != SIG_DFL)
511 return 0;
512 /* if ptraced, let the tracer determine */
513 return !tsk->ptrace;
514 }
515
516 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info,
517 bool *resched_timer)
518 {
519 struct sigqueue *q, *first = NULL;
520
521 /*
522 * Collect the siginfo appropriate to this signal. Check if
523 * there is another siginfo for the same signal.
524 */
525 list_for_each_entry(q, &list->list, list) {
526 if (q->info.si_signo == sig) {
527 if (first)
528 goto still_pending;
529 first = q;
530 }
531 }
532
533 sigdelset(&list->signal, sig);
534
535 if (first) {
536 still_pending:
537 list_del_init(&first->list);
538 copy_siginfo(info, &first->info);
539
540 *resched_timer =
541 (first->flags & SIGQUEUE_PREALLOC) &&
542 (info->si_code == SI_TIMER) &&
543 (info->si_sys_private);
544
545 __sigqueue_free(first);
546 } else {
547 /*
548 * Ok, it wasn't in the queue. This must be
549 * a fast-pathed signal or we must have been
550 * out of queue space. So zero out the info.
551 */
552 info->si_signo = sig;
553 info->si_errno = 0;
554 info->si_code = SI_USER;
555 info->si_pid = 0;
556 info->si_uid = 0;
557 }
558 }
559
560 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
561 siginfo_t *info, bool *resched_timer)
562 {
563 int sig = next_signal(pending, mask);
564
565 if (sig)
566 collect_signal(sig, pending, info, resched_timer);
567 return sig;
568 }
569
570 /*
571 * Dequeue a signal and return the element to the caller, which is
572 * expected to free it.
573 *
574 * All callers have to hold the siglock.
575 */
576 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
577 {
578 bool resched_timer = false;
579 int signr;
580
581 /* We only dequeue private signals from ourselves, we don't let
582 * signalfd steal them
583 */
584 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
585 if (!signr) {
586 signr = __dequeue_signal(&tsk->signal->shared_pending,
587 mask, info, &resched_timer);
588 #ifdef CONFIG_POSIX_TIMERS
589 /*
590 * itimer signal ?
591 *
592 * itimers are process shared and we restart periodic
593 * itimers in the signal delivery path to prevent DoS
594 * attacks in the high resolution timer case. This is
595 * compliant with the old way of self-restarting
596 * itimers, as the SIGALRM is a legacy signal and only
597 * queued once. Changing the restart behaviour to
598 * restart the timer in the signal dequeue path is
599 * reducing the timer noise on heavy loaded !highres
600 * systems too.
601 */
602 if (unlikely(signr == SIGALRM)) {
603 struct hrtimer *tmr = &tsk->signal->real_timer;
604
605 if (!hrtimer_is_queued(tmr) &&
606 tsk->signal->it_real_incr != 0) {
607 hrtimer_forward(tmr, tmr->base->get_time(),
608 tsk->signal->it_real_incr);
609 hrtimer_restart(tmr);
610 }
611 }
612 #endif
613 }
614
615 recalc_sigpending();
616 if (!signr)
617 return 0;
618
619 if (unlikely(sig_kernel_stop(signr))) {
620 /*
621 * Set a marker that we have dequeued a stop signal. Our
622 * caller might release the siglock and then the pending
623 * stop signal it is about to process is no longer in the
624 * pending bitmasks, but must still be cleared by a SIGCONT
625 * (and overruled by a SIGKILL). So those cases clear this
626 * shared flag after we've set it. Note that this flag may
627 * remain set after the signal we return is ignored or
628 * handled. That doesn't matter because its only purpose
629 * is to alert stop-signal processing code when another
630 * processor has come along and cleared the flag.
631 */
632 current->jobctl |= JOBCTL_STOP_DEQUEUED;
633 }
634 #ifdef CONFIG_POSIX_TIMERS
635 if (resched_timer) {
636 /*
637 * Release the siglock to ensure proper locking order
638 * of timer locks outside of siglocks. Note, we leave
639 * irqs disabled here, since the posix-timers code is
640 * about to disable them again anyway.
641 */
642 spin_unlock(&tsk->sighand->siglock);
643 posixtimer_rearm(info);
644 spin_lock(&tsk->sighand->siglock);
645 }
646 #endif
647 return signr;
648 }
649
650 /*
651 * Tell a process that it has a new active signal..
652 *
653 * NOTE! we rely on the previous spin_lock to
654 * lock interrupts for us! We can only be called with
655 * "siglock" held, and the local interrupt must
656 * have been disabled when that got acquired!
657 *
658 * No need to set need_resched since signal event passing
659 * goes through ->blocked
660 */
661 void signal_wake_up_state(struct task_struct *t, unsigned int state)
662 {
663 set_tsk_thread_flag(t, TIF_SIGPENDING);
664 /*
665 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
666 * case. We don't check t->state here because there is a race with it
667 * executing another processor and just now entering stopped state.
668 * By using wake_up_state, we ensure the process will wake up and
669 * handle its death signal.
670 */
671 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
672 kick_process(t);
673 }
674
675 static int dequeue_synchronous_signal(siginfo_t *info)
676 {
677 struct task_struct *tsk = current;
678 struct sigpending *pending = &tsk->pending;
679 struct sigqueue *q, *sync = NULL;
680
681 /*
682 * Might a synchronous signal be in the queue?
683 */
684 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
685 return 0;
686
687 /*
688 * Return the first synchronous signal in the queue.
689 */
690 list_for_each_entry(q, &pending->list, list) {
691 /* Synchronous signals have a postive si_code */
692 if ((q->info.si_code > SI_USER) &&
693 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
694 sync = q;
695 goto next;
696 }
697 }
698 return 0;
699 next:
700 /*
701 * Check if there is another siginfo for the same signal.
702 */
703 list_for_each_entry_continue(q, &pending->list, list) {
704 if (q->info.si_signo == sync->info.si_signo)
705 goto still_pending;
706 }
707
708 sigdelset(&pending->signal, sync->info.si_signo);
709 recalc_sigpending();
710 still_pending:
711 list_del_init(&sync->list);
712 copy_siginfo(info, &sync->info);
713 __sigqueue_free(sync);
714 return info->si_signo;
715 }
716
717 /*
718 * Remove signals in mask from the pending set and queue.
719 * Returns 1 if any signals were found.
720 *
721 * All callers must be holding the siglock.
722 */
723 static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
724 {
725 struct sigqueue *q, *n;
726 sigset_t m;
727
728 sigandsets(&m, mask, &s->signal);
729 if (sigisemptyset(&m))
730 return 0;
731
732 sigandnsets(&s->signal, &s->signal, mask);
733 list_for_each_entry_safe(q, n, &s->list, list) {
734 if (sigismember(mask, q->info.si_signo)) {
735 list_del_init(&q->list);
736 __sigqueue_free(q);
737 }
738 }
739 return 1;
740 }
741
742 static inline int is_si_special(const struct siginfo *info)
743 {
744 return info <= SEND_SIG_FORCED;
745 }
746
747 static inline bool si_fromuser(const struct siginfo *info)
748 {
749 return info == SEND_SIG_NOINFO ||
750 (!is_si_special(info) && SI_FROMUSER(info));
751 }
752
753 /*
754 * called with RCU read lock from check_kill_permission()
755 */
756 static int kill_ok_by_cred(struct task_struct *t)
757 {
758 const struct cred *cred = current_cred();
759 const struct cred *tcred = __task_cred(t);
760
761 if (uid_eq(cred->euid, tcred->suid) ||
762 uid_eq(cred->euid, tcred->uid) ||
763 uid_eq(cred->uid, tcred->suid) ||
764 uid_eq(cred->uid, tcred->uid))
765 return 1;
766
767 if (ns_capable(tcred->user_ns, CAP_KILL))
768 return 1;
769
770 return 0;
771 }
772
773 /*
774 * Bad permissions for sending the signal
775 * - the caller must hold the RCU read lock
776 */
777 static int check_kill_permission(int sig, struct siginfo *info,
778 struct task_struct *t)
779 {
780 struct pid *sid;
781 int error;
782
783 if (!valid_signal(sig))
784 return -EINVAL;
785
786 if (!si_fromuser(info))
787 return 0;
788
789 error = audit_signal_info(sig, t); /* Let audit system see the signal */
790 if (error)
791 return error;
792
793 if (!same_thread_group(current, t) &&
794 !kill_ok_by_cred(t)) {
795 switch (sig) {
796 case SIGCONT:
797 sid = task_session(t);
798 /*
799 * We don't return the error if sid == NULL. The
800 * task was unhashed, the caller must notice this.
801 */
802 if (!sid || sid == task_session(current))
803 break;
804 default:
805 return -EPERM;
806 }
807 }
808
809 return security_task_kill(t, info, sig, 0);
810 }
811
812 /**
813 * ptrace_trap_notify - schedule trap to notify ptracer
814 * @t: tracee wanting to notify tracer
815 *
816 * This function schedules sticky ptrace trap which is cleared on the next
817 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
818 * ptracer.
819 *
820 * If @t is running, STOP trap will be taken. If trapped for STOP and
821 * ptracer is listening for events, tracee is woken up so that it can
822 * re-trap for the new event. If trapped otherwise, STOP trap will be
823 * eventually taken without returning to userland after the existing traps
824 * are finished by PTRACE_CONT.
825 *
826 * CONTEXT:
827 * Must be called with @task->sighand->siglock held.
828 */
829 static void ptrace_trap_notify(struct task_struct *t)
830 {
831 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
832 assert_spin_locked(&t->sighand->siglock);
833
834 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
835 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
836 }
837
838 /*
839 * Handle magic process-wide effects of stop/continue signals. Unlike
840 * the signal actions, these happen immediately at signal-generation
841 * time regardless of blocking, ignoring, or handling. This does the
842 * actual continuing for SIGCONT, but not the actual stopping for stop
843 * signals. The process stop is done as a signal action for SIG_DFL.
844 *
845 * Returns true if the signal should be actually delivered, otherwise
846 * it should be dropped.
847 */
848 static bool prepare_signal(int sig, struct task_struct *p, bool force)
849 {
850 struct signal_struct *signal = p->signal;
851 struct task_struct *t;
852 sigset_t flush;
853
854 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
855 if (!(signal->flags & SIGNAL_GROUP_EXIT))
856 return sig == SIGKILL;
857 /*
858 * The process is in the middle of dying, nothing to do.
859 */
860 } else if (sig_kernel_stop(sig)) {
861 /*
862 * This is a stop signal. Remove SIGCONT from all queues.
863 */
864 siginitset(&flush, sigmask(SIGCONT));
865 flush_sigqueue_mask(&flush, &signal->shared_pending);
866 for_each_thread(p, t)
867 flush_sigqueue_mask(&flush, &t->pending);
868 } else if (sig == SIGCONT) {
869 unsigned int why;
870 /*
871 * Remove all stop signals from all queues, wake all threads.
872 */
873 siginitset(&flush, SIG_KERNEL_STOP_MASK);
874 flush_sigqueue_mask(&flush, &signal->shared_pending);
875 for_each_thread(p, t) {
876 flush_sigqueue_mask(&flush, &t->pending);
877 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
878 if (likely(!(t->ptrace & PT_SEIZED)))
879 wake_up_state(t, __TASK_STOPPED);
880 else
881 ptrace_trap_notify(t);
882 }
883
884 /*
885 * Notify the parent with CLD_CONTINUED if we were stopped.
886 *
887 * If we were in the middle of a group stop, we pretend it
888 * was already finished, and then continued. Since SIGCHLD
889 * doesn't queue we report only CLD_STOPPED, as if the next
890 * CLD_CONTINUED was dropped.
891 */
892 why = 0;
893 if (signal->flags & SIGNAL_STOP_STOPPED)
894 why |= SIGNAL_CLD_CONTINUED;
895 else if (signal->group_stop_count)
896 why |= SIGNAL_CLD_STOPPED;
897
898 if (why) {
899 /*
900 * The first thread which returns from do_signal_stop()
901 * will take ->siglock, notice SIGNAL_CLD_MASK, and
902 * notify its parent. See get_signal_to_deliver().
903 */
904 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
905 signal->group_stop_count = 0;
906 signal->group_exit_code = 0;
907 }
908 }
909
910 return !sig_ignored(p, sig, force);
911 }
912
913 /*
914 * Test if P wants to take SIG. After we've checked all threads with this,
915 * it's equivalent to finding no threads not blocking SIG. Any threads not
916 * blocking SIG were ruled out because they are not running and already
917 * have pending signals. Such threads will dequeue from the shared queue
918 * as soon as they're available, so putting the signal on the shared queue
919 * will be equivalent to sending it to one such thread.
920 */
921 static inline int wants_signal(int sig, struct task_struct *p)
922 {
923 if (sigismember(&p->blocked, sig))
924 return 0;
925 if (p->flags & PF_EXITING)
926 return 0;
927 if (sig == SIGKILL)
928 return 1;
929 if (task_is_stopped_or_traced(p))
930 return 0;
931 return task_curr(p) || !signal_pending(p);
932 }
933
934 static void complete_signal(int sig, struct task_struct *p, int group)
935 {
936 struct signal_struct *signal = p->signal;
937 struct task_struct *t;
938
939 /*
940 * Now find a thread we can wake up to take the signal off the queue.
941 *
942 * If the main thread wants the signal, it gets first crack.
943 * Probably the least surprising to the average bear.
944 */
945 if (wants_signal(sig, p))
946 t = p;
947 else if (!group || thread_group_empty(p))
948 /*
949 * There is just one thread and it does not need to be woken.
950 * It will dequeue unblocked signals before it runs again.
951 */
952 return;
953 else {
954 /*
955 * Otherwise try to find a suitable thread.
956 */
957 t = signal->curr_target;
958 while (!wants_signal(sig, t)) {
959 t = next_thread(t);
960 if (t == signal->curr_target)
961 /*
962 * No thread needs to be woken.
963 * Any eligible threads will see
964 * the signal in the queue soon.
965 */
966 return;
967 }
968 signal->curr_target = t;
969 }
970
971 /*
972 * Found a killable thread. If the signal will be fatal,
973 * then start taking the whole group down immediately.
974 */
975 if (sig_fatal(p, sig) &&
976 !(signal->flags & SIGNAL_GROUP_EXIT) &&
977 !sigismember(&t->real_blocked, sig) &&
978 (sig == SIGKILL || !p->ptrace)) {
979 /*
980 * This signal will be fatal to the whole group.
981 */
982 if (!sig_kernel_coredump(sig)) {
983 /*
984 * Start a group exit and wake everybody up.
985 * This way we don't have other threads
986 * running and doing things after a slower
987 * thread has the fatal signal pending.
988 */
989 signal->flags = SIGNAL_GROUP_EXIT;
990 signal->group_exit_code = sig;
991 signal->group_stop_count = 0;
992 t = p;
993 do {
994 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
995 sigaddset(&t->pending.signal, SIGKILL);
996 signal_wake_up(t, 1);
997 } while_each_thread(p, t);
998 return;
999 }
1000 }
1001
1002 /*
1003 * The signal is already in the shared-pending queue.
1004 * Tell the chosen thread to wake up and dequeue it.
1005 */
1006 signal_wake_up(t, sig == SIGKILL);
1007 return;
1008 }
1009
1010 static inline int legacy_queue(struct sigpending *signals, int sig)
1011 {
1012 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1013 }
1014
1015 #ifdef CONFIG_USER_NS
1016 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1017 {
1018 if (current_user_ns() == task_cred_xxx(t, user_ns))
1019 return;
1020
1021 if (SI_FROMKERNEL(info))
1022 return;
1023
1024 rcu_read_lock();
1025 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1026 make_kuid(current_user_ns(), info->si_uid));
1027 rcu_read_unlock();
1028 }
1029 #else
1030 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1031 {
1032 return;
1033 }
1034 #endif
1035
1036 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1037 int group, int from_ancestor_ns)
1038 {
1039 struct sigpending *pending;
1040 struct sigqueue *q;
1041 int override_rlimit;
1042 int ret = 0, result;
1043
1044 assert_spin_locked(&t->sighand->siglock);
1045
1046 result = TRACE_SIGNAL_IGNORED;
1047 if (!prepare_signal(sig, t,
1048 from_ancestor_ns || (info == SEND_SIG_PRIV) || (info == SEND_SIG_FORCED)))
1049 goto ret;
1050
1051 pending = group ? &t->signal->shared_pending : &t->pending;
1052 /*
1053 * Short-circuit ignored signals and support queuing
1054 * exactly one non-rt signal, so that we can get more
1055 * detailed information about the cause of the signal.
1056 */
1057 result = TRACE_SIGNAL_ALREADY_PENDING;
1058 if (legacy_queue(pending, sig))
1059 goto ret;
1060
1061 result = TRACE_SIGNAL_DELIVERED;
1062 /*
1063 * fast-pathed signals for kernel-internal things like SIGSTOP
1064 * or SIGKILL.
1065 */
1066 if (info == SEND_SIG_FORCED)
1067 goto out_set;
1068
1069 /*
1070 * Real-time signals must be queued if sent by sigqueue, or
1071 * some other real-time mechanism. It is implementation
1072 * defined whether kill() does so. We attempt to do so, on
1073 * the principle of least surprise, but since kill is not
1074 * allowed to fail with EAGAIN when low on memory we just
1075 * make sure at least one signal gets delivered and don't
1076 * pass on the info struct.
1077 */
1078 if (sig < SIGRTMIN)
1079 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1080 else
1081 override_rlimit = 0;
1082
1083 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1084 if (q) {
1085 list_add_tail(&q->list, &pending->list);
1086 switch ((unsigned long) info) {
1087 case (unsigned long) SEND_SIG_NOINFO:
1088 q->info.si_signo = sig;
1089 q->info.si_errno = 0;
1090 q->info.si_code = SI_USER;
1091 q->info.si_pid = task_tgid_nr_ns(current,
1092 task_active_pid_ns(t));
1093 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1094 break;
1095 case (unsigned long) SEND_SIG_PRIV:
1096 q->info.si_signo = sig;
1097 q->info.si_errno = 0;
1098 q->info.si_code = SI_KERNEL;
1099 q->info.si_pid = 0;
1100 q->info.si_uid = 0;
1101 break;
1102 default:
1103 copy_siginfo(&q->info, info);
1104 if (from_ancestor_ns)
1105 q->info.si_pid = 0;
1106 break;
1107 }
1108
1109 userns_fixup_signal_uid(&q->info, t);
1110
1111 } else if (!is_si_special(info)) {
1112 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1113 /*
1114 * Queue overflow, abort. We may abort if the
1115 * signal was rt and sent by user using something
1116 * other than kill().
1117 */
1118 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1119 ret = -EAGAIN;
1120 goto ret;
1121 } else {
1122 /*
1123 * This is a silent loss of information. We still
1124 * send the signal, but the *info bits are lost.
1125 */
1126 result = TRACE_SIGNAL_LOSE_INFO;
1127 }
1128 }
1129
1130 out_set:
1131 signalfd_notify(t, sig);
1132 sigaddset(&pending->signal, sig);
1133 complete_signal(sig, t, group);
1134 ret:
1135 trace_signal_generate(sig, info, t, group, result);
1136 return ret;
1137 }
1138
1139 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1140 int group)
1141 {
1142 int from_ancestor_ns = 0;
1143
1144 #ifdef CONFIG_PID_NS
1145 from_ancestor_ns = si_fromuser(info) &&
1146 !task_pid_nr_ns(current, task_active_pid_ns(t));
1147 #endif
1148
1149 return __send_signal(sig, info, t, group, from_ancestor_ns);
1150 }
1151
1152 static void print_fatal_signal(int signr)
1153 {
1154 struct pt_regs *regs = signal_pt_regs();
1155 pr_info("potentially unexpected fatal signal %d.\n", signr);
1156
1157 #if defined(__i386__) && !defined(__arch_um__)
1158 pr_info("code at %08lx: ", regs->ip);
1159 {
1160 int i;
1161 for (i = 0; i < 16; i++) {
1162 unsigned char insn;
1163
1164 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1165 break;
1166 pr_cont("%02x ", insn);
1167 }
1168 }
1169 pr_cont("\n");
1170 #endif
1171 preempt_disable();
1172 show_regs(regs);
1173 preempt_enable();
1174 }
1175
1176 static int __init setup_print_fatal_signals(char *str)
1177 {
1178 get_option (&str, &print_fatal_signals);
1179
1180 return 1;
1181 }
1182
1183 __setup("print-fatal-signals=", setup_print_fatal_signals);
1184
1185 int
1186 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1187 {
1188 return send_signal(sig, info, p, 1);
1189 }
1190
1191 static int
1192 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1193 {
1194 return send_signal(sig, info, t, 0);
1195 }
1196
1197 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1198 bool group)
1199 {
1200 unsigned long flags;
1201 int ret = -ESRCH;
1202
1203 if (lock_task_sighand(p, &flags)) {
1204 ret = send_signal(sig, info, p, group);
1205 unlock_task_sighand(p, &flags);
1206 }
1207
1208 return ret;
1209 }
1210
1211 /*
1212 * Force a signal that the process can't ignore: if necessary
1213 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1214 *
1215 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1216 * since we do not want to have a signal handler that was blocked
1217 * be invoked when user space had explicitly blocked it.
1218 *
1219 * We don't want to have recursive SIGSEGV's etc, for example,
1220 * that is why we also clear SIGNAL_UNKILLABLE.
1221 */
1222 int
1223 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1224 {
1225 unsigned long int flags;
1226 int ret, blocked, ignored;
1227 struct k_sigaction *action;
1228
1229 spin_lock_irqsave(&t->sighand->siglock, flags);
1230 action = &t->sighand->action[sig-1];
1231 ignored = action->sa.sa_handler == SIG_IGN;
1232 blocked = sigismember(&t->blocked, sig);
1233 if (blocked || ignored) {
1234 action->sa.sa_handler = SIG_DFL;
1235 if (blocked) {
1236 sigdelset(&t->blocked, sig);
1237 recalc_sigpending_and_wake(t);
1238 }
1239 }
1240 /*
1241 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1242 * debugging to leave init killable.
1243 */
1244 if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1245 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1246 ret = specific_send_sig_info(sig, info, t);
1247 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1248
1249 return ret;
1250 }
1251
1252 /*
1253 * Nuke all other threads in the group.
1254 */
1255 int zap_other_threads(struct task_struct *p)
1256 {
1257 struct task_struct *t = p;
1258 int count = 0;
1259
1260 p->signal->group_stop_count = 0;
1261
1262 while_each_thread(p, t) {
1263 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1264 count++;
1265
1266 /* Don't bother with already dead threads */
1267 if (t->exit_state)
1268 continue;
1269 sigaddset(&t->pending.signal, SIGKILL);
1270 signal_wake_up(t, 1);
1271 }
1272
1273 return count;
1274 }
1275
1276 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1277 unsigned long *flags)
1278 {
1279 struct sighand_struct *sighand;
1280
1281 for (;;) {
1282 /*
1283 * Disable interrupts early to avoid deadlocks.
1284 * See rcu_read_unlock() comment header for details.
1285 */
1286 local_irq_save(*flags);
1287 rcu_read_lock();
1288 sighand = rcu_dereference(tsk->sighand);
1289 if (unlikely(sighand == NULL)) {
1290 rcu_read_unlock();
1291 local_irq_restore(*flags);
1292 break;
1293 }
1294 /*
1295 * This sighand can be already freed and even reused, but
1296 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1297 * initializes ->siglock: this slab can't go away, it has
1298 * the same object type, ->siglock can't be reinitialized.
1299 *
1300 * We need to ensure that tsk->sighand is still the same
1301 * after we take the lock, we can race with de_thread() or
1302 * __exit_signal(). In the latter case the next iteration
1303 * must see ->sighand == NULL.
1304 */
1305 spin_lock(&sighand->siglock);
1306 if (likely(sighand == tsk->sighand)) {
1307 rcu_read_unlock();
1308 break;
1309 }
1310 spin_unlock(&sighand->siglock);
1311 rcu_read_unlock();
1312 local_irq_restore(*flags);
1313 }
1314
1315 return sighand;
1316 }
1317
1318 /*
1319 * send signal info to all the members of a group
1320 */
1321 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1322 {
1323 int ret;
1324
1325 rcu_read_lock();
1326 ret = check_kill_permission(sig, info, p);
1327 rcu_read_unlock();
1328
1329 if (!ret && sig)
1330 ret = do_send_sig_info(sig, info, p, true);
1331
1332 return ret;
1333 }
1334
1335 /*
1336 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1337 * control characters do (^C, ^Z etc)
1338 * - the caller must hold at least a readlock on tasklist_lock
1339 */
1340 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1341 {
1342 struct task_struct *p = NULL;
1343 int retval, success;
1344
1345 success = 0;
1346 retval = -ESRCH;
1347 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1348 int err = group_send_sig_info(sig, info, p);
1349 success |= !err;
1350 retval = err;
1351 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1352 return success ? 0 : retval;
1353 }
1354
1355 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1356 {
1357 int error = -ESRCH;
1358 struct task_struct *p;
1359
1360 for (;;) {
1361 rcu_read_lock();
1362 p = pid_task(pid, PIDTYPE_PID);
1363 if (p)
1364 error = group_send_sig_info(sig, info, p);
1365 rcu_read_unlock();
1366 if (likely(!p || error != -ESRCH))
1367 return error;
1368
1369 /*
1370 * The task was unhashed in between, try again. If it
1371 * is dead, pid_task() will return NULL, if we race with
1372 * de_thread() it will find the new leader.
1373 */
1374 }
1375 }
1376
1377 static int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1378 {
1379 int error;
1380 rcu_read_lock();
1381 error = kill_pid_info(sig, info, find_vpid(pid));
1382 rcu_read_unlock();
1383 return error;
1384 }
1385
1386 static int kill_as_cred_perm(const struct cred *cred,
1387 struct task_struct *target)
1388 {
1389 const struct cred *pcred = __task_cred(target);
1390 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1391 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid))
1392 return 0;
1393 return 1;
1394 }
1395
1396 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1397 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1398 const struct cred *cred, u32 secid)
1399 {
1400 int ret = -EINVAL;
1401 struct task_struct *p;
1402 unsigned long flags;
1403
1404 if (!valid_signal(sig))
1405 return ret;
1406
1407 rcu_read_lock();
1408 p = pid_task(pid, PIDTYPE_PID);
1409 if (!p) {
1410 ret = -ESRCH;
1411 goto out_unlock;
1412 }
1413 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1414 ret = -EPERM;
1415 goto out_unlock;
1416 }
1417 ret = security_task_kill(p, info, sig, secid);
1418 if (ret)
1419 goto out_unlock;
1420
1421 if (sig) {
1422 if (lock_task_sighand(p, &flags)) {
1423 ret = __send_signal(sig, info, p, 1, 0);
1424 unlock_task_sighand(p, &flags);
1425 } else
1426 ret = -ESRCH;
1427 }
1428 out_unlock:
1429 rcu_read_unlock();
1430 return ret;
1431 }
1432 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1433
1434 /*
1435 * kill_something_info() interprets pid in interesting ways just like kill(2).
1436 *
1437 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1438 * is probably wrong. Should make it like BSD or SYSV.
1439 */
1440
1441 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1442 {
1443 int ret;
1444
1445 if (pid > 0) {
1446 rcu_read_lock();
1447 ret = kill_pid_info(sig, info, find_vpid(pid));
1448 rcu_read_unlock();
1449 return ret;
1450 }
1451
1452 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1453 if (pid == INT_MIN)
1454 return -ESRCH;
1455
1456 read_lock(&tasklist_lock);
1457 if (pid != -1) {
1458 ret = __kill_pgrp_info(sig, info,
1459 pid ? find_vpid(-pid) : task_pgrp(current));
1460 } else {
1461 int retval = 0, count = 0;
1462 struct task_struct * p;
1463
1464 for_each_process(p) {
1465 if (task_pid_vnr(p) > 1 &&
1466 !same_thread_group(p, current)) {
1467 int err = group_send_sig_info(sig, info, p);
1468 ++count;
1469 if (err != -EPERM)
1470 retval = err;
1471 }
1472 }
1473 ret = count ? retval : -ESRCH;
1474 }
1475 read_unlock(&tasklist_lock);
1476
1477 return ret;
1478 }
1479
1480 /*
1481 * These are for backward compatibility with the rest of the kernel source.
1482 */
1483
1484 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1485 {
1486 /*
1487 * Make sure legacy kernel users don't send in bad values
1488 * (normal paths check this in check_kill_permission).
1489 */
1490 if (!valid_signal(sig))
1491 return -EINVAL;
1492
1493 return do_send_sig_info(sig, info, p, false);
1494 }
1495
1496 #define __si_special(priv) \
1497 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1498
1499 int
1500 send_sig(int sig, struct task_struct *p, int priv)
1501 {
1502 return send_sig_info(sig, __si_special(priv), p);
1503 }
1504
1505 void
1506 force_sig(int sig, struct task_struct *p)
1507 {
1508 force_sig_info(sig, SEND_SIG_PRIV, p);
1509 }
1510
1511 /*
1512 * When things go south during signal handling, we
1513 * will force a SIGSEGV. And if the signal that caused
1514 * the problem was already a SIGSEGV, we'll want to
1515 * make sure we don't even try to deliver the signal..
1516 */
1517 int
1518 force_sigsegv(int sig, struct task_struct *p)
1519 {
1520 if (sig == SIGSEGV) {
1521 unsigned long flags;
1522 spin_lock_irqsave(&p->sighand->siglock, flags);
1523 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1524 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1525 }
1526 force_sig(SIGSEGV, p);
1527 return 0;
1528 }
1529
1530 int kill_pgrp(struct pid *pid, int sig, int priv)
1531 {
1532 int ret;
1533
1534 read_lock(&tasklist_lock);
1535 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1536 read_unlock(&tasklist_lock);
1537
1538 return ret;
1539 }
1540 EXPORT_SYMBOL(kill_pgrp);
1541
1542 int kill_pid(struct pid *pid, int sig, int priv)
1543 {
1544 return kill_pid_info(sig, __si_special(priv), pid);
1545 }
1546 EXPORT_SYMBOL(kill_pid);
1547
1548 /*
1549 * These functions support sending signals using preallocated sigqueue
1550 * structures. This is needed "because realtime applications cannot
1551 * afford to lose notifications of asynchronous events, like timer
1552 * expirations or I/O completions". In the case of POSIX Timers
1553 * we allocate the sigqueue structure from the timer_create. If this
1554 * allocation fails we are able to report the failure to the application
1555 * with an EAGAIN error.
1556 */
1557 struct sigqueue *sigqueue_alloc(void)
1558 {
1559 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1560
1561 if (q)
1562 q->flags |= SIGQUEUE_PREALLOC;
1563
1564 return q;
1565 }
1566
1567 void sigqueue_free(struct sigqueue *q)
1568 {
1569 unsigned long flags;
1570 spinlock_t *lock = &current->sighand->siglock;
1571
1572 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1573 /*
1574 * We must hold ->siglock while testing q->list
1575 * to serialize with collect_signal() or with
1576 * __exit_signal()->flush_sigqueue().
1577 */
1578 spin_lock_irqsave(lock, flags);
1579 q->flags &= ~SIGQUEUE_PREALLOC;
1580 /*
1581 * If it is queued it will be freed when dequeued,
1582 * like the "regular" sigqueue.
1583 */
1584 if (!list_empty(&q->list))
1585 q = NULL;
1586 spin_unlock_irqrestore(lock, flags);
1587
1588 if (q)
1589 __sigqueue_free(q);
1590 }
1591
1592 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1593 {
1594 int sig = q->info.si_signo;
1595 struct sigpending *pending;
1596 unsigned long flags;
1597 int ret, result;
1598
1599 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1600
1601 ret = -1;
1602 if (!likely(lock_task_sighand(t, &flags)))
1603 goto ret;
1604
1605 ret = 1; /* the signal is ignored */
1606 result = TRACE_SIGNAL_IGNORED;
1607 if (!prepare_signal(sig, t, false))
1608 goto out;
1609
1610 ret = 0;
1611 if (unlikely(!list_empty(&q->list))) {
1612 /*
1613 * If an SI_TIMER entry is already queue just increment
1614 * the overrun count.
1615 */
1616 BUG_ON(q->info.si_code != SI_TIMER);
1617 q->info.si_overrun++;
1618 result = TRACE_SIGNAL_ALREADY_PENDING;
1619 goto out;
1620 }
1621 q->info.si_overrun = 0;
1622
1623 signalfd_notify(t, sig);
1624 pending = group ? &t->signal->shared_pending : &t->pending;
1625 list_add_tail(&q->list, &pending->list);
1626 sigaddset(&pending->signal, sig);
1627 complete_signal(sig, t, group);
1628 result = TRACE_SIGNAL_DELIVERED;
1629 out:
1630 trace_signal_generate(sig, &q->info, t, group, result);
1631 unlock_task_sighand(t, &flags);
1632 ret:
1633 return ret;
1634 }
1635
1636 /*
1637 * Let a parent know about the death of a child.
1638 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1639 *
1640 * Returns true if our parent ignored us and so we've switched to
1641 * self-reaping.
1642 */
1643 bool do_notify_parent(struct task_struct *tsk, int sig)
1644 {
1645 struct siginfo info;
1646 unsigned long flags;
1647 struct sighand_struct *psig;
1648 bool autoreap = false;
1649 u64 utime, stime;
1650
1651 BUG_ON(sig == -1);
1652
1653 /* do_notify_parent_cldstop should have been called instead. */
1654 BUG_ON(task_is_stopped_or_traced(tsk));
1655
1656 BUG_ON(!tsk->ptrace &&
1657 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1658
1659 if (sig != SIGCHLD) {
1660 /*
1661 * This is only possible if parent == real_parent.
1662 * Check if it has changed security domain.
1663 */
1664 if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1665 sig = SIGCHLD;
1666 }
1667
1668 info.si_signo = sig;
1669 info.si_errno = 0;
1670 /*
1671 * We are under tasklist_lock here so our parent is tied to
1672 * us and cannot change.
1673 *
1674 * task_active_pid_ns will always return the same pid namespace
1675 * until a task passes through release_task.
1676 *
1677 * write_lock() currently calls preempt_disable() which is the
1678 * same as rcu_read_lock(), but according to Oleg, this is not
1679 * correct to rely on this
1680 */
1681 rcu_read_lock();
1682 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1683 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1684 task_uid(tsk));
1685 rcu_read_unlock();
1686
1687 task_cputime(tsk, &utime, &stime);
1688 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1689 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1690
1691 info.si_status = tsk->exit_code & 0x7f;
1692 if (tsk->exit_code & 0x80)
1693 info.si_code = CLD_DUMPED;
1694 else if (tsk->exit_code & 0x7f)
1695 info.si_code = CLD_KILLED;
1696 else {
1697 info.si_code = CLD_EXITED;
1698 info.si_status = tsk->exit_code >> 8;
1699 }
1700
1701 psig = tsk->parent->sighand;
1702 spin_lock_irqsave(&psig->siglock, flags);
1703 if (!tsk->ptrace && sig == SIGCHLD &&
1704 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1705 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1706 /*
1707 * We are exiting and our parent doesn't care. POSIX.1
1708 * defines special semantics for setting SIGCHLD to SIG_IGN
1709 * or setting the SA_NOCLDWAIT flag: we should be reaped
1710 * automatically and not left for our parent's wait4 call.
1711 * Rather than having the parent do it as a magic kind of
1712 * signal handler, we just set this to tell do_exit that we
1713 * can be cleaned up without becoming a zombie. Note that
1714 * we still call __wake_up_parent in this case, because a
1715 * blocked sys_wait4 might now return -ECHILD.
1716 *
1717 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1718 * is implementation-defined: we do (if you don't want
1719 * it, just use SIG_IGN instead).
1720 */
1721 autoreap = true;
1722 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1723 sig = 0;
1724 }
1725 if (valid_signal(sig) && sig)
1726 __group_send_sig_info(sig, &info, tsk->parent);
1727 __wake_up_parent(tsk, tsk->parent);
1728 spin_unlock_irqrestore(&psig->siglock, flags);
1729
1730 return autoreap;
1731 }
1732
1733 /**
1734 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1735 * @tsk: task reporting the state change
1736 * @for_ptracer: the notification is for ptracer
1737 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1738 *
1739 * Notify @tsk's parent that the stopped/continued state has changed. If
1740 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1741 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1742 *
1743 * CONTEXT:
1744 * Must be called with tasklist_lock at least read locked.
1745 */
1746 static void do_notify_parent_cldstop(struct task_struct *tsk,
1747 bool for_ptracer, int why)
1748 {
1749 struct siginfo info;
1750 unsigned long flags;
1751 struct task_struct *parent;
1752 struct sighand_struct *sighand;
1753 u64 utime, stime;
1754
1755 if (for_ptracer) {
1756 parent = tsk->parent;
1757 } else {
1758 tsk = tsk->group_leader;
1759 parent = tsk->real_parent;
1760 }
1761
1762 info.si_signo = SIGCHLD;
1763 info.si_errno = 0;
1764 /*
1765 * see comment in do_notify_parent() about the following 4 lines
1766 */
1767 rcu_read_lock();
1768 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1769 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1770 rcu_read_unlock();
1771
1772 task_cputime(tsk, &utime, &stime);
1773 info.si_utime = nsec_to_clock_t(utime);
1774 info.si_stime = nsec_to_clock_t(stime);
1775
1776 info.si_code = why;
1777 switch (why) {
1778 case CLD_CONTINUED:
1779 info.si_status = SIGCONT;
1780 break;
1781 case CLD_STOPPED:
1782 info.si_status = tsk->signal->group_exit_code & 0x7f;
1783 break;
1784 case CLD_TRAPPED:
1785 info.si_status = tsk->exit_code & 0x7f;
1786 break;
1787 default:
1788 BUG();
1789 }
1790
1791 sighand = parent->sighand;
1792 spin_lock_irqsave(&sighand->siglock, flags);
1793 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1794 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1795 __group_send_sig_info(SIGCHLD, &info, parent);
1796 /*
1797 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1798 */
1799 __wake_up_parent(tsk, parent);
1800 spin_unlock_irqrestore(&sighand->siglock, flags);
1801 }
1802
1803 static inline int may_ptrace_stop(void)
1804 {
1805 if (!likely(current->ptrace))
1806 return 0;
1807 /*
1808 * Are we in the middle of do_coredump?
1809 * If so and our tracer is also part of the coredump stopping
1810 * is a deadlock situation, and pointless because our tracer
1811 * is dead so don't allow us to stop.
1812 * If SIGKILL was already sent before the caller unlocked
1813 * ->siglock we must see ->core_state != NULL. Otherwise it
1814 * is safe to enter schedule().
1815 *
1816 * This is almost outdated, a task with the pending SIGKILL can't
1817 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1818 * after SIGKILL was already dequeued.
1819 */
1820 if (unlikely(current->mm->core_state) &&
1821 unlikely(current->mm == current->parent->mm))
1822 return 0;
1823
1824 return 1;
1825 }
1826
1827 /*
1828 * Return non-zero if there is a SIGKILL that should be waking us up.
1829 * Called with the siglock held.
1830 */
1831 static int sigkill_pending(struct task_struct *tsk)
1832 {
1833 return sigismember(&tsk->pending.signal, SIGKILL) ||
1834 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1835 }
1836
1837 /*
1838 * This must be called with current->sighand->siglock held.
1839 *
1840 * This should be the path for all ptrace stops.
1841 * We always set current->last_siginfo while stopped here.
1842 * That makes it a way to test a stopped process for
1843 * being ptrace-stopped vs being job-control-stopped.
1844 *
1845 * If we actually decide not to stop at all because the tracer
1846 * is gone, we keep current->exit_code unless clear_code.
1847 */
1848 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1849 __releases(&current->sighand->siglock)
1850 __acquires(&current->sighand->siglock)
1851 {
1852 bool gstop_done = false;
1853
1854 if (arch_ptrace_stop_needed(exit_code, info)) {
1855 /*
1856 * The arch code has something special to do before a
1857 * ptrace stop. This is allowed to block, e.g. for faults
1858 * on user stack pages. We can't keep the siglock while
1859 * calling arch_ptrace_stop, so we must release it now.
1860 * To preserve proper semantics, we must do this before
1861 * any signal bookkeeping like checking group_stop_count.
1862 * Meanwhile, a SIGKILL could come in before we retake the
1863 * siglock. That must prevent us from sleeping in TASK_TRACED.
1864 * So after regaining the lock, we must check for SIGKILL.
1865 */
1866 spin_unlock_irq(&current->sighand->siglock);
1867 arch_ptrace_stop(exit_code, info);
1868 spin_lock_irq(&current->sighand->siglock);
1869 if (sigkill_pending(current))
1870 return;
1871 }
1872
1873 set_special_state(TASK_TRACED);
1874
1875 /*
1876 * We're committing to trapping. TRACED should be visible before
1877 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1878 * Also, transition to TRACED and updates to ->jobctl should be
1879 * atomic with respect to siglock and should be done after the arch
1880 * hook as siglock is released and regrabbed across it.
1881 *
1882 * TRACER TRACEE
1883 *
1884 * ptrace_attach()
1885 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
1886 * do_wait()
1887 * set_current_state() smp_wmb();
1888 * ptrace_do_wait()
1889 * wait_task_stopped()
1890 * task_stopped_code()
1891 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
1892 */
1893 smp_wmb();
1894
1895 current->last_siginfo = info;
1896 current->exit_code = exit_code;
1897
1898 /*
1899 * If @why is CLD_STOPPED, we're trapping to participate in a group
1900 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
1901 * across siglock relocks since INTERRUPT was scheduled, PENDING
1902 * could be clear now. We act as if SIGCONT is received after
1903 * TASK_TRACED is entered - ignore it.
1904 */
1905 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1906 gstop_done = task_participate_group_stop(current);
1907
1908 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1909 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1910 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1911 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1912
1913 /* entering a trap, clear TRAPPING */
1914 task_clear_jobctl_trapping(current);
1915
1916 spin_unlock_irq(&current->sighand->siglock);
1917 read_lock(&tasklist_lock);
1918 if (may_ptrace_stop()) {
1919 /*
1920 * Notify parents of the stop.
1921 *
1922 * While ptraced, there are two parents - the ptracer and
1923 * the real_parent of the group_leader. The ptracer should
1924 * know about every stop while the real parent is only
1925 * interested in the completion of group stop. The states
1926 * for the two don't interact with each other. Notify
1927 * separately unless they're gonna be duplicates.
1928 */
1929 do_notify_parent_cldstop(current, true, why);
1930 if (gstop_done && ptrace_reparented(current))
1931 do_notify_parent_cldstop(current, false, why);
1932
1933 /*
1934 * Don't want to allow preemption here, because
1935 * sys_ptrace() needs this task to be inactive.
1936 *
1937 * XXX: implement read_unlock_no_resched().
1938 */
1939 preempt_disable();
1940 read_unlock(&tasklist_lock);
1941 preempt_enable_no_resched();
1942 freezable_schedule();
1943 } else {
1944 /*
1945 * By the time we got the lock, our tracer went away.
1946 * Don't drop the lock yet, another tracer may come.
1947 *
1948 * If @gstop_done, the ptracer went away between group stop
1949 * completion and here. During detach, it would have set
1950 * JOBCTL_STOP_PENDING on us and we'll re-enter
1951 * TASK_STOPPED in do_signal_stop() on return, so notifying
1952 * the real parent of the group stop completion is enough.
1953 */
1954 if (gstop_done)
1955 do_notify_parent_cldstop(current, false, why);
1956
1957 /* tasklist protects us from ptrace_freeze_traced() */
1958 __set_current_state(TASK_RUNNING);
1959 if (clear_code)
1960 current->exit_code = 0;
1961 read_unlock(&tasklist_lock);
1962 }
1963
1964 /*
1965 * We are back. Now reacquire the siglock before touching
1966 * last_siginfo, so that we are sure to have synchronized with
1967 * any signal-sending on another CPU that wants to examine it.
1968 */
1969 spin_lock_irq(&current->sighand->siglock);
1970 current->last_siginfo = NULL;
1971
1972 /* LISTENING can be set only during STOP traps, clear it */
1973 current->jobctl &= ~JOBCTL_LISTENING;
1974
1975 /*
1976 * Queued signals ignored us while we were stopped for tracing.
1977 * So check for any that we should take before resuming user mode.
1978 * This sets TIF_SIGPENDING, but never clears it.
1979 */
1980 recalc_sigpending_tsk(current);
1981 }
1982
1983 static void ptrace_do_notify(int signr, int exit_code, int why)
1984 {
1985 siginfo_t info;
1986
1987 memset(&info, 0, sizeof info);
1988 info.si_signo = signr;
1989 info.si_code = exit_code;
1990 info.si_pid = task_pid_vnr(current);
1991 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1992
1993 /* Let the debugger run. */
1994 ptrace_stop(exit_code, why, 1, &info);
1995 }
1996
1997 void ptrace_notify(int exit_code)
1998 {
1999 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2000 if (unlikely(current->task_works))
2001 task_work_run();
2002
2003 spin_lock_irq(&current->sighand->siglock);
2004 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2005 spin_unlock_irq(&current->sighand->siglock);
2006 }
2007
2008 /**
2009 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2010 * @signr: signr causing group stop if initiating
2011 *
2012 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2013 * and participate in it. If already set, participate in the existing
2014 * group stop. If participated in a group stop (and thus slept), %true is
2015 * returned with siglock released.
2016 *
2017 * If ptraced, this function doesn't handle stop itself. Instead,
2018 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2019 * untouched. The caller must ensure that INTERRUPT trap handling takes
2020 * places afterwards.
2021 *
2022 * CONTEXT:
2023 * Must be called with @current->sighand->siglock held, which is released
2024 * on %true return.
2025 *
2026 * RETURNS:
2027 * %false if group stop is already cancelled or ptrace trap is scheduled.
2028 * %true if participated in group stop.
2029 */
2030 static bool do_signal_stop(int signr)
2031 __releases(&current->sighand->siglock)
2032 {
2033 struct signal_struct *sig = current->signal;
2034
2035 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2036 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2037 struct task_struct *t;
2038
2039 /* signr will be recorded in task->jobctl for retries */
2040 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2041
2042 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2043 unlikely(signal_group_exit(sig)))
2044 return false;
2045 /*
2046 * There is no group stop already in progress. We must
2047 * initiate one now.
2048 *
2049 * While ptraced, a task may be resumed while group stop is
2050 * still in effect and then receive a stop signal and
2051 * initiate another group stop. This deviates from the
2052 * usual behavior as two consecutive stop signals can't
2053 * cause two group stops when !ptraced. That is why we
2054 * also check !task_is_stopped(t) below.
2055 *
2056 * The condition can be distinguished by testing whether
2057 * SIGNAL_STOP_STOPPED is already set. Don't generate
2058 * group_exit_code in such case.
2059 *
2060 * This is not necessary for SIGNAL_STOP_CONTINUED because
2061 * an intervening stop signal is required to cause two
2062 * continued events regardless of ptrace.
2063 */
2064 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2065 sig->group_exit_code = signr;
2066
2067 sig->group_stop_count = 0;
2068
2069 if (task_set_jobctl_pending(current, signr | gstop))
2070 sig->group_stop_count++;
2071
2072 t = current;
2073 while_each_thread(current, t) {
2074 /*
2075 * Setting state to TASK_STOPPED for a group
2076 * stop is always done with the siglock held,
2077 * so this check has no races.
2078 */
2079 if (!task_is_stopped(t) &&
2080 task_set_jobctl_pending(t, signr | gstop)) {
2081 sig->group_stop_count++;
2082 if (likely(!(t->ptrace & PT_SEIZED)))
2083 signal_wake_up(t, 0);
2084 else
2085 ptrace_trap_notify(t);
2086 }
2087 }
2088 }
2089
2090 if (likely(!current->ptrace)) {
2091 int notify = 0;
2092
2093 /*
2094 * If there are no other threads in the group, or if there
2095 * is a group stop in progress and we are the last to stop,
2096 * report to the parent.
2097 */
2098 if (task_participate_group_stop(current))
2099 notify = CLD_STOPPED;
2100
2101 set_special_state(TASK_STOPPED);
2102 spin_unlock_irq(&current->sighand->siglock);
2103
2104 /*
2105 * Notify the parent of the group stop completion. Because
2106 * we're not holding either the siglock or tasklist_lock
2107 * here, ptracer may attach inbetween; however, this is for
2108 * group stop and should always be delivered to the real
2109 * parent of the group leader. The new ptracer will get
2110 * its notification when this task transitions into
2111 * TASK_TRACED.
2112 */
2113 if (notify) {
2114 read_lock(&tasklist_lock);
2115 do_notify_parent_cldstop(current, false, notify);
2116 read_unlock(&tasklist_lock);
2117 }
2118
2119 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2120 freezable_schedule();
2121 return true;
2122 } else {
2123 /*
2124 * While ptraced, group stop is handled by STOP trap.
2125 * Schedule it and let the caller deal with it.
2126 */
2127 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2128 return false;
2129 }
2130 }
2131
2132 /**
2133 * do_jobctl_trap - take care of ptrace jobctl traps
2134 *
2135 * When PT_SEIZED, it's used for both group stop and explicit
2136 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2137 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2138 * the stop signal; otherwise, %SIGTRAP.
2139 *
2140 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2141 * number as exit_code and no siginfo.
2142 *
2143 * CONTEXT:
2144 * Must be called with @current->sighand->siglock held, which may be
2145 * released and re-acquired before returning with intervening sleep.
2146 */
2147 static void do_jobctl_trap(void)
2148 {
2149 struct signal_struct *signal = current->signal;
2150 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2151
2152 if (current->ptrace & PT_SEIZED) {
2153 if (!signal->group_stop_count &&
2154 !(signal->flags & SIGNAL_STOP_STOPPED))
2155 signr = SIGTRAP;
2156 WARN_ON_ONCE(!signr);
2157 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2158 CLD_STOPPED);
2159 } else {
2160 WARN_ON_ONCE(!signr);
2161 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2162 current->exit_code = 0;
2163 }
2164 }
2165
2166 static int ptrace_signal(int signr, siginfo_t *info)
2167 {
2168 /*
2169 * We do not check sig_kernel_stop(signr) but set this marker
2170 * unconditionally because we do not know whether debugger will
2171 * change signr. This flag has no meaning unless we are going
2172 * to stop after return from ptrace_stop(). In this case it will
2173 * be checked in do_signal_stop(), we should only stop if it was
2174 * not cleared by SIGCONT while we were sleeping. See also the
2175 * comment in dequeue_signal().
2176 */
2177 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2178 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2179
2180 /* We're back. Did the debugger cancel the sig? */
2181 signr = current->exit_code;
2182 if (signr == 0)
2183 return signr;
2184
2185 current->exit_code = 0;
2186
2187 /*
2188 * Update the siginfo structure if the signal has
2189 * changed. If the debugger wanted something
2190 * specific in the siginfo structure then it should
2191 * have updated *info via PTRACE_SETSIGINFO.
2192 */
2193 if (signr != info->si_signo) {
2194 info->si_signo = signr;
2195 info->si_errno = 0;
2196 info->si_code = SI_USER;
2197 rcu_read_lock();
2198 info->si_pid = task_pid_vnr(current->parent);
2199 info->si_uid = from_kuid_munged(current_user_ns(),
2200 task_uid(current->parent));
2201 rcu_read_unlock();
2202 }
2203
2204 /* If the (new) signal is now blocked, requeue it. */
2205 if (sigismember(&current->blocked, signr)) {
2206 specific_send_sig_info(signr, info, current);
2207 signr = 0;
2208 }
2209
2210 return signr;
2211 }
2212
2213 int get_signal(struct ksignal *ksig)
2214 {
2215 struct sighand_struct *sighand = current->sighand;
2216 struct signal_struct *signal = current->signal;
2217 int signr;
2218
2219 if (unlikely(current->task_works))
2220 task_work_run();
2221
2222 if (unlikely(uprobe_deny_signal()))
2223 return 0;
2224
2225 /*
2226 * Do this once, we can't return to user-mode if freezing() == T.
2227 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2228 * thus do not need another check after return.
2229 */
2230 try_to_freeze();
2231
2232 relock:
2233 spin_lock_irq(&sighand->siglock);
2234 /*
2235 * Every stopped thread goes here after wakeup. Check to see if
2236 * we should notify the parent, prepare_signal(SIGCONT) encodes
2237 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2238 */
2239 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2240 int why;
2241
2242 if (signal->flags & SIGNAL_CLD_CONTINUED)
2243 why = CLD_CONTINUED;
2244 else
2245 why = CLD_STOPPED;
2246
2247 signal->flags &= ~SIGNAL_CLD_MASK;
2248
2249 spin_unlock_irq(&sighand->siglock);
2250
2251 /*
2252 * Notify the parent that we're continuing. This event is
2253 * always per-process and doesn't make whole lot of sense
2254 * for ptracers, who shouldn't consume the state via
2255 * wait(2) either, but, for backward compatibility, notify
2256 * the ptracer of the group leader too unless it's gonna be
2257 * a duplicate.
2258 */
2259 read_lock(&tasklist_lock);
2260 do_notify_parent_cldstop(current, false, why);
2261
2262 if (ptrace_reparented(current->group_leader))
2263 do_notify_parent_cldstop(current->group_leader,
2264 true, why);
2265 read_unlock(&tasklist_lock);
2266
2267 goto relock;
2268 }
2269
2270 /* Has this task already been marked for death? */
2271 if (signal_group_exit(signal)) {
2272 ksig->info.si_signo = signr = SIGKILL;
2273 sigdelset(&current->pending.signal, SIGKILL);
2274 recalc_sigpending();
2275 goto fatal;
2276 }
2277
2278 for (;;) {
2279 struct k_sigaction *ka;
2280
2281 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2282 do_signal_stop(0))
2283 goto relock;
2284
2285 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2286 do_jobctl_trap();
2287 spin_unlock_irq(&sighand->siglock);
2288 goto relock;
2289 }
2290
2291 /*
2292 * Signals generated by the execution of an instruction
2293 * need to be delivered before any other pending signals
2294 * so that the instruction pointer in the signal stack
2295 * frame points to the faulting instruction.
2296 */
2297 signr = dequeue_synchronous_signal(&ksig->info);
2298 if (!signr)
2299 signr = dequeue_signal(current, &current->blocked, &ksig->info);
2300
2301 if (!signr)
2302 break; /* will return 0 */
2303
2304 if (unlikely(current->ptrace) && signr != SIGKILL) {
2305 signr = ptrace_signal(signr, &ksig->info);
2306 if (!signr)
2307 continue;
2308 }
2309
2310 ka = &sighand->action[signr-1];
2311
2312 /* Trace actually delivered signals. */
2313 trace_signal_deliver(signr, &ksig->info, ka);
2314
2315 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2316 continue;
2317 if (ka->sa.sa_handler != SIG_DFL) {
2318 /* Run the handler. */
2319 ksig->ka = *ka;
2320
2321 if (ka->sa.sa_flags & SA_ONESHOT)
2322 ka->sa.sa_handler = SIG_DFL;
2323
2324 break; /* will return non-zero "signr" value */
2325 }
2326
2327 /*
2328 * Now we are doing the default action for this signal.
2329 */
2330 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2331 continue;
2332
2333 /*
2334 * Global init gets no signals it doesn't want.
2335 * Container-init gets no signals it doesn't want from same
2336 * container.
2337 *
2338 * Note that if global/container-init sees a sig_kernel_only()
2339 * signal here, the signal must have been generated internally
2340 * or must have come from an ancestor namespace. In either
2341 * case, the signal cannot be dropped.
2342 */
2343 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2344 !sig_kernel_only(signr))
2345 continue;
2346
2347 if (sig_kernel_stop(signr)) {
2348 /*
2349 * The default action is to stop all threads in
2350 * the thread group. The job control signals
2351 * do nothing in an orphaned pgrp, but SIGSTOP
2352 * always works. Note that siglock needs to be
2353 * dropped during the call to is_orphaned_pgrp()
2354 * because of lock ordering with tasklist_lock.
2355 * This allows an intervening SIGCONT to be posted.
2356 * We need to check for that and bail out if necessary.
2357 */
2358 if (signr != SIGSTOP) {
2359 spin_unlock_irq(&sighand->siglock);
2360
2361 /* signals can be posted during this window */
2362
2363 if (is_current_pgrp_orphaned())
2364 goto relock;
2365
2366 spin_lock_irq(&sighand->siglock);
2367 }
2368
2369 if (likely(do_signal_stop(ksig->info.si_signo))) {
2370 /* It released the siglock. */
2371 goto relock;
2372 }
2373
2374 /*
2375 * We didn't actually stop, due to a race
2376 * with SIGCONT or something like that.
2377 */
2378 continue;
2379 }
2380
2381 fatal:
2382 spin_unlock_irq(&sighand->siglock);
2383
2384 /*
2385 * Anything else is fatal, maybe with a core dump.
2386 */
2387 current->flags |= PF_SIGNALED;
2388
2389 if (sig_kernel_coredump(signr)) {
2390 if (print_fatal_signals)
2391 print_fatal_signal(ksig->info.si_signo);
2392 proc_coredump_connector(current);
2393 /*
2394 * If it was able to dump core, this kills all
2395 * other threads in the group and synchronizes with
2396 * their demise. If we lost the race with another
2397 * thread getting here, it set group_exit_code
2398 * first and our do_group_exit call below will use
2399 * that value and ignore the one we pass it.
2400 */
2401 do_coredump(&ksig->info);
2402 }
2403
2404 /*
2405 * Death signals, no core dump.
2406 */
2407 do_group_exit(ksig->info.si_signo);
2408 /* NOTREACHED */
2409 }
2410 spin_unlock_irq(&sighand->siglock);
2411
2412 ksig->sig = signr;
2413 return ksig->sig > 0;
2414 }
2415
2416 /**
2417 * signal_delivered -
2418 * @ksig: kernel signal struct
2419 * @stepping: nonzero if debugger single-step or block-step in use
2420 *
2421 * This function should be called when a signal has successfully been
2422 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2423 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2424 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2425 */
2426 static void signal_delivered(struct ksignal *ksig, int stepping)
2427 {
2428 sigset_t blocked;
2429
2430 /* A signal was successfully delivered, and the
2431 saved sigmask was stored on the signal frame,
2432 and will be restored by sigreturn. So we can
2433 simply clear the restore sigmask flag. */
2434 clear_restore_sigmask();
2435
2436 sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2437 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2438 sigaddset(&blocked, ksig->sig);
2439 set_current_blocked(&blocked);
2440 tracehook_signal_handler(stepping);
2441 }
2442
2443 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2444 {
2445 if (failed)
2446 force_sigsegv(ksig->sig, current);
2447 else
2448 signal_delivered(ksig, stepping);
2449 }
2450
2451 /*
2452 * It could be that complete_signal() picked us to notify about the
2453 * group-wide signal. Other threads should be notified now to take
2454 * the shared signals in @which since we will not.
2455 */
2456 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2457 {
2458 sigset_t retarget;
2459 struct task_struct *t;
2460
2461 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2462 if (sigisemptyset(&retarget))
2463 return;
2464
2465 t = tsk;
2466 while_each_thread(tsk, t) {
2467 if (t->flags & PF_EXITING)
2468 continue;
2469
2470 if (!has_pending_signals(&retarget, &t->blocked))
2471 continue;
2472 /* Remove the signals this thread can handle. */
2473 sigandsets(&retarget, &retarget, &t->blocked);
2474
2475 if (!signal_pending(t))
2476 signal_wake_up(t, 0);
2477
2478 if (sigisemptyset(&retarget))
2479 break;
2480 }
2481 }
2482
2483 void exit_signals(struct task_struct *tsk)
2484 {
2485 int group_stop = 0;
2486 sigset_t unblocked;
2487
2488 /*
2489 * @tsk is about to have PF_EXITING set - lock out users which
2490 * expect stable threadgroup.
2491 */
2492 cgroup_threadgroup_change_begin(tsk);
2493
2494 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2495 tsk->flags |= PF_EXITING;
2496 cgroup_threadgroup_change_end(tsk);
2497 return;
2498 }
2499
2500 spin_lock_irq(&tsk->sighand->siglock);
2501 /*
2502 * From now this task is not visible for group-wide signals,
2503 * see wants_signal(), do_signal_stop().
2504 */
2505 tsk->flags |= PF_EXITING;
2506
2507 cgroup_threadgroup_change_end(tsk);
2508
2509 if (!signal_pending(tsk))
2510 goto out;
2511
2512 unblocked = tsk->blocked;
2513 signotset(&unblocked);
2514 retarget_shared_pending(tsk, &unblocked);
2515
2516 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2517 task_participate_group_stop(tsk))
2518 group_stop = CLD_STOPPED;
2519 out:
2520 spin_unlock_irq(&tsk->sighand->siglock);
2521
2522 /*
2523 * If group stop has completed, deliver the notification. This
2524 * should always go to the real parent of the group leader.
2525 */
2526 if (unlikely(group_stop)) {
2527 read_lock(&tasklist_lock);
2528 do_notify_parent_cldstop(tsk, false, group_stop);
2529 read_unlock(&tasklist_lock);
2530 }
2531 }
2532
2533 EXPORT_SYMBOL(recalc_sigpending);
2534 EXPORT_SYMBOL_GPL(dequeue_signal);
2535 EXPORT_SYMBOL(flush_signals);
2536 EXPORT_SYMBOL(force_sig);
2537 EXPORT_SYMBOL(send_sig);
2538 EXPORT_SYMBOL(send_sig_info);
2539 EXPORT_SYMBOL(sigprocmask);
2540
2541 /*
2542 * System call entry points.
2543 */
2544
2545 /**
2546 * sys_restart_syscall - restart a system call
2547 */
2548 SYSCALL_DEFINE0(restart_syscall)
2549 {
2550 struct restart_block *restart = &current->restart_block;
2551 return restart->fn(restart);
2552 }
2553
2554 long do_no_restart_syscall(struct restart_block *param)
2555 {
2556 return -EINTR;
2557 }
2558
2559 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2560 {
2561 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2562 sigset_t newblocked;
2563 /* A set of now blocked but previously unblocked signals. */
2564 sigandnsets(&newblocked, newset, &current->blocked);
2565 retarget_shared_pending(tsk, &newblocked);
2566 }
2567 tsk->blocked = *newset;
2568 recalc_sigpending();
2569 }
2570
2571 /**
2572 * set_current_blocked - change current->blocked mask
2573 * @newset: new mask
2574 *
2575 * It is wrong to change ->blocked directly, this helper should be used
2576 * to ensure the process can't miss a shared signal we are going to block.
2577 */
2578 void set_current_blocked(sigset_t *newset)
2579 {
2580 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2581 __set_current_blocked(newset);
2582 }
2583
2584 void __set_current_blocked(const sigset_t *newset)
2585 {
2586 struct task_struct *tsk = current;
2587
2588 /*
2589 * In case the signal mask hasn't changed, there is nothing we need
2590 * to do. The current->blocked shouldn't be modified by other task.
2591 */
2592 if (sigequalsets(&tsk->blocked, newset))
2593 return;
2594
2595 spin_lock_irq(&tsk->sighand->siglock);
2596 __set_task_blocked(tsk, newset);
2597 spin_unlock_irq(&tsk->sighand->siglock);
2598 }
2599
2600 /*
2601 * This is also useful for kernel threads that want to temporarily
2602 * (or permanently) block certain signals.
2603 *
2604 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2605 * interface happily blocks "unblockable" signals like SIGKILL
2606 * and friends.
2607 */
2608 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2609 {
2610 struct task_struct *tsk = current;
2611 sigset_t newset;
2612
2613 /* Lockless, only current can change ->blocked, never from irq */
2614 if (oldset)
2615 *oldset = tsk->blocked;
2616
2617 switch (how) {
2618 case SIG_BLOCK:
2619 sigorsets(&newset, &tsk->blocked, set);
2620 break;
2621 case SIG_UNBLOCK:
2622 sigandnsets(&newset, &tsk->blocked, set);
2623 break;
2624 case SIG_SETMASK:
2625 newset = *set;
2626 break;
2627 default:
2628 return -EINVAL;
2629 }
2630
2631 __set_current_blocked(&newset);
2632 return 0;
2633 }
2634
2635 /**
2636 * sys_rt_sigprocmask - change the list of currently blocked signals
2637 * @how: whether to add, remove, or set signals
2638 * @nset: stores pending signals
2639 * @oset: previous value of signal mask if non-null
2640 * @sigsetsize: size of sigset_t type
2641 */
2642 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2643 sigset_t __user *, oset, size_t, sigsetsize)
2644 {
2645 sigset_t old_set, new_set;
2646 int error;
2647
2648 /* XXX: Don't preclude handling different sized sigset_t's. */
2649 if (sigsetsize != sizeof(sigset_t))
2650 return -EINVAL;
2651
2652 old_set = current->blocked;
2653
2654 if (nset) {
2655 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2656 return -EFAULT;
2657 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2658
2659 error = sigprocmask(how, &new_set, NULL);
2660 if (error)
2661 return error;
2662 }
2663
2664 if (oset) {
2665 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2666 return -EFAULT;
2667 }
2668
2669 return 0;
2670 }
2671
2672 #ifdef CONFIG_COMPAT
2673 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2674 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2675 {
2676 sigset_t old_set = current->blocked;
2677
2678 /* XXX: Don't preclude handling different sized sigset_t's. */
2679 if (sigsetsize != sizeof(sigset_t))
2680 return -EINVAL;
2681
2682 if (nset) {
2683 sigset_t new_set;
2684 int error;
2685 if (get_compat_sigset(&new_set, nset))
2686 return -EFAULT;
2687 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2688
2689 error = sigprocmask(how, &new_set, NULL);
2690 if (error)
2691 return error;
2692 }
2693 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
2694 }
2695 #endif
2696
2697 static int do_sigpending(sigset_t *set)
2698 {
2699 spin_lock_irq(&current->sighand->siglock);
2700 sigorsets(set, &current->pending.signal,
2701 &current->signal->shared_pending.signal);
2702 spin_unlock_irq(&current->sighand->siglock);
2703
2704 /* Outside the lock because only this thread touches it. */
2705 sigandsets(set, &current->blocked, set);
2706 return 0;
2707 }
2708
2709 /**
2710 * sys_rt_sigpending - examine a pending signal that has been raised
2711 * while blocked
2712 * @uset: stores pending signals
2713 * @sigsetsize: size of sigset_t type or larger
2714 */
2715 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2716 {
2717 sigset_t set;
2718 int err;
2719
2720 if (sigsetsize > sizeof(*uset))
2721 return -EINVAL;
2722
2723 err = do_sigpending(&set);
2724 if (!err && copy_to_user(uset, &set, sigsetsize))
2725 err = -EFAULT;
2726 return err;
2727 }
2728
2729 #ifdef CONFIG_COMPAT
2730 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2731 compat_size_t, sigsetsize)
2732 {
2733 sigset_t set;
2734 int err;
2735
2736 if (sigsetsize > sizeof(*uset))
2737 return -EINVAL;
2738
2739 err = do_sigpending(&set);
2740 if (!err)
2741 err = put_compat_sigset(uset, &set, sigsetsize);
2742 return err;
2743 }
2744 #endif
2745
2746 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
2747 {
2748 enum siginfo_layout layout = SIL_KILL;
2749 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
2750 static const struct {
2751 unsigned char limit, layout;
2752 } filter[] = {
2753 [SIGILL] = { NSIGILL, SIL_FAULT },
2754 [SIGFPE] = { NSIGFPE, SIL_FAULT },
2755 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
2756 [SIGBUS] = { NSIGBUS, SIL_FAULT },
2757 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
2758 #if defined(SIGEMT) && defined(NSIGEMT)
2759 [SIGEMT] = { NSIGEMT, SIL_FAULT },
2760 #endif
2761 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
2762 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
2763 #ifdef __ARCH_SIGSYS
2764 [SIGSYS] = { NSIGSYS, SIL_SYS },
2765 #endif
2766 };
2767 if ((sig < ARRAY_SIZE(filter)) && (si_code <= filter[sig].limit))
2768 layout = filter[sig].layout;
2769 else if (si_code <= NSIGPOLL)
2770 layout = SIL_POLL;
2771 } else {
2772 if (si_code == SI_TIMER)
2773 layout = SIL_TIMER;
2774 else if (si_code == SI_SIGIO)
2775 layout = SIL_POLL;
2776 else if (si_code < 0)
2777 layout = SIL_RT;
2778 /* Tests to support buggy kernel ABIs */
2779 #ifdef TRAP_FIXME
2780 if ((sig == SIGTRAP) && (si_code == TRAP_FIXME))
2781 layout = SIL_FAULT;
2782 #endif
2783 #ifdef FPE_FIXME
2784 if ((sig == SIGFPE) && (si_code == FPE_FIXME))
2785 layout = SIL_FAULT;
2786 #endif
2787 }
2788 return layout;
2789 }
2790
2791 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2792
2793 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2794 {
2795 int err;
2796
2797 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2798 return -EFAULT;
2799 if (from->si_code < 0)
2800 return __copy_to_user(to, from, sizeof(siginfo_t))
2801 ? -EFAULT : 0;
2802 /*
2803 * If you change siginfo_t structure, please be sure
2804 * this code is fixed accordingly.
2805 * Please remember to update the signalfd_copyinfo() function
2806 * inside fs/signalfd.c too, in case siginfo_t changes.
2807 * It should never copy any pad contained in the structure
2808 * to avoid security leaks, but must copy the generic
2809 * 3 ints plus the relevant union member.
2810 */
2811 err = __put_user(from->si_signo, &to->si_signo);
2812 err |= __put_user(from->si_errno, &to->si_errno);
2813 err |= __put_user(from->si_code, &to->si_code);
2814 switch (siginfo_layout(from->si_signo, from->si_code)) {
2815 case SIL_KILL:
2816 err |= __put_user(from->si_pid, &to->si_pid);
2817 err |= __put_user(from->si_uid, &to->si_uid);
2818 break;
2819 case SIL_TIMER:
2820 /* Unreached SI_TIMER is negative */
2821 break;
2822 case SIL_POLL:
2823 err |= __put_user(from->si_band, &to->si_band);
2824 err |= __put_user(from->si_fd, &to->si_fd);
2825 break;
2826 case SIL_FAULT:
2827 err |= __put_user(from->si_addr, &to->si_addr);
2828 #ifdef __ARCH_SI_TRAPNO
2829 err |= __put_user(from->si_trapno, &to->si_trapno);
2830 #endif
2831 #ifdef BUS_MCEERR_AO
2832 /*
2833 * Other callers might not initialize the si_lsb field,
2834 * so check explicitly for the right codes here.
2835 */
2836 if (from->si_signo == SIGBUS &&
2837 (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO))
2838 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2839 #endif
2840 #ifdef SEGV_BNDERR
2841 if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2842 err |= __put_user(from->si_lower, &to->si_lower);
2843 err |= __put_user(from->si_upper, &to->si_upper);
2844 }
2845 #endif
2846 #ifdef SEGV_PKUERR
2847 if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR)
2848 err |= __put_user(from->si_pkey, &to->si_pkey);
2849 #endif
2850 break;
2851 case SIL_CHLD:
2852 err |= __put_user(from->si_pid, &to->si_pid);
2853 err |= __put_user(from->si_uid, &to->si_uid);
2854 err |= __put_user(from->si_status, &to->si_status);
2855 err |= __put_user(from->si_utime, &to->si_utime);
2856 err |= __put_user(from->si_stime, &to->si_stime);
2857 break;
2858 case SIL_RT:
2859 err |= __put_user(from->si_pid, &to->si_pid);
2860 err |= __put_user(from->si_uid, &to->si_uid);
2861 err |= __put_user(from->si_ptr, &to->si_ptr);
2862 break;
2863 #ifdef __ARCH_SIGSYS
2864 case SIL_SYS:
2865 err |= __put_user(from->si_call_addr, &to->si_call_addr);
2866 err |= __put_user(from->si_syscall, &to->si_syscall);
2867 err |= __put_user(from->si_arch, &to->si_arch);
2868 break;
2869 #endif
2870 }
2871 return err;
2872 }
2873
2874 #endif
2875
2876 /**
2877 * do_sigtimedwait - wait for queued signals specified in @which
2878 * @which: queued signals to wait for
2879 * @info: if non-null, the signal's siginfo is returned here
2880 * @ts: upper bound on process time suspension
2881 */
2882 static int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2883 const struct timespec *ts)
2884 {
2885 ktime_t *to = NULL, timeout = KTIME_MAX;
2886 struct task_struct *tsk = current;
2887 sigset_t mask = *which;
2888 int sig, ret = 0;
2889
2890 if (ts) {
2891 if (!timespec_valid(ts))
2892 return -EINVAL;
2893 timeout = timespec_to_ktime(*ts);
2894 to = &timeout;
2895 }
2896
2897 /*
2898 * Invert the set of allowed signals to get those we want to block.
2899 */
2900 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2901 signotset(&mask);
2902
2903 spin_lock_irq(&tsk->sighand->siglock);
2904 sig = dequeue_signal(tsk, &mask, info);
2905 if (!sig && timeout) {
2906 /*
2907 * None ready, temporarily unblock those we're interested
2908 * while we are sleeping in so that we'll be awakened when
2909 * they arrive. Unblocking is always fine, we can avoid
2910 * set_current_blocked().
2911 */
2912 tsk->real_blocked = tsk->blocked;
2913 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2914 recalc_sigpending();
2915 spin_unlock_irq(&tsk->sighand->siglock);
2916
2917 __set_current_state(TASK_INTERRUPTIBLE);
2918 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
2919 HRTIMER_MODE_REL);
2920 spin_lock_irq(&tsk->sighand->siglock);
2921 __set_task_blocked(tsk, &tsk->real_blocked);
2922 sigemptyset(&tsk->real_blocked);
2923 sig = dequeue_signal(tsk, &mask, info);
2924 }
2925 spin_unlock_irq(&tsk->sighand->siglock);
2926
2927 if (sig)
2928 return sig;
2929 return ret ? -EINTR : -EAGAIN;
2930 }
2931
2932 /**
2933 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
2934 * in @uthese
2935 * @uthese: queued signals to wait for
2936 * @uinfo: if non-null, the signal's siginfo is returned here
2937 * @uts: upper bound on process time suspension
2938 * @sigsetsize: size of sigset_t type
2939 */
2940 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2941 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2942 size_t, sigsetsize)
2943 {
2944 sigset_t these;
2945 struct timespec ts;
2946 siginfo_t info;
2947 int ret;
2948
2949 /* XXX: Don't preclude handling different sized sigset_t's. */
2950 if (sigsetsize != sizeof(sigset_t))
2951 return -EINVAL;
2952
2953 if (copy_from_user(&these, uthese, sizeof(these)))
2954 return -EFAULT;
2955
2956 if (uts) {
2957 if (copy_from_user(&ts, uts, sizeof(ts)))
2958 return -EFAULT;
2959 }
2960
2961 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2962
2963 if (ret > 0 && uinfo) {
2964 if (copy_siginfo_to_user(uinfo, &info))
2965 ret = -EFAULT;
2966 }
2967
2968 return ret;
2969 }
2970
2971 #ifdef CONFIG_COMPAT
2972 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait, compat_sigset_t __user *, uthese,
2973 struct compat_siginfo __user *, uinfo,
2974 struct compat_timespec __user *, uts, compat_size_t, sigsetsize)
2975 {
2976 sigset_t s;
2977 struct timespec t;
2978 siginfo_t info;
2979 long ret;
2980
2981 if (sigsetsize != sizeof(sigset_t))
2982 return -EINVAL;
2983
2984 if (get_compat_sigset(&s, uthese))
2985 return -EFAULT;
2986
2987 if (uts) {
2988 if (compat_get_timespec(&t, uts))
2989 return -EFAULT;
2990 }
2991
2992 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
2993
2994 if (ret > 0 && uinfo) {
2995 if (copy_siginfo_to_user32(uinfo, &info))
2996 ret = -EFAULT;
2997 }
2998
2999 return ret;
3000 }
3001 #endif
3002
3003 /**
3004 * sys_kill - send a signal to a process
3005 * @pid: the PID of the process
3006 * @sig: signal to be sent
3007 */
3008 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3009 {
3010 struct siginfo info;
3011
3012 info.si_signo = sig;
3013 info.si_errno = 0;
3014 info.si_code = SI_USER;
3015 info.si_pid = task_tgid_vnr(current);
3016 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3017
3018 return kill_something_info(sig, &info, pid);
3019 }
3020
3021 static int
3022 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
3023 {
3024 struct task_struct *p;
3025 int error = -ESRCH;
3026
3027 rcu_read_lock();
3028 p = find_task_by_vpid(pid);
3029 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3030 error = check_kill_permission(sig, info, p);
3031 /*
3032 * The null signal is a permissions and process existence
3033 * probe. No signal is actually delivered.
3034 */
3035 if (!error && sig) {
3036 error = do_send_sig_info(sig, info, p, false);
3037 /*
3038 * If lock_task_sighand() failed we pretend the task
3039 * dies after receiving the signal. The window is tiny,
3040 * and the signal is private anyway.
3041 */
3042 if (unlikely(error == -ESRCH))
3043 error = 0;
3044 }
3045 }
3046 rcu_read_unlock();
3047
3048 return error;
3049 }
3050
3051 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3052 {
3053 struct siginfo info = {};
3054
3055 info.si_signo = sig;
3056 info.si_errno = 0;
3057 info.si_code = SI_TKILL;
3058 info.si_pid = task_tgid_vnr(current);
3059 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3060
3061 return do_send_specific(tgid, pid, sig, &info);
3062 }
3063
3064 /**
3065 * sys_tgkill - send signal to one specific thread
3066 * @tgid: the thread group ID of the thread
3067 * @pid: the PID of the thread
3068 * @sig: signal to be sent
3069 *
3070 * This syscall also checks the @tgid and returns -ESRCH even if the PID
3071 * exists but it's not belonging to the target process anymore. This
3072 * method solves the problem of threads exiting and PIDs getting reused.
3073 */
3074 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3075 {
3076 /* This is only valid for single tasks */
3077 if (pid <= 0 || tgid <= 0)
3078 return -EINVAL;
3079
3080 return do_tkill(tgid, pid, sig);
3081 }
3082
3083 /**
3084 * sys_tkill - send signal to one specific task
3085 * @pid: the PID of the task
3086 * @sig: signal to be sent
3087 *
3088 * Send a signal to only one task, even if it's a CLONE_THREAD task.
3089 */
3090 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3091 {
3092 /* This is only valid for single tasks */
3093 if (pid <= 0)
3094 return -EINVAL;
3095
3096 return do_tkill(0, pid, sig);
3097 }
3098
3099 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
3100 {
3101 /* Not even root can pretend to send signals from the kernel.
3102 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3103 */
3104 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3105 (task_pid_vnr(current) != pid))
3106 return -EPERM;
3107
3108 info->si_signo = sig;
3109
3110 /* POSIX.1b doesn't mention process groups. */
3111 return kill_proc_info(sig, info, pid);
3112 }
3113
3114 /**
3115 * sys_rt_sigqueueinfo - send signal information to a signal
3116 * @pid: the PID of the thread
3117 * @sig: signal to be sent
3118 * @uinfo: signal info to be sent
3119 */
3120 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3121 siginfo_t __user *, uinfo)
3122 {
3123 siginfo_t info;
3124 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3125 return -EFAULT;
3126 return do_rt_sigqueueinfo(pid, sig, &info);
3127 }
3128
3129 #ifdef CONFIG_COMPAT
3130 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3131 compat_pid_t, pid,
3132 int, sig,
3133 struct compat_siginfo __user *, uinfo)
3134 {
3135 siginfo_t info = {};
3136 int ret = copy_siginfo_from_user32(&info, uinfo);
3137 if (unlikely(ret))
3138 return ret;
3139 return do_rt_sigqueueinfo(pid, sig, &info);
3140 }
3141 #endif
3142
3143 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3144 {
3145 /* This is only valid for single tasks */
3146 if (pid <= 0 || tgid <= 0)
3147 return -EINVAL;
3148
3149 /* Not even root can pretend to send signals from the kernel.
3150 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3151 */
3152 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3153 (task_pid_vnr(current) != pid))
3154 return -EPERM;
3155
3156 info->si_signo = sig;
3157
3158 return do_send_specific(tgid, pid, sig, info);
3159 }
3160
3161 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3162 siginfo_t __user *, uinfo)
3163 {
3164 siginfo_t info;
3165
3166 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3167 return -EFAULT;
3168
3169 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3170 }
3171
3172 #ifdef CONFIG_COMPAT
3173 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3174 compat_pid_t, tgid,
3175 compat_pid_t, pid,
3176 int, sig,
3177 struct compat_siginfo __user *, uinfo)
3178 {
3179 siginfo_t info = {};
3180
3181 if (copy_siginfo_from_user32(&info, uinfo))
3182 return -EFAULT;
3183 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3184 }
3185 #endif
3186
3187 /*
3188 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3189 */
3190 void kernel_sigaction(int sig, __sighandler_t action)
3191 {
3192 spin_lock_irq(&current->sighand->siglock);
3193 current->sighand->action[sig - 1].sa.sa_handler = action;
3194 if (action == SIG_IGN) {
3195 sigset_t mask;
3196
3197 sigemptyset(&mask);
3198 sigaddset(&mask, sig);
3199
3200 flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3201 flush_sigqueue_mask(&mask, &current->pending);
3202 recalc_sigpending();
3203 }
3204 spin_unlock_irq(&current->sighand->siglock);
3205 }
3206 EXPORT_SYMBOL(kernel_sigaction);
3207
3208 void __weak sigaction_compat_abi(struct k_sigaction *act,
3209 struct k_sigaction *oact)
3210 {
3211 }
3212
3213 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3214 {
3215 struct task_struct *p = current, *t;
3216 struct k_sigaction *k;
3217 sigset_t mask;
3218
3219 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3220 return -EINVAL;
3221
3222 k = &p->sighand->action[sig-1];
3223
3224 spin_lock_irq(&p->sighand->siglock);
3225 if (oact)
3226 *oact = *k;
3227
3228 sigaction_compat_abi(act, oact);
3229
3230 if (act) {
3231 sigdelsetmask(&act->sa.sa_mask,
3232 sigmask(SIGKILL) | sigmask(SIGSTOP));
3233 *k = *act;
3234 /*
3235 * POSIX 3.3.1.3:
3236 * "Setting a signal action to SIG_IGN for a signal that is
3237 * pending shall cause the pending signal to be discarded,
3238 * whether or not it is blocked."
3239 *
3240 * "Setting a signal action to SIG_DFL for a signal that is
3241 * pending and whose default action is to ignore the signal
3242 * (for example, SIGCHLD), shall cause the pending signal to
3243 * be discarded, whether or not it is blocked"
3244 */
3245 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3246 sigemptyset(&mask);
3247 sigaddset(&mask, sig);
3248 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3249 for_each_thread(p, t)
3250 flush_sigqueue_mask(&mask, &t->pending);
3251 }
3252 }
3253
3254 spin_unlock_irq(&p->sighand->siglock);
3255 return 0;
3256 }
3257
3258 static int
3259 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
3260 size_t min_ss_size)
3261 {
3262 struct task_struct *t = current;
3263
3264 if (oss) {
3265 memset(oss, 0, sizeof(stack_t));
3266 oss->ss_sp = (void __user *) t->sas_ss_sp;
3267 oss->ss_size = t->sas_ss_size;
3268 oss->ss_flags = sas_ss_flags(sp) |
3269 (current->sas_ss_flags & SS_FLAG_BITS);
3270 }
3271
3272 if (ss) {
3273 void __user *ss_sp = ss->ss_sp;
3274 size_t ss_size = ss->ss_size;
3275 unsigned ss_flags = ss->ss_flags;
3276 int ss_mode;
3277
3278 if (unlikely(on_sig_stack(sp)))
3279 return -EPERM;
3280
3281 ss_mode = ss_flags & ~SS_FLAG_BITS;
3282 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3283 ss_mode != 0))
3284 return -EINVAL;
3285
3286 if (ss_mode == SS_DISABLE) {
3287 ss_size = 0;
3288 ss_sp = NULL;
3289 } else {
3290 if (unlikely(ss_size < min_ss_size))
3291 return -ENOMEM;
3292 }
3293
3294 t->sas_ss_sp = (unsigned long) ss_sp;
3295 t->sas_ss_size = ss_size;
3296 t->sas_ss_flags = ss_flags;
3297 }
3298 return 0;
3299 }
3300
3301 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3302 {
3303 stack_t new, old;
3304 int err;
3305 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
3306 return -EFAULT;
3307 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
3308 current_user_stack_pointer(),
3309 MINSIGSTKSZ);
3310 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
3311 err = -EFAULT;
3312 return err;
3313 }
3314
3315 int restore_altstack(const stack_t __user *uss)
3316 {
3317 stack_t new;
3318 if (copy_from_user(&new, uss, sizeof(stack_t)))
3319 return -EFAULT;
3320 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
3321 MINSIGSTKSZ);
3322 /* squash all but EFAULT for now */
3323 return 0;
3324 }
3325
3326 int __save_altstack(stack_t __user *uss, unsigned long sp)
3327 {
3328 struct task_struct *t = current;
3329 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3330 __put_user(t->sas_ss_flags, &uss->ss_flags) |
3331 __put_user(t->sas_ss_size, &uss->ss_size);
3332 if (err)
3333 return err;
3334 if (t->sas_ss_flags & SS_AUTODISARM)
3335 sas_ss_reset(t);
3336 return 0;
3337 }
3338
3339 #ifdef CONFIG_COMPAT
3340 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3341 const compat_stack_t __user *, uss_ptr,
3342 compat_stack_t __user *, uoss_ptr)
3343 {
3344 stack_t uss, uoss;
3345 int ret;
3346
3347 if (uss_ptr) {
3348 compat_stack_t uss32;
3349 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3350 return -EFAULT;
3351 uss.ss_sp = compat_ptr(uss32.ss_sp);
3352 uss.ss_flags = uss32.ss_flags;
3353 uss.ss_size = uss32.ss_size;
3354 }
3355 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
3356 compat_user_stack_pointer(),
3357 COMPAT_MINSIGSTKSZ);
3358 if (ret >= 0 && uoss_ptr) {
3359 compat_stack_t old;
3360 memset(&old, 0, sizeof(old));
3361 old.ss_sp = ptr_to_compat(uoss.ss_sp);
3362 old.ss_flags = uoss.ss_flags;
3363 old.ss_size = uoss.ss_size;
3364 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
3365 ret = -EFAULT;
3366 }
3367 return ret;
3368 }
3369
3370 int compat_restore_altstack(const compat_stack_t __user *uss)
3371 {
3372 int err = compat_sys_sigaltstack(uss, NULL);
3373 /* squash all but -EFAULT for now */
3374 return err == -EFAULT ? err : 0;
3375 }
3376
3377 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3378 {
3379 int err;
3380 struct task_struct *t = current;
3381 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
3382 &uss->ss_sp) |
3383 __put_user(t->sas_ss_flags, &uss->ss_flags) |
3384 __put_user(t->sas_ss_size, &uss->ss_size);
3385 if (err)
3386 return err;
3387 if (t->sas_ss_flags & SS_AUTODISARM)
3388 sas_ss_reset(t);
3389 return 0;
3390 }
3391 #endif
3392
3393 #ifdef __ARCH_WANT_SYS_SIGPENDING
3394
3395 /**
3396 * sys_sigpending - examine pending signals
3397 * @set: where mask of pending signal is returned
3398 */
3399 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3400 {
3401 return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t));
3402 }
3403
3404 #ifdef CONFIG_COMPAT
3405 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
3406 {
3407 sigset_t set;
3408 int err = do_sigpending(&set);
3409 if (!err)
3410 err = put_user(set.sig[0], set32);
3411 return err;
3412 }
3413 #endif
3414
3415 #endif
3416
3417 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3418 /**
3419 * sys_sigprocmask - examine and change blocked signals
3420 * @how: whether to add, remove, or set signals
3421 * @nset: signals to add or remove (if non-null)
3422 * @oset: previous value of signal mask if non-null
3423 *
3424 * Some platforms have their own version with special arguments;
3425 * others support only sys_rt_sigprocmask.
3426 */
3427
3428 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3429 old_sigset_t __user *, oset)
3430 {
3431 old_sigset_t old_set, new_set;
3432 sigset_t new_blocked;
3433
3434 old_set = current->blocked.sig[0];
3435
3436 if (nset) {
3437 if (copy_from_user(&new_set, nset, sizeof(*nset)))
3438 return -EFAULT;
3439
3440 new_blocked = current->blocked;
3441
3442 switch (how) {
3443 case SIG_BLOCK:
3444 sigaddsetmask(&new_blocked, new_set);
3445 break;
3446 case SIG_UNBLOCK:
3447 sigdelsetmask(&new_blocked, new_set);
3448 break;
3449 case SIG_SETMASK:
3450 new_blocked.sig[0] = new_set;
3451 break;
3452 default:
3453 return -EINVAL;
3454 }
3455
3456 set_current_blocked(&new_blocked);
3457 }
3458
3459 if (oset) {
3460 if (copy_to_user(oset, &old_set, sizeof(*oset)))
3461 return -EFAULT;
3462 }
3463
3464 return 0;
3465 }
3466 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3467
3468 #ifndef CONFIG_ODD_RT_SIGACTION
3469 /**
3470 * sys_rt_sigaction - alter an action taken by a process
3471 * @sig: signal to be sent
3472 * @act: new sigaction
3473 * @oact: used to save the previous sigaction
3474 * @sigsetsize: size of sigset_t type
3475 */
3476 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3477 const struct sigaction __user *, act,
3478 struct sigaction __user *, oact,
3479 size_t, sigsetsize)
3480 {
3481 struct k_sigaction new_sa, old_sa;
3482 int ret = -EINVAL;
3483
3484 /* XXX: Don't preclude handling different sized sigset_t's. */
3485 if (sigsetsize != sizeof(sigset_t))
3486 goto out;
3487
3488 if (act) {
3489 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3490 return -EFAULT;
3491 }
3492
3493 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3494
3495 if (!ret && oact) {
3496 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3497 return -EFAULT;
3498 }
3499 out:
3500 return ret;
3501 }
3502 #ifdef CONFIG_COMPAT
3503 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3504 const struct compat_sigaction __user *, act,
3505 struct compat_sigaction __user *, oact,
3506 compat_size_t, sigsetsize)
3507 {
3508 struct k_sigaction new_ka, old_ka;
3509 #ifdef __ARCH_HAS_SA_RESTORER
3510 compat_uptr_t restorer;
3511 #endif
3512 int ret;
3513
3514 /* XXX: Don't preclude handling different sized sigset_t's. */
3515 if (sigsetsize != sizeof(compat_sigset_t))
3516 return -EINVAL;
3517
3518 if (act) {
3519 compat_uptr_t handler;
3520 ret = get_user(handler, &act->sa_handler);
3521 new_ka.sa.sa_handler = compat_ptr(handler);
3522 #ifdef __ARCH_HAS_SA_RESTORER
3523 ret |= get_user(restorer, &act->sa_restorer);
3524 new_ka.sa.sa_restorer = compat_ptr(restorer);
3525 #endif
3526 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
3527 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3528 if (ret)
3529 return -EFAULT;
3530 }
3531
3532 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3533 if (!ret && oact) {
3534 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3535 &oact->sa_handler);
3536 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
3537 sizeof(oact->sa_mask));
3538 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3539 #ifdef __ARCH_HAS_SA_RESTORER
3540 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3541 &oact->sa_restorer);
3542 #endif
3543 }
3544 return ret;
3545 }
3546 #endif
3547 #endif /* !CONFIG_ODD_RT_SIGACTION */
3548
3549 #ifdef CONFIG_OLD_SIGACTION
3550 SYSCALL_DEFINE3(sigaction, int, sig,
3551 const struct old_sigaction __user *, act,
3552 struct old_sigaction __user *, oact)
3553 {
3554 struct k_sigaction new_ka, old_ka;
3555 int ret;
3556
3557 if (act) {
3558 old_sigset_t mask;
3559 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3560 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3561 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3562 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3563 __get_user(mask, &act->sa_mask))
3564 return -EFAULT;
3565 #ifdef __ARCH_HAS_KA_RESTORER
3566 new_ka.ka_restorer = NULL;
3567 #endif
3568 siginitset(&new_ka.sa.sa_mask, mask);
3569 }
3570
3571 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3572
3573 if (!ret && oact) {
3574 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3575 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3576 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3577 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3578 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3579 return -EFAULT;
3580 }
3581
3582 return ret;
3583 }
3584 #endif
3585 #ifdef CONFIG_COMPAT_OLD_SIGACTION
3586 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3587 const struct compat_old_sigaction __user *, act,
3588 struct compat_old_sigaction __user *, oact)
3589 {
3590 struct k_sigaction new_ka, old_ka;
3591 int ret;
3592 compat_old_sigset_t mask;
3593 compat_uptr_t handler, restorer;
3594
3595 if (act) {
3596 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3597 __get_user(handler, &act->sa_handler) ||
3598 __get_user(restorer, &act->sa_restorer) ||
3599 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3600 __get_user(mask, &act->sa_mask))
3601 return -EFAULT;
3602
3603 #ifdef __ARCH_HAS_KA_RESTORER
3604 new_ka.ka_restorer = NULL;
3605 #endif
3606 new_ka.sa.sa_handler = compat_ptr(handler);
3607 new_ka.sa.sa_restorer = compat_ptr(restorer);
3608 siginitset(&new_ka.sa.sa_mask, mask);
3609 }
3610
3611 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3612
3613 if (!ret && oact) {
3614 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3615 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3616 &oact->sa_handler) ||
3617 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3618 &oact->sa_restorer) ||
3619 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3620 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3621 return -EFAULT;
3622 }
3623 return ret;
3624 }
3625 #endif
3626
3627 #ifdef CONFIG_SGETMASK_SYSCALL
3628
3629 /*
3630 * For backwards compatibility. Functionality superseded by sigprocmask.
3631 */
3632 SYSCALL_DEFINE0(sgetmask)
3633 {
3634 /* SMP safe */
3635 return current->blocked.sig[0];
3636 }
3637
3638 SYSCALL_DEFINE1(ssetmask, int, newmask)
3639 {
3640 int old = current->blocked.sig[0];
3641 sigset_t newset;
3642
3643 siginitset(&newset, newmask);
3644 set_current_blocked(&newset);
3645
3646 return old;
3647 }
3648 #endif /* CONFIG_SGETMASK_SYSCALL */
3649
3650 #ifdef __ARCH_WANT_SYS_SIGNAL
3651 /*
3652 * For backwards compatibility. Functionality superseded by sigaction.
3653 */
3654 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3655 {
3656 struct k_sigaction new_sa, old_sa;
3657 int ret;
3658
3659 new_sa.sa.sa_handler = handler;
3660 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3661 sigemptyset(&new_sa.sa.sa_mask);
3662
3663 ret = do_sigaction(sig, &new_sa, &old_sa);
3664
3665 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3666 }
3667 #endif /* __ARCH_WANT_SYS_SIGNAL */
3668
3669 #ifdef __ARCH_WANT_SYS_PAUSE
3670
3671 SYSCALL_DEFINE0(pause)
3672 {
3673 while (!signal_pending(current)) {
3674 __set_current_state(TASK_INTERRUPTIBLE);
3675 schedule();
3676 }
3677 return -ERESTARTNOHAND;
3678 }
3679
3680 #endif
3681
3682 static int sigsuspend(sigset_t *set)
3683 {
3684 current->saved_sigmask = current->blocked;
3685 set_current_blocked(set);
3686
3687 while (!signal_pending(current)) {
3688 __set_current_state(TASK_INTERRUPTIBLE);
3689 schedule();
3690 }
3691 set_restore_sigmask();
3692 return -ERESTARTNOHAND;
3693 }
3694
3695 /**
3696 * sys_rt_sigsuspend - replace the signal mask for a value with the
3697 * @unewset value until a signal is received
3698 * @unewset: new signal mask value
3699 * @sigsetsize: size of sigset_t type
3700 */
3701 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3702 {
3703 sigset_t newset;
3704
3705 /* XXX: Don't preclude handling different sized sigset_t's. */
3706 if (sigsetsize != sizeof(sigset_t))
3707 return -EINVAL;
3708
3709 if (copy_from_user(&newset, unewset, sizeof(newset)))
3710 return -EFAULT;
3711 return sigsuspend(&newset);
3712 }
3713
3714 #ifdef CONFIG_COMPAT
3715 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3716 {
3717 sigset_t newset;
3718
3719 /* XXX: Don't preclude handling different sized sigset_t's. */
3720 if (sigsetsize != sizeof(sigset_t))
3721 return -EINVAL;
3722
3723 if (get_compat_sigset(&newset, unewset))
3724 return -EFAULT;
3725 return sigsuspend(&newset);
3726 }
3727 #endif
3728
3729 #ifdef CONFIG_OLD_SIGSUSPEND
3730 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3731 {
3732 sigset_t blocked;
3733 siginitset(&blocked, mask);
3734 return sigsuspend(&blocked);
3735 }
3736 #endif
3737 #ifdef CONFIG_OLD_SIGSUSPEND3
3738 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3739 {
3740 sigset_t blocked;
3741 siginitset(&blocked, mask);
3742 return sigsuspend(&blocked);
3743 }
3744 #endif
3745
3746 __weak const char *arch_vma_name(struct vm_area_struct *vma)
3747 {
3748 return NULL;
3749 }
3750
3751 void __init signals_init(void)
3752 {
3753 /* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
3754 BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
3755 != offsetof(struct siginfo, _sifields._pad));
3756
3757 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3758 }
3759
3760 #ifdef CONFIG_KGDB_KDB
3761 #include <linux/kdb.h>
3762 /*
3763 * kdb_send_sig_info - Allows kdb to send signals without exposing
3764 * signal internals. This function checks if the required locks are
3765 * available before calling the main signal code, to avoid kdb
3766 * deadlocks.
3767 */
3768 void
3769 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3770 {
3771 static struct task_struct *kdb_prev_t;
3772 int sig, new_t;
3773 if (!spin_trylock(&t->sighand->siglock)) {
3774 kdb_printf("Can't do kill command now.\n"
3775 "The sigmask lock is held somewhere else in "
3776 "kernel, try again later\n");
3777 return;
3778 }
3779 spin_unlock(&t->sighand->siglock);
3780 new_t = kdb_prev_t != t;
3781 kdb_prev_t = t;
3782 if (t->state != TASK_RUNNING && new_t) {
3783 kdb_printf("Process is not RUNNING, sending a signal from "
3784 "kdb risks deadlock\n"
3785 "on the run queue locks. "
3786 "The signal has _not_ been sent.\n"
3787 "Reissue the kill command if you want to risk "
3788 "the deadlock.\n");
3789 return;
3790 }
3791 sig = info->si_signo;
3792 if (send_sig_info(sig, info, t))
3793 kdb_printf("Fail to deliver Signal %d to process %d.\n",
3794 sig, t->pid);
3795 else
3796 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3797 }
3798 #endif /* CONFIG_KGDB_KDB */