]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/signal.c
Remove obsolete #include <linux/config.h>
[mirror_ubuntu-jammy-kernel.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/smp_lock.h>
16 #include <linux/init.h>
17 #include <linux/sched.h>
18 #include <linux/fs.h>
19 #include <linux/tty.h>
20 #include <linux/binfmts.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/ptrace.h>
24 #include <linux/signal.h>
25 #include <linux/capability.h>
26 #include <asm/param.h>
27 #include <asm/uaccess.h>
28 #include <asm/unistd.h>
29 #include <asm/siginfo.h>
30 #include "audit.h" /* audit_signal_info() */
31
32 /*
33 * SLAB caches for signal bits.
34 */
35
36 static kmem_cache_t *sigqueue_cachep;
37
38 /*
39 * In POSIX a signal is sent either to a specific thread (Linux task)
40 * or to the process as a whole (Linux thread group). How the signal
41 * is sent determines whether it's to one thread or the whole group,
42 * which determines which signal mask(s) are involved in blocking it
43 * from being delivered until later. When the signal is delivered,
44 * either it's caught or ignored by a user handler or it has a default
45 * effect that applies to the whole thread group (POSIX process).
46 *
47 * The possible effects an unblocked signal set to SIG_DFL can have are:
48 * ignore - Nothing Happens
49 * terminate - kill the process, i.e. all threads in the group,
50 * similar to exit_group. The group leader (only) reports
51 * WIFSIGNALED status to its parent.
52 * coredump - write a core dump file describing all threads using
53 * the same mm and then kill all those threads
54 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
55 *
56 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
57 * Other signals when not blocked and set to SIG_DFL behaves as follows.
58 * The job control signals also have other special effects.
59 *
60 * +--------------------+------------------+
61 * | POSIX signal | default action |
62 * +--------------------+------------------+
63 * | SIGHUP | terminate |
64 * | SIGINT | terminate |
65 * | SIGQUIT | coredump |
66 * | SIGILL | coredump |
67 * | SIGTRAP | coredump |
68 * | SIGABRT/SIGIOT | coredump |
69 * | SIGBUS | coredump |
70 * | SIGFPE | coredump |
71 * | SIGKILL | terminate(+) |
72 * | SIGUSR1 | terminate |
73 * | SIGSEGV | coredump |
74 * | SIGUSR2 | terminate |
75 * | SIGPIPE | terminate |
76 * | SIGALRM | terminate |
77 * | SIGTERM | terminate |
78 * | SIGCHLD | ignore |
79 * | SIGCONT | ignore(*) |
80 * | SIGSTOP | stop(*)(+) |
81 * | SIGTSTP | stop(*) |
82 * | SIGTTIN | stop(*) |
83 * | SIGTTOU | stop(*) |
84 * | SIGURG | ignore |
85 * | SIGXCPU | coredump |
86 * | SIGXFSZ | coredump |
87 * | SIGVTALRM | terminate |
88 * | SIGPROF | terminate |
89 * | SIGPOLL/SIGIO | terminate |
90 * | SIGSYS/SIGUNUSED | coredump |
91 * | SIGSTKFLT | terminate |
92 * | SIGWINCH | ignore |
93 * | SIGPWR | terminate |
94 * | SIGRTMIN-SIGRTMAX | terminate |
95 * +--------------------+------------------+
96 * | non-POSIX signal | default action |
97 * +--------------------+------------------+
98 * | SIGEMT | coredump |
99 * +--------------------+------------------+
100 *
101 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
102 * (*) Special job control effects:
103 * When SIGCONT is sent, it resumes the process (all threads in the group)
104 * from TASK_STOPPED state and also clears any pending/queued stop signals
105 * (any of those marked with "stop(*)"). This happens regardless of blocking,
106 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
107 * any pending/queued SIGCONT signals; this happens regardless of blocking,
108 * catching, or ignored the stop signal, though (except for SIGSTOP) the
109 * default action of stopping the process may happen later or never.
110 */
111
112 #ifdef SIGEMT
113 #define M_SIGEMT M(SIGEMT)
114 #else
115 #define M_SIGEMT 0
116 #endif
117
118 #if SIGRTMIN > BITS_PER_LONG
119 #define M(sig) (1ULL << ((sig)-1))
120 #else
121 #define M(sig) (1UL << ((sig)-1))
122 #endif
123 #define T(sig, mask) (M(sig) & (mask))
124
125 #define SIG_KERNEL_ONLY_MASK (\
126 M(SIGKILL) | M(SIGSTOP) )
127
128 #define SIG_KERNEL_STOP_MASK (\
129 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
130
131 #define SIG_KERNEL_COREDUMP_MASK (\
132 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
133 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
134 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
135
136 #define SIG_KERNEL_IGNORE_MASK (\
137 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
138
139 #define sig_kernel_only(sig) \
140 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
141 #define sig_kernel_coredump(sig) \
142 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
143 #define sig_kernel_ignore(sig) \
144 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
145 #define sig_kernel_stop(sig) \
146 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
147
148 #define sig_needs_tasklist(sig) ((sig) == SIGCONT)
149
150 #define sig_user_defined(t, signr) \
151 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
152 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
153
154 #define sig_fatal(t, signr) \
155 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
156 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
157
158 static int sig_ignored(struct task_struct *t, int sig)
159 {
160 void __user * handler;
161
162 /*
163 * Tracers always want to know about signals..
164 */
165 if (t->ptrace & PT_PTRACED)
166 return 0;
167
168 /*
169 * Blocked signals are never ignored, since the
170 * signal handler may change by the time it is
171 * unblocked.
172 */
173 if (sigismember(&t->blocked, sig))
174 return 0;
175
176 /* Is it explicitly or implicitly ignored? */
177 handler = t->sighand->action[sig-1].sa.sa_handler;
178 return handler == SIG_IGN ||
179 (handler == SIG_DFL && sig_kernel_ignore(sig));
180 }
181
182 /*
183 * Re-calculate pending state from the set of locally pending
184 * signals, globally pending signals, and blocked signals.
185 */
186 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
187 {
188 unsigned long ready;
189 long i;
190
191 switch (_NSIG_WORDS) {
192 default:
193 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
194 ready |= signal->sig[i] &~ blocked->sig[i];
195 break;
196
197 case 4: ready = signal->sig[3] &~ blocked->sig[3];
198 ready |= signal->sig[2] &~ blocked->sig[2];
199 ready |= signal->sig[1] &~ blocked->sig[1];
200 ready |= signal->sig[0] &~ blocked->sig[0];
201 break;
202
203 case 2: ready = signal->sig[1] &~ blocked->sig[1];
204 ready |= signal->sig[0] &~ blocked->sig[0];
205 break;
206
207 case 1: ready = signal->sig[0] &~ blocked->sig[0];
208 }
209 return ready != 0;
210 }
211
212 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
213
214 fastcall void recalc_sigpending_tsk(struct task_struct *t)
215 {
216 if (t->signal->group_stop_count > 0 ||
217 (freezing(t)) ||
218 PENDING(&t->pending, &t->blocked) ||
219 PENDING(&t->signal->shared_pending, &t->blocked))
220 set_tsk_thread_flag(t, TIF_SIGPENDING);
221 else
222 clear_tsk_thread_flag(t, TIF_SIGPENDING);
223 }
224
225 void recalc_sigpending(void)
226 {
227 recalc_sigpending_tsk(current);
228 }
229
230 /* Given the mask, find the first available signal that should be serviced. */
231
232 static int
233 next_signal(struct sigpending *pending, sigset_t *mask)
234 {
235 unsigned long i, *s, *m, x;
236 int sig = 0;
237
238 s = pending->signal.sig;
239 m = mask->sig;
240 switch (_NSIG_WORDS) {
241 default:
242 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
243 if ((x = *s &~ *m) != 0) {
244 sig = ffz(~x) + i*_NSIG_BPW + 1;
245 break;
246 }
247 break;
248
249 case 2: if ((x = s[0] &~ m[0]) != 0)
250 sig = 1;
251 else if ((x = s[1] &~ m[1]) != 0)
252 sig = _NSIG_BPW + 1;
253 else
254 break;
255 sig += ffz(~x);
256 break;
257
258 case 1: if ((x = *s &~ *m) != 0)
259 sig = ffz(~x) + 1;
260 break;
261 }
262
263 return sig;
264 }
265
266 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
267 int override_rlimit)
268 {
269 struct sigqueue *q = NULL;
270
271 atomic_inc(&t->user->sigpending);
272 if (override_rlimit ||
273 atomic_read(&t->user->sigpending) <=
274 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
275 q = kmem_cache_alloc(sigqueue_cachep, flags);
276 if (unlikely(q == NULL)) {
277 atomic_dec(&t->user->sigpending);
278 } else {
279 INIT_LIST_HEAD(&q->list);
280 q->flags = 0;
281 q->user = get_uid(t->user);
282 }
283 return(q);
284 }
285
286 static void __sigqueue_free(struct sigqueue *q)
287 {
288 if (q->flags & SIGQUEUE_PREALLOC)
289 return;
290 atomic_dec(&q->user->sigpending);
291 free_uid(q->user);
292 kmem_cache_free(sigqueue_cachep, q);
293 }
294
295 void flush_sigqueue(struct sigpending *queue)
296 {
297 struct sigqueue *q;
298
299 sigemptyset(&queue->signal);
300 while (!list_empty(&queue->list)) {
301 q = list_entry(queue->list.next, struct sigqueue , list);
302 list_del_init(&q->list);
303 __sigqueue_free(q);
304 }
305 }
306
307 /*
308 * Flush all pending signals for a task.
309 */
310 void flush_signals(struct task_struct *t)
311 {
312 unsigned long flags;
313
314 spin_lock_irqsave(&t->sighand->siglock, flags);
315 clear_tsk_thread_flag(t,TIF_SIGPENDING);
316 flush_sigqueue(&t->pending);
317 flush_sigqueue(&t->signal->shared_pending);
318 spin_unlock_irqrestore(&t->sighand->siglock, flags);
319 }
320
321 /*
322 * Flush all handlers for a task.
323 */
324
325 void
326 flush_signal_handlers(struct task_struct *t, int force_default)
327 {
328 int i;
329 struct k_sigaction *ka = &t->sighand->action[0];
330 for (i = _NSIG ; i != 0 ; i--) {
331 if (force_default || ka->sa.sa_handler != SIG_IGN)
332 ka->sa.sa_handler = SIG_DFL;
333 ka->sa.sa_flags = 0;
334 sigemptyset(&ka->sa.sa_mask);
335 ka++;
336 }
337 }
338
339
340 /* Notify the system that a driver wants to block all signals for this
341 * process, and wants to be notified if any signals at all were to be
342 * sent/acted upon. If the notifier routine returns non-zero, then the
343 * signal will be acted upon after all. If the notifier routine returns 0,
344 * then then signal will be blocked. Only one block per process is
345 * allowed. priv is a pointer to private data that the notifier routine
346 * can use to determine if the signal should be blocked or not. */
347
348 void
349 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
350 {
351 unsigned long flags;
352
353 spin_lock_irqsave(&current->sighand->siglock, flags);
354 current->notifier_mask = mask;
355 current->notifier_data = priv;
356 current->notifier = notifier;
357 spin_unlock_irqrestore(&current->sighand->siglock, flags);
358 }
359
360 /* Notify the system that blocking has ended. */
361
362 void
363 unblock_all_signals(void)
364 {
365 unsigned long flags;
366
367 spin_lock_irqsave(&current->sighand->siglock, flags);
368 current->notifier = NULL;
369 current->notifier_data = NULL;
370 recalc_sigpending();
371 spin_unlock_irqrestore(&current->sighand->siglock, flags);
372 }
373
374 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
375 {
376 struct sigqueue *q, *first = NULL;
377 int still_pending = 0;
378
379 if (unlikely(!sigismember(&list->signal, sig)))
380 return 0;
381
382 /*
383 * Collect the siginfo appropriate to this signal. Check if
384 * there is another siginfo for the same signal.
385 */
386 list_for_each_entry(q, &list->list, list) {
387 if (q->info.si_signo == sig) {
388 if (first) {
389 still_pending = 1;
390 break;
391 }
392 first = q;
393 }
394 }
395 if (first) {
396 list_del_init(&first->list);
397 copy_siginfo(info, &first->info);
398 __sigqueue_free(first);
399 if (!still_pending)
400 sigdelset(&list->signal, sig);
401 } else {
402
403 /* Ok, it wasn't in the queue. This must be
404 a fast-pathed signal or we must have been
405 out of queue space. So zero out the info.
406 */
407 sigdelset(&list->signal, sig);
408 info->si_signo = sig;
409 info->si_errno = 0;
410 info->si_code = 0;
411 info->si_pid = 0;
412 info->si_uid = 0;
413 }
414 return 1;
415 }
416
417 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
418 siginfo_t *info)
419 {
420 int sig = 0;
421
422 sig = next_signal(pending, mask);
423 if (sig) {
424 if (current->notifier) {
425 if (sigismember(current->notifier_mask, sig)) {
426 if (!(current->notifier)(current->notifier_data)) {
427 clear_thread_flag(TIF_SIGPENDING);
428 return 0;
429 }
430 }
431 }
432
433 if (!collect_signal(sig, pending, info))
434 sig = 0;
435
436 }
437 recalc_sigpending();
438
439 return sig;
440 }
441
442 /*
443 * Dequeue a signal and return the element to the caller, which is
444 * expected to free it.
445 *
446 * All callers have to hold the siglock.
447 */
448 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
449 {
450 int signr = __dequeue_signal(&tsk->pending, mask, info);
451 if (!signr)
452 signr = __dequeue_signal(&tsk->signal->shared_pending,
453 mask, info);
454 if (signr && unlikely(sig_kernel_stop(signr))) {
455 /*
456 * Set a marker that we have dequeued a stop signal. Our
457 * caller might release the siglock and then the pending
458 * stop signal it is about to process is no longer in the
459 * pending bitmasks, but must still be cleared by a SIGCONT
460 * (and overruled by a SIGKILL). So those cases clear this
461 * shared flag after we've set it. Note that this flag may
462 * remain set after the signal we return is ignored or
463 * handled. That doesn't matter because its only purpose
464 * is to alert stop-signal processing code when another
465 * processor has come along and cleared the flag.
466 */
467 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
468 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
469 }
470 if ( signr &&
471 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
472 info->si_sys_private){
473 /*
474 * Release the siglock to ensure proper locking order
475 * of timer locks outside of siglocks. Note, we leave
476 * irqs disabled here, since the posix-timers code is
477 * about to disable them again anyway.
478 */
479 spin_unlock(&tsk->sighand->siglock);
480 do_schedule_next_timer(info);
481 spin_lock(&tsk->sighand->siglock);
482 }
483 return signr;
484 }
485
486 /*
487 * Tell a process that it has a new active signal..
488 *
489 * NOTE! we rely on the previous spin_lock to
490 * lock interrupts for us! We can only be called with
491 * "siglock" held, and the local interrupt must
492 * have been disabled when that got acquired!
493 *
494 * No need to set need_resched since signal event passing
495 * goes through ->blocked
496 */
497 void signal_wake_up(struct task_struct *t, int resume)
498 {
499 unsigned int mask;
500
501 set_tsk_thread_flag(t, TIF_SIGPENDING);
502
503 /*
504 * For SIGKILL, we want to wake it up in the stopped/traced case.
505 * We don't check t->state here because there is a race with it
506 * executing another processor and just now entering stopped state.
507 * By using wake_up_state, we ensure the process will wake up and
508 * handle its death signal.
509 */
510 mask = TASK_INTERRUPTIBLE;
511 if (resume)
512 mask |= TASK_STOPPED | TASK_TRACED;
513 if (!wake_up_state(t, mask))
514 kick_process(t);
515 }
516
517 /*
518 * Remove signals in mask from the pending set and queue.
519 * Returns 1 if any signals were found.
520 *
521 * All callers must be holding the siglock.
522 *
523 * This version takes a sigset mask and looks at all signals,
524 * not just those in the first mask word.
525 */
526 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
527 {
528 struct sigqueue *q, *n;
529 sigset_t m;
530
531 sigandsets(&m, mask, &s->signal);
532 if (sigisemptyset(&m))
533 return 0;
534
535 signandsets(&s->signal, &s->signal, mask);
536 list_for_each_entry_safe(q, n, &s->list, list) {
537 if (sigismember(mask, q->info.si_signo)) {
538 list_del_init(&q->list);
539 __sigqueue_free(q);
540 }
541 }
542 return 1;
543 }
544 /*
545 * Remove signals in mask from the pending set and queue.
546 * Returns 1 if any signals were found.
547 *
548 * All callers must be holding the siglock.
549 */
550 static int rm_from_queue(unsigned long mask, struct sigpending *s)
551 {
552 struct sigqueue *q, *n;
553
554 if (!sigtestsetmask(&s->signal, mask))
555 return 0;
556
557 sigdelsetmask(&s->signal, mask);
558 list_for_each_entry_safe(q, n, &s->list, list) {
559 if (q->info.si_signo < SIGRTMIN &&
560 (mask & sigmask(q->info.si_signo))) {
561 list_del_init(&q->list);
562 __sigqueue_free(q);
563 }
564 }
565 return 1;
566 }
567
568 /*
569 * Bad permissions for sending the signal
570 */
571 static int check_kill_permission(int sig, struct siginfo *info,
572 struct task_struct *t)
573 {
574 int error = -EINVAL;
575 if (!valid_signal(sig))
576 return error;
577 error = -EPERM;
578 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
579 && ((sig != SIGCONT) ||
580 (current->signal->session != t->signal->session))
581 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
582 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
583 && !capable(CAP_KILL))
584 return error;
585
586 error = security_task_kill(t, info, sig);
587 if (!error)
588 audit_signal_info(sig, t); /* Let audit system see the signal */
589 return error;
590 }
591
592 /* forward decl */
593 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
594
595 /*
596 * Handle magic process-wide effects of stop/continue signals.
597 * Unlike the signal actions, these happen immediately at signal-generation
598 * time regardless of blocking, ignoring, or handling. This does the
599 * actual continuing for SIGCONT, but not the actual stopping for stop
600 * signals. The process stop is done as a signal action for SIG_DFL.
601 */
602 static void handle_stop_signal(int sig, struct task_struct *p)
603 {
604 struct task_struct *t;
605
606 if (p->signal->flags & SIGNAL_GROUP_EXIT)
607 /*
608 * The process is in the middle of dying already.
609 */
610 return;
611
612 if (sig_kernel_stop(sig)) {
613 /*
614 * This is a stop signal. Remove SIGCONT from all queues.
615 */
616 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
617 t = p;
618 do {
619 rm_from_queue(sigmask(SIGCONT), &t->pending);
620 t = next_thread(t);
621 } while (t != p);
622 } else if (sig == SIGCONT) {
623 /*
624 * Remove all stop signals from all queues,
625 * and wake all threads.
626 */
627 if (unlikely(p->signal->group_stop_count > 0)) {
628 /*
629 * There was a group stop in progress. We'll
630 * pretend it finished before we got here. We are
631 * obliged to report it to the parent: if the
632 * SIGSTOP happened "after" this SIGCONT, then it
633 * would have cleared this pending SIGCONT. If it
634 * happened "before" this SIGCONT, then the parent
635 * got the SIGCHLD about the stop finishing before
636 * the continue happened. We do the notification
637 * now, and it's as if the stop had finished and
638 * the SIGCHLD was pending on entry to this kill.
639 */
640 p->signal->group_stop_count = 0;
641 p->signal->flags = SIGNAL_STOP_CONTINUED;
642 spin_unlock(&p->sighand->siglock);
643 do_notify_parent_cldstop(p, CLD_STOPPED);
644 spin_lock(&p->sighand->siglock);
645 }
646 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
647 t = p;
648 do {
649 unsigned int state;
650 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
651
652 /*
653 * If there is a handler for SIGCONT, we must make
654 * sure that no thread returns to user mode before
655 * we post the signal, in case it was the only
656 * thread eligible to run the signal handler--then
657 * it must not do anything between resuming and
658 * running the handler. With the TIF_SIGPENDING
659 * flag set, the thread will pause and acquire the
660 * siglock that we hold now and until we've queued
661 * the pending signal.
662 *
663 * Wake up the stopped thread _after_ setting
664 * TIF_SIGPENDING
665 */
666 state = TASK_STOPPED;
667 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
668 set_tsk_thread_flag(t, TIF_SIGPENDING);
669 state |= TASK_INTERRUPTIBLE;
670 }
671 wake_up_state(t, state);
672
673 t = next_thread(t);
674 } while (t != p);
675
676 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
677 /*
678 * We were in fact stopped, and are now continued.
679 * Notify the parent with CLD_CONTINUED.
680 */
681 p->signal->flags = SIGNAL_STOP_CONTINUED;
682 p->signal->group_exit_code = 0;
683 spin_unlock(&p->sighand->siglock);
684 do_notify_parent_cldstop(p, CLD_CONTINUED);
685 spin_lock(&p->sighand->siglock);
686 } else {
687 /*
688 * We are not stopped, but there could be a stop
689 * signal in the middle of being processed after
690 * being removed from the queue. Clear that too.
691 */
692 p->signal->flags = 0;
693 }
694 } else if (sig == SIGKILL) {
695 /*
696 * Make sure that any pending stop signal already dequeued
697 * is undone by the wakeup for SIGKILL.
698 */
699 p->signal->flags = 0;
700 }
701 }
702
703 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
704 struct sigpending *signals)
705 {
706 struct sigqueue * q = NULL;
707 int ret = 0;
708
709 /*
710 * fast-pathed signals for kernel-internal things like SIGSTOP
711 * or SIGKILL.
712 */
713 if (info == SEND_SIG_FORCED)
714 goto out_set;
715
716 /* Real-time signals must be queued if sent by sigqueue, or
717 some other real-time mechanism. It is implementation
718 defined whether kill() does so. We attempt to do so, on
719 the principle of least surprise, but since kill is not
720 allowed to fail with EAGAIN when low on memory we just
721 make sure at least one signal gets delivered and don't
722 pass on the info struct. */
723
724 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
725 (is_si_special(info) ||
726 info->si_code >= 0)));
727 if (q) {
728 list_add_tail(&q->list, &signals->list);
729 switch ((unsigned long) info) {
730 case (unsigned long) SEND_SIG_NOINFO:
731 q->info.si_signo = sig;
732 q->info.si_errno = 0;
733 q->info.si_code = SI_USER;
734 q->info.si_pid = current->pid;
735 q->info.si_uid = current->uid;
736 break;
737 case (unsigned long) SEND_SIG_PRIV:
738 q->info.si_signo = sig;
739 q->info.si_errno = 0;
740 q->info.si_code = SI_KERNEL;
741 q->info.si_pid = 0;
742 q->info.si_uid = 0;
743 break;
744 default:
745 copy_siginfo(&q->info, info);
746 break;
747 }
748 } else if (!is_si_special(info)) {
749 if (sig >= SIGRTMIN && info->si_code != SI_USER)
750 /*
751 * Queue overflow, abort. We may abort if the signal was rt
752 * and sent by user using something other than kill().
753 */
754 return -EAGAIN;
755 }
756
757 out_set:
758 sigaddset(&signals->signal, sig);
759 return ret;
760 }
761
762 #define LEGACY_QUEUE(sigptr, sig) \
763 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
764
765
766 static int
767 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
768 {
769 int ret = 0;
770
771 BUG_ON(!irqs_disabled());
772 assert_spin_locked(&t->sighand->siglock);
773
774 /* Short-circuit ignored signals. */
775 if (sig_ignored(t, sig))
776 goto out;
777
778 /* Support queueing exactly one non-rt signal, so that we
779 can get more detailed information about the cause of
780 the signal. */
781 if (LEGACY_QUEUE(&t->pending, sig))
782 goto out;
783
784 ret = send_signal(sig, info, t, &t->pending);
785 if (!ret && !sigismember(&t->blocked, sig))
786 signal_wake_up(t, sig == SIGKILL);
787 out:
788 return ret;
789 }
790
791 /*
792 * Force a signal that the process can't ignore: if necessary
793 * we unblock the signal and change any SIG_IGN to SIG_DFL.
794 */
795
796 int
797 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
798 {
799 unsigned long int flags;
800 int ret;
801
802 spin_lock_irqsave(&t->sighand->siglock, flags);
803 if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) {
804 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
805 }
806 if (sigismember(&t->blocked, sig)) {
807 sigdelset(&t->blocked, sig);
808 }
809 recalc_sigpending_tsk(t);
810 ret = specific_send_sig_info(sig, info, t);
811 spin_unlock_irqrestore(&t->sighand->siglock, flags);
812
813 return ret;
814 }
815
816 void
817 force_sig_specific(int sig, struct task_struct *t)
818 {
819 force_sig_info(sig, SEND_SIG_FORCED, t);
820 }
821
822 /*
823 * Test if P wants to take SIG. After we've checked all threads with this,
824 * it's equivalent to finding no threads not blocking SIG. Any threads not
825 * blocking SIG were ruled out because they are not running and already
826 * have pending signals. Such threads will dequeue from the shared queue
827 * as soon as they're available, so putting the signal on the shared queue
828 * will be equivalent to sending it to one such thread.
829 */
830 static inline int wants_signal(int sig, struct task_struct *p)
831 {
832 if (sigismember(&p->blocked, sig))
833 return 0;
834 if (p->flags & PF_EXITING)
835 return 0;
836 if (sig == SIGKILL)
837 return 1;
838 if (p->state & (TASK_STOPPED | TASK_TRACED))
839 return 0;
840 return task_curr(p) || !signal_pending(p);
841 }
842
843 static void
844 __group_complete_signal(int sig, struct task_struct *p)
845 {
846 struct task_struct *t;
847
848 /*
849 * Now find a thread we can wake up to take the signal off the queue.
850 *
851 * If the main thread wants the signal, it gets first crack.
852 * Probably the least surprising to the average bear.
853 */
854 if (wants_signal(sig, p))
855 t = p;
856 else if (thread_group_empty(p))
857 /*
858 * There is just one thread and it does not need to be woken.
859 * It will dequeue unblocked signals before it runs again.
860 */
861 return;
862 else {
863 /*
864 * Otherwise try to find a suitable thread.
865 */
866 t = p->signal->curr_target;
867 if (t == NULL)
868 /* restart balancing at this thread */
869 t = p->signal->curr_target = p;
870
871 while (!wants_signal(sig, t)) {
872 t = next_thread(t);
873 if (t == p->signal->curr_target)
874 /*
875 * No thread needs to be woken.
876 * Any eligible threads will see
877 * the signal in the queue soon.
878 */
879 return;
880 }
881 p->signal->curr_target = t;
882 }
883
884 /*
885 * Found a killable thread. If the signal will be fatal,
886 * then start taking the whole group down immediately.
887 */
888 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
889 !sigismember(&t->real_blocked, sig) &&
890 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
891 /*
892 * This signal will be fatal to the whole group.
893 */
894 if (!sig_kernel_coredump(sig)) {
895 /*
896 * Start a group exit and wake everybody up.
897 * This way we don't have other threads
898 * running and doing things after a slower
899 * thread has the fatal signal pending.
900 */
901 p->signal->flags = SIGNAL_GROUP_EXIT;
902 p->signal->group_exit_code = sig;
903 p->signal->group_stop_count = 0;
904 t = p;
905 do {
906 sigaddset(&t->pending.signal, SIGKILL);
907 signal_wake_up(t, 1);
908 t = next_thread(t);
909 } while (t != p);
910 return;
911 }
912
913 /*
914 * There will be a core dump. We make all threads other
915 * than the chosen one go into a group stop so that nothing
916 * happens until it gets scheduled, takes the signal off
917 * the shared queue, and does the core dump. This is a
918 * little more complicated than strictly necessary, but it
919 * keeps the signal state that winds up in the core dump
920 * unchanged from the death state, e.g. which thread had
921 * the core-dump signal unblocked.
922 */
923 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
924 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
925 p->signal->group_stop_count = 0;
926 p->signal->group_exit_task = t;
927 t = p;
928 do {
929 p->signal->group_stop_count++;
930 signal_wake_up(t, 0);
931 t = next_thread(t);
932 } while (t != p);
933 wake_up_process(p->signal->group_exit_task);
934 return;
935 }
936
937 /*
938 * The signal is already in the shared-pending queue.
939 * Tell the chosen thread to wake up and dequeue it.
940 */
941 signal_wake_up(t, sig == SIGKILL);
942 return;
943 }
944
945 int
946 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
947 {
948 int ret = 0;
949
950 assert_spin_locked(&p->sighand->siglock);
951 handle_stop_signal(sig, p);
952
953 /* Short-circuit ignored signals. */
954 if (sig_ignored(p, sig))
955 return ret;
956
957 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
958 /* This is a non-RT signal and we already have one queued. */
959 return ret;
960
961 /*
962 * Put this signal on the shared-pending queue, or fail with EAGAIN.
963 * We always use the shared queue for process-wide signals,
964 * to avoid several races.
965 */
966 ret = send_signal(sig, info, p, &p->signal->shared_pending);
967 if (unlikely(ret))
968 return ret;
969
970 __group_complete_signal(sig, p);
971 return 0;
972 }
973
974 /*
975 * Nuke all other threads in the group.
976 */
977 void zap_other_threads(struct task_struct *p)
978 {
979 struct task_struct *t;
980
981 p->signal->flags = SIGNAL_GROUP_EXIT;
982 p->signal->group_stop_count = 0;
983
984 if (thread_group_empty(p))
985 return;
986
987 for (t = next_thread(p); t != p; t = next_thread(t)) {
988 /*
989 * Don't bother with already dead threads
990 */
991 if (t->exit_state)
992 continue;
993
994 /*
995 * We don't want to notify the parent, since we are
996 * killed as part of a thread group due to another
997 * thread doing an execve() or similar. So set the
998 * exit signal to -1 to allow immediate reaping of
999 * the process. But don't detach the thread group
1000 * leader.
1001 */
1002 if (t != p->group_leader)
1003 t->exit_signal = -1;
1004
1005 /* SIGKILL will be handled before any pending SIGSTOP */
1006 sigaddset(&t->pending.signal, SIGKILL);
1007 signal_wake_up(t, 1);
1008 }
1009 }
1010
1011 /*
1012 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
1013 */
1014 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1015 {
1016 struct sighand_struct *sighand;
1017
1018 for (;;) {
1019 sighand = rcu_dereference(tsk->sighand);
1020 if (unlikely(sighand == NULL))
1021 break;
1022
1023 spin_lock_irqsave(&sighand->siglock, *flags);
1024 if (likely(sighand == tsk->sighand))
1025 break;
1026 spin_unlock_irqrestore(&sighand->siglock, *flags);
1027 }
1028
1029 return sighand;
1030 }
1031
1032 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1033 {
1034 unsigned long flags;
1035 int ret;
1036
1037 ret = check_kill_permission(sig, info, p);
1038
1039 if (!ret && sig) {
1040 ret = -ESRCH;
1041 if (lock_task_sighand(p, &flags)) {
1042 ret = __group_send_sig_info(sig, info, p);
1043 unlock_task_sighand(p, &flags);
1044 }
1045 }
1046
1047 return ret;
1048 }
1049
1050 /*
1051 * kill_pg_info() sends a signal to a process group: this is what the tty
1052 * control characters do (^C, ^Z etc)
1053 */
1054
1055 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1056 {
1057 struct task_struct *p = NULL;
1058 int retval, success;
1059
1060 if (pgrp <= 0)
1061 return -EINVAL;
1062
1063 success = 0;
1064 retval = -ESRCH;
1065 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
1066 int err = group_send_sig_info(sig, info, p);
1067 success |= !err;
1068 retval = err;
1069 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
1070 return success ? 0 : retval;
1071 }
1072
1073 int
1074 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1075 {
1076 int retval;
1077
1078 read_lock(&tasklist_lock);
1079 retval = __kill_pg_info(sig, info, pgrp);
1080 read_unlock(&tasklist_lock);
1081
1082 return retval;
1083 }
1084
1085 int
1086 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1087 {
1088 int error;
1089 int acquired_tasklist_lock = 0;
1090 struct task_struct *p;
1091
1092 rcu_read_lock();
1093 if (unlikely(sig_needs_tasklist(sig))) {
1094 read_lock(&tasklist_lock);
1095 acquired_tasklist_lock = 1;
1096 }
1097 p = find_task_by_pid(pid);
1098 error = -ESRCH;
1099 if (p)
1100 error = group_send_sig_info(sig, info, p);
1101 if (unlikely(acquired_tasklist_lock))
1102 read_unlock(&tasklist_lock);
1103 rcu_read_unlock();
1104 return error;
1105 }
1106
1107 /* like kill_proc_info(), but doesn't use uid/euid of "current" */
1108 int kill_proc_info_as_uid(int sig, struct siginfo *info, pid_t pid,
1109 uid_t uid, uid_t euid)
1110 {
1111 int ret = -EINVAL;
1112 struct task_struct *p;
1113
1114 if (!valid_signal(sig))
1115 return ret;
1116
1117 read_lock(&tasklist_lock);
1118 p = find_task_by_pid(pid);
1119 if (!p) {
1120 ret = -ESRCH;
1121 goto out_unlock;
1122 }
1123 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1124 && (euid != p->suid) && (euid != p->uid)
1125 && (uid != p->suid) && (uid != p->uid)) {
1126 ret = -EPERM;
1127 goto out_unlock;
1128 }
1129 if (sig && p->sighand) {
1130 unsigned long flags;
1131 spin_lock_irqsave(&p->sighand->siglock, flags);
1132 ret = __group_send_sig_info(sig, info, p);
1133 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1134 }
1135 out_unlock:
1136 read_unlock(&tasklist_lock);
1137 return ret;
1138 }
1139 EXPORT_SYMBOL_GPL(kill_proc_info_as_uid);
1140
1141 /*
1142 * kill_something_info() interprets pid in interesting ways just like kill(2).
1143 *
1144 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1145 * is probably wrong. Should make it like BSD or SYSV.
1146 */
1147
1148 static int kill_something_info(int sig, struct siginfo *info, int pid)
1149 {
1150 if (!pid) {
1151 return kill_pg_info(sig, info, process_group(current));
1152 } else if (pid == -1) {
1153 int retval = 0, count = 0;
1154 struct task_struct * p;
1155
1156 read_lock(&tasklist_lock);
1157 for_each_process(p) {
1158 if (p->pid > 1 && p->tgid != current->tgid) {
1159 int err = group_send_sig_info(sig, info, p);
1160 ++count;
1161 if (err != -EPERM)
1162 retval = err;
1163 }
1164 }
1165 read_unlock(&tasklist_lock);
1166 return count ? retval : -ESRCH;
1167 } else if (pid < 0) {
1168 return kill_pg_info(sig, info, -pid);
1169 } else {
1170 return kill_proc_info(sig, info, pid);
1171 }
1172 }
1173
1174 /*
1175 * These are for backward compatibility with the rest of the kernel source.
1176 */
1177
1178 /*
1179 * These two are the most common entry points. They send a signal
1180 * just to the specific thread.
1181 */
1182 int
1183 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1184 {
1185 int ret;
1186 unsigned long flags;
1187
1188 /*
1189 * Make sure legacy kernel users don't send in bad values
1190 * (normal paths check this in check_kill_permission).
1191 */
1192 if (!valid_signal(sig))
1193 return -EINVAL;
1194
1195 /*
1196 * We need the tasklist lock even for the specific
1197 * thread case (when we don't need to follow the group
1198 * lists) in order to avoid races with "p->sighand"
1199 * going away or changing from under us.
1200 */
1201 read_lock(&tasklist_lock);
1202 spin_lock_irqsave(&p->sighand->siglock, flags);
1203 ret = specific_send_sig_info(sig, info, p);
1204 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1205 read_unlock(&tasklist_lock);
1206 return ret;
1207 }
1208
1209 #define __si_special(priv) \
1210 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1211
1212 int
1213 send_sig(int sig, struct task_struct *p, int priv)
1214 {
1215 return send_sig_info(sig, __si_special(priv), p);
1216 }
1217
1218 /*
1219 * This is the entry point for "process-wide" signals.
1220 * They will go to an appropriate thread in the thread group.
1221 */
1222 int
1223 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1224 {
1225 int ret;
1226 read_lock(&tasklist_lock);
1227 ret = group_send_sig_info(sig, info, p);
1228 read_unlock(&tasklist_lock);
1229 return ret;
1230 }
1231
1232 void
1233 force_sig(int sig, struct task_struct *p)
1234 {
1235 force_sig_info(sig, SEND_SIG_PRIV, p);
1236 }
1237
1238 /*
1239 * When things go south during signal handling, we
1240 * will force a SIGSEGV. And if the signal that caused
1241 * the problem was already a SIGSEGV, we'll want to
1242 * make sure we don't even try to deliver the signal..
1243 */
1244 int
1245 force_sigsegv(int sig, struct task_struct *p)
1246 {
1247 if (sig == SIGSEGV) {
1248 unsigned long flags;
1249 spin_lock_irqsave(&p->sighand->siglock, flags);
1250 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1251 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1252 }
1253 force_sig(SIGSEGV, p);
1254 return 0;
1255 }
1256
1257 int
1258 kill_pg(pid_t pgrp, int sig, int priv)
1259 {
1260 return kill_pg_info(sig, __si_special(priv), pgrp);
1261 }
1262
1263 int
1264 kill_proc(pid_t pid, int sig, int priv)
1265 {
1266 return kill_proc_info(sig, __si_special(priv), pid);
1267 }
1268
1269 /*
1270 * These functions support sending signals using preallocated sigqueue
1271 * structures. This is needed "because realtime applications cannot
1272 * afford to lose notifications of asynchronous events, like timer
1273 * expirations or I/O completions". In the case of Posix Timers
1274 * we allocate the sigqueue structure from the timer_create. If this
1275 * allocation fails we are able to report the failure to the application
1276 * with an EAGAIN error.
1277 */
1278
1279 struct sigqueue *sigqueue_alloc(void)
1280 {
1281 struct sigqueue *q;
1282
1283 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1284 q->flags |= SIGQUEUE_PREALLOC;
1285 return(q);
1286 }
1287
1288 void sigqueue_free(struct sigqueue *q)
1289 {
1290 unsigned long flags;
1291 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1292 /*
1293 * If the signal is still pending remove it from the
1294 * pending queue.
1295 */
1296 if (unlikely(!list_empty(&q->list))) {
1297 spinlock_t *lock = &current->sighand->siglock;
1298 read_lock(&tasklist_lock);
1299 spin_lock_irqsave(lock, flags);
1300 if (!list_empty(&q->list))
1301 list_del_init(&q->list);
1302 spin_unlock_irqrestore(lock, flags);
1303 read_unlock(&tasklist_lock);
1304 }
1305 q->flags &= ~SIGQUEUE_PREALLOC;
1306 __sigqueue_free(q);
1307 }
1308
1309 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1310 {
1311 unsigned long flags;
1312 int ret = 0;
1313
1314 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1315
1316 /*
1317 * The rcu based delayed sighand destroy makes it possible to
1318 * run this without tasklist lock held. The task struct itself
1319 * cannot go away as create_timer did get_task_struct().
1320 *
1321 * We return -1, when the task is marked exiting, so
1322 * posix_timer_event can redirect it to the group leader
1323 */
1324 rcu_read_lock();
1325
1326 if (!likely(lock_task_sighand(p, &flags))) {
1327 ret = -1;
1328 goto out_err;
1329 }
1330
1331 if (unlikely(!list_empty(&q->list))) {
1332 /*
1333 * If an SI_TIMER entry is already queue just increment
1334 * the overrun count.
1335 */
1336 BUG_ON(q->info.si_code != SI_TIMER);
1337 q->info.si_overrun++;
1338 goto out;
1339 }
1340 /* Short-circuit ignored signals. */
1341 if (sig_ignored(p, sig)) {
1342 ret = 1;
1343 goto out;
1344 }
1345
1346 list_add_tail(&q->list, &p->pending.list);
1347 sigaddset(&p->pending.signal, sig);
1348 if (!sigismember(&p->blocked, sig))
1349 signal_wake_up(p, sig == SIGKILL);
1350
1351 out:
1352 unlock_task_sighand(p, &flags);
1353 out_err:
1354 rcu_read_unlock();
1355
1356 return ret;
1357 }
1358
1359 int
1360 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1361 {
1362 unsigned long flags;
1363 int ret = 0;
1364
1365 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1366
1367 read_lock(&tasklist_lock);
1368 /* Since it_lock is held, p->sighand cannot be NULL. */
1369 spin_lock_irqsave(&p->sighand->siglock, flags);
1370 handle_stop_signal(sig, p);
1371
1372 /* Short-circuit ignored signals. */
1373 if (sig_ignored(p, sig)) {
1374 ret = 1;
1375 goto out;
1376 }
1377
1378 if (unlikely(!list_empty(&q->list))) {
1379 /*
1380 * If an SI_TIMER entry is already queue just increment
1381 * the overrun count. Other uses should not try to
1382 * send the signal multiple times.
1383 */
1384 BUG_ON(q->info.si_code != SI_TIMER);
1385 q->info.si_overrun++;
1386 goto out;
1387 }
1388
1389 /*
1390 * Put this signal on the shared-pending queue.
1391 * We always use the shared queue for process-wide signals,
1392 * to avoid several races.
1393 */
1394 list_add_tail(&q->list, &p->signal->shared_pending.list);
1395 sigaddset(&p->signal->shared_pending.signal, sig);
1396
1397 __group_complete_signal(sig, p);
1398 out:
1399 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1400 read_unlock(&tasklist_lock);
1401 return ret;
1402 }
1403
1404 /*
1405 * Wake up any threads in the parent blocked in wait* syscalls.
1406 */
1407 static inline void __wake_up_parent(struct task_struct *p,
1408 struct task_struct *parent)
1409 {
1410 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1411 }
1412
1413 /*
1414 * Let a parent know about the death of a child.
1415 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1416 */
1417
1418 void do_notify_parent(struct task_struct *tsk, int sig)
1419 {
1420 struct siginfo info;
1421 unsigned long flags;
1422 struct sighand_struct *psig;
1423
1424 BUG_ON(sig == -1);
1425
1426 /* do_notify_parent_cldstop should have been called instead. */
1427 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1428
1429 BUG_ON(!tsk->ptrace &&
1430 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1431
1432 info.si_signo = sig;
1433 info.si_errno = 0;
1434 info.si_pid = tsk->pid;
1435 info.si_uid = tsk->uid;
1436
1437 /* FIXME: find out whether or not this is supposed to be c*time. */
1438 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1439 tsk->signal->utime));
1440 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1441 tsk->signal->stime));
1442
1443 info.si_status = tsk->exit_code & 0x7f;
1444 if (tsk->exit_code & 0x80)
1445 info.si_code = CLD_DUMPED;
1446 else if (tsk->exit_code & 0x7f)
1447 info.si_code = CLD_KILLED;
1448 else {
1449 info.si_code = CLD_EXITED;
1450 info.si_status = tsk->exit_code >> 8;
1451 }
1452
1453 psig = tsk->parent->sighand;
1454 spin_lock_irqsave(&psig->siglock, flags);
1455 if (!tsk->ptrace && sig == SIGCHLD &&
1456 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1457 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1458 /*
1459 * We are exiting and our parent doesn't care. POSIX.1
1460 * defines special semantics for setting SIGCHLD to SIG_IGN
1461 * or setting the SA_NOCLDWAIT flag: we should be reaped
1462 * automatically and not left for our parent's wait4 call.
1463 * Rather than having the parent do it as a magic kind of
1464 * signal handler, we just set this to tell do_exit that we
1465 * can be cleaned up without becoming a zombie. Note that
1466 * we still call __wake_up_parent in this case, because a
1467 * blocked sys_wait4 might now return -ECHILD.
1468 *
1469 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1470 * is implementation-defined: we do (if you don't want
1471 * it, just use SIG_IGN instead).
1472 */
1473 tsk->exit_signal = -1;
1474 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1475 sig = 0;
1476 }
1477 if (valid_signal(sig) && sig > 0)
1478 __group_send_sig_info(sig, &info, tsk->parent);
1479 __wake_up_parent(tsk, tsk->parent);
1480 spin_unlock_irqrestore(&psig->siglock, flags);
1481 }
1482
1483 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1484 {
1485 struct siginfo info;
1486 unsigned long flags;
1487 struct task_struct *parent;
1488 struct sighand_struct *sighand;
1489
1490 if (tsk->ptrace & PT_PTRACED)
1491 parent = tsk->parent;
1492 else {
1493 tsk = tsk->group_leader;
1494 parent = tsk->real_parent;
1495 }
1496
1497 info.si_signo = SIGCHLD;
1498 info.si_errno = 0;
1499 info.si_pid = tsk->pid;
1500 info.si_uid = tsk->uid;
1501
1502 /* FIXME: find out whether or not this is supposed to be c*time. */
1503 info.si_utime = cputime_to_jiffies(tsk->utime);
1504 info.si_stime = cputime_to_jiffies(tsk->stime);
1505
1506 info.si_code = why;
1507 switch (why) {
1508 case CLD_CONTINUED:
1509 info.si_status = SIGCONT;
1510 break;
1511 case CLD_STOPPED:
1512 info.si_status = tsk->signal->group_exit_code & 0x7f;
1513 break;
1514 case CLD_TRAPPED:
1515 info.si_status = tsk->exit_code & 0x7f;
1516 break;
1517 default:
1518 BUG();
1519 }
1520
1521 sighand = parent->sighand;
1522 spin_lock_irqsave(&sighand->siglock, flags);
1523 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1524 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1525 __group_send_sig_info(SIGCHLD, &info, parent);
1526 /*
1527 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1528 */
1529 __wake_up_parent(tsk, parent);
1530 spin_unlock_irqrestore(&sighand->siglock, flags);
1531 }
1532
1533 static inline int may_ptrace_stop(void)
1534 {
1535 if (!likely(current->ptrace & PT_PTRACED))
1536 return 0;
1537
1538 if (unlikely(current->parent == current->real_parent &&
1539 (current->ptrace & PT_ATTACHED)))
1540 return 0;
1541
1542 if (unlikely(current->signal == current->parent->signal) &&
1543 unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))
1544 return 0;
1545
1546 /*
1547 * Are we in the middle of do_coredump?
1548 * If so and our tracer is also part of the coredump stopping
1549 * is a deadlock situation, and pointless because our tracer
1550 * is dead so don't allow us to stop.
1551 * If SIGKILL was already sent before the caller unlocked
1552 * ->siglock we must see ->core_waiters != 0. Otherwise it
1553 * is safe to enter schedule().
1554 */
1555 if (unlikely(current->mm->core_waiters) &&
1556 unlikely(current->mm == current->parent->mm))
1557 return 0;
1558
1559 return 1;
1560 }
1561
1562 /*
1563 * This must be called with current->sighand->siglock held.
1564 *
1565 * This should be the path for all ptrace stops.
1566 * We always set current->last_siginfo while stopped here.
1567 * That makes it a way to test a stopped process for
1568 * being ptrace-stopped vs being job-control-stopped.
1569 *
1570 * If we actually decide not to stop at all because the tracer is gone,
1571 * we leave nostop_code in current->exit_code.
1572 */
1573 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1574 {
1575 /*
1576 * If there is a group stop in progress,
1577 * we must participate in the bookkeeping.
1578 */
1579 if (current->signal->group_stop_count > 0)
1580 --current->signal->group_stop_count;
1581
1582 current->last_siginfo = info;
1583 current->exit_code = exit_code;
1584
1585 /* Let the debugger run. */
1586 set_current_state(TASK_TRACED);
1587 spin_unlock_irq(&current->sighand->siglock);
1588 try_to_freeze();
1589 read_lock(&tasklist_lock);
1590 if (may_ptrace_stop()) {
1591 do_notify_parent_cldstop(current, CLD_TRAPPED);
1592 read_unlock(&tasklist_lock);
1593 schedule();
1594 } else {
1595 /*
1596 * By the time we got the lock, our tracer went away.
1597 * Don't stop here.
1598 */
1599 read_unlock(&tasklist_lock);
1600 set_current_state(TASK_RUNNING);
1601 current->exit_code = nostop_code;
1602 }
1603
1604 /*
1605 * We are back. Now reacquire the siglock before touching
1606 * last_siginfo, so that we are sure to have synchronized with
1607 * any signal-sending on another CPU that wants to examine it.
1608 */
1609 spin_lock_irq(&current->sighand->siglock);
1610 current->last_siginfo = NULL;
1611
1612 /*
1613 * Queued signals ignored us while we were stopped for tracing.
1614 * So check for any that we should take before resuming user mode.
1615 */
1616 recalc_sigpending();
1617 }
1618
1619 void ptrace_notify(int exit_code)
1620 {
1621 siginfo_t info;
1622
1623 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1624
1625 memset(&info, 0, sizeof info);
1626 info.si_signo = SIGTRAP;
1627 info.si_code = exit_code;
1628 info.si_pid = current->pid;
1629 info.si_uid = current->uid;
1630
1631 /* Let the debugger run. */
1632 spin_lock_irq(&current->sighand->siglock);
1633 ptrace_stop(exit_code, 0, &info);
1634 spin_unlock_irq(&current->sighand->siglock);
1635 }
1636
1637 static void
1638 finish_stop(int stop_count)
1639 {
1640 /*
1641 * If there are no other threads in the group, or if there is
1642 * a group stop in progress and we are the last to stop,
1643 * report to the parent. When ptraced, every thread reports itself.
1644 */
1645 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1646 read_lock(&tasklist_lock);
1647 do_notify_parent_cldstop(current, CLD_STOPPED);
1648 read_unlock(&tasklist_lock);
1649 }
1650
1651 schedule();
1652 /*
1653 * Now we don't run again until continued.
1654 */
1655 current->exit_code = 0;
1656 }
1657
1658 /*
1659 * This performs the stopping for SIGSTOP and other stop signals.
1660 * We have to stop all threads in the thread group.
1661 * Returns nonzero if we've actually stopped and released the siglock.
1662 * Returns zero if we didn't stop and still hold the siglock.
1663 */
1664 static int do_signal_stop(int signr)
1665 {
1666 struct signal_struct *sig = current->signal;
1667 int stop_count;
1668
1669 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1670 return 0;
1671
1672 if (sig->group_stop_count > 0) {
1673 /*
1674 * There is a group stop in progress. We don't need to
1675 * start another one.
1676 */
1677 stop_count = --sig->group_stop_count;
1678 } else {
1679 /*
1680 * There is no group stop already in progress.
1681 * We must initiate one now.
1682 */
1683 struct task_struct *t;
1684
1685 sig->group_exit_code = signr;
1686
1687 stop_count = 0;
1688 for (t = next_thread(current); t != current; t = next_thread(t))
1689 /*
1690 * Setting state to TASK_STOPPED for a group
1691 * stop is always done with the siglock held,
1692 * so this check has no races.
1693 */
1694 if (!t->exit_state &&
1695 !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1696 stop_count++;
1697 signal_wake_up(t, 0);
1698 }
1699 sig->group_stop_count = stop_count;
1700 }
1701
1702 if (stop_count == 0)
1703 sig->flags = SIGNAL_STOP_STOPPED;
1704 current->exit_code = sig->group_exit_code;
1705 __set_current_state(TASK_STOPPED);
1706
1707 spin_unlock_irq(&current->sighand->siglock);
1708 finish_stop(stop_count);
1709 return 1;
1710 }
1711
1712 /*
1713 * Do appropriate magic when group_stop_count > 0.
1714 * We return nonzero if we stopped, after releasing the siglock.
1715 * We return zero if we still hold the siglock and should look
1716 * for another signal without checking group_stop_count again.
1717 */
1718 static int handle_group_stop(void)
1719 {
1720 int stop_count;
1721
1722 if (current->signal->group_exit_task == current) {
1723 /*
1724 * Group stop is so we can do a core dump,
1725 * We are the initiating thread, so get on with it.
1726 */
1727 current->signal->group_exit_task = NULL;
1728 return 0;
1729 }
1730
1731 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1732 /*
1733 * Group stop is so another thread can do a core dump,
1734 * or else we are racing against a death signal.
1735 * Just punt the stop so we can get the next signal.
1736 */
1737 return 0;
1738
1739 /*
1740 * There is a group stop in progress. We stop
1741 * without any associated signal being in our queue.
1742 */
1743 stop_count = --current->signal->group_stop_count;
1744 if (stop_count == 0)
1745 current->signal->flags = SIGNAL_STOP_STOPPED;
1746 current->exit_code = current->signal->group_exit_code;
1747 set_current_state(TASK_STOPPED);
1748 spin_unlock_irq(&current->sighand->siglock);
1749 finish_stop(stop_count);
1750 return 1;
1751 }
1752
1753 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1754 struct pt_regs *regs, void *cookie)
1755 {
1756 sigset_t *mask = &current->blocked;
1757 int signr = 0;
1758
1759 try_to_freeze();
1760
1761 relock:
1762 spin_lock_irq(&current->sighand->siglock);
1763 for (;;) {
1764 struct k_sigaction *ka;
1765
1766 if (unlikely(current->signal->group_stop_count > 0) &&
1767 handle_group_stop())
1768 goto relock;
1769
1770 signr = dequeue_signal(current, mask, info);
1771
1772 if (!signr)
1773 break; /* will return 0 */
1774
1775 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1776 ptrace_signal_deliver(regs, cookie);
1777
1778 /* Let the debugger run. */
1779 ptrace_stop(signr, signr, info);
1780
1781 /* We're back. Did the debugger cancel the sig? */
1782 signr = current->exit_code;
1783 if (signr == 0)
1784 continue;
1785
1786 current->exit_code = 0;
1787
1788 /* Update the siginfo structure if the signal has
1789 changed. If the debugger wanted something
1790 specific in the siginfo structure then it should
1791 have updated *info via PTRACE_SETSIGINFO. */
1792 if (signr != info->si_signo) {
1793 info->si_signo = signr;
1794 info->si_errno = 0;
1795 info->si_code = SI_USER;
1796 info->si_pid = current->parent->pid;
1797 info->si_uid = current->parent->uid;
1798 }
1799
1800 /* If the (new) signal is now blocked, requeue it. */
1801 if (sigismember(&current->blocked, signr)) {
1802 specific_send_sig_info(signr, info, current);
1803 continue;
1804 }
1805 }
1806
1807 ka = &current->sighand->action[signr-1];
1808 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1809 continue;
1810 if (ka->sa.sa_handler != SIG_DFL) {
1811 /* Run the handler. */
1812 *return_ka = *ka;
1813
1814 if (ka->sa.sa_flags & SA_ONESHOT)
1815 ka->sa.sa_handler = SIG_DFL;
1816
1817 break; /* will return non-zero "signr" value */
1818 }
1819
1820 /*
1821 * Now we are doing the default action for this signal.
1822 */
1823 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1824 continue;
1825
1826 /* Init gets no signals it doesn't want. */
1827 if (current == child_reaper)
1828 continue;
1829
1830 if (sig_kernel_stop(signr)) {
1831 /*
1832 * The default action is to stop all threads in
1833 * the thread group. The job control signals
1834 * do nothing in an orphaned pgrp, but SIGSTOP
1835 * always works. Note that siglock needs to be
1836 * dropped during the call to is_orphaned_pgrp()
1837 * because of lock ordering with tasklist_lock.
1838 * This allows an intervening SIGCONT to be posted.
1839 * We need to check for that and bail out if necessary.
1840 */
1841 if (signr != SIGSTOP) {
1842 spin_unlock_irq(&current->sighand->siglock);
1843
1844 /* signals can be posted during this window */
1845
1846 if (is_orphaned_pgrp(process_group(current)))
1847 goto relock;
1848
1849 spin_lock_irq(&current->sighand->siglock);
1850 }
1851
1852 if (likely(do_signal_stop(signr))) {
1853 /* It released the siglock. */
1854 goto relock;
1855 }
1856
1857 /*
1858 * We didn't actually stop, due to a race
1859 * with SIGCONT or something like that.
1860 */
1861 continue;
1862 }
1863
1864 spin_unlock_irq(&current->sighand->siglock);
1865
1866 /*
1867 * Anything else is fatal, maybe with a core dump.
1868 */
1869 current->flags |= PF_SIGNALED;
1870 if (sig_kernel_coredump(signr)) {
1871 /*
1872 * If it was able to dump core, this kills all
1873 * other threads in the group and synchronizes with
1874 * their demise. If we lost the race with another
1875 * thread getting here, it set group_exit_code
1876 * first and our do_group_exit call below will use
1877 * that value and ignore the one we pass it.
1878 */
1879 do_coredump((long)signr, signr, regs);
1880 }
1881
1882 /*
1883 * Death signals, no core dump.
1884 */
1885 do_group_exit(signr);
1886 /* NOTREACHED */
1887 }
1888 spin_unlock_irq(&current->sighand->siglock);
1889 return signr;
1890 }
1891
1892 EXPORT_SYMBOL(recalc_sigpending);
1893 EXPORT_SYMBOL_GPL(dequeue_signal);
1894 EXPORT_SYMBOL(flush_signals);
1895 EXPORT_SYMBOL(force_sig);
1896 EXPORT_SYMBOL(kill_pg);
1897 EXPORT_SYMBOL(kill_proc);
1898 EXPORT_SYMBOL(ptrace_notify);
1899 EXPORT_SYMBOL(send_sig);
1900 EXPORT_SYMBOL(send_sig_info);
1901 EXPORT_SYMBOL(sigprocmask);
1902 EXPORT_SYMBOL(block_all_signals);
1903 EXPORT_SYMBOL(unblock_all_signals);
1904
1905
1906 /*
1907 * System call entry points.
1908 */
1909
1910 asmlinkage long sys_restart_syscall(void)
1911 {
1912 struct restart_block *restart = &current_thread_info()->restart_block;
1913 return restart->fn(restart);
1914 }
1915
1916 long do_no_restart_syscall(struct restart_block *param)
1917 {
1918 return -EINTR;
1919 }
1920
1921 /*
1922 * We don't need to get the kernel lock - this is all local to this
1923 * particular thread.. (and that's good, because this is _heavily_
1924 * used by various programs)
1925 */
1926
1927 /*
1928 * This is also useful for kernel threads that want to temporarily
1929 * (or permanently) block certain signals.
1930 *
1931 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1932 * interface happily blocks "unblockable" signals like SIGKILL
1933 * and friends.
1934 */
1935 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1936 {
1937 int error;
1938
1939 spin_lock_irq(&current->sighand->siglock);
1940 if (oldset)
1941 *oldset = current->blocked;
1942
1943 error = 0;
1944 switch (how) {
1945 case SIG_BLOCK:
1946 sigorsets(&current->blocked, &current->blocked, set);
1947 break;
1948 case SIG_UNBLOCK:
1949 signandsets(&current->blocked, &current->blocked, set);
1950 break;
1951 case SIG_SETMASK:
1952 current->blocked = *set;
1953 break;
1954 default:
1955 error = -EINVAL;
1956 }
1957 recalc_sigpending();
1958 spin_unlock_irq(&current->sighand->siglock);
1959
1960 return error;
1961 }
1962
1963 asmlinkage long
1964 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
1965 {
1966 int error = -EINVAL;
1967 sigset_t old_set, new_set;
1968
1969 /* XXX: Don't preclude handling different sized sigset_t's. */
1970 if (sigsetsize != sizeof(sigset_t))
1971 goto out;
1972
1973 if (set) {
1974 error = -EFAULT;
1975 if (copy_from_user(&new_set, set, sizeof(*set)))
1976 goto out;
1977 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
1978
1979 error = sigprocmask(how, &new_set, &old_set);
1980 if (error)
1981 goto out;
1982 if (oset)
1983 goto set_old;
1984 } else if (oset) {
1985 spin_lock_irq(&current->sighand->siglock);
1986 old_set = current->blocked;
1987 spin_unlock_irq(&current->sighand->siglock);
1988
1989 set_old:
1990 error = -EFAULT;
1991 if (copy_to_user(oset, &old_set, sizeof(*oset)))
1992 goto out;
1993 }
1994 error = 0;
1995 out:
1996 return error;
1997 }
1998
1999 long do_sigpending(void __user *set, unsigned long sigsetsize)
2000 {
2001 long error = -EINVAL;
2002 sigset_t pending;
2003
2004 if (sigsetsize > sizeof(sigset_t))
2005 goto out;
2006
2007 spin_lock_irq(&current->sighand->siglock);
2008 sigorsets(&pending, &current->pending.signal,
2009 &current->signal->shared_pending.signal);
2010 spin_unlock_irq(&current->sighand->siglock);
2011
2012 /* Outside the lock because only this thread touches it. */
2013 sigandsets(&pending, &current->blocked, &pending);
2014
2015 error = -EFAULT;
2016 if (!copy_to_user(set, &pending, sigsetsize))
2017 error = 0;
2018
2019 out:
2020 return error;
2021 }
2022
2023 asmlinkage long
2024 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2025 {
2026 return do_sigpending(set, sigsetsize);
2027 }
2028
2029 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2030
2031 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2032 {
2033 int err;
2034
2035 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2036 return -EFAULT;
2037 if (from->si_code < 0)
2038 return __copy_to_user(to, from, sizeof(siginfo_t))
2039 ? -EFAULT : 0;
2040 /*
2041 * If you change siginfo_t structure, please be sure
2042 * this code is fixed accordingly.
2043 * It should never copy any pad contained in the structure
2044 * to avoid security leaks, but must copy the generic
2045 * 3 ints plus the relevant union member.
2046 */
2047 err = __put_user(from->si_signo, &to->si_signo);
2048 err |= __put_user(from->si_errno, &to->si_errno);
2049 err |= __put_user((short)from->si_code, &to->si_code);
2050 switch (from->si_code & __SI_MASK) {
2051 case __SI_KILL:
2052 err |= __put_user(from->si_pid, &to->si_pid);
2053 err |= __put_user(from->si_uid, &to->si_uid);
2054 break;
2055 case __SI_TIMER:
2056 err |= __put_user(from->si_tid, &to->si_tid);
2057 err |= __put_user(from->si_overrun, &to->si_overrun);
2058 err |= __put_user(from->si_ptr, &to->si_ptr);
2059 break;
2060 case __SI_POLL:
2061 err |= __put_user(from->si_band, &to->si_band);
2062 err |= __put_user(from->si_fd, &to->si_fd);
2063 break;
2064 case __SI_FAULT:
2065 err |= __put_user(from->si_addr, &to->si_addr);
2066 #ifdef __ARCH_SI_TRAPNO
2067 err |= __put_user(from->si_trapno, &to->si_trapno);
2068 #endif
2069 break;
2070 case __SI_CHLD:
2071 err |= __put_user(from->si_pid, &to->si_pid);
2072 err |= __put_user(from->si_uid, &to->si_uid);
2073 err |= __put_user(from->si_status, &to->si_status);
2074 err |= __put_user(from->si_utime, &to->si_utime);
2075 err |= __put_user(from->si_stime, &to->si_stime);
2076 break;
2077 case __SI_RT: /* This is not generated by the kernel as of now. */
2078 case __SI_MESGQ: /* But this is */
2079 err |= __put_user(from->si_pid, &to->si_pid);
2080 err |= __put_user(from->si_uid, &to->si_uid);
2081 err |= __put_user(from->si_ptr, &to->si_ptr);
2082 break;
2083 default: /* this is just in case for now ... */
2084 err |= __put_user(from->si_pid, &to->si_pid);
2085 err |= __put_user(from->si_uid, &to->si_uid);
2086 break;
2087 }
2088 return err;
2089 }
2090
2091 #endif
2092
2093 asmlinkage long
2094 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2095 siginfo_t __user *uinfo,
2096 const struct timespec __user *uts,
2097 size_t sigsetsize)
2098 {
2099 int ret, sig;
2100 sigset_t these;
2101 struct timespec ts;
2102 siginfo_t info;
2103 long timeout = 0;
2104
2105 /* XXX: Don't preclude handling different sized sigset_t's. */
2106 if (sigsetsize != sizeof(sigset_t))
2107 return -EINVAL;
2108
2109 if (copy_from_user(&these, uthese, sizeof(these)))
2110 return -EFAULT;
2111
2112 /*
2113 * Invert the set of allowed signals to get those we
2114 * want to block.
2115 */
2116 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2117 signotset(&these);
2118
2119 if (uts) {
2120 if (copy_from_user(&ts, uts, sizeof(ts)))
2121 return -EFAULT;
2122 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2123 || ts.tv_sec < 0)
2124 return -EINVAL;
2125 }
2126
2127 spin_lock_irq(&current->sighand->siglock);
2128 sig = dequeue_signal(current, &these, &info);
2129 if (!sig) {
2130 timeout = MAX_SCHEDULE_TIMEOUT;
2131 if (uts)
2132 timeout = (timespec_to_jiffies(&ts)
2133 + (ts.tv_sec || ts.tv_nsec));
2134
2135 if (timeout) {
2136 /* None ready -- temporarily unblock those we're
2137 * interested while we are sleeping in so that we'll
2138 * be awakened when they arrive. */
2139 current->real_blocked = current->blocked;
2140 sigandsets(&current->blocked, &current->blocked, &these);
2141 recalc_sigpending();
2142 spin_unlock_irq(&current->sighand->siglock);
2143
2144 timeout = schedule_timeout_interruptible(timeout);
2145
2146 spin_lock_irq(&current->sighand->siglock);
2147 sig = dequeue_signal(current, &these, &info);
2148 current->blocked = current->real_blocked;
2149 siginitset(&current->real_blocked, 0);
2150 recalc_sigpending();
2151 }
2152 }
2153 spin_unlock_irq(&current->sighand->siglock);
2154
2155 if (sig) {
2156 ret = sig;
2157 if (uinfo) {
2158 if (copy_siginfo_to_user(uinfo, &info))
2159 ret = -EFAULT;
2160 }
2161 } else {
2162 ret = -EAGAIN;
2163 if (timeout)
2164 ret = -EINTR;
2165 }
2166
2167 return ret;
2168 }
2169
2170 asmlinkage long
2171 sys_kill(int pid, int sig)
2172 {
2173 struct siginfo info;
2174
2175 info.si_signo = sig;
2176 info.si_errno = 0;
2177 info.si_code = SI_USER;
2178 info.si_pid = current->tgid;
2179 info.si_uid = current->uid;
2180
2181 return kill_something_info(sig, &info, pid);
2182 }
2183
2184 static int do_tkill(int tgid, int pid, int sig)
2185 {
2186 int error;
2187 struct siginfo info;
2188 struct task_struct *p;
2189
2190 error = -ESRCH;
2191 info.si_signo = sig;
2192 info.si_errno = 0;
2193 info.si_code = SI_TKILL;
2194 info.si_pid = current->tgid;
2195 info.si_uid = current->uid;
2196
2197 read_lock(&tasklist_lock);
2198 p = find_task_by_pid(pid);
2199 if (p && (tgid <= 0 || p->tgid == tgid)) {
2200 error = check_kill_permission(sig, &info, p);
2201 /*
2202 * The null signal is a permissions and process existence
2203 * probe. No signal is actually delivered.
2204 */
2205 if (!error && sig && p->sighand) {
2206 spin_lock_irq(&p->sighand->siglock);
2207 handle_stop_signal(sig, p);
2208 error = specific_send_sig_info(sig, &info, p);
2209 spin_unlock_irq(&p->sighand->siglock);
2210 }
2211 }
2212 read_unlock(&tasklist_lock);
2213
2214 return error;
2215 }
2216
2217 /**
2218 * sys_tgkill - send signal to one specific thread
2219 * @tgid: the thread group ID of the thread
2220 * @pid: the PID of the thread
2221 * @sig: signal to be sent
2222 *
2223 * This syscall also checks the tgid and returns -ESRCH even if the PID
2224 * exists but it's not belonging to the target process anymore. This
2225 * method solves the problem of threads exiting and PIDs getting reused.
2226 */
2227 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2228 {
2229 /* This is only valid for single tasks */
2230 if (pid <= 0 || tgid <= 0)
2231 return -EINVAL;
2232
2233 return do_tkill(tgid, pid, sig);
2234 }
2235
2236 /*
2237 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2238 */
2239 asmlinkage long
2240 sys_tkill(int pid, int sig)
2241 {
2242 /* This is only valid for single tasks */
2243 if (pid <= 0)
2244 return -EINVAL;
2245
2246 return do_tkill(0, pid, sig);
2247 }
2248
2249 asmlinkage long
2250 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2251 {
2252 siginfo_t info;
2253
2254 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2255 return -EFAULT;
2256
2257 /* Not even root can pretend to send signals from the kernel.
2258 Nor can they impersonate a kill(), which adds source info. */
2259 if (info.si_code >= 0)
2260 return -EPERM;
2261 info.si_signo = sig;
2262
2263 /* POSIX.1b doesn't mention process groups. */
2264 return kill_proc_info(sig, &info, pid);
2265 }
2266
2267 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2268 {
2269 struct k_sigaction *k;
2270 sigset_t mask;
2271
2272 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2273 return -EINVAL;
2274
2275 k = &current->sighand->action[sig-1];
2276
2277 spin_lock_irq(&current->sighand->siglock);
2278 if (signal_pending(current)) {
2279 /*
2280 * If there might be a fatal signal pending on multiple
2281 * threads, make sure we take it before changing the action.
2282 */
2283 spin_unlock_irq(&current->sighand->siglock);
2284 return -ERESTARTNOINTR;
2285 }
2286
2287 if (oact)
2288 *oact = *k;
2289
2290 if (act) {
2291 sigdelsetmask(&act->sa.sa_mask,
2292 sigmask(SIGKILL) | sigmask(SIGSTOP));
2293 *k = *act;
2294 /*
2295 * POSIX 3.3.1.3:
2296 * "Setting a signal action to SIG_IGN for a signal that is
2297 * pending shall cause the pending signal to be discarded,
2298 * whether or not it is blocked."
2299 *
2300 * "Setting a signal action to SIG_DFL for a signal that is
2301 * pending and whose default action is to ignore the signal
2302 * (for example, SIGCHLD), shall cause the pending signal to
2303 * be discarded, whether or not it is blocked"
2304 */
2305 if (act->sa.sa_handler == SIG_IGN ||
2306 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2307 struct task_struct *t = current;
2308 sigemptyset(&mask);
2309 sigaddset(&mask, sig);
2310 rm_from_queue_full(&mask, &t->signal->shared_pending);
2311 do {
2312 rm_from_queue_full(&mask, &t->pending);
2313 recalc_sigpending_tsk(t);
2314 t = next_thread(t);
2315 } while (t != current);
2316 }
2317 }
2318
2319 spin_unlock_irq(&current->sighand->siglock);
2320 return 0;
2321 }
2322
2323 int
2324 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2325 {
2326 stack_t oss;
2327 int error;
2328
2329 if (uoss) {
2330 oss.ss_sp = (void __user *) current->sas_ss_sp;
2331 oss.ss_size = current->sas_ss_size;
2332 oss.ss_flags = sas_ss_flags(sp);
2333 }
2334
2335 if (uss) {
2336 void __user *ss_sp;
2337 size_t ss_size;
2338 int ss_flags;
2339
2340 error = -EFAULT;
2341 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2342 || __get_user(ss_sp, &uss->ss_sp)
2343 || __get_user(ss_flags, &uss->ss_flags)
2344 || __get_user(ss_size, &uss->ss_size))
2345 goto out;
2346
2347 error = -EPERM;
2348 if (on_sig_stack(sp))
2349 goto out;
2350
2351 error = -EINVAL;
2352 /*
2353 *
2354 * Note - this code used to test ss_flags incorrectly
2355 * old code may have been written using ss_flags==0
2356 * to mean ss_flags==SS_ONSTACK (as this was the only
2357 * way that worked) - this fix preserves that older
2358 * mechanism
2359 */
2360 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2361 goto out;
2362
2363 if (ss_flags == SS_DISABLE) {
2364 ss_size = 0;
2365 ss_sp = NULL;
2366 } else {
2367 error = -ENOMEM;
2368 if (ss_size < MINSIGSTKSZ)
2369 goto out;
2370 }
2371
2372 current->sas_ss_sp = (unsigned long) ss_sp;
2373 current->sas_ss_size = ss_size;
2374 }
2375
2376 if (uoss) {
2377 error = -EFAULT;
2378 if (copy_to_user(uoss, &oss, sizeof(oss)))
2379 goto out;
2380 }
2381
2382 error = 0;
2383 out:
2384 return error;
2385 }
2386
2387 #ifdef __ARCH_WANT_SYS_SIGPENDING
2388
2389 asmlinkage long
2390 sys_sigpending(old_sigset_t __user *set)
2391 {
2392 return do_sigpending(set, sizeof(*set));
2393 }
2394
2395 #endif
2396
2397 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2398 /* Some platforms have their own version with special arguments others
2399 support only sys_rt_sigprocmask. */
2400
2401 asmlinkage long
2402 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2403 {
2404 int error;
2405 old_sigset_t old_set, new_set;
2406
2407 if (set) {
2408 error = -EFAULT;
2409 if (copy_from_user(&new_set, set, sizeof(*set)))
2410 goto out;
2411 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2412
2413 spin_lock_irq(&current->sighand->siglock);
2414 old_set = current->blocked.sig[0];
2415
2416 error = 0;
2417 switch (how) {
2418 default:
2419 error = -EINVAL;
2420 break;
2421 case SIG_BLOCK:
2422 sigaddsetmask(&current->blocked, new_set);
2423 break;
2424 case SIG_UNBLOCK:
2425 sigdelsetmask(&current->blocked, new_set);
2426 break;
2427 case SIG_SETMASK:
2428 current->blocked.sig[0] = new_set;
2429 break;
2430 }
2431
2432 recalc_sigpending();
2433 spin_unlock_irq(&current->sighand->siglock);
2434 if (error)
2435 goto out;
2436 if (oset)
2437 goto set_old;
2438 } else if (oset) {
2439 old_set = current->blocked.sig[0];
2440 set_old:
2441 error = -EFAULT;
2442 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2443 goto out;
2444 }
2445 error = 0;
2446 out:
2447 return error;
2448 }
2449 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2450
2451 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2452 asmlinkage long
2453 sys_rt_sigaction(int sig,
2454 const struct sigaction __user *act,
2455 struct sigaction __user *oact,
2456 size_t sigsetsize)
2457 {
2458 struct k_sigaction new_sa, old_sa;
2459 int ret = -EINVAL;
2460
2461 /* XXX: Don't preclude handling different sized sigset_t's. */
2462 if (sigsetsize != sizeof(sigset_t))
2463 goto out;
2464
2465 if (act) {
2466 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2467 return -EFAULT;
2468 }
2469
2470 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2471
2472 if (!ret && oact) {
2473 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2474 return -EFAULT;
2475 }
2476 out:
2477 return ret;
2478 }
2479 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2480
2481 #ifdef __ARCH_WANT_SYS_SGETMASK
2482
2483 /*
2484 * For backwards compatibility. Functionality superseded by sigprocmask.
2485 */
2486 asmlinkage long
2487 sys_sgetmask(void)
2488 {
2489 /* SMP safe */
2490 return current->blocked.sig[0];
2491 }
2492
2493 asmlinkage long
2494 sys_ssetmask(int newmask)
2495 {
2496 int old;
2497
2498 spin_lock_irq(&current->sighand->siglock);
2499 old = current->blocked.sig[0];
2500
2501 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2502 sigmask(SIGSTOP)));
2503 recalc_sigpending();
2504 spin_unlock_irq(&current->sighand->siglock);
2505
2506 return old;
2507 }
2508 #endif /* __ARCH_WANT_SGETMASK */
2509
2510 #ifdef __ARCH_WANT_SYS_SIGNAL
2511 /*
2512 * For backwards compatibility. Functionality superseded by sigaction.
2513 */
2514 asmlinkage unsigned long
2515 sys_signal(int sig, __sighandler_t handler)
2516 {
2517 struct k_sigaction new_sa, old_sa;
2518 int ret;
2519
2520 new_sa.sa.sa_handler = handler;
2521 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2522 sigemptyset(&new_sa.sa.sa_mask);
2523
2524 ret = do_sigaction(sig, &new_sa, &old_sa);
2525
2526 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2527 }
2528 #endif /* __ARCH_WANT_SYS_SIGNAL */
2529
2530 #ifdef __ARCH_WANT_SYS_PAUSE
2531
2532 asmlinkage long
2533 sys_pause(void)
2534 {
2535 current->state = TASK_INTERRUPTIBLE;
2536 schedule();
2537 return -ERESTARTNOHAND;
2538 }
2539
2540 #endif
2541
2542 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2543 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2544 {
2545 sigset_t newset;
2546
2547 /* XXX: Don't preclude handling different sized sigset_t's. */
2548 if (sigsetsize != sizeof(sigset_t))
2549 return -EINVAL;
2550
2551 if (copy_from_user(&newset, unewset, sizeof(newset)))
2552 return -EFAULT;
2553 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2554
2555 spin_lock_irq(&current->sighand->siglock);
2556 current->saved_sigmask = current->blocked;
2557 current->blocked = newset;
2558 recalc_sigpending();
2559 spin_unlock_irq(&current->sighand->siglock);
2560
2561 current->state = TASK_INTERRUPTIBLE;
2562 schedule();
2563 set_thread_flag(TIF_RESTORE_SIGMASK);
2564 return -ERESTARTNOHAND;
2565 }
2566 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2567
2568 void __init signals_init(void)
2569 {
2570 sigqueue_cachep =
2571 kmem_cache_create("sigqueue",
2572 sizeof(struct sigqueue),
2573 __alignof__(struct sigqueue),
2574 SLAB_PANIC, NULL, NULL);
2575 }