]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/signal.c
ptrace: introduce signal_wake_up_state() and ptrace_signal_wake_up()
[mirror_ubuntu-bionic-kernel.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/coredump.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/ptrace.h>
24 #include <linux/signal.h>
25 #include <linux/signalfd.h>
26 #include <linux/ratelimit.h>
27 #include <linux/tracehook.h>
28 #include <linux/capability.h>
29 #include <linux/freezer.h>
30 #include <linux/pid_namespace.h>
31 #include <linux/nsproxy.h>
32 #include <linux/user_namespace.h>
33 #include <linux/uprobes.h>
34 #include <linux/compat.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/signal.h>
37
38 #include <asm/param.h>
39 #include <asm/uaccess.h>
40 #include <asm/unistd.h>
41 #include <asm/siginfo.h>
42 #include <asm/cacheflush.h>
43 #include "audit.h" /* audit_signal_info() */
44
45 /*
46 * SLAB caches for signal bits.
47 */
48
49 static struct kmem_cache *sigqueue_cachep;
50
51 int print_fatal_signals __read_mostly;
52
53 static void __user *sig_handler(struct task_struct *t, int sig)
54 {
55 return t->sighand->action[sig - 1].sa.sa_handler;
56 }
57
58 static int sig_handler_ignored(void __user *handler, int sig)
59 {
60 /* Is it explicitly or implicitly ignored? */
61 return handler == SIG_IGN ||
62 (handler == SIG_DFL && sig_kernel_ignore(sig));
63 }
64
65 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
66 {
67 void __user *handler;
68
69 handler = sig_handler(t, sig);
70
71 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
72 handler == SIG_DFL && !force)
73 return 1;
74
75 return sig_handler_ignored(handler, sig);
76 }
77
78 static int sig_ignored(struct task_struct *t, int sig, bool force)
79 {
80 /*
81 * Blocked signals are never ignored, since the
82 * signal handler may change by the time it is
83 * unblocked.
84 */
85 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
86 return 0;
87
88 if (!sig_task_ignored(t, sig, force))
89 return 0;
90
91 /*
92 * Tracers may want to know about even ignored signals.
93 */
94 return !t->ptrace;
95 }
96
97 /*
98 * Re-calculate pending state from the set of locally pending
99 * signals, globally pending signals, and blocked signals.
100 */
101 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
102 {
103 unsigned long ready;
104 long i;
105
106 switch (_NSIG_WORDS) {
107 default:
108 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
109 ready |= signal->sig[i] &~ blocked->sig[i];
110 break;
111
112 case 4: ready = signal->sig[3] &~ blocked->sig[3];
113 ready |= signal->sig[2] &~ blocked->sig[2];
114 ready |= signal->sig[1] &~ blocked->sig[1];
115 ready |= signal->sig[0] &~ blocked->sig[0];
116 break;
117
118 case 2: ready = signal->sig[1] &~ blocked->sig[1];
119 ready |= signal->sig[0] &~ blocked->sig[0];
120 break;
121
122 case 1: ready = signal->sig[0] &~ blocked->sig[0];
123 }
124 return ready != 0;
125 }
126
127 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
128
129 static int recalc_sigpending_tsk(struct task_struct *t)
130 {
131 if ((t->jobctl & JOBCTL_PENDING_MASK) ||
132 PENDING(&t->pending, &t->blocked) ||
133 PENDING(&t->signal->shared_pending, &t->blocked)) {
134 set_tsk_thread_flag(t, TIF_SIGPENDING);
135 return 1;
136 }
137 /*
138 * We must never clear the flag in another thread, or in current
139 * when it's possible the current syscall is returning -ERESTART*.
140 * So we don't clear it here, and only callers who know they should do.
141 */
142 return 0;
143 }
144
145 /*
146 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
147 * This is superfluous when called on current, the wakeup is a harmless no-op.
148 */
149 void recalc_sigpending_and_wake(struct task_struct *t)
150 {
151 if (recalc_sigpending_tsk(t))
152 signal_wake_up(t, 0);
153 }
154
155 void recalc_sigpending(void)
156 {
157 if (!recalc_sigpending_tsk(current) && !freezing(current))
158 clear_thread_flag(TIF_SIGPENDING);
159
160 }
161
162 /* Given the mask, find the first available signal that should be serviced. */
163
164 #define SYNCHRONOUS_MASK \
165 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
166 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
167
168 int next_signal(struct sigpending *pending, sigset_t *mask)
169 {
170 unsigned long i, *s, *m, x;
171 int sig = 0;
172
173 s = pending->signal.sig;
174 m = mask->sig;
175
176 /*
177 * Handle the first word specially: it contains the
178 * synchronous signals that need to be dequeued first.
179 */
180 x = *s &~ *m;
181 if (x) {
182 if (x & SYNCHRONOUS_MASK)
183 x &= SYNCHRONOUS_MASK;
184 sig = ffz(~x) + 1;
185 return sig;
186 }
187
188 switch (_NSIG_WORDS) {
189 default:
190 for (i = 1; i < _NSIG_WORDS; ++i) {
191 x = *++s &~ *++m;
192 if (!x)
193 continue;
194 sig = ffz(~x) + i*_NSIG_BPW + 1;
195 break;
196 }
197 break;
198
199 case 2:
200 x = s[1] &~ m[1];
201 if (!x)
202 break;
203 sig = ffz(~x) + _NSIG_BPW + 1;
204 break;
205
206 case 1:
207 /* Nothing to do */
208 break;
209 }
210
211 return sig;
212 }
213
214 static inline void print_dropped_signal(int sig)
215 {
216 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
217
218 if (!print_fatal_signals)
219 return;
220
221 if (!__ratelimit(&ratelimit_state))
222 return;
223
224 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
225 current->comm, current->pid, sig);
226 }
227
228 /**
229 * task_set_jobctl_pending - set jobctl pending bits
230 * @task: target task
231 * @mask: pending bits to set
232 *
233 * Clear @mask from @task->jobctl. @mask must be subset of
234 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
235 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
236 * cleared. If @task is already being killed or exiting, this function
237 * becomes noop.
238 *
239 * CONTEXT:
240 * Must be called with @task->sighand->siglock held.
241 *
242 * RETURNS:
243 * %true if @mask is set, %false if made noop because @task was dying.
244 */
245 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
246 {
247 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
248 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
249 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
250
251 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
252 return false;
253
254 if (mask & JOBCTL_STOP_SIGMASK)
255 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
256
257 task->jobctl |= mask;
258 return true;
259 }
260
261 /**
262 * task_clear_jobctl_trapping - clear jobctl trapping bit
263 * @task: target task
264 *
265 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
266 * Clear it and wake up the ptracer. Note that we don't need any further
267 * locking. @task->siglock guarantees that @task->parent points to the
268 * ptracer.
269 *
270 * CONTEXT:
271 * Must be called with @task->sighand->siglock held.
272 */
273 void task_clear_jobctl_trapping(struct task_struct *task)
274 {
275 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
276 task->jobctl &= ~JOBCTL_TRAPPING;
277 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
278 }
279 }
280
281 /**
282 * task_clear_jobctl_pending - clear jobctl pending bits
283 * @task: target task
284 * @mask: pending bits to clear
285 *
286 * Clear @mask from @task->jobctl. @mask must be subset of
287 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
288 * STOP bits are cleared together.
289 *
290 * If clearing of @mask leaves no stop or trap pending, this function calls
291 * task_clear_jobctl_trapping().
292 *
293 * CONTEXT:
294 * Must be called with @task->sighand->siglock held.
295 */
296 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
297 {
298 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
299
300 if (mask & JOBCTL_STOP_PENDING)
301 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
302
303 task->jobctl &= ~mask;
304
305 if (!(task->jobctl & JOBCTL_PENDING_MASK))
306 task_clear_jobctl_trapping(task);
307 }
308
309 /**
310 * task_participate_group_stop - participate in a group stop
311 * @task: task participating in a group stop
312 *
313 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
314 * Group stop states are cleared and the group stop count is consumed if
315 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
316 * stop, the appropriate %SIGNAL_* flags are set.
317 *
318 * CONTEXT:
319 * Must be called with @task->sighand->siglock held.
320 *
321 * RETURNS:
322 * %true if group stop completion should be notified to the parent, %false
323 * otherwise.
324 */
325 static bool task_participate_group_stop(struct task_struct *task)
326 {
327 struct signal_struct *sig = task->signal;
328 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
329
330 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
331
332 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
333
334 if (!consume)
335 return false;
336
337 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
338 sig->group_stop_count--;
339
340 /*
341 * Tell the caller to notify completion iff we are entering into a
342 * fresh group stop. Read comment in do_signal_stop() for details.
343 */
344 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
345 sig->flags = SIGNAL_STOP_STOPPED;
346 return true;
347 }
348 return false;
349 }
350
351 /*
352 * allocate a new signal queue record
353 * - this may be called without locks if and only if t == current, otherwise an
354 * appropriate lock must be held to stop the target task from exiting
355 */
356 static struct sigqueue *
357 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
358 {
359 struct sigqueue *q = NULL;
360 struct user_struct *user;
361
362 /*
363 * Protect access to @t credentials. This can go away when all
364 * callers hold rcu read lock.
365 */
366 rcu_read_lock();
367 user = get_uid(__task_cred(t)->user);
368 atomic_inc(&user->sigpending);
369 rcu_read_unlock();
370
371 if (override_rlimit ||
372 atomic_read(&user->sigpending) <=
373 task_rlimit(t, RLIMIT_SIGPENDING)) {
374 q = kmem_cache_alloc(sigqueue_cachep, flags);
375 } else {
376 print_dropped_signal(sig);
377 }
378
379 if (unlikely(q == NULL)) {
380 atomic_dec(&user->sigpending);
381 free_uid(user);
382 } else {
383 INIT_LIST_HEAD(&q->list);
384 q->flags = 0;
385 q->user = user;
386 }
387
388 return q;
389 }
390
391 static void __sigqueue_free(struct sigqueue *q)
392 {
393 if (q->flags & SIGQUEUE_PREALLOC)
394 return;
395 atomic_dec(&q->user->sigpending);
396 free_uid(q->user);
397 kmem_cache_free(sigqueue_cachep, q);
398 }
399
400 void flush_sigqueue(struct sigpending *queue)
401 {
402 struct sigqueue *q;
403
404 sigemptyset(&queue->signal);
405 while (!list_empty(&queue->list)) {
406 q = list_entry(queue->list.next, struct sigqueue , list);
407 list_del_init(&q->list);
408 __sigqueue_free(q);
409 }
410 }
411
412 /*
413 * Flush all pending signals for a task.
414 */
415 void __flush_signals(struct task_struct *t)
416 {
417 clear_tsk_thread_flag(t, TIF_SIGPENDING);
418 flush_sigqueue(&t->pending);
419 flush_sigqueue(&t->signal->shared_pending);
420 }
421
422 void flush_signals(struct task_struct *t)
423 {
424 unsigned long flags;
425
426 spin_lock_irqsave(&t->sighand->siglock, flags);
427 __flush_signals(t);
428 spin_unlock_irqrestore(&t->sighand->siglock, flags);
429 }
430
431 static void __flush_itimer_signals(struct sigpending *pending)
432 {
433 sigset_t signal, retain;
434 struct sigqueue *q, *n;
435
436 signal = pending->signal;
437 sigemptyset(&retain);
438
439 list_for_each_entry_safe(q, n, &pending->list, list) {
440 int sig = q->info.si_signo;
441
442 if (likely(q->info.si_code != SI_TIMER)) {
443 sigaddset(&retain, sig);
444 } else {
445 sigdelset(&signal, sig);
446 list_del_init(&q->list);
447 __sigqueue_free(q);
448 }
449 }
450
451 sigorsets(&pending->signal, &signal, &retain);
452 }
453
454 void flush_itimer_signals(void)
455 {
456 struct task_struct *tsk = current;
457 unsigned long flags;
458
459 spin_lock_irqsave(&tsk->sighand->siglock, flags);
460 __flush_itimer_signals(&tsk->pending);
461 __flush_itimer_signals(&tsk->signal->shared_pending);
462 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
463 }
464
465 void ignore_signals(struct task_struct *t)
466 {
467 int i;
468
469 for (i = 0; i < _NSIG; ++i)
470 t->sighand->action[i].sa.sa_handler = SIG_IGN;
471
472 flush_signals(t);
473 }
474
475 /*
476 * Flush all handlers for a task.
477 */
478
479 void
480 flush_signal_handlers(struct task_struct *t, int force_default)
481 {
482 int i;
483 struct k_sigaction *ka = &t->sighand->action[0];
484 for (i = _NSIG ; i != 0 ; i--) {
485 if (force_default || ka->sa.sa_handler != SIG_IGN)
486 ka->sa.sa_handler = SIG_DFL;
487 ka->sa.sa_flags = 0;
488 sigemptyset(&ka->sa.sa_mask);
489 ka++;
490 }
491 }
492
493 int unhandled_signal(struct task_struct *tsk, int sig)
494 {
495 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
496 if (is_global_init(tsk))
497 return 1;
498 if (handler != SIG_IGN && handler != SIG_DFL)
499 return 0;
500 /* if ptraced, let the tracer determine */
501 return !tsk->ptrace;
502 }
503
504 /*
505 * Notify the system that a driver wants to block all signals for this
506 * process, and wants to be notified if any signals at all were to be
507 * sent/acted upon. If the notifier routine returns non-zero, then the
508 * signal will be acted upon after all. If the notifier routine returns 0,
509 * then then signal will be blocked. Only one block per process is
510 * allowed. priv is a pointer to private data that the notifier routine
511 * can use to determine if the signal should be blocked or not.
512 */
513 void
514 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
515 {
516 unsigned long flags;
517
518 spin_lock_irqsave(&current->sighand->siglock, flags);
519 current->notifier_mask = mask;
520 current->notifier_data = priv;
521 current->notifier = notifier;
522 spin_unlock_irqrestore(&current->sighand->siglock, flags);
523 }
524
525 /* Notify the system that blocking has ended. */
526
527 void
528 unblock_all_signals(void)
529 {
530 unsigned long flags;
531
532 spin_lock_irqsave(&current->sighand->siglock, flags);
533 current->notifier = NULL;
534 current->notifier_data = NULL;
535 recalc_sigpending();
536 spin_unlock_irqrestore(&current->sighand->siglock, flags);
537 }
538
539 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
540 {
541 struct sigqueue *q, *first = NULL;
542
543 /*
544 * Collect the siginfo appropriate to this signal. Check if
545 * there is another siginfo for the same signal.
546 */
547 list_for_each_entry(q, &list->list, list) {
548 if (q->info.si_signo == sig) {
549 if (first)
550 goto still_pending;
551 first = q;
552 }
553 }
554
555 sigdelset(&list->signal, sig);
556
557 if (first) {
558 still_pending:
559 list_del_init(&first->list);
560 copy_siginfo(info, &first->info);
561 __sigqueue_free(first);
562 } else {
563 /*
564 * Ok, it wasn't in the queue. This must be
565 * a fast-pathed signal or we must have been
566 * out of queue space. So zero out the info.
567 */
568 info->si_signo = sig;
569 info->si_errno = 0;
570 info->si_code = SI_USER;
571 info->si_pid = 0;
572 info->si_uid = 0;
573 }
574 }
575
576 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
577 siginfo_t *info)
578 {
579 int sig = next_signal(pending, mask);
580
581 if (sig) {
582 if (current->notifier) {
583 if (sigismember(current->notifier_mask, sig)) {
584 if (!(current->notifier)(current->notifier_data)) {
585 clear_thread_flag(TIF_SIGPENDING);
586 return 0;
587 }
588 }
589 }
590
591 collect_signal(sig, pending, info);
592 }
593
594 return sig;
595 }
596
597 /*
598 * Dequeue a signal and return the element to the caller, which is
599 * expected to free it.
600 *
601 * All callers have to hold the siglock.
602 */
603 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
604 {
605 int signr;
606
607 /* We only dequeue private signals from ourselves, we don't let
608 * signalfd steal them
609 */
610 signr = __dequeue_signal(&tsk->pending, mask, info);
611 if (!signr) {
612 signr = __dequeue_signal(&tsk->signal->shared_pending,
613 mask, info);
614 /*
615 * itimer signal ?
616 *
617 * itimers are process shared and we restart periodic
618 * itimers in the signal delivery path to prevent DoS
619 * attacks in the high resolution timer case. This is
620 * compliant with the old way of self-restarting
621 * itimers, as the SIGALRM is a legacy signal and only
622 * queued once. Changing the restart behaviour to
623 * restart the timer in the signal dequeue path is
624 * reducing the timer noise on heavy loaded !highres
625 * systems too.
626 */
627 if (unlikely(signr == SIGALRM)) {
628 struct hrtimer *tmr = &tsk->signal->real_timer;
629
630 if (!hrtimer_is_queued(tmr) &&
631 tsk->signal->it_real_incr.tv64 != 0) {
632 hrtimer_forward(tmr, tmr->base->get_time(),
633 tsk->signal->it_real_incr);
634 hrtimer_restart(tmr);
635 }
636 }
637 }
638
639 recalc_sigpending();
640 if (!signr)
641 return 0;
642
643 if (unlikely(sig_kernel_stop(signr))) {
644 /*
645 * Set a marker that we have dequeued a stop signal. Our
646 * caller might release the siglock and then the pending
647 * stop signal it is about to process is no longer in the
648 * pending bitmasks, but must still be cleared by a SIGCONT
649 * (and overruled by a SIGKILL). So those cases clear this
650 * shared flag after we've set it. Note that this flag may
651 * remain set after the signal we return is ignored or
652 * handled. That doesn't matter because its only purpose
653 * is to alert stop-signal processing code when another
654 * processor has come along and cleared the flag.
655 */
656 current->jobctl |= JOBCTL_STOP_DEQUEUED;
657 }
658 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
659 /*
660 * Release the siglock to ensure proper locking order
661 * of timer locks outside of siglocks. Note, we leave
662 * irqs disabled here, since the posix-timers code is
663 * about to disable them again anyway.
664 */
665 spin_unlock(&tsk->sighand->siglock);
666 do_schedule_next_timer(info);
667 spin_lock(&tsk->sighand->siglock);
668 }
669 return signr;
670 }
671
672 /*
673 * Tell a process that it has a new active signal..
674 *
675 * NOTE! we rely on the previous spin_lock to
676 * lock interrupts for us! We can only be called with
677 * "siglock" held, and the local interrupt must
678 * have been disabled when that got acquired!
679 *
680 * No need to set need_resched since signal event passing
681 * goes through ->blocked
682 */
683 void signal_wake_up_state(struct task_struct *t, unsigned int state)
684 {
685 set_tsk_thread_flag(t, TIF_SIGPENDING);
686 /*
687 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
688 * case. We don't check t->state here because there is a race with it
689 * executing another processor and just now entering stopped state.
690 * By using wake_up_state, we ensure the process will wake up and
691 * handle its death signal.
692 */
693 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
694 kick_process(t);
695 }
696
697 /*
698 * Remove signals in mask from the pending set and queue.
699 * Returns 1 if any signals were found.
700 *
701 * All callers must be holding the siglock.
702 *
703 * This version takes a sigset mask and looks at all signals,
704 * not just those in the first mask word.
705 */
706 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
707 {
708 struct sigqueue *q, *n;
709 sigset_t m;
710
711 sigandsets(&m, mask, &s->signal);
712 if (sigisemptyset(&m))
713 return 0;
714
715 sigandnsets(&s->signal, &s->signal, mask);
716 list_for_each_entry_safe(q, n, &s->list, list) {
717 if (sigismember(mask, q->info.si_signo)) {
718 list_del_init(&q->list);
719 __sigqueue_free(q);
720 }
721 }
722 return 1;
723 }
724 /*
725 * Remove signals in mask from the pending set and queue.
726 * Returns 1 if any signals were found.
727 *
728 * All callers must be holding the siglock.
729 */
730 static int rm_from_queue(unsigned long mask, struct sigpending *s)
731 {
732 struct sigqueue *q, *n;
733
734 if (!sigtestsetmask(&s->signal, mask))
735 return 0;
736
737 sigdelsetmask(&s->signal, mask);
738 list_for_each_entry_safe(q, n, &s->list, list) {
739 if (q->info.si_signo < SIGRTMIN &&
740 (mask & sigmask(q->info.si_signo))) {
741 list_del_init(&q->list);
742 __sigqueue_free(q);
743 }
744 }
745 return 1;
746 }
747
748 static inline int is_si_special(const struct siginfo *info)
749 {
750 return info <= SEND_SIG_FORCED;
751 }
752
753 static inline bool si_fromuser(const struct siginfo *info)
754 {
755 return info == SEND_SIG_NOINFO ||
756 (!is_si_special(info) && SI_FROMUSER(info));
757 }
758
759 /*
760 * called with RCU read lock from check_kill_permission()
761 */
762 static int kill_ok_by_cred(struct task_struct *t)
763 {
764 const struct cred *cred = current_cred();
765 const struct cred *tcred = __task_cred(t);
766
767 if (uid_eq(cred->euid, tcred->suid) ||
768 uid_eq(cred->euid, tcred->uid) ||
769 uid_eq(cred->uid, tcred->suid) ||
770 uid_eq(cred->uid, tcred->uid))
771 return 1;
772
773 if (ns_capable(tcred->user_ns, CAP_KILL))
774 return 1;
775
776 return 0;
777 }
778
779 /*
780 * Bad permissions for sending the signal
781 * - the caller must hold the RCU read lock
782 */
783 static int check_kill_permission(int sig, struct siginfo *info,
784 struct task_struct *t)
785 {
786 struct pid *sid;
787 int error;
788
789 if (!valid_signal(sig))
790 return -EINVAL;
791
792 if (!si_fromuser(info))
793 return 0;
794
795 error = audit_signal_info(sig, t); /* Let audit system see the signal */
796 if (error)
797 return error;
798
799 if (!same_thread_group(current, t) &&
800 !kill_ok_by_cred(t)) {
801 switch (sig) {
802 case SIGCONT:
803 sid = task_session(t);
804 /*
805 * We don't return the error if sid == NULL. The
806 * task was unhashed, the caller must notice this.
807 */
808 if (!sid || sid == task_session(current))
809 break;
810 default:
811 return -EPERM;
812 }
813 }
814
815 return security_task_kill(t, info, sig, 0);
816 }
817
818 /**
819 * ptrace_trap_notify - schedule trap to notify ptracer
820 * @t: tracee wanting to notify tracer
821 *
822 * This function schedules sticky ptrace trap which is cleared on the next
823 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
824 * ptracer.
825 *
826 * If @t is running, STOP trap will be taken. If trapped for STOP and
827 * ptracer is listening for events, tracee is woken up so that it can
828 * re-trap for the new event. If trapped otherwise, STOP trap will be
829 * eventually taken without returning to userland after the existing traps
830 * are finished by PTRACE_CONT.
831 *
832 * CONTEXT:
833 * Must be called with @task->sighand->siglock held.
834 */
835 static void ptrace_trap_notify(struct task_struct *t)
836 {
837 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
838 assert_spin_locked(&t->sighand->siglock);
839
840 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
841 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
842 }
843
844 /*
845 * Handle magic process-wide effects of stop/continue signals. Unlike
846 * the signal actions, these happen immediately at signal-generation
847 * time regardless of blocking, ignoring, or handling. This does the
848 * actual continuing for SIGCONT, but not the actual stopping for stop
849 * signals. The process stop is done as a signal action for SIG_DFL.
850 *
851 * Returns true if the signal should be actually delivered, otherwise
852 * it should be dropped.
853 */
854 static int prepare_signal(int sig, struct task_struct *p, bool force)
855 {
856 struct signal_struct *signal = p->signal;
857 struct task_struct *t;
858
859 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
860 /*
861 * The process is in the middle of dying, nothing to do.
862 */
863 } else if (sig_kernel_stop(sig)) {
864 /*
865 * This is a stop signal. Remove SIGCONT from all queues.
866 */
867 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
868 t = p;
869 do {
870 rm_from_queue(sigmask(SIGCONT), &t->pending);
871 } while_each_thread(p, t);
872 } else if (sig == SIGCONT) {
873 unsigned int why;
874 /*
875 * Remove all stop signals from all queues, wake all threads.
876 */
877 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
878 t = p;
879 do {
880 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
881 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
882 if (likely(!(t->ptrace & PT_SEIZED)))
883 wake_up_state(t, __TASK_STOPPED);
884 else
885 ptrace_trap_notify(t);
886 } while_each_thread(p, t);
887
888 /*
889 * Notify the parent with CLD_CONTINUED if we were stopped.
890 *
891 * If we were in the middle of a group stop, we pretend it
892 * was already finished, and then continued. Since SIGCHLD
893 * doesn't queue we report only CLD_STOPPED, as if the next
894 * CLD_CONTINUED was dropped.
895 */
896 why = 0;
897 if (signal->flags & SIGNAL_STOP_STOPPED)
898 why |= SIGNAL_CLD_CONTINUED;
899 else if (signal->group_stop_count)
900 why |= SIGNAL_CLD_STOPPED;
901
902 if (why) {
903 /*
904 * The first thread which returns from do_signal_stop()
905 * will take ->siglock, notice SIGNAL_CLD_MASK, and
906 * notify its parent. See get_signal_to_deliver().
907 */
908 signal->flags = why | SIGNAL_STOP_CONTINUED;
909 signal->group_stop_count = 0;
910 signal->group_exit_code = 0;
911 }
912 }
913
914 return !sig_ignored(p, sig, force);
915 }
916
917 /*
918 * Test if P wants to take SIG. After we've checked all threads with this,
919 * it's equivalent to finding no threads not blocking SIG. Any threads not
920 * blocking SIG were ruled out because they are not running and already
921 * have pending signals. Such threads will dequeue from the shared queue
922 * as soon as they're available, so putting the signal on the shared queue
923 * will be equivalent to sending it to one such thread.
924 */
925 static inline int wants_signal(int sig, struct task_struct *p)
926 {
927 if (sigismember(&p->blocked, sig))
928 return 0;
929 if (p->flags & PF_EXITING)
930 return 0;
931 if (sig == SIGKILL)
932 return 1;
933 if (task_is_stopped_or_traced(p))
934 return 0;
935 return task_curr(p) || !signal_pending(p);
936 }
937
938 static void complete_signal(int sig, struct task_struct *p, int group)
939 {
940 struct signal_struct *signal = p->signal;
941 struct task_struct *t;
942
943 /*
944 * Now find a thread we can wake up to take the signal off the queue.
945 *
946 * If the main thread wants the signal, it gets first crack.
947 * Probably the least surprising to the average bear.
948 */
949 if (wants_signal(sig, p))
950 t = p;
951 else if (!group || thread_group_empty(p))
952 /*
953 * There is just one thread and it does not need to be woken.
954 * It will dequeue unblocked signals before it runs again.
955 */
956 return;
957 else {
958 /*
959 * Otherwise try to find a suitable thread.
960 */
961 t = signal->curr_target;
962 while (!wants_signal(sig, t)) {
963 t = next_thread(t);
964 if (t == signal->curr_target)
965 /*
966 * No thread needs to be woken.
967 * Any eligible threads will see
968 * the signal in the queue soon.
969 */
970 return;
971 }
972 signal->curr_target = t;
973 }
974
975 /*
976 * Found a killable thread. If the signal will be fatal,
977 * then start taking the whole group down immediately.
978 */
979 if (sig_fatal(p, sig) &&
980 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
981 !sigismember(&t->real_blocked, sig) &&
982 (sig == SIGKILL || !t->ptrace)) {
983 /*
984 * This signal will be fatal to the whole group.
985 */
986 if (!sig_kernel_coredump(sig)) {
987 /*
988 * Start a group exit and wake everybody up.
989 * This way we don't have other threads
990 * running and doing things after a slower
991 * thread has the fatal signal pending.
992 */
993 signal->flags = SIGNAL_GROUP_EXIT;
994 signal->group_exit_code = sig;
995 signal->group_stop_count = 0;
996 t = p;
997 do {
998 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
999 sigaddset(&t->pending.signal, SIGKILL);
1000 signal_wake_up(t, 1);
1001 } while_each_thread(p, t);
1002 return;
1003 }
1004 }
1005
1006 /*
1007 * The signal is already in the shared-pending queue.
1008 * Tell the chosen thread to wake up and dequeue it.
1009 */
1010 signal_wake_up(t, sig == SIGKILL);
1011 return;
1012 }
1013
1014 static inline int legacy_queue(struct sigpending *signals, int sig)
1015 {
1016 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1017 }
1018
1019 #ifdef CONFIG_USER_NS
1020 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1021 {
1022 if (current_user_ns() == task_cred_xxx(t, user_ns))
1023 return;
1024
1025 if (SI_FROMKERNEL(info))
1026 return;
1027
1028 rcu_read_lock();
1029 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1030 make_kuid(current_user_ns(), info->si_uid));
1031 rcu_read_unlock();
1032 }
1033 #else
1034 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1035 {
1036 return;
1037 }
1038 #endif
1039
1040 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1041 int group, int from_ancestor_ns)
1042 {
1043 struct sigpending *pending;
1044 struct sigqueue *q;
1045 int override_rlimit;
1046 int ret = 0, result;
1047
1048 assert_spin_locked(&t->sighand->siglock);
1049
1050 result = TRACE_SIGNAL_IGNORED;
1051 if (!prepare_signal(sig, t,
1052 from_ancestor_ns || (info == SEND_SIG_FORCED)))
1053 goto ret;
1054
1055 pending = group ? &t->signal->shared_pending : &t->pending;
1056 /*
1057 * Short-circuit ignored signals and support queuing
1058 * exactly one non-rt signal, so that we can get more
1059 * detailed information about the cause of the signal.
1060 */
1061 result = TRACE_SIGNAL_ALREADY_PENDING;
1062 if (legacy_queue(pending, sig))
1063 goto ret;
1064
1065 result = TRACE_SIGNAL_DELIVERED;
1066 /*
1067 * fast-pathed signals for kernel-internal things like SIGSTOP
1068 * or SIGKILL.
1069 */
1070 if (info == SEND_SIG_FORCED)
1071 goto out_set;
1072
1073 /*
1074 * Real-time signals must be queued if sent by sigqueue, or
1075 * some other real-time mechanism. It is implementation
1076 * defined whether kill() does so. We attempt to do so, on
1077 * the principle of least surprise, but since kill is not
1078 * allowed to fail with EAGAIN when low on memory we just
1079 * make sure at least one signal gets delivered and don't
1080 * pass on the info struct.
1081 */
1082 if (sig < SIGRTMIN)
1083 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1084 else
1085 override_rlimit = 0;
1086
1087 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1088 override_rlimit);
1089 if (q) {
1090 list_add_tail(&q->list, &pending->list);
1091 switch ((unsigned long) info) {
1092 case (unsigned long) SEND_SIG_NOINFO:
1093 q->info.si_signo = sig;
1094 q->info.si_errno = 0;
1095 q->info.si_code = SI_USER;
1096 q->info.si_pid = task_tgid_nr_ns(current,
1097 task_active_pid_ns(t));
1098 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1099 break;
1100 case (unsigned long) SEND_SIG_PRIV:
1101 q->info.si_signo = sig;
1102 q->info.si_errno = 0;
1103 q->info.si_code = SI_KERNEL;
1104 q->info.si_pid = 0;
1105 q->info.si_uid = 0;
1106 break;
1107 default:
1108 copy_siginfo(&q->info, info);
1109 if (from_ancestor_ns)
1110 q->info.si_pid = 0;
1111 break;
1112 }
1113
1114 userns_fixup_signal_uid(&q->info, t);
1115
1116 } else if (!is_si_special(info)) {
1117 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1118 /*
1119 * Queue overflow, abort. We may abort if the
1120 * signal was rt and sent by user using something
1121 * other than kill().
1122 */
1123 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1124 ret = -EAGAIN;
1125 goto ret;
1126 } else {
1127 /*
1128 * This is a silent loss of information. We still
1129 * send the signal, but the *info bits are lost.
1130 */
1131 result = TRACE_SIGNAL_LOSE_INFO;
1132 }
1133 }
1134
1135 out_set:
1136 signalfd_notify(t, sig);
1137 sigaddset(&pending->signal, sig);
1138 complete_signal(sig, t, group);
1139 ret:
1140 trace_signal_generate(sig, info, t, group, result);
1141 return ret;
1142 }
1143
1144 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1145 int group)
1146 {
1147 int from_ancestor_ns = 0;
1148
1149 #ifdef CONFIG_PID_NS
1150 from_ancestor_ns = si_fromuser(info) &&
1151 !task_pid_nr_ns(current, task_active_pid_ns(t));
1152 #endif
1153
1154 return __send_signal(sig, info, t, group, from_ancestor_ns);
1155 }
1156
1157 static void print_fatal_signal(int signr)
1158 {
1159 struct pt_regs *regs = signal_pt_regs();
1160 printk("%s/%d: potentially unexpected fatal signal %d.\n",
1161 current->comm, task_pid_nr(current), signr);
1162
1163 #if defined(__i386__) && !defined(__arch_um__)
1164 printk("code at %08lx: ", regs->ip);
1165 {
1166 int i;
1167 for (i = 0; i < 16; i++) {
1168 unsigned char insn;
1169
1170 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1171 break;
1172 printk("%02x ", insn);
1173 }
1174 }
1175 #endif
1176 printk("\n");
1177 preempt_disable();
1178 show_regs(regs);
1179 preempt_enable();
1180 }
1181
1182 static int __init setup_print_fatal_signals(char *str)
1183 {
1184 get_option (&str, &print_fatal_signals);
1185
1186 return 1;
1187 }
1188
1189 __setup("print-fatal-signals=", setup_print_fatal_signals);
1190
1191 int
1192 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1193 {
1194 return send_signal(sig, info, p, 1);
1195 }
1196
1197 static int
1198 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1199 {
1200 return send_signal(sig, info, t, 0);
1201 }
1202
1203 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1204 bool group)
1205 {
1206 unsigned long flags;
1207 int ret = -ESRCH;
1208
1209 if (lock_task_sighand(p, &flags)) {
1210 ret = send_signal(sig, info, p, group);
1211 unlock_task_sighand(p, &flags);
1212 }
1213
1214 return ret;
1215 }
1216
1217 /*
1218 * Force a signal that the process can't ignore: if necessary
1219 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1220 *
1221 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1222 * since we do not want to have a signal handler that was blocked
1223 * be invoked when user space had explicitly blocked it.
1224 *
1225 * We don't want to have recursive SIGSEGV's etc, for example,
1226 * that is why we also clear SIGNAL_UNKILLABLE.
1227 */
1228 int
1229 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1230 {
1231 unsigned long int flags;
1232 int ret, blocked, ignored;
1233 struct k_sigaction *action;
1234
1235 spin_lock_irqsave(&t->sighand->siglock, flags);
1236 action = &t->sighand->action[sig-1];
1237 ignored = action->sa.sa_handler == SIG_IGN;
1238 blocked = sigismember(&t->blocked, sig);
1239 if (blocked || ignored) {
1240 action->sa.sa_handler = SIG_DFL;
1241 if (blocked) {
1242 sigdelset(&t->blocked, sig);
1243 recalc_sigpending_and_wake(t);
1244 }
1245 }
1246 if (action->sa.sa_handler == SIG_DFL)
1247 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1248 ret = specific_send_sig_info(sig, info, t);
1249 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1250
1251 return ret;
1252 }
1253
1254 /*
1255 * Nuke all other threads in the group.
1256 */
1257 int zap_other_threads(struct task_struct *p)
1258 {
1259 struct task_struct *t = p;
1260 int count = 0;
1261
1262 p->signal->group_stop_count = 0;
1263
1264 while_each_thread(p, t) {
1265 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1266 count++;
1267
1268 /* Don't bother with already dead threads */
1269 if (t->exit_state)
1270 continue;
1271 sigaddset(&t->pending.signal, SIGKILL);
1272 signal_wake_up(t, 1);
1273 }
1274
1275 return count;
1276 }
1277
1278 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1279 unsigned long *flags)
1280 {
1281 struct sighand_struct *sighand;
1282
1283 for (;;) {
1284 local_irq_save(*flags);
1285 rcu_read_lock();
1286 sighand = rcu_dereference(tsk->sighand);
1287 if (unlikely(sighand == NULL)) {
1288 rcu_read_unlock();
1289 local_irq_restore(*flags);
1290 break;
1291 }
1292
1293 spin_lock(&sighand->siglock);
1294 if (likely(sighand == tsk->sighand)) {
1295 rcu_read_unlock();
1296 break;
1297 }
1298 spin_unlock(&sighand->siglock);
1299 rcu_read_unlock();
1300 local_irq_restore(*flags);
1301 }
1302
1303 return sighand;
1304 }
1305
1306 /*
1307 * send signal info to all the members of a group
1308 */
1309 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1310 {
1311 int ret;
1312
1313 rcu_read_lock();
1314 ret = check_kill_permission(sig, info, p);
1315 rcu_read_unlock();
1316
1317 if (!ret && sig)
1318 ret = do_send_sig_info(sig, info, p, true);
1319
1320 return ret;
1321 }
1322
1323 /*
1324 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1325 * control characters do (^C, ^Z etc)
1326 * - the caller must hold at least a readlock on tasklist_lock
1327 */
1328 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1329 {
1330 struct task_struct *p = NULL;
1331 int retval, success;
1332
1333 success = 0;
1334 retval = -ESRCH;
1335 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1336 int err = group_send_sig_info(sig, info, p);
1337 success |= !err;
1338 retval = err;
1339 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1340 return success ? 0 : retval;
1341 }
1342
1343 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1344 {
1345 int error = -ESRCH;
1346 struct task_struct *p;
1347
1348 rcu_read_lock();
1349 retry:
1350 p = pid_task(pid, PIDTYPE_PID);
1351 if (p) {
1352 error = group_send_sig_info(sig, info, p);
1353 if (unlikely(error == -ESRCH))
1354 /*
1355 * The task was unhashed in between, try again.
1356 * If it is dead, pid_task() will return NULL,
1357 * if we race with de_thread() it will find the
1358 * new leader.
1359 */
1360 goto retry;
1361 }
1362 rcu_read_unlock();
1363
1364 return error;
1365 }
1366
1367 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1368 {
1369 int error;
1370 rcu_read_lock();
1371 error = kill_pid_info(sig, info, find_vpid(pid));
1372 rcu_read_unlock();
1373 return error;
1374 }
1375
1376 static int kill_as_cred_perm(const struct cred *cred,
1377 struct task_struct *target)
1378 {
1379 const struct cred *pcred = __task_cred(target);
1380 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1381 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid))
1382 return 0;
1383 return 1;
1384 }
1385
1386 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1387 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1388 const struct cred *cred, u32 secid)
1389 {
1390 int ret = -EINVAL;
1391 struct task_struct *p;
1392 unsigned long flags;
1393
1394 if (!valid_signal(sig))
1395 return ret;
1396
1397 rcu_read_lock();
1398 p = pid_task(pid, PIDTYPE_PID);
1399 if (!p) {
1400 ret = -ESRCH;
1401 goto out_unlock;
1402 }
1403 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1404 ret = -EPERM;
1405 goto out_unlock;
1406 }
1407 ret = security_task_kill(p, info, sig, secid);
1408 if (ret)
1409 goto out_unlock;
1410
1411 if (sig) {
1412 if (lock_task_sighand(p, &flags)) {
1413 ret = __send_signal(sig, info, p, 1, 0);
1414 unlock_task_sighand(p, &flags);
1415 } else
1416 ret = -ESRCH;
1417 }
1418 out_unlock:
1419 rcu_read_unlock();
1420 return ret;
1421 }
1422 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1423
1424 /*
1425 * kill_something_info() interprets pid in interesting ways just like kill(2).
1426 *
1427 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1428 * is probably wrong. Should make it like BSD or SYSV.
1429 */
1430
1431 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1432 {
1433 int ret;
1434
1435 if (pid > 0) {
1436 rcu_read_lock();
1437 ret = kill_pid_info(sig, info, find_vpid(pid));
1438 rcu_read_unlock();
1439 return ret;
1440 }
1441
1442 read_lock(&tasklist_lock);
1443 if (pid != -1) {
1444 ret = __kill_pgrp_info(sig, info,
1445 pid ? find_vpid(-pid) : task_pgrp(current));
1446 } else {
1447 int retval = 0, count = 0;
1448 struct task_struct * p;
1449
1450 for_each_process(p) {
1451 if (task_pid_vnr(p) > 1 &&
1452 !same_thread_group(p, current)) {
1453 int err = group_send_sig_info(sig, info, p);
1454 ++count;
1455 if (err != -EPERM)
1456 retval = err;
1457 }
1458 }
1459 ret = count ? retval : -ESRCH;
1460 }
1461 read_unlock(&tasklist_lock);
1462
1463 return ret;
1464 }
1465
1466 /*
1467 * These are for backward compatibility with the rest of the kernel source.
1468 */
1469
1470 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1471 {
1472 /*
1473 * Make sure legacy kernel users don't send in bad values
1474 * (normal paths check this in check_kill_permission).
1475 */
1476 if (!valid_signal(sig))
1477 return -EINVAL;
1478
1479 return do_send_sig_info(sig, info, p, false);
1480 }
1481
1482 #define __si_special(priv) \
1483 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1484
1485 int
1486 send_sig(int sig, struct task_struct *p, int priv)
1487 {
1488 return send_sig_info(sig, __si_special(priv), p);
1489 }
1490
1491 void
1492 force_sig(int sig, struct task_struct *p)
1493 {
1494 force_sig_info(sig, SEND_SIG_PRIV, p);
1495 }
1496
1497 /*
1498 * When things go south during signal handling, we
1499 * will force a SIGSEGV. And if the signal that caused
1500 * the problem was already a SIGSEGV, we'll want to
1501 * make sure we don't even try to deliver the signal..
1502 */
1503 int
1504 force_sigsegv(int sig, struct task_struct *p)
1505 {
1506 if (sig == SIGSEGV) {
1507 unsigned long flags;
1508 spin_lock_irqsave(&p->sighand->siglock, flags);
1509 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1510 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1511 }
1512 force_sig(SIGSEGV, p);
1513 return 0;
1514 }
1515
1516 int kill_pgrp(struct pid *pid, int sig, int priv)
1517 {
1518 int ret;
1519
1520 read_lock(&tasklist_lock);
1521 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1522 read_unlock(&tasklist_lock);
1523
1524 return ret;
1525 }
1526 EXPORT_SYMBOL(kill_pgrp);
1527
1528 int kill_pid(struct pid *pid, int sig, int priv)
1529 {
1530 return kill_pid_info(sig, __si_special(priv), pid);
1531 }
1532 EXPORT_SYMBOL(kill_pid);
1533
1534 /*
1535 * These functions support sending signals using preallocated sigqueue
1536 * structures. This is needed "because realtime applications cannot
1537 * afford to lose notifications of asynchronous events, like timer
1538 * expirations or I/O completions". In the case of POSIX Timers
1539 * we allocate the sigqueue structure from the timer_create. If this
1540 * allocation fails we are able to report the failure to the application
1541 * with an EAGAIN error.
1542 */
1543 struct sigqueue *sigqueue_alloc(void)
1544 {
1545 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1546
1547 if (q)
1548 q->flags |= SIGQUEUE_PREALLOC;
1549
1550 return q;
1551 }
1552
1553 void sigqueue_free(struct sigqueue *q)
1554 {
1555 unsigned long flags;
1556 spinlock_t *lock = &current->sighand->siglock;
1557
1558 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1559 /*
1560 * We must hold ->siglock while testing q->list
1561 * to serialize with collect_signal() or with
1562 * __exit_signal()->flush_sigqueue().
1563 */
1564 spin_lock_irqsave(lock, flags);
1565 q->flags &= ~SIGQUEUE_PREALLOC;
1566 /*
1567 * If it is queued it will be freed when dequeued,
1568 * like the "regular" sigqueue.
1569 */
1570 if (!list_empty(&q->list))
1571 q = NULL;
1572 spin_unlock_irqrestore(lock, flags);
1573
1574 if (q)
1575 __sigqueue_free(q);
1576 }
1577
1578 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1579 {
1580 int sig = q->info.si_signo;
1581 struct sigpending *pending;
1582 unsigned long flags;
1583 int ret, result;
1584
1585 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1586
1587 ret = -1;
1588 if (!likely(lock_task_sighand(t, &flags)))
1589 goto ret;
1590
1591 ret = 1; /* the signal is ignored */
1592 result = TRACE_SIGNAL_IGNORED;
1593 if (!prepare_signal(sig, t, false))
1594 goto out;
1595
1596 ret = 0;
1597 if (unlikely(!list_empty(&q->list))) {
1598 /*
1599 * If an SI_TIMER entry is already queue just increment
1600 * the overrun count.
1601 */
1602 BUG_ON(q->info.si_code != SI_TIMER);
1603 q->info.si_overrun++;
1604 result = TRACE_SIGNAL_ALREADY_PENDING;
1605 goto out;
1606 }
1607 q->info.si_overrun = 0;
1608
1609 signalfd_notify(t, sig);
1610 pending = group ? &t->signal->shared_pending : &t->pending;
1611 list_add_tail(&q->list, &pending->list);
1612 sigaddset(&pending->signal, sig);
1613 complete_signal(sig, t, group);
1614 result = TRACE_SIGNAL_DELIVERED;
1615 out:
1616 trace_signal_generate(sig, &q->info, t, group, result);
1617 unlock_task_sighand(t, &flags);
1618 ret:
1619 return ret;
1620 }
1621
1622 /*
1623 * Let a parent know about the death of a child.
1624 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1625 *
1626 * Returns true if our parent ignored us and so we've switched to
1627 * self-reaping.
1628 */
1629 bool do_notify_parent(struct task_struct *tsk, int sig)
1630 {
1631 struct siginfo info;
1632 unsigned long flags;
1633 struct sighand_struct *psig;
1634 bool autoreap = false;
1635
1636 BUG_ON(sig == -1);
1637
1638 /* do_notify_parent_cldstop should have been called instead. */
1639 BUG_ON(task_is_stopped_or_traced(tsk));
1640
1641 BUG_ON(!tsk->ptrace &&
1642 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1643
1644 if (sig != SIGCHLD) {
1645 /*
1646 * This is only possible if parent == real_parent.
1647 * Check if it has changed security domain.
1648 */
1649 if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1650 sig = SIGCHLD;
1651 }
1652
1653 info.si_signo = sig;
1654 info.si_errno = 0;
1655 /*
1656 * We are under tasklist_lock here so our parent is tied to
1657 * us and cannot change.
1658 *
1659 * task_active_pid_ns will always return the same pid namespace
1660 * until a task passes through release_task.
1661 *
1662 * write_lock() currently calls preempt_disable() which is the
1663 * same as rcu_read_lock(), but according to Oleg, this is not
1664 * correct to rely on this
1665 */
1666 rcu_read_lock();
1667 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1668 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1669 task_uid(tsk));
1670 rcu_read_unlock();
1671
1672 info.si_utime = cputime_to_clock_t(tsk->utime + tsk->signal->utime);
1673 info.si_stime = cputime_to_clock_t(tsk->stime + tsk->signal->stime);
1674
1675 info.si_status = tsk->exit_code & 0x7f;
1676 if (tsk->exit_code & 0x80)
1677 info.si_code = CLD_DUMPED;
1678 else if (tsk->exit_code & 0x7f)
1679 info.si_code = CLD_KILLED;
1680 else {
1681 info.si_code = CLD_EXITED;
1682 info.si_status = tsk->exit_code >> 8;
1683 }
1684
1685 psig = tsk->parent->sighand;
1686 spin_lock_irqsave(&psig->siglock, flags);
1687 if (!tsk->ptrace && sig == SIGCHLD &&
1688 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1689 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1690 /*
1691 * We are exiting and our parent doesn't care. POSIX.1
1692 * defines special semantics for setting SIGCHLD to SIG_IGN
1693 * or setting the SA_NOCLDWAIT flag: we should be reaped
1694 * automatically and not left for our parent's wait4 call.
1695 * Rather than having the parent do it as a magic kind of
1696 * signal handler, we just set this to tell do_exit that we
1697 * can be cleaned up without becoming a zombie. Note that
1698 * we still call __wake_up_parent in this case, because a
1699 * blocked sys_wait4 might now return -ECHILD.
1700 *
1701 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1702 * is implementation-defined: we do (if you don't want
1703 * it, just use SIG_IGN instead).
1704 */
1705 autoreap = true;
1706 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1707 sig = 0;
1708 }
1709 if (valid_signal(sig) && sig)
1710 __group_send_sig_info(sig, &info, tsk->parent);
1711 __wake_up_parent(tsk, tsk->parent);
1712 spin_unlock_irqrestore(&psig->siglock, flags);
1713
1714 return autoreap;
1715 }
1716
1717 /**
1718 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1719 * @tsk: task reporting the state change
1720 * @for_ptracer: the notification is for ptracer
1721 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1722 *
1723 * Notify @tsk's parent that the stopped/continued state has changed. If
1724 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1725 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1726 *
1727 * CONTEXT:
1728 * Must be called with tasklist_lock at least read locked.
1729 */
1730 static void do_notify_parent_cldstop(struct task_struct *tsk,
1731 bool for_ptracer, int why)
1732 {
1733 struct siginfo info;
1734 unsigned long flags;
1735 struct task_struct *parent;
1736 struct sighand_struct *sighand;
1737
1738 if (for_ptracer) {
1739 parent = tsk->parent;
1740 } else {
1741 tsk = tsk->group_leader;
1742 parent = tsk->real_parent;
1743 }
1744
1745 info.si_signo = SIGCHLD;
1746 info.si_errno = 0;
1747 /*
1748 * see comment in do_notify_parent() about the following 4 lines
1749 */
1750 rcu_read_lock();
1751 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1752 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1753 rcu_read_unlock();
1754
1755 info.si_utime = cputime_to_clock_t(tsk->utime);
1756 info.si_stime = cputime_to_clock_t(tsk->stime);
1757
1758 info.si_code = why;
1759 switch (why) {
1760 case CLD_CONTINUED:
1761 info.si_status = SIGCONT;
1762 break;
1763 case CLD_STOPPED:
1764 info.si_status = tsk->signal->group_exit_code & 0x7f;
1765 break;
1766 case CLD_TRAPPED:
1767 info.si_status = tsk->exit_code & 0x7f;
1768 break;
1769 default:
1770 BUG();
1771 }
1772
1773 sighand = parent->sighand;
1774 spin_lock_irqsave(&sighand->siglock, flags);
1775 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1776 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1777 __group_send_sig_info(SIGCHLD, &info, parent);
1778 /*
1779 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1780 */
1781 __wake_up_parent(tsk, parent);
1782 spin_unlock_irqrestore(&sighand->siglock, flags);
1783 }
1784
1785 static inline int may_ptrace_stop(void)
1786 {
1787 if (!likely(current->ptrace))
1788 return 0;
1789 /*
1790 * Are we in the middle of do_coredump?
1791 * If so and our tracer is also part of the coredump stopping
1792 * is a deadlock situation, and pointless because our tracer
1793 * is dead so don't allow us to stop.
1794 * If SIGKILL was already sent before the caller unlocked
1795 * ->siglock we must see ->core_state != NULL. Otherwise it
1796 * is safe to enter schedule().
1797 */
1798 if (unlikely(current->mm->core_state) &&
1799 unlikely(current->mm == current->parent->mm))
1800 return 0;
1801
1802 return 1;
1803 }
1804
1805 /*
1806 * Return non-zero if there is a SIGKILL that should be waking us up.
1807 * Called with the siglock held.
1808 */
1809 static int sigkill_pending(struct task_struct *tsk)
1810 {
1811 return sigismember(&tsk->pending.signal, SIGKILL) ||
1812 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1813 }
1814
1815 /*
1816 * This must be called with current->sighand->siglock held.
1817 *
1818 * This should be the path for all ptrace stops.
1819 * We always set current->last_siginfo while stopped here.
1820 * That makes it a way to test a stopped process for
1821 * being ptrace-stopped vs being job-control-stopped.
1822 *
1823 * If we actually decide not to stop at all because the tracer
1824 * is gone, we keep current->exit_code unless clear_code.
1825 */
1826 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1827 __releases(&current->sighand->siglock)
1828 __acquires(&current->sighand->siglock)
1829 {
1830 bool gstop_done = false;
1831
1832 if (arch_ptrace_stop_needed(exit_code, info)) {
1833 /*
1834 * The arch code has something special to do before a
1835 * ptrace stop. This is allowed to block, e.g. for faults
1836 * on user stack pages. We can't keep the siglock while
1837 * calling arch_ptrace_stop, so we must release it now.
1838 * To preserve proper semantics, we must do this before
1839 * any signal bookkeeping like checking group_stop_count.
1840 * Meanwhile, a SIGKILL could come in before we retake the
1841 * siglock. That must prevent us from sleeping in TASK_TRACED.
1842 * So after regaining the lock, we must check for SIGKILL.
1843 */
1844 spin_unlock_irq(&current->sighand->siglock);
1845 arch_ptrace_stop(exit_code, info);
1846 spin_lock_irq(&current->sighand->siglock);
1847 if (sigkill_pending(current))
1848 return;
1849 }
1850
1851 /*
1852 * We're committing to trapping. TRACED should be visible before
1853 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1854 * Also, transition to TRACED and updates to ->jobctl should be
1855 * atomic with respect to siglock and should be done after the arch
1856 * hook as siglock is released and regrabbed across it.
1857 */
1858 set_current_state(TASK_TRACED);
1859
1860 current->last_siginfo = info;
1861 current->exit_code = exit_code;
1862
1863 /*
1864 * If @why is CLD_STOPPED, we're trapping to participate in a group
1865 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
1866 * across siglock relocks since INTERRUPT was scheduled, PENDING
1867 * could be clear now. We act as if SIGCONT is received after
1868 * TASK_TRACED is entered - ignore it.
1869 */
1870 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1871 gstop_done = task_participate_group_stop(current);
1872
1873 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1874 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1875 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1876 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1877
1878 /* entering a trap, clear TRAPPING */
1879 task_clear_jobctl_trapping(current);
1880
1881 spin_unlock_irq(&current->sighand->siglock);
1882 read_lock(&tasklist_lock);
1883 if (may_ptrace_stop()) {
1884 /*
1885 * Notify parents of the stop.
1886 *
1887 * While ptraced, there are two parents - the ptracer and
1888 * the real_parent of the group_leader. The ptracer should
1889 * know about every stop while the real parent is only
1890 * interested in the completion of group stop. The states
1891 * for the two don't interact with each other. Notify
1892 * separately unless they're gonna be duplicates.
1893 */
1894 do_notify_parent_cldstop(current, true, why);
1895 if (gstop_done && ptrace_reparented(current))
1896 do_notify_parent_cldstop(current, false, why);
1897
1898 /*
1899 * Don't want to allow preemption here, because
1900 * sys_ptrace() needs this task to be inactive.
1901 *
1902 * XXX: implement read_unlock_no_resched().
1903 */
1904 preempt_disable();
1905 read_unlock(&tasklist_lock);
1906 preempt_enable_no_resched();
1907 freezable_schedule();
1908 } else {
1909 /*
1910 * By the time we got the lock, our tracer went away.
1911 * Don't drop the lock yet, another tracer may come.
1912 *
1913 * If @gstop_done, the ptracer went away between group stop
1914 * completion and here. During detach, it would have set
1915 * JOBCTL_STOP_PENDING on us and we'll re-enter
1916 * TASK_STOPPED in do_signal_stop() on return, so notifying
1917 * the real parent of the group stop completion is enough.
1918 */
1919 if (gstop_done)
1920 do_notify_parent_cldstop(current, false, why);
1921
1922 __set_current_state(TASK_RUNNING);
1923 if (clear_code)
1924 current->exit_code = 0;
1925 read_unlock(&tasklist_lock);
1926 }
1927
1928 /*
1929 * We are back. Now reacquire the siglock before touching
1930 * last_siginfo, so that we are sure to have synchronized with
1931 * any signal-sending on another CPU that wants to examine it.
1932 */
1933 spin_lock_irq(&current->sighand->siglock);
1934 current->last_siginfo = NULL;
1935
1936 /* LISTENING can be set only during STOP traps, clear it */
1937 current->jobctl &= ~JOBCTL_LISTENING;
1938
1939 /*
1940 * Queued signals ignored us while we were stopped for tracing.
1941 * So check for any that we should take before resuming user mode.
1942 * This sets TIF_SIGPENDING, but never clears it.
1943 */
1944 recalc_sigpending_tsk(current);
1945 }
1946
1947 static void ptrace_do_notify(int signr, int exit_code, int why)
1948 {
1949 siginfo_t info;
1950
1951 memset(&info, 0, sizeof info);
1952 info.si_signo = signr;
1953 info.si_code = exit_code;
1954 info.si_pid = task_pid_vnr(current);
1955 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1956
1957 /* Let the debugger run. */
1958 ptrace_stop(exit_code, why, 1, &info);
1959 }
1960
1961 void ptrace_notify(int exit_code)
1962 {
1963 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1964 if (unlikely(current->task_works))
1965 task_work_run();
1966
1967 spin_lock_irq(&current->sighand->siglock);
1968 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1969 spin_unlock_irq(&current->sighand->siglock);
1970 }
1971
1972 /**
1973 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1974 * @signr: signr causing group stop if initiating
1975 *
1976 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1977 * and participate in it. If already set, participate in the existing
1978 * group stop. If participated in a group stop (and thus slept), %true is
1979 * returned with siglock released.
1980 *
1981 * If ptraced, this function doesn't handle stop itself. Instead,
1982 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1983 * untouched. The caller must ensure that INTERRUPT trap handling takes
1984 * places afterwards.
1985 *
1986 * CONTEXT:
1987 * Must be called with @current->sighand->siglock held, which is released
1988 * on %true return.
1989 *
1990 * RETURNS:
1991 * %false if group stop is already cancelled or ptrace trap is scheduled.
1992 * %true if participated in group stop.
1993 */
1994 static bool do_signal_stop(int signr)
1995 __releases(&current->sighand->siglock)
1996 {
1997 struct signal_struct *sig = current->signal;
1998
1999 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2000 unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2001 struct task_struct *t;
2002
2003 /* signr will be recorded in task->jobctl for retries */
2004 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2005
2006 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2007 unlikely(signal_group_exit(sig)))
2008 return false;
2009 /*
2010 * There is no group stop already in progress. We must
2011 * initiate one now.
2012 *
2013 * While ptraced, a task may be resumed while group stop is
2014 * still in effect and then receive a stop signal and
2015 * initiate another group stop. This deviates from the
2016 * usual behavior as two consecutive stop signals can't
2017 * cause two group stops when !ptraced. That is why we
2018 * also check !task_is_stopped(t) below.
2019 *
2020 * The condition can be distinguished by testing whether
2021 * SIGNAL_STOP_STOPPED is already set. Don't generate
2022 * group_exit_code in such case.
2023 *
2024 * This is not necessary for SIGNAL_STOP_CONTINUED because
2025 * an intervening stop signal is required to cause two
2026 * continued events regardless of ptrace.
2027 */
2028 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2029 sig->group_exit_code = signr;
2030
2031 sig->group_stop_count = 0;
2032
2033 if (task_set_jobctl_pending(current, signr | gstop))
2034 sig->group_stop_count++;
2035
2036 for (t = next_thread(current); t != current;
2037 t = next_thread(t)) {
2038 /*
2039 * Setting state to TASK_STOPPED for a group
2040 * stop is always done with the siglock held,
2041 * so this check has no races.
2042 */
2043 if (!task_is_stopped(t) &&
2044 task_set_jobctl_pending(t, signr | gstop)) {
2045 sig->group_stop_count++;
2046 if (likely(!(t->ptrace & PT_SEIZED)))
2047 signal_wake_up(t, 0);
2048 else
2049 ptrace_trap_notify(t);
2050 }
2051 }
2052 }
2053
2054 if (likely(!current->ptrace)) {
2055 int notify = 0;
2056
2057 /*
2058 * If there are no other threads in the group, or if there
2059 * is a group stop in progress and we are the last to stop,
2060 * report to the parent.
2061 */
2062 if (task_participate_group_stop(current))
2063 notify = CLD_STOPPED;
2064
2065 __set_current_state(TASK_STOPPED);
2066 spin_unlock_irq(&current->sighand->siglock);
2067
2068 /*
2069 * Notify the parent of the group stop completion. Because
2070 * we're not holding either the siglock or tasklist_lock
2071 * here, ptracer may attach inbetween; however, this is for
2072 * group stop and should always be delivered to the real
2073 * parent of the group leader. The new ptracer will get
2074 * its notification when this task transitions into
2075 * TASK_TRACED.
2076 */
2077 if (notify) {
2078 read_lock(&tasklist_lock);
2079 do_notify_parent_cldstop(current, false, notify);
2080 read_unlock(&tasklist_lock);
2081 }
2082
2083 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2084 freezable_schedule();
2085 return true;
2086 } else {
2087 /*
2088 * While ptraced, group stop is handled by STOP trap.
2089 * Schedule it and let the caller deal with it.
2090 */
2091 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2092 return false;
2093 }
2094 }
2095
2096 /**
2097 * do_jobctl_trap - take care of ptrace jobctl traps
2098 *
2099 * When PT_SEIZED, it's used for both group stop and explicit
2100 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2101 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2102 * the stop signal; otherwise, %SIGTRAP.
2103 *
2104 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2105 * number as exit_code and no siginfo.
2106 *
2107 * CONTEXT:
2108 * Must be called with @current->sighand->siglock held, which may be
2109 * released and re-acquired before returning with intervening sleep.
2110 */
2111 static void do_jobctl_trap(void)
2112 {
2113 struct signal_struct *signal = current->signal;
2114 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2115
2116 if (current->ptrace & PT_SEIZED) {
2117 if (!signal->group_stop_count &&
2118 !(signal->flags & SIGNAL_STOP_STOPPED))
2119 signr = SIGTRAP;
2120 WARN_ON_ONCE(!signr);
2121 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2122 CLD_STOPPED);
2123 } else {
2124 WARN_ON_ONCE(!signr);
2125 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2126 current->exit_code = 0;
2127 }
2128 }
2129
2130 static int ptrace_signal(int signr, siginfo_t *info)
2131 {
2132 ptrace_signal_deliver();
2133 /*
2134 * We do not check sig_kernel_stop(signr) but set this marker
2135 * unconditionally because we do not know whether debugger will
2136 * change signr. This flag has no meaning unless we are going
2137 * to stop after return from ptrace_stop(). In this case it will
2138 * be checked in do_signal_stop(), we should only stop if it was
2139 * not cleared by SIGCONT while we were sleeping. See also the
2140 * comment in dequeue_signal().
2141 */
2142 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2143 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2144
2145 /* We're back. Did the debugger cancel the sig? */
2146 signr = current->exit_code;
2147 if (signr == 0)
2148 return signr;
2149
2150 current->exit_code = 0;
2151
2152 /*
2153 * Update the siginfo structure if the signal has
2154 * changed. If the debugger wanted something
2155 * specific in the siginfo structure then it should
2156 * have updated *info via PTRACE_SETSIGINFO.
2157 */
2158 if (signr != info->si_signo) {
2159 info->si_signo = signr;
2160 info->si_errno = 0;
2161 info->si_code = SI_USER;
2162 rcu_read_lock();
2163 info->si_pid = task_pid_vnr(current->parent);
2164 info->si_uid = from_kuid_munged(current_user_ns(),
2165 task_uid(current->parent));
2166 rcu_read_unlock();
2167 }
2168
2169 /* If the (new) signal is now blocked, requeue it. */
2170 if (sigismember(&current->blocked, signr)) {
2171 specific_send_sig_info(signr, info, current);
2172 signr = 0;
2173 }
2174
2175 return signr;
2176 }
2177
2178 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2179 struct pt_regs *regs, void *cookie)
2180 {
2181 struct sighand_struct *sighand = current->sighand;
2182 struct signal_struct *signal = current->signal;
2183 int signr;
2184
2185 if (unlikely(current->task_works))
2186 task_work_run();
2187
2188 if (unlikely(uprobe_deny_signal()))
2189 return 0;
2190
2191 /*
2192 * Do this once, we can't return to user-mode if freezing() == T.
2193 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2194 * thus do not need another check after return.
2195 */
2196 try_to_freeze();
2197
2198 relock:
2199 spin_lock_irq(&sighand->siglock);
2200 /*
2201 * Every stopped thread goes here after wakeup. Check to see if
2202 * we should notify the parent, prepare_signal(SIGCONT) encodes
2203 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2204 */
2205 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2206 int why;
2207
2208 if (signal->flags & SIGNAL_CLD_CONTINUED)
2209 why = CLD_CONTINUED;
2210 else
2211 why = CLD_STOPPED;
2212
2213 signal->flags &= ~SIGNAL_CLD_MASK;
2214
2215 spin_unlock_irq(&sighand->siglock);
2216
2217 /*
2218 * Notify the parent that we're continuing. This event is
2219 * always per-process and doesn't make whole lot of sense
2220 * for ptracers, who shouldn't consume the state via
2221 * wait(2) either, but, for backward compatibility, notify
2222 * the ptracer of the group leader too unless it's gonna be
2223 * a duplicate.
2224 */
2225 read_lock(&tasklist_lock);
2226 do_notify_parent_cldstop(current, false, why);
2227
2228 if (ptrace_reparented(current->group_leader))
2229 do_notify_parent_cldstop(current->group_leader,
2230 true, why);
2231 read_unlock(&tasklist_lock);
2232
2233 goto relock;
2234 }
2235
2236 for (;;) {
2237 struct k_sigaction *ka;
2238
2239 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2240 do_signal_stop(0))
2241 goto relock;
2242
2243 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2244 do_jobctl_trap();
2245 spin_unlock_irq(&sighand->siglock);
2246 goto relock;
2247 }
2248
2249 signr = dequeue_signal(current, &current->blocked, info);
2250
2251 if (!signr)
2252 break; /* will return 0 */
2253
2254 if (unlikely(current->ptrace) && signr != SIGKILL) {
2255 signr = ptrace_signal(signr, info);
2256 if (!signr)
2257 continue;
2258 }
2259
2260 ka = &sighand->action[signr-1];
2261
2262 /* Trace actually delivered signals. */
2263 trace_signal_deliver(signr, info, ka);
2264
2265 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2266 continue;
2267 if (ka->sa.sa_handler != SIG_DFL) {
2268 /* Run the handler. */
2269 *return_ka = *ka;
2270
2271 if (ka->sa.sa_flags & SA_ONESHOT)
2272 ka->sa.sa_handler = SIG_DFL;
2273
2274 break; /* will return non-zero "signr" value */
2275 }
2276
2277 /*
2278 * Now we are doing the default action for this signal.
2279 */
2280 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2281 continue;
2282
2283 /*
2284 * Global init gets no signals it doesn't want.
2285 * Container-init gets no signals it doesn't want from same
2286 * container.
2287 *
2288 * Note that if global/container-init sees a sig_kernel_only()
2289 * signal here, the signal must have been generated internally
2290 * or must have come from an ancestor namespace. In either
2291 * case, the signal cannot be dropped.
2292 */
2293 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2294 !sig_kernel_only(signr))
2295 continue;
2296
2297 if (sig_kernel_stop(signr)) {
2298 /*
2299 * The default action is to stop all threads in
2300 * the thread group. The job control signals
2301 * do nothing in an orphaned pgrp, but SIGSTOP
2302 * always works. Note that siglock needs to be
2303 * dropped during the call to is_orphaned_pgrp()
2304 * because of lock ordering with tasklist_lock.
2305 * This allows an intervening SIGCONT to be posted.
2306 * We need to check for that and bail out if necessary.
2307 */
2308 if (signr != SIGSTOP) {
2309 spin_unlock_irq(&sighand->siglock);
2310
2311 /* signals can be posted during this window */
2312
2313 if (is_current_pgrp_orphaned())
2314 goto relock;
2315
2316 spin_lock_irq(&sighand->siglock);
2317 }
2318
2319 if (likely(do_signal_stop(info->si_signo))) {
2320 /* It released the siglock. */
2321 goto relock;
2322 }
2323
2324 /*
2325 * We didn't actually stop, due to a race
2326 * with SIGCONT or something like that.
2327 */
2328 continue;
2329 }
2330
2331 spin_unlock_irq(&sighand->siglock);
2332
2333 /*
2334 * Anything else is fatal, maybe with a core dump.
2335 */
2336 current->flags |= PF_SIGNALED;
2337
2338 if (sig_kernel_coredump(signr)) {
2339 if (print_fatal_signals)
2340 print_fatal_signal(info->si_signo);
2341 /*
2342 * If it was able to dump core, this kills all
2343 * other threads in the group and synchronizes with
2344 * their demise. If we lost the race with another
2345 * thread getting here, it set group_exit_code
2346 * first and our do_group_exit call below will use
2347 * that value and ignore the one we pass it.
2348 */
2349 do_coredump(info);
2350 }
2351
2352 /*
2353 * Death signals, no core dump.
2354 */
2355 do_group_exit(info->si_signo);
2356 /* NOTREACHED */
2357 }
2358 spin_unlock_irq(&sighand->siglock);
2359 return signr;
2360 }
2361
2362 /**
2363 * signal_delivered -
2364 * @sig: number of signal being delivered
2365 * @info: siginfo_t of signal being delivered
2366 * @ka: sigaction setting that chose the handler
2367 * @regs: user register state
2368 * @stepping: nonzero if debugger single-step or block-step in use
2369 *
2370 * This function should be called when a signal has succesfully been
2371 * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask
2372 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2373 * is set in @ka->sa.sa_flags. Tracing is notified.
2374 */
2375 void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka,
2376 struct pt_regs *regs, int stepping)
2377 {
2378 sigset_t blocked;
2379
2380 /* A signal was successfully delivered, and the
2381 saved sigmask was stored on the signal frame,
2382 and will be restored by sigreturn. So we can
2383 simply clear the restore sigmask flag. */
2384 clear_restore_sigmask();
2385
2386 sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
2387 if (!(ka->sa.sa_flags & SA_NODEFER))
2388 sigaddset(&blocked, sig);
2389 set_current_blocked(&blocked);
2390 tracehook_signal_handler(sig, info, ka, regs, stepping);
2391 }
2392
2393 /*
2394 * It could be that complete_signal() picked us to notify about the
2395 * group-wide signal. Other threads should be notified now to take
2396 * the shared signals in @which since we will not.
2397 */
2398 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2399 {
2400 sigset_t retarget;
2401 struct task_struct *t;
2402
2403 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2404 if (sigisemptyset(&retarget))
2405 return;
2406
2407 t = tsk;
2408 while_each_thread(tsk, t) {
2409 if (t->flags & PF_EXITING)
2410 continue;
2411
2412 if (!has_pending_signals(&retarget, &t->blocked))
2413 continue;
2414 /* Remove the signals this thread can handle. */
2415 sigandsets(&retarget, &retarget, &t->blocked);
2416
2417 if (!signal_pending(t))
2418 signal_wake_up(t, 0);
2419
2420 if (sigisemptyset(&retarget))
2421 break;
2422 }
2423 }
2424
2425 void exit_signals(struct task_struct *tsk)
2426 {
2427 int group_stop = 0;
2428 sigset_t unblocked;
2429
2430 /*
2431 * @tsk is about to have PF_EXITING set - lock out users which
2432 * expect stable threadgroup.
2433 */
2434 threadgroup_change_begin(tsk);
2435
2436 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2437 tsk->flags |= PF_EXITING;
2438 threadgroup_change_end(tsk);
2439 return;
2440 }
2441
2442 spin_lock_irq(&tsk->sighand->siglock);
2443 /*
2444 * From now this task is not visible for group-wide signals,
2445 * see wants_signal(), do_signal_stop().
2446 */
2447 tsk->flags |= PF_EXITING;
2448
2449 threadgroup_change_end(tsk);
2450
2451 if (!signal_pending(tsk))
2452 goto out;
2453
2454 unblocked = tsk->blocked;
2455 signotset(&unblocked);
2456 retarget_shared_pending(tsk, &unblocked);
2457
2458 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2459 task_participate_group_stop(tsk))
2460 group_stop = CLD_STOPPED;
2461 out:
2462 spin_unlock_irq(&tsk->sighand->siglock);
2463
2464 /*
2465 * If group stop has completed, deliver the notification. This
2466 * should always go to the real parent of the group leader.
2467 */
2468 if (unlikely(group_stop)) {
2469 read_lock(&tasklist_lock);
2470 do_notify_parent_cldstop(tsk, false, group_stop);
2471 read_unlock(&tasklist_lock);
2472 }
2473 }
2474
2475 EXPORT_SYMBOL(recalc_sigpending);
2476 EXPORT_SYMBOL_GPL(dequeue_signal);
2477 EXPORT_SYMBOL(flush_signals);
2478 EXPORT_SYMBOL(force_sig);
2479 EXPORT_SYMBOL(send_sig);
2480 EXPORT_SYMBOL(send_sig_info);
2481 EXPORT_SYMBOL(sigprocmask);
2482 EXPORT_SYMBOL(block_all_signals);
2483 EXPORT_SYMBOL(unblock_all_signals);
2484
2485
2486 /*
2487 * System call entry points.
2488 */
2489
2490 /**
2491 * sys_restart_syscall - restart a system call
2492 */
2493 SYSCALL_DEFINE0(restart_syscall)
2494 {
2495 struct restart_block *restart = &current_thread_info()->restart_block;
2496 return restart->fn(restart);
2497 }
2498
2499 long do_no_restart_syscall(struct restart_block *param)
2500 {
2501 return -EINTR;
2502 }
2503
2504 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2505 {
2506 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2507 sigset_t newblocked;
2508 /* A set of now blocked but previously unblocked signals. */
2509 sigandnsets(&newblocked, newset, &current->blocked);
2510 retarget_shared_pending(tsk, &newblocked);
2511 }
2512 tsk->blocked = *newset;
2513 recalc_sigpending();
2514 }
2515
2516 /**
2517 * set_current_blocked - change current->blocked mask
2518 * @newset: new mask
2519 *
2520 * It is wrong to change ->blocked directly, this helper should be used
2521 * to ensure the process can't miss a shared signal we are going to block.
2522 */
2523 void set_current_blocked(sigset_t *newset)
2524 {
2525 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2526 __set_current_blocked(newset);
2527 }
2528
2529 void __set_current_blocked(const sigset_t *newset)
2530 {
2531 struct task_struct *tsk = current;
2532
2533 spin_lock_irq(&tsk->sighand->siglock);
2534 __set_task_blocked(tsk, newset);
2535 spin_unlock_irq(&tsk->sighand->siglock);
2536 }
2537
2538 /*
2539 * This is also useful for kernel threads that want to temporarily
2540 * (or permanently) block certain signals.
2541 *
2542 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2543 * interface happily blocks "unblockable" signals like SIGKILL
2544 * and friends.
2545 */
2546 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2547 {
2548 struct task_struct *tsk = current;
2549 sigset_t newset;
2550
2551 /* Lockless, only current can change ->blocked, never from irq */
2552 if (oldset)
2553 *oldset = tsk->blocked;
2554
2555 switch (how) {
2556 case SIG_BLOCK:
2557 sigorsets(&newset, &tsk->blocked, set);
2558 break;
2559 case SIG_UNBLOCK:
2560 sigandnsets(&newset, &tsk->blocked, set);
2561 break;
2562 case SIG_SETMASK:
2563 newset = *set;
2564 break;
2565 default:
2566 return -EINVAL;
2567 }
2568
2569 __set_current_blocked(&newset);
2570 return 0;
2571 }
2572
2573 /**
2574 * sys_rt_sigprocmask - change the list of currently blocked signals
2575 * @how: whether to add, remove, or set signals
2576 * @nset: stores pending signals
2577 * @oset: previous value of signal mask if non-null
2578 * @sigsetsize: size of sigset_t type
2579 */
2580 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2581 sigset_t __user *, oset, size_t, sigsetsize)
2582 {
2583 sigset_t old_set, new_set;
2584 int error;
2585
2586 /* XXX: Don't preclude handling different sized sigset_t's. */
2587 if (sigsetsize != sizeof(sigset_t))
2588 return -EINVAL;
2589
2590 old_set = current->blocked;
2591
2592 if (nset) {
2593 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2594 return -EFAULT;
2595 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2596
2597 error = sigprocmask(how, &new_set, NULL);
2598 if (error)
2599 return error;
2600 }
2601
2602 if (oset) {
2603 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2604 return -EFAULT;
2605 }
2606
2607 return 0;
2608 }
2609
2610 long do_sigpending(void __user *set, unsigned long sigsetsize)
2611 {
2612 long error = -EINVAL;
2613 sigset_t pending;
2614
2615 if (sigsetsize > sizeof(sigset_t))
2616 goto out;
2617
2618 spin_lock_irq(&current->sighand->siglock);
2619 sigorsets(&pending, &current->pending.signal,
2620 &current->signal->shared_pending.signal);
2621 spin_unlock_irq(&current->sighand->siglock);
2622
2623 /* Outside the lock because only this thread touches it. */
2624 sigandsets(&pending, &current->blocked, &pending);
2625
2626 error = -EFAULT;
2627 if (!copy_to_user(set, &pending, sigsetsize))
2628 error = 0;
2629
2630 out:
2631 return error;
2632 }
2633
2634 /**
2635 * sys_rt_sigpending - examine a pending signal that has been raised
2636 * while blocked
2637 * @set: stores pending signals
2638 * @sigsetsize: size of sigset_t type or larger
2639 */
2640 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2641 {
2642 return do_sigpending(set, sigsetsize);
2643 }
2644
2645 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2646
2647 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2648 {
2649 int err;
2650
2651 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2652 return -EFAULT;
2653 if (from->si_code < 0)
2654 return __copy_to_user(to, from, sizeof(siginfo_t))
2655 ? -EFAULT : 0;
2656 /*
2657 * If you change siginfo_t structure, please be sure
2658 * this code is fixed accordingly.
2659 * Please remember to update the signalfd_copyinfo() function
2660 * inside fs/signalfd.c too, in case siginfo_t changes.
2661 * It should never copy any pad contained in the structure
2662 * to avoid security leaks, but must copy the generic
2663 * 3 ints plus the relevant union member.
2664 */
2665 err = __put_user(from->si_signo, &to->si_signo);
2666 err |= __put_user(from->si_errno, &to->si_errno);
2667 err |= __put_user((short)from->si_code, &to->si_code);
2668 switch (from->si_code & __SI_MASK) {
2669 case __SI_KILL:
2670 err |= __put_user(from->si_pid, &to->si_pid);
2671 err |= __put_user(from->si_uid, &to->si_uid);
2672 break;
2673 case __SI_TIMER:
2674 err |= __put_user(from->si_tid, &to->si_tid);
2675 err |= __put_user(from->si_overrun, &to->si_overrun);
2676 err |= __put_user(from->si_ptr, &to->si_ptr);
2677 break;
2678 case __SI_POLL:
2679 err |= __put_user(from->si_band, &to->si_band);
2680 err |= __put_user(from->si_fd, &to->si_fd);
2681 break;
2682 case __SI_FAULT:
2683 err |= __put_user(from->si_addr, &to->si_addr);
2684 #ifdef __ARCH_SI_TRAPNO
2685 err |= __put_user(from->si_trapno, &to->si_trapno);
2686 #endif
2687 #ifdef BUS_MCEERR_AO
2688 /*
2689 * Other callers might not initialize the si_lsb field,
2690 * so check explicitly for the right codes here.
2691 */
2692 if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2693 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2694 #endif
2695 break;
2696 case __SI_CHLD:
2697 err |= __put_user(from->si_pid, &to->si_pid);
2698 err |= __put_user(from->si_uid, &to->si_uid);
2699 err |= __put_user(from->si_status, &to->si_status);
2700 err |= __put_user(from->si_utime, &to->si_utime);
2701 err |= __put_user(from->si_stime, &to->si_stime);
2702 break;
2703 case __SI_RT: /* This is not generated by the kernel as of now. */
2704 case __SI_MESGQ: /* But this is */
2705 err |= __put_user(from->si_pid, &to->si_pid);
2706 err |= __put_user(from->si_uid, &to->si_uid);
2707 err |= __put_user(from->si_ptr, &to->si_ptr);
2708 break;
2709 #ifdef __ARCH_SIGSYS
2710 case __SI_SYS:
2711 err |= __put_user(from->si_call_addr, &to->si_call_addr);
2712 err |= __put_user(from->si_syscall, &to->si_syscall);
2713 err |= __put_user(from->si_arch, &to->si_arch);
2714 break;
2715 #endif
2716 default: /* this is just in case for now ... */
2717 err |= __put_user(from->si_pid, &to->si_pid);
2718 err |= __put_user(from->si_uid, &to->si_uid);
2719 break;
2720 }
2721 return err;
2722 }
2723
2724 #endif
2725
2726 /**
2727 * do_sigtimedwait - wait for queued signals specified in @which
2728 * @which: queued signals to wait for
2729 * @info: if non-null, the signal's siginfo is returned here
2730 * @ts: upper bound on process time suspension
2731 */
2732 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2733 const struct timespec *ts)
2734 {
2735 struct task_struct *tsk = current;
2736 long timeout = MAX_SCHEDULE_TIMEOUT;
2737 sigset_t mask = *which;
2738 int sig;
2739
2740 if (ts) {
2741 if (!timespec_valid(ts))
2742 return -EINVAL;
2743 timeout = timespec_to_jiffies(ts);
2744 /*
2745 * We can be close to the next tick, add another one
2746 * to ensure we will wait at least the time asked for.
2747 */
2748 if (ts->tv_sec || ts->tv_nsec)
2749 timeout++;
2750 }
2751
2752 /*
2753 * Invert the set of allowed signals to get those we want to block.
2754 */
2755 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2756 signotset(&mask);
2757
2758 spin_lock_irq(&tsk->sighand->siglock);
2759 sig = dequeue_signal(tsk, &mask, info);
2760 if (!sig && timeout) {
2761 /*
2762 * None ready, temporarily unblock those we're interested
2763 * while we are sleeping in so that we'll be awakened when
2764 * they arrive. Unblocking is always fine, we can avoid
2765 * set_current_blocked().
2766 */
2767 tsk->real_blocked = tsk->blocked;
2768 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2769 recalc_sigpending();
2770 spin_unlock_irq(&tsk->sighand->siglock);
2771
2772 timeout = schedule_timeout_interruptible(timeout);
2773
2774 spin_lock_irq(&tsk->sighand->siglock);
2775 __set_task_blocked(tsk, &tsk->real_blocked);
2776 siginitset(&tsk->real_blocked, 0);
2777 sig = dequeue_signal(tsk, &mask, info);
2778 }
2779 spin_unlock_irq(&tsk->sighand->siglock);
2780
2781 if (sig)
2782 return sig;
2783 return timeout ? -EINTR : -EAGAIN;
2784 }
2785
2786 /**
2787 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
2788 * in @uthese
2789 * @uthese: queued signals to wait for
2790 * @uinfo: if non-null, the signal's siginfo is returned here
2791 * @uts: upper bound on process time suspension
2792 * @sigsetsize: size of sigset_t type
2793 */
2794 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2795 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2796 size_t, sigsetsize)
2797 {
2798 sigset_t these;
2799 struct timespec ts;
2800 siginfo_t info;
2801 int ret;
2802
2803 /* XXX: Don't preclude handling different sized sigset_t's. */
2804 if (sigsetsize != sizeof(sigset_t))
2805 return -EINVAL;
2806
2807 if (copy_from_user(&these, uthese, sizeof(these)))
2808 return -EFAULT;
2809
2810 if (uts) {
2811 if (copy_from_user(&ts, uts, sizeof(ts)))
2812 return -EFAULT;
2813 }
2814
2815 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2816
2817 if (ret > 0 && uinfo) {
2818 if (copy_siginfo_to_user(uinfo, &info))
2819 ret = -EFAULT;
2820 }
2821
2822 return ret;
2823 }
2824
2825 /**
2826 * sys_kill - send a signal to a process
2827 * @pid: the PID of the process
2828 * @sig: signal to be sent
2829 */
2830 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2831 {
2832 struct siginfo info;
2833
2834 info.si_signo = sig;
2835 info.si_errno = 0;
2836 info.si_code = SI_USER;
2837 info.si_pid = task_tgid_vnr(current);
2838 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2839
2840 return kill_something_info(sig, &info, pid);
2841 }
2842
2843 static int
2844 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2845 {
2846 struct task_struct *p;
2847 int error = -ESRCH;
2848
2849 rcu_read_lock();
2850 p = find_task_by_vpid(pid);
2851 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2852 error = check_kill_permission(sig, info, p);
2853 /*
2854 * The null signal is a permissions and process existence
2855 * probe. No signal is actually delivered.
2856 */
2857 if (!error && sig) {
2858 error = do_send_sig_info(sig, info, p, false);
2859 /*
2860 * If lock_task_sighand() failed we pretend the task
2861 * dies after receiving the signal. The window is tiny,
2862 * and the signal is private anyway.
2863 */
2864 if (unlikely(error == -ESRCH))
2865 error = 0;
2866 }
2867 }
2868 rcu_read_unlock();
2869
2870 return error;
2871 }
2872
2873 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2874 {
2875 struct siginfo info;
2876
2877 info.si_signo = sig;
2878 info.si_errno = 0;
2879 info.si_code = SI_TKILL;
2880 info.si_pid = task_tgid_vnr(current);
2881 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2882
2883 return do_send_specific(tgid, pid, sig, &info);
2884 }
2885
2886 /**
2887 * sys_tgkill - send signal to one specific thread
2888 * @tgid: the thread group ID of the thread
2889 * @pid: the PID of the thread
2890 * @sig: signal to be sent
2891 *
2892 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2893 * exists but it's not belonging to the target process anymore. This
2894 * method solves the problem of threads exiting and PIDs getting reused.
2895 */
2896 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2897 {
2898 /* This is only valid for single tasks */
2899 if (pid <= 0 || tgid <= 0)
2900 return -EINVAL;
2901
2902 return do_tkill(tgid, pid, sig);
2903 }
2904
2905 /**
2906 * sys_tkill - send signal to one specific task
2907 * @pid: the PID of the task
2908 * @sig: signal to be sent
2909 *
2910 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2911 */
2912 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2913 {
2914 /* This is only valid for single tasks */
2915 if (pid <= 0)
2916 return -EINVAL;
2917
2918 return do_tkill(0, pid, sig);
2919 }
2920
2921 /**
2922 * sys_rt_sigqueueinfo - send signal information to a signal
2923 * @pid: the PID of the thread
2924 * @sig: signal to be sent
2925 * @uinfo: signal info to be sent
2926 */
2927 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2928 siginfo_t __user *, uinfo)
2929 {
2930 siginfo_t info;
2931
2932 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2933 return -EFAULT;
2934
2935 /* Not even root can pretend to send signals from the kernel.
2936 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2937 */
2938 if (info.si_code >= 0 || info.si_code == SI_TKILL) {
2939 /* We used to allow any < 0 si_code */
2940 WARN_ON_ONCE(info.si_code < 0);
2941 return -EPERM;
2942 }
2943 info.si_signo = sig;
2944
2945 /* POSIX.1b doesn't mention process groups. */
2946 return kill_proc_info(sig, &info, pid);
2947 }
2948
2949 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2950 {
2951 /* This is only valid for single tasks */
2952 if (pid <= 0 || tgid <= 0)
2953 return -EINVAL;
2954
2955 /* Not even root can pretend to send signals from the kernel.
2956 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2957 */
2958 if (info->si_code >= 0 || info->si_code == SI_TKILL) {
2959 /* We used to allow any < 0 si_code */
2960 WARN_ON_ONCE(info->si_code < 0);
2961 return -EPERM;
2962 }
2963 info->si_signo = sig;
2964
2965 return do_send_specific(tgid, pid, sig, info);
2966 }
2967
2968 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2969 siginfo_t __user *, uinfo)
2970 {
2971 siginfo_t info;
2972
2973 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2974 return -EFAULT;
2975
2976 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2977 }
2978
2979 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2980 {
2981 struct task_struct *t = current;
2982 struct k_sigaction *k;
2983 sigset_t mask;
2984
2985 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2986 return -EINVAL;
2987
2988 k = &t->sighand->action[sig-1];
2989
2990 spin_lock_irq(&current->sighand->siglock);
2991 if (oact)
2992 *oact = *k;
2993
2994 if (act) {
2995 sigdelsetmask(&act->sa.sa_mask,
2996 sigmask(SIGKILL) | sigmask(SIGSTOP));
2997 *k = *act;
2998 /*
2999 * POSIX 3.3.1.3:
3000 * "Setting a signal action to SIG_IGN for a signal that is
3001 * pending shall cause the pending signal to be discarded,
3002 * whether or not it is blocked."
3003 *
3004 * "Setting a signal action to SIG_DFL for a signal that is
3005 * pending and whose default action is to ignore the signal
3006 * (for example, SIGCHLD), shall cause the pending signal to
3007 * be discarded, whether or not it is blocked"
3008 */
3009 if (sig_handler_ignored(sig_handler(t, sig), sig)) {
3010 sigemptyset(&mask);
3011 sigaddset(&mask, sig);
3012 rm_from_queue_full(&mask, &t->signal->shared_pending);
3013 do {
3014 rm_from_queue_full(&mask, &t->pending);
3015 t = next_thread(t);
3016 } while (t != current);
3017 }
3018 }
3019
3020 spin_unlock_irq(&current->sighand->siglock);
3021 return 0;
3022 }
3023
3024 int
3025 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3026 {
3027 stack_t oss;
3028 int error;
3029
3030 oss.ss_sp = (void __user *) current->sas_ss_sp;
3031 oss.ss_size = current->sas_ss_size;
3032 oss.ss_flags = sas_ss_flags(sp);
3033
3034 if (uss) {
3035 void __user *ss_sp;
3036 size_t ss_size;
3037 int ss_flags;
3038
3039 error = -EFAULT;
3040 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3041 goto out;
3042 error = __get_user(ss_sp, &uss->ss_sp) |
3043 __get_user(ss_flags, &uss->ss_flags) |
3044 __get_user(ss_size, &uss->ss_size);
3045 if (error)
3046 goto out;
3047
3048 error = -EPERM;
3049 if (on_sig_stack(sp))
3050 goto out;
3051
3052 error = -EINVAL;
3053 /*
3054 * Note - this code used to test ss_flags incorrectly:
3055 * old code may have been written using ss_flags==0
3056 * to mean ss_flags==SS_ONSTACK (as this was the only
3057 * way that worked) - this fix preserves that older
3058 * mechanism.
3059 */
3060 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3061 goto out;
3062
3063 if (ss_flags == SS_DISABLE) {
3064 ss_size = 0;
3065 ss_sp = NULL;
3066 } else {
3067 error = -ENOMEM;
3068 if (ss_size < MINSIGSTKSZ)
3069 goto out;
3070 }
3071
3072 current->sas_ss_sp = (unsigned long) ss_sp;
3073 current->sas_ss_size = ss_size;
3074 }
3075
3076 error = 0;
3077 if (uoss) {
3078 error = -EFAULT;
3079 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3080 goto out;
3081 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3082 __put_user(oss.ss_size, &uoss->ss_size) |
3083 __put_user(oss.ss_flags, &uoss->ss_flags);
3084 }
3085
3086 out:
3087 return error;
3088 }
3089 #ifdef CONFIG_GENERIC_SIGALTSTACK
3090 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3091 {
3092 return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3093 }
3094 #endif
3095
3096 int restore_altstack(const stack_t __user *uss)
3097 {
3098 int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3099 /* squash all but EFAULT for now */
3100 return err == -EFAULT ? err : 0;
3101 }
3102
3103 int __save_altstack(stack_t __user *uss, unsigned long sp)
3104 {
3105 struct task_struct *t = current;
3106 return __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3107 __put_user(sas_ss_flags(sp), &uss->ss_flags) |
3108 __put_user(t->sas_ss_size, &uss->ss_size);
3109 }
3110
3111 #ifdef CONFIG_COMPAT
3112 #ifdef CONFIG_GENERIC_SIGALTSTACK
3113 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3114 const compat_stack_t __user *, uss_ptr,
3115 compat_stack_t __user *, uoss_ptr)
3116 {
3117 stack_t uss, uoss;
3118 int ret;
3119 mm_segment_t seg;
3120
3121 if (uss_ptr) {
3122 compat_stack_t uss32;
3123
3124 memset(&uss, 0, sizeof(stack_t));
3125 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3126 return -EFAULT;
3127 uss.ss_sp = compat_ptr(uss32.ss_sp);
3128 uss.ss_flags = uss32.ss_flags;
3129 uss.ss_size = uss32.ss_size;
3130 }
3131 seg = get_fs();
3132 set_fs(KERNEL_DS);
3133 ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3134 (stack_t __force __user *) &uoss,
3135 compat_user_stack_pointer());
3136 set_fs(seg);
3137 if (ret >= 0 && uoss_ptr) {
3138 if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3139 __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3140 __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3141 __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3142 ret = -EFAULT;
3143 }
3144 return ret;
3145 }
3146
3147 int compat_restore_altstack(const compat_stack_t __user *uss)
3148 {
3149 int err = compat_sys_sigaltstack(uss, NULL);
3150 /* squash all but -EFAULT for now */
3151 return err == -EFAULT ? err : 0;
3152 }
3153
3154 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3155 {
3156 struct task_struct *t = current;
3157 return __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) |
3158 __put_user(sas_ss_flags(sp), &uss->ss_flags) |
3159 __put_user(t->sas_ss_size, &uss->ss_size);
3160 }
3161 #endif
3162 #endif
3163
3164 #ifdef __ARCH_WANT_SYS_SIGPENDING
3165
3166 /**
3167 * sys_sigpending - examine pending signals
3168 * @set: where mask of pending signal is returned
3169 */
3170 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3171 {
3172 return do_sigpending(set, sizeof(*set));
3173 }
3174
3175 #endif
3176
3177 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3178 /**
3179 * sys_sigprocmask - examine and change blocked signals
3180 * @how: whether to add, remove, or set signals
3181 * @nset: signals to add or remove (if non-null)
3182 * @oset: previous value of signal mask if non-null
3183 *
3184 * Some platforms have their own version with special arguments;
3185 * others support only sys_rt_sigprocmask.
3186 */
3187
3188 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3189 old_sigset_t __user *, oset)
3190 {
3191 old_sigset_t old_set, new_set;
3192 sigset_t new_blocked;
3193
3194 old_set = current->blocked.sig[0];
3195
3196 if (nset) {
3197 if (copy_from_user(&new_set, nset, sizeof(*nset)))
3198 return -EFAULT;
3199
3200 new_blocked = current->blocked;
3201
3202 switch (how) {
3203 case SIG_BLOCK:
3204 sigaddsetmask(&new_blocked, new_set);
3205 break;
3206 case SIG_UNBLOCK:
3207 sigdelsetmask(&new_blocked, new_set);
3208 break;
3209 case SIG_SETMASK:
3210 new_blocked.sig[0] = new_set;
3211 break;
3212 default:
3213 return -EINVAL;
3214 }
3215
3216 set_current_blocked(&new_blocked);
3217 }
3218
3219 if (oset) {
3220 if (copy_to_user(oset, &old_set, sizeof(*oset)))
3221 return -EFAULT;
3222 }
3223
3224 return 0;
3225 }
3226 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3227
3228 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
3229 /**
3230 * sys_rt_sigaction - alter an action taken by a process
3231 * @sig: signal to be sent
3232 * @act: new sigaction
3233 * @oact: used to save the previous sigaction
3234 * @sigsetsize: size of sigset_t type
3235 */
3236 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3237 const struct sigaction __user *, act,
3238 struct sigaction __user *, oact,
3239 size_t, sigsetsize)
3240 {
3241 struct k_sigaction new_sa, old_sa;
3242 int ret = -EINVAL;
3243
3244 /* XXX: Don't preclude handling different sized sigset_t's. */
3245 if (sigsetsize != sizeof(sigset_t))
3246 goto out;
3247
3248 if (act) {
3249 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3250 return -EFAULT;
3251 }
3252
3253 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3254
3255 if (!ret && oact) {
3256 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3257 return -EFAULT;
3258 }
3259 out:
3260 return ret;
3261 }
3262 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
3263
3264 #ifdef __ARCH_WANT_SYS_SGETMASK
3265
3266 /*
3267 * For backwards compatibility. Functionality superseded by sigprocmask.
3268 */
3269 SYSCALL_DEFINE0(sgetmask)
3270 {
3271 /* SMP safe */
3272 return current->blocked.sig[0];
3273 }
3274
3275 SYSCALL_DEFINE1(ssetmask, int, newmask)
3276 {
3277 int old = current->blocked.sig[0];
3278 sigset_t newset;
3279
3280 siginitset(&newset, newmask);
3281 set_current_blocked(&newset);
3282
3283 return old;
3284 }
3285 #endif /* __ARCH_WANT_SGETMASK */
3286
3287 #ifdef __ARCH_WANT_SYS_SIGNAL
3288 /*
3289 * For backwards compatibility. Functionality superseded by sigaction.
3290 */
3291 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3292 {
3293 struct k_sigaction new_sa, old_sa;
3294 int ret;
3295
3296 new_sa.sa.sa_handler = handler;
3297 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3298 sigemptyset(&new_sa.sa.sa_mask);
3299
3300 ret = do_sigaction(sig, &new_sa, &old_sa);
3301
3302 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3303 }
3304 #endif /* __ARCH_WANT_SYS_SIGNAL */
3305
3306 #ifdef __ARCH_WANT_SYS_PAUSE
3307
3308 SYSCALL_DEFINE0(pause)
3309 {
3310 while (!signal_pending(current)) {
3311 current->state = TASK_INTERRUPTIBLE;
3312 schedule();
3313 }
3314 return -ERESTARTNOHAND;
3315 }
3316
3317 #endif
3318
3319 int sigsuspend(sigset_t *set)
3320 {
3321 current->saved_sigmask = current->blocked;
3322 set_current_blocked(set);
3323
3324 current->state = TASK_INTERRUPTIBLE;
3325 schedule();
3326 set_restore_sigmask();
3327 return -ERESTARTNOHAND;
3328 }
3329
3330 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
3331 /**
3332 * sys_rt_sigsuspend - replace the signal mask for a value with the
3333 * @unewset value until a signal is received
3334 * @unewset: new signal mask value
3335 * @sigsetsize: size of sigset_t type
3336 */
3337 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3338 {
3339 sigset_t newset;
3340
3341 /* XXX: Don't preclude handling different sized sigset_t's. */
3342 if (sigsetsize != sizeof(sigset_t))
3343 return -EINVAL;
3344
3345 if (copy_from_user(&newset, unewset, sizeof(newset)))
3346 return -EFAULT;
3347 return sigsuspend(&newset);
3348 }
3349 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
3350
3351 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3352 {
3353 return NULL;
3354 }
3355
3356 void __init signals_init(void)
3357 {
3358 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3359 }
3360
3361 #ifdef CONFIG_KGDB_KDB
3362 #include <linux/kdb.h>
3363 /*
3364 * kdb_send_sig_info - Allows kdb to send signals without exposing
3365 * signal internals. This function checks if the required locks are
3366 * available before calling the main signal code, to avoid kdb
3367 * deadlocks.
3368 */
3369 void
3370 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3371 {
3372 static struct task_struct *kdb_prev_t;
3373 int sig, new_t;
3374 if (!spin_trylock(&t->sighand->siglock)) {
3375 kdb_printf("Can't do kill command now.\n"
3376 "The sigmask lock is held somewhere else in "
3377 "kernel, try again later\n");
3378 return;
3379 }
3380 spin_unlock(&t->sighand->siglock);
3381 new_t = kdb_prev_t != t;
3382 kdb_prev_t = t;
3383 if (t->state != TASK_RUNNING && new_t) {
3384 kdb_printf("Process is not RUNNING, sending a signal from "
3385 "kdb risks deadlock\n"
3386 "on the run queue locks. "
3387 "The signal has _not_ been sent.\n"
3388 "Reissue the kill command if you want to risk "
3389 "the deadlock.\n");
3390 return;
3391 }
3392 sig = info->si_signo;
3393 if (send_sig_info(sig, info, t))
3394 kdb_printf("Fail to deliver Signal %d to process %d.\n",
3395 sig, t->pid);
3396 else
3397 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3398 }
3399 #endif /* CONFIG_KGDB_KDB */