]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/signal.c
Merge branch 'topic/ice1724-quartet' into topic/hda
[mirror_ubuntu-bionic-kernel.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/tracehook.h>
26 #include <linux/capability.h>
27 #include <linux/freezer.h>
28 #include <linux/pid_namespace.h>
29 #include <linux/nsproxy.h>
30 #include <trace/events/sched.h>
31
32 #include <asm/param.h>
33 #include <asm/uaccess.h>
34 #include <asm/unistd.h>
35 #include <asm/siginfo.h>
36 #include "audit.h" /* audit_signal_info() */
37
38 /*
39 * SLAB caches for signal bits.
40 */
41
42 static struct kmem_cache *sigqueue_cachep;
43
44 static void __user *sig_handler(struct task_struct *t, int sig)
45 {
46 return t->sighand->action[sig - 1].sa.sa_handler;
47 }
48
49 static int sig_handler_ignored(void __user *handler, int sig)
50 {
51 /* Is it explicitly or implicitly ignored? */
52 return handler == SIG_IGN ||
53 (handler == SIG_DFL && sig_kernel_ignore(sig));
54 }
55
56 static int sig_task_ignored(struct task_struct *t, int sig,
57 int from_ancestor_ns)
58 {
59 void __user *handler;
60
61 handler = sig_handler(t, sig);
62
63 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
64 handler == SIG_DFL && !from_ancestor_ns)
65 return 1;
66
67 return sig_handler_ignored(handler, sig);
68 }
69
70 static int sig_ignored(struct task_struct *t, int sig, int from_ancestor_ns)
71 {
72 /*
73 * Blocked signals are never ignored, since the
74 * signal handler may change by the time it is
75 * unblocked.
76 */
77 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
78 return 0;
79
80 if (!sig_task_ignored(t, sig, from_ancestor_ns))
81 return 0;
82
83 /*
84 * Tracers may want to know about even ignored signals.
85 */
86 return !tracehook_consider_ignored_signal(t, sig);
87 }
88
89 /*
90 * Re-calculate pending state from the set of locally pending
91 * signals, globally pending signals, and blocked signals.
92 */
93 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
94 {
95 unsigned long ready;
96 long i;
97
98 switch (_NSIG_WORDS) {
99 default:
100 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
101 ready |= signal->sig[i] &~ blocked->sig[i];
102 break;
103
104 case 4: ready = signal->sig[3] &~ blocked->sig[3];
105 ready |= signal->sig[2] &~ blocked->sig[2];
106 ready |= signal->sig[1] &~ blocked->sig[1];
107 ready |= signal->sig[0] &~ blocked->sig[0];
108 break;
109
110 case 2: ready = signal->sig[1] &~ blocked->sig[1];
111 ready |= signal->sig[0] &~ blocked->sig[0];
112 break;
113
114 case 1: ready = signal->sig[0] &~ blocked->sig[0];
115 }
116 return ready != 0;
117 }
118
119 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
120
121 static int recalc_sigpending_tsk(struct task_struct *t)
122 {
123 if (t->signal->group_stop_count > 0 ||
124 PENDING(&t->pending, &t->blocked) ||
125 PENDING(&t->signal->shared_pending, &t->blocked)) {
126 set_tsk_thread_flag(t, TIF_SIGPENDING);
127 return 1;
128 }
129 /*
130 * We must never clear the flag in another thread, or in current
131 * when it's possible the current syscall is returning -ERESTART*.
132 * So we don't clear it here, and only callers who know they should do.
133 */
134 return 0;
135 }
136
137 /*
138 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
139 * This is superfluous when called on current, the wakeup is a harmless no-op.
140 */
141 void recalc_sigpending_and_wake(struct task_struct *t)
142 {
143 if (recalc_sigpending_tsk(t))
144 signal_wake_up(t, 0);
145 }
146
147 void recalc_sigpending(void)
148 {
149 if (unlikely(tracehook_force_sigpending()))
150 set_thread_flag(TIF_SIGPENDING);
151 else if (!recalc_sigpending_tsk(current) && !freezing(current))
152 clear_thread_flag(TIF_SIGPENDING);
153
154 }
155
156 /* Given the mask, find the first available signal that should be serviced. */
157
158 int next_signal(struct sigpending *pending, sigset_t *mask)
159 {
160 unsigned long i, *s, *m, x;
161 int sig = 0;
162
163 s = pending->signal.sig;
164 m = mask->sig;
165 switch (_NSIG_WORDS) {
166 default:
167 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
168 if ((x = *s &~ *m) != 0) {
169 sig = ffz(~x) + i*_NSIG_BPW + 1;
170 break;
171 }
172 break;
173
174 case 2: if ((x = s[0] &~ m[0]) != 0)
175 sig = 1;
176 else if ((x = s[1] &~ m[1]) != 0)
177 sig = _NSIG_BPW + 1;
178 else
179 break;
180 sig += ffz(~x);
181 break;
182
183 case 1: if ((x = *s &~ *m) != 0)
184 sig = ffz(~x) + 1;
185 break;
186 }
187
188 return sig;
189 }
190
191 /*
192 * allocate a new signal queue record
193 * - this may be called without locks if and only if t == current, otherwise an
194 * appopriate lock must be held to stop the target task from exiting
195 */
196 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
197 int override_rlimit)
198 {
199 struct sigqueue *q = NULL;
200 struct user_struct *user;
201
202 /*
203 * We won't get problems with the target's UID changing under us
204 * because changing it requires RCU be used, and if t != current, the
205 * caller must be holding the RCU readlock (by way of a spinlock) and
206 * we use RCU protection here
207 */
208 user = get_uid(__task_cred(t)->user);
209 atomic_inc(&user->sigpending);
210 if (override_rlimit ||
211 atomic_read(&user->sigpending) <=
212 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
213 q = kmem_cache_alloc(sigqueue_cachep, flags);
214 if (unlikely(q == NULL)) {
215 atomic_dec(&user->sigpending);
216 free_uid(user);
217 } else {
218 INIT_LIST_HEAD(&q->list);
219 q->flags = 0;
220 q->user = user;
221 }
222
223 return q;
224 }
225
226 static void __sigqueue_free(struct sigqueue *q)
227 {
228 if (q->flags & SIGQUEUE_PREALLOC)
229 return;
230 atomic_dec(&q->user->sigpending);
231 free_uid(q->user);
232 kmem_cache_free(sigqueue_cachep, q);
233 }
234
235 void flush_sigqueue(struct sigpending *queue)
236 {
237 struct sigqueue *q;
238
239 sigemptyset(&queue->signal);
240 while (!list_empty(&queue->list)) {
241 q = list_entry(queue->list.next, struct sigqueue , list);
242 list_del_init(&q->list);
243 __sigqueue_free(q);
244 }
245 }
246
247 /*
248 * Flush all pending signals for a task.
249 */
250 void __flush_signals(struct task_struct *t)
251 {
252 clear_tsk_thread_flag(t, TIF_SIGPENDING);
253 flush_sigqueue(&t->pending);
254 flush_sigqueue(&t->signal->shared_pending);
255 }
256
257 void flush_signals(struct task_struct *t)
258 {
259 unsigned long flags;
260
261 spin_lock_irqsave(&t->sighand->siglock, flags);
262 __flush_signals(t);
263 spin_unlock_irqrestore(&t->sighand->siglock, flags);
264 }
265
266 static void __flush_itimer_signals(struct sigpending *pending)
267 {
268 sigset_t signal, retain;
269 struct sigqueue *q, *n;
270
271 signal = pending->signal;
272 sigemptyset(&retain);
273
274 list_for_each_entry_safe(q, n, &pending->list, list) {
275 int sig = q->info.si_signo;
276
277 if (likely(q->info.si_code != SI_TIMER)) {
278 sigaddset(&retain, sig);
279 } else {
280 sigdelset(&signal, sig);
281 list_del_init(&q->list);
282 __sigqueue_free(q);
283 }
284 }
285
286 sigorsets(&pending->signal, &signal, &retain);
287 }
288
289 void flush_itimer_signals(void)
290 {
291 struct task_struct *tsk = current;
292 unsigned long flags;
293
294 spin_lock_irqsave(&tsk->sighand->siglock, flags);
295 __flush_itimer_signals(&tsk->pending);
296 __flush_itimer_signals(&tsk->signal->shared_pending);
297 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
298 }
299
300 void ignore_signals(struct task_struct *t)
301 {
302 int i;
303
304 for (i = 0; i < _NSIG; ++i)
305 t->sighand->action[i].sa.sa_handler = SIG_IGN;
306
307 flush_signals(t);
308 }
309
310 /*
311 * Flush all handlers for a task.
312 */
313
314 void
315 flush_signal_handlers(struct task_struct *t, int force_default)
316 {
317 int i;
318 struct k_sigaction *ka = &t->sighand->action[0];
319 for (i = _NSIG ; i != 0 ; i--) {
320 if (force_default || ka->sa.sa_handler != SIG_IGN)
321 ka->sa.sa_handler = SIG_DFL;
322 ka->sa.sa_flags = 0;
323 sigemptyset(&ka->sa.sa_mask);
324 ka++;
325 }
326 }
327
328 int unhandled_signal(struct task_struct *tsk, int sig)
329 {
330 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
331 if (is_global_init(tsk))
332 return 1;
333 if (handler != SIG_IGN && handler != SIG_DFL)
334 return 0;
335 return !tracehook_consider_fatal_signal(tsk, sig);
336 }
337
338
339 /* Notify the system that a driver wants to block all signals for this
340 * process, and wants to be notified if any signals at all were to be
341 * sent/acted upon. If the notifier routine returns non-zero, then the
342 * signal will be acted upon after all. If the notifier routine returns 0,
343 * then then signal will be blocked. Only one block per process is
344 * allowed. priv is a pointer to private data that the notifier routine
345 * can use to determine if the signal should be blocked or not. */
346
347 void
348 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
349 {
350 unsigned long flags;
351
352 spin_lock_irqsave(&current->sighand->siglock, flags);
353 current->notifier_mask = mask;
354 current->notifier_data = priv;
355 current->notifier = notifier;
356 spin_unlock_irqrestore(&current->sighand->siglock, flags);
357 }
358
359 /* Notify the system that blocking has ended. */
360
361 void
362 unblock_all_signals(void)
363 {
364 unsigned long flags;
365
366 spin_lock_irqsave(&current->sighand->siglock, flags);
367 current->notifier = NULL;
368 current->notifier_data = NULL;
369 recalc_sigpending();
370 spin_unlock_irqrestore(&current->sighand->siglock, flags);
371 }
372
373 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
374 {
375 struct sigqueue *q, *first = NULL;
376
377 /*
378 * Collect the siginfo appropriate to this signal. Check if
379 * there is another siginfo for the same signal.
380 */
381 list_for_each_entry(q, &list->list, list) {
382 if (q->info.si_signo == sig) {
383 if (first)
384 goto still_pending;
385 first = q;
386 }
387 }
388
389 sigdelset(&list->signal, sig);
390
391 if (first) {
392 still_pending:
393 list_del_init(&first->list);
394 copy_siginfo(info, &first->info);
395 __sigqueue_free(first);
396 } else {
397 /* Ok, it wasn't in the queue. This must be
398 a fast-pathed signal or we must have been
399 out of queue space. So zero out the info.
400 */
401 info->si_signo = sig;
402 info->si_errno = 0;
403 info->si_code = 0;
404 info->si_pid = 0;
405 info->si_uid = 0;
406 }
407 }
408
409 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
410 siginfo_t *info)
411 {
412 int sig = next_signal(pending, mask);
413
414 if (sig) {
415 if (current->notifier) {
416 if (sigismember(current->notifier_mask, sig)) {
417 if (!(current->notifier)(current->notifier_data)) {
418 clear_thread_flag(TIF_SIGPENDING);
419 return 0;
420 }
421 }
422 }
423
424 collect_signal(sig, pending, info);
425 }
426
427 return sig;
428 }
429
430 /*
431 * Dequeue a signal and return the element to the caller, which is
432 * expected to free it.
433 *
434 * All callers have to hold the siglock.
435 */
436 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
437 {
438 int signr;
439
440 /* We only dequeue private signals from ourselves, we don't let
441 * signalfd steal them
442 */
443 signr = __dequeue_signal(&tsk->pending, mask, info);
444 if (!signr) {
445 signr = __dequeue_signal(&tsk->signal->shared_pending,
446 mask, info);
447 /*
448 * itimer signal ?
449 *
450 * itimers are process shared and we restart periodic
451 * itimers in the signal delivery path to prevent DoS
452 * attacks in the high resolution timer case. This is
453 * compliant with the old way of self restarting
454 * itimers, as the SIGALRM is a legacy signal and only
455 * queued once. Changing the restart behaviour to
456 * restart the timer in the signal dequeue path is
457 * reducing the timer noise on heavy loaded !highres
458 * systems too.
459 */
460 if (unlikely(signr == SIGALRM)) {
461 struct hrtimer *tmr = &tsk->signal->real_timer;
462
463 if (!hrtimer_is_queued(tmr) &&
464 tsk->signal->it_real_incr.tv64 != 0) {
465 hrtimer_forward(tmr, tmr->base->get_time(),
466 tsk->signal->it_real_incr);
467 hrtimer_restart(tmr);
468 }
469 }
470 }
471
472 recalc_sigpending();
473 if (!signr)
474 return 0;
475
476 if (unlikely(sig_kernel_stop(signr))) {
477 /*
478 * Set a marker that we have dequeued a stop signal. Our
479 * caller might release the siglock and then the pending
480 * stop signal it is about to process is no longer in the
481 * pending bitmasks, but must still be cleared by a SIGCONT
482 * (and overruled by a SIGKILL). So those cases clear this
483 * shared flag after we've set it. Note that this flag may
484 * remain set after the signal we return is ignored or
485 * handled. That doesn't matter because its only purpose
486 * is to alert stop-signal processing code when another
487 * processor has come along and cleared the flag.
488 */
489 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
490 }
491 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
492 /*
493 * Release the siglock to ensure proper locking order
494 * of timer locks outside of siglocks. Note, we leave
495 * irqs disabled here, since the posix-timers code is
496 * about to disable them again anyway.
497 */
498 spin_unlock(&tsk->sighand->siglock);
499 do_schedule_next_timer(info);
500 spin_lock(&tsk->sighand->siglock);
501 }
502 return signr;
503 }
504
505 /*
506 * Tell a process that it has a new active signal..
507 *
508 * NOTE! we rely on the previous spin_lock to
509 * lock interrupts for us! We can only be called with
510 * "siglock" held, and the local interrupt must
511 * have been disabled when that got acquired!
512 *
513 * No need to set need_resched since signal event passing
514 * goes through ->blocked
515 */
516 void signal_wake_up(struct task_struct *t, int resume)
517 {
518 unsigned int mask;
519
520 set_tsk_thread_flag(t, TIF_SIGPENDING);
521
522 /*
523 * For SIGKILL, we want to wake it up in the stopped/traced/killable
524 * case. We don't check t->state here because there is a race with it
525 * executing another processor and just now entering stopped state.
526 * By using wake_up_state, we ensure the process will wake up and
527 * handle its death signal.
528 */
529 mask = TASK_INTERRUPTIBLE;
530 if (resume)
531 mask |= TASK_WAKEKILL;
532 if (!wake_up_state(t, mask))
533 kick_process(t);
534 }
535
536 /*
537 * Remove signals in mask from the pending set and queue.
538 * Returns 1 if any signals were found.
539 *
540 * All callers must be holding the siglock.
541 *
542 * This version takes a sigset mask and looks at all signals,
543 * not just those in the first mask word.
544 */
545 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
546 {
547 struct sigqueue *q, *n;
548 sigset_t m;
549
550 sigandsets(&m, mask, &s->signal);
551 if (sigisemptyset(&m))
552 return 0;
553
554 signandsets(&s->signal, &s->signal, mask);
555 list_for_each_entry_safe(q, n, &s->list, list) {
556 if (sigismember(mask, q->info.si_signo)) {
557 list_del_init(&q->list);
558 __sigqueue_free(q);
559 }
560 }
561 return 1;
562 }
563 /*
564 * Remove signals in mask from the pending set and queue.
565 * Returns 1 if any signals were found.
566 *
567 * All callers must be holding the siglock.
568 */
569 static int rm_from_queue(unsigned long mask, struct sigpending *s)
570 {
571 struct sigqueue *q, *n;
572
573 if (!sigtestsetmask(&s->signal, mask))
574 return 0;
575
576 sigdelsetmask(&s->signal, mask);
577 list_for_each_entry_safe(q, n, &s->list, list) {
578 if (q->info.si_signo < SIGRTMIN &&
579 (mask & sigmask(q->info.si_signo))) {
580 list_del_init(&q->list);
581 __sigqueue_free(q);
582 }
583 }
584 return 1;
585 }
586
587 /*
588 * Bad permissions for sending the signal
589 * - the caller must hold at least the RCU read lock
590 */
591 static int check_kill_permission(int sig, struct siginfo *info,
592 struct task_struct *t)
593 {
594 const struct cred *cred = current_cred(), *tcred;
595 struct pid *sid;
596 int error;
597
598 if (!valid_signal(sig))
599 return -EINVAL;
600
601 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
602 return 0;
603
604 error = audit_signal_info(sig, t); /* Let audit system see the signal */
605 if (error)
606 return error;
607
608 tcred = __task_cred(t);
609 if ((cred->euid ^ tcred->suid) &&
610 (cred->euid ^ tcred->uid) &&
611 (cred->uid ^ tcred->suid) &&
612 (cred->uid ^ tcred->uid) &&
613 !capable(CAP_KILL)) {
614 switch (sig) {
615 case SIGCONT:
616 sid = task_session(t);
617 /*
618 * We don't return the error if sid == NULL. The
619 * task was unhashed, the caller must notice this.
620 */
621 if (!sid || sid == task_session(current))
622 break;
623 default:
624 return -EPERM;
625 }
626 }
627
628 return security_task_kill(t, info, sig, 0);
629 }
630
631 /*
632 * Handle magic process-wide effects of stop/continue signals. Unlike
633 * the signal actions, these happen immediately at signal-generation
634 * time regardless of blocking, ignoring, or handling. This does the
635 * actual continuing for SIGCONT, but not the actual stopping for stop
636 * signals. The process stop is done as a signal action for SIG_DFL.
637 *
638 * Returns true if the signal should be actually delivered, otherwise
639 * it should be dropped.
640 */
641 static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns)
642 {
643 struct signal_struct *signal = p->signal;
644 struct task_struct *t;
645
646 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
647 /*
648 * The process is in the middle of dying, nothing to do.
649 */
650 } else if (sig_kernel_stop(sig)) {
651 /*
652 * This is a stop signal. Remove SIGCONT from all queues.
653 */
654 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
655 t = p;
656 do {
657 rm_from_queue(sigmask(SIGCONT), &t->pending);
658 } while_each_thread(p, t);
659 } else if (sig == SIGCONT) {
660 unsigned int why;
661 /*
662 * Remove all stop signals from all queues,
663 * and wake all threads.
664 */
665 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
666 t = p;
667 do {
668 unsigned int state;
669 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
670 /*
671 * If there is a handler for SIGCONT, we must make
672 * sure that no thread returns to user mode before
673 * we post the signal, in case it was the only
674 * thread eligible to run the signal handler--then
675 * it must not do anything between resuming and
676 * running the handler. With the TIF_SIGPENDING
677 * flag set, the thread will pause and acquire the
678 * siglock that we hold now and until we've queued
679 * the pending signal.
680 *
681 * Wake up the stopped thread _after_ setting
682 * TIF_SIGPENDING
683 */
684 state = __TASK_STOPPED;
685 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
686 set_tsk_thread_flag(t, TIF_SIGPENDING);
687 state |= TASK_INTERRUPTIBLE;
688 }
689 wake_up_state(t, state);
690 } while_each_thread(p, t);
691
692 /*
693 * Notify the parent with CLD_CONTINUED if we were stopped.
694 *
695 * If we were in the middle of a group stop, we pretend it
696 * was already finished, and then continued. Since SIGCHLD
697 * doesn't queue we report only CLD_STOPPED, as if the next
698 * CLD_CONTINUED was dropped.
699 */
700 why = 0;
701 if (signal->flags & SIGNAL_STOP_STOPPED)
702 why |= SIGNAL_CLD_CONTINUED;
703 else if (signal->group_stop_count)
704 why |= SIGNAL_CLD_STOPPED;
705
706 if (why) {
707 /*
708 * The first thread which returns from do_signal_stop()
709 * will take ->siglock, notice SIGNAL_CLD_MASK, and
710 * notify its parent. See get_signal_to_deliver().
711 */
712 signal->flags = why | SIGNAL_STOP_CONTINUED;
713 signal->group_stop_count = 0;
714 signal->group_exit_code = 0;
715 } else {
716 /*
717 * We are not stopped, but there could be a stop
718 * signal in the middle of being processed after
719 * being removed from the queue. Clear that too.
720 */
721 signal->flags &= ~SIGNAL_STOP_DEQUEUED;
722 }
723 }
724
725 return !sig_ignored(p, sig, from_ancestor_ns);
726 }
727
728 /*
729 * Test if P wants to take SIG. After we've checked all threads with this,
730 * it's equivalent to finding no threads not blocking SIG. Any threads not
731 * blocking SIG were ruled out because they are not running and already
732 * have pending signals. Such threads will dequeue from the shared queue
733 * as soon as they're available, so putting the signal on the shared queue
734 * will be equivalent to sending it to one such thread.
735 */
736 static inline int wants_signal(int sig, struct task_struct *p)
737 {
738 if (sigismember(&p->blocked, sig))
739 return 0;
740 if (p->flags & PF_EXITING)
741 return 0;
742 if (sig == SIGKILL)
743 return 1;
744 if (task_is_stopped_or_traced(p))
745 return 0;
746 return task_curr(p) || !signal_pending(p);
747 }
748
749 static void complete_signal(int sig, struct task_struct *p, int group)
750 {
751 struct signal_struct *signal = p->signal;
752 struct task_struct *t;
753
754 /*
755 * Now find a thread we can wake up to take the signal off the queue.
756 *
757 * If the main thread wants the signal, it gets first crack.
758 * Probably the least surprising to the average bear.
759 */
760 if (wants_signal(sig, p))
761 t = p;
762 else if (!group || thread_group_empty(p))
763 /*
764 * There is just one thread and it does not need to be woken.
765 * It will dequeue unblocked signals before it runs again.
766 */
767 return;
768 else {
769 /*
770 * Otherwise try to find a suitable thread.
771 */
772 t = signal->curr_target;
773 while (!wants_signal(sig, t)) {
774 t = next_thread(t);
775 if (t == signal->curr_target)
776 /*
777 * No thread needs to be woken.
778 * Any eligible threads will see
779 * the signal in the queue soon.
780 */
781 return;
782 }
783 signal->curr_target = t;
784 }
785
786 /*
787 * Found a killable thread. If the signal will be fatal,
788 * then start taking the whole group down immediately.
789 */
790 if (sig_fatal(p, sig) &&
791 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
792 !sigismember(&t->real_blocked, sig) &&
793 (sig == SIGKILL ||
794 !tracehook_consider_fatal_signal(t, sig))) {
795 /*
796 * This signal will be fatal to the whole group.
797 */
798 if (!sig_kernel_coredump(sig)) {
799 /*
800 * Start a group exit and wake everybody up.
801 * This way we don't have other threads
802 * running and doing things after a slower
803 * thread has the fatal signal pending.
804 */
805 signal->flags = SIGNAL_GROUP_EXIT;
806 signal->group_exit_code = sig;
807 signal->group_stop_count = 0;
808 t = p;
809 do {
810 sigaddset(&t->pending.signal, SIGKILL);
811 signal_wake_up(t, 1);
812 } while_each_thread(p, t);
813 return;
814 }
815 }
816
817 /*
818 * The signal is already in the shared-pending queue.
819 * Tell the chosen thread to wake up and dequeue it.
820 */
821 signal_wake_up(t, sig == SIGKILL);
822 return;
823 }
824
825 static inline int legacy_queue(struct sigpending *signals, int sig)
826 {
827 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
828 }
829
830 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
831 int group, int from_ancestor_ns)
832 {
833 struct sigpending *pending;
834 struct sigqueue *q;
835 int override_rlimit;
836
837 trace_sched_signal_send(sig, t);
838
839 assert_spin_locked(&t->sighand->siglock);
840
841 if (!prepare_signal(sig, t, from_ancestor_ns))
842 return 0;
843
844 pending = group ? &t->signal->shared_pending : &t->pending;
845 /*
846 * Short-circuit ignored signals and support queuing
847 * exactly one non-rt signal, so that we can get more
848 * detailed information about the cause of the signal.
849 */
850 if (legacy_queue(pending, sig))
851 return 0;
852 /*
853 * fast-pathed signals for kernel-internal things like SIGSTOP
854 * or SIGKILL.
855 */
856 if (info == SEND_SIG_FORCED)
857 goto out_set;
858
859 /* Real-time signals must be queued if sent by sigqueue, or
860 some other real-time mechanism. It is implementation
861 defined whether kill() does so. We attempt to do so, on
862 the principle of least surprise, but since kill is not
863 allowed to fail with EAGAIN when low on memory we just
864 make sure at least one signal gets delivered and don't
865 pass on the info struct. */
866
867 if (sig < SIGRTMIN)
868 override_rlimit = (is_si_special(info) || info->si_code >= 0);
869 else
870 override_rlimit = 0;
871
872 q = __sigqueue_alloc(t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
873 override_rlimit);
874 if (q) {
875 list_add_tail(&q->list, &pending->list);
876 switch ((unsigned long) info) {
877 case (unsigned long) SEND_SIG_NOINFO:
878 q->info.si_signo = sig;
879 q->info.si_errno = 0;
880 q->info.si_code = SI_USER;
881 q->info.si_pid = task_tgid_nr_ns(current,
882 task_active_pid_ns(t));
883 q->info.si_uid = current_uid();
884 break;
885 case (unsigned long) SEND_SIG_PRIV:
886 q->info.si_signo = sig;
887 q->info.si_errno = 0;
888 q->info.si_code = SI_KERNEL;
889 q->info.si_pid = 0;
890 q->info.si_uid = 0;
891 break;
892 default:
893 copy_siginfo(&q->info, info);
894 if (from_ancestor_ns)
895 q->info.si_pid = 0;
896 break;
897 }
898 } else if (!is_si_special(info)) {
899 if (sig >= SIGRTMIN && info->si_code != SI_USER)
900 /*
901 * Queue overflow, abort. We may abort if the signal was rt
902 * and sent by user using something other than kill().
903 */
904 return -EAGAIN;
905 }
906
907 out_set:
908 signalfd_notify(t, sig);
909 sigaddset(&pending->signal, sig);
910 complete_signal(sig, t, group);
911 return 0;
912 }
913
914 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
915 int group)
916 {
917 int from_ancestor_ns = 0;
918
919 #ifdef CONFIG_PID_NS
920 if (!is_si_special(info) && SI_FROMUSER(info) &&
921 task_pid_nr_ns(current, task_active_pid_ns(t)) <= 0)
922 from_ancestor_ns = 1;
923 #endif
924
925 return __send_signal(sig, info, t, group, from_ancestor_ns);
926 }
927
928 int print_fatal_signals;
929
930 static void print_fatal_signal(struct pt_regs *regs, int signr)
931 {
932 printk("%s/%d: potentially unexpected fatal signal %d.\n",
933 current->comm, task_pid_nr(current), signr);
934
935 #if defined(__i386__) && !defined(__arch_um__)
936 printk("code at %08lx: ", regs->ip);
937 {
938 int i;
939 for (i = 0; i < 16; i++) {
940 unsigned char insn;
941
942 __get_user(insn, (unsigned char *)(regs->ip + i));
943 printk("%02x ", insn);
944 }
945 }
946 #endif
947 printk("\n");
948 preempt_disable();
949 show_regs(regs);
950 preempt_enable();
951 }
952
953 static int __init setup_print_fatal_signals(char *str)
954 {
955 get_option (&str, &print_fatal_signals);
956
957 return 1;
958 }
959
960 __setup("print-fatal-signals=", setup_print_fatal_signals);
961
962 int
963 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
964 {
965 return send_signal(sig, info, p, 1);
966 }
967
968 static int
969 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
970 {
971 return send_signal(sig, info, t, 0);
972 }
973
974 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
975 bool group)
976 {
977 unsigned long flags;
978 int ret = -ESRCH;
979
980 if (lock_task_sighand(p, &flags)) {
981 ret = send_signal(sig, info, p, group);
982 unlock_task_sighand(p, &flags);
983 }
984
985 return ret;
986 }
987
988 /*
989 * Force a signal that the process can't ignore: if necessary
990 * we unblock the signal and change any SIG_IGN to SIG_DFL.
991 *
992 * Note: If we unblock the signal, we always reset it to SIG_DFL,
993 * since we do not want to have a signal handler that was blocked
994 * be invoked when user space had explicitly blocked it.
995 *
996 * We don't want to have recursive SIGSEGV's etc, for example,
997 * that is why we also clear SIGNAL_UNKILLABLE.
998 */
999 int
1000 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1001 {
1002 unsigned long int flags;
1003 int ret, blocked, ignored;
1004 struct k_sigaction *action;
1005
1006 spin_lock_irqsave(&t->sighand->siglock, flags);
1007 action = &t->sighand->action[sig-1];
1008 ignored = action->sa.sa_handler == SIG_IGN;
1009 blocked = sigismember(&t->blocked, sig);
1010 if (blocked || ignored) {
1011 action->sa.sa_handler = SIG_DFL;
1012 if (blocked) {
1013 sigdelset(&t->blocked, sig);
1014 recalc_sigpending_and_wake(t);
1015 }
1016 }
1017 if (action->sa.sa_handler == SIG_DFL)
1018 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1019 ret = specific_send_sig_info(sig, info, t);
1020 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1021
1022 return ret;
1023 }
1024
1025 void
1026 force_sig_specific(int sig, struct task_struct *t)
1027 {
1028 force_sig_info(sig, SEND_SIG_FORCED, t);
1029 }
1030
1031 /*
1032 * Nuke all other threads in the group.
1033 */
1034 void zap_other_threads(struct task_struct *p)
1035 {
1036 struct task_struct *t;
1037
1038 p->signal->group_stop_count = 0;
1039
1040 for (t = next_thread(p); t != p; t = next_thread(t)) {
1041 /*
1042 * Don't bother with already dead threads
1043 */
1044 if (t->exit_state)
1045 continue;
1046
1047 /* SIGKILL will be handled before any pending SIGSTOP */
1048 sigaddset(&t->pending.signal, SIGKILL);
1049 signal_wake_up(t, 1);
1050 }
1051 }
1052
1053 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1054 {
1055 struct sighand_struct *sighand;
1056
1057 rcu_read_lock();
1058 for (;;) {
1059 sighand = rcu_dereference(tsk->sighand);
1060 if (unlikely(sighand == NULL))
1061 break;
1062
1063 spin_lock_irqsave(&sighand->siglock, *flags);
1064 if (likely(sighand == tsk->sighand))
1065 break;
1066 spin_unlock_irqrestore(&sighand->siglock, *flags);
1067 }
1068 rcu_read_unlock();
1069
1070 return sighand;
1071 }
1072
1073 /*
1074 * send signal info to all the members of a group
1075 * - the caller must hold the RCU read lock at least
1076 */
1077 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1078 {
1079 int ret = check_kill_permission(sig, info, p);
1080
1081 if (!ret && sig)
1082 ret = do_send_sig_info(sig, info, p, true);
1083
1084 return ret;
1085 }
1086
1087 /*
1088 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1089 * control characters do (^C, ^Z etc)
1090 * - the caller must hold at least a readlock on tasklist_lock
1091 */
1092 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1093 {
1094 struct task_struct *p = NULL;
1095 int retval, success;
1096
1097 success = 0;
1098 retval = -ESRCH;
1099 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1100 int err = group_send_sig_info(sig, info, p);
1101 success |= !err;
1102 retval = err;
1103 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1104 return success ? 0 : retval;
1105 }
1106
1107 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1108 {
1109 int error = -ESRCH;
1110 struct task_struct *p;
1111
1112 rcu_read_lock();
1113 retry:
1114 p = pid_task(pid, PIDTYPE_PID);
1115 if (p) {
1116 error = group_send_sig_info(sig, info, p);
1117 if (unlikely(error == -ESRCH))
1118 /*
1119 * The task was unhashed in between, try again.
1120 * If it is dead, pid_task() will return NULL,
1121 * if we race with de_thread() it will find the
1122 * new leader.
1123 */
1124 goto retry;
1125 }
1126 rcu_read_unlock();
1127
1128 return error;
1129 }
1130
1131 int
1132 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1133 {
1134 int error;
1135 rcu_read_lock();
1136 error = kill_pid_info(sig, info, find_vpid(pid));
1137 rcu_read_unlock();
1138 return error;
1139 }
1140
1141 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1142 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1143 uid_t uid, uid_t euid, u32 secid)
1144 {
1145 int ret = -EINVAL;
1146 struct task_struct *p;
1147 const struct cred *pcred;
1148
1149 if (!valid_signal(sig))
1150 return ret;
1151
1152 read_lock(&tasklist_lock);
1153 p = pid_task(pid, PIDTYPE_PID);
1154 if (!p) {
1155 ret = -ESRCH;
1156 goto out_unlock;
1157 }
1158 pcred = __task_cred(p);
1159 if ((info == SEND_SIG_NOINFO ||
1160 (!is_si_special(info) && SI_FROMUSER(info))) &&
1161 euid != pcred->suid && euid != pcred->uid &&
1162 uid != pcred->suid && uid != pcred->uid) {
1163 ret = -EPERM;
1164 goto out_unlock;
1165 }
1166 ret = security_task_kill(p, info, sig, secid);
1167 if (ret)
1168 goto out_unlock;
1169 if (sig && p->sighand) {
1170 unsigned long flags;
1171 spin_lock_irqsave(&p->sighand->siglock, flags);
1172 ret = __send_signal(sig, info, p, 1, 0);
1173 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1174 }
1175 out_unlock:
1176 read_unlock(&tasklist_lock);
1177 return ret;
1178 }
1179 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1180
1181 /*
1182 * kill_something_info() interprets pid in interesting ways just like kill(2).
1183 *
1184 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1185 * is probably wrong. Should make it like BSD or SYSV.
1186 */
1187
1188 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1189 {
1190 int ret;
1191
1192 if (pid > 0) {
1193 rcu_read_lock();
1194 ret = kill_pid_info(sig, info, find_vpid(pid));
1195 rcu_read_unlock();
1196 return ret;
1197 }
1198
1199 read_lock(&tasklist_lock);
1200 if (pid != -1) {
1201 ret = __kill_pgrp_info(sig, info,
1202 pid ? find_vpid(-pid) : task_pgrp(current));
1203 } else {
1204 int retval = 0, count = 0;
1205 struct task_struct * p;
1206
1207 for_each_process(p) {
1208 if (task_pid_vnr(p) > 1 &&
1209 !same_thread_group(p, current)) {
1210 int err = group_send_sig_info(sig, info, p);
1211 ++count;
1212 if (err != -EPERM)
1213 retval = err;
1214 }
1215 }
1216 ret = count ? retval : -ESRCH;
1217 }
1218 read_unlock(&tasklist_lock);
1219
1220 return ret;
1221 }
1222
1223 /*
1224 * These are for backward compatibility with the rest of the kernel source.
1225 */
1226
1227 int
1228 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1229 {
1230 /*
1231 * Make sure legacy kernel users don't send in bad values
1232 * (normal paths check this in check_kill_permission).
1233 */
1234 if (!valid_signal(sig))
1235 return -EINVAL;
1236
1237 return do_send_sig_info(sig, info, p, false);
1238 }
1239
1240 #define __si_special(priv) \
1241 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1242
1243 int
1244 send_sig(int sig, struct task_struct *p, int priv)
1245 {
1246 return send_sig_info(sig, __si_special(priv), p);
1247 }
1248
1249 void
1250 force_sig(int sig, struct task_struct *p)
1251 {
1252 force_sig_info(sig, SEND_SIG_PRIV, p);
1253 }
1254
1255 /*
1256 * When things go south during signal handling, we
1257 * will force a SIGSEGV. And if the signal that caused
1258 * the problem was already a SIGSEGV, we'll want to
1259 * make sure we don't even try to deliver the signal..
1260 */
1261 int
1262 force_sigsegv(int sig, struct task_struct *p)
1263 {
1264 if (sig == SIGSEGV) {
1265 unsigned long flags;
1266 spin_lock_irqsave(&p->sighand->siglock, flags);
1267 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1268 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1269 }
1270 force_sig(SIGSEGV, p);
1271 return 0;
1272 }
1273
1274 int kill_pgrp(struct pid *pid, int sig, int priv)
1275 {
1276 int ret;
1277
1278 read_lock(&tasklist_lock);
1279 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1280 read_unlock(&tasklist_lock);
1281
1282 return ret;
1283 }
1284 EXPORT_SYMBOL(kill_pgrp);
1285
1286 int kill_pid(struct pid *pid, int sig, int priv)
1287 {
1288 return kill_pid_info(sig, __si_special(priv), pid);
1289 }
1290 EXPORT_SYMBOL(kill_pid);
1291
1292 /*
1293 * These functions support sending signals using preallocated sigqueue
1294 * structures. This is needed "because realtime applications cannot
1295 * afford to lose notifications of asynchronous events, like timer
1296 * expirations or I/O completions". In the case of Posix Timers
1297 * we allocate the sigqueue structure from the timer_create. If this
1298 * allocation fails we are able to report the failure to the application
1299 * with an EAGAIN error.
1300 */
1301
1302 struct sigqueue *sigqueue_alloc(void)
1303 {
1304 struct sigqueue *q;
1305
1306 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1307 q->flags |= SIGQUEUE_PREALLOC;
1308 return(q);
1309 }
1310
1311 void sigqueue_free(struct sigqueue *q)
1312 {
1313 unsigned long flags;
1314 spinlock_t *lock = &current->sighand->siglock;
1315
1316 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1317 /*
1318 * We must hold ->siglock while testing q->list
1319 * to serialize with collect_signal() or with
1320 * __exit_signal()->flush_sigqueue().
1321 */
1322 spin_lock_irqsave(lock, flags);
1323 q->flags &= ~SIGQUEUE_PREALLOC;
1324 /*
1325 * If it is queued it will be freed when dequeued,
1326 * like the "regular" sigqueue.
1327 */
1328 if (!list_empty(&q->list))
1329 q = NULL;
1330 spin_unlock_irqrestore(lock, flags);
1331
1332 if (q)
1333 __sigqueue_free(q);
1334 }
1335
1336 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1337 {
1338 int sig = q->info.si_signo;
1339 struct sigpending *pending;
1340 unsigned long flags;
1341 int ret;
1342
1343 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1344
1345 ret = -1;
1346 if (!likely(lock_task_sighand(t, &flags)))
1347 goto ret;
1348
1349 ret = 1; /* the signal is ignored */
1350 if (!prepare_signal(sig, t, 0))
1351 goto out;
1352
1353 ret = 0;
1354 if (unlikely(!list_empty(&q->list))) {
1355 /*
1356 * If an SI_TIMER entry is already queue just increment
1357 * the overrun count.
1358 */
1359 BUG_ON(q->info.si_code != SI_TIMER);
1360 q->info.si_overrun++;
1361 goto out;
1362 }
1363 q->info.si_overrun = 0;
1364
1365 signalfd_notify(t, sig);
1366 pending = group ? &t->signal->shared_pending : &t->pending;
1367 list_add_tail(&q->list, &pending->list);
1368 sigaddset(&pending->signal, sig);
1369 complete_signal(sig, t, group);
1370 out:
1371 unlock_task_sighand(t, &flags);
1372 ret:
1373 return ret;
1374 }
1375
1376 /*
1377 * Let a parent know about the death of a child.
1378 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1379 *
1380 * Returns -1 if our parent ignored us and so we've switched to
1381 * self-reaping, or else @sig.
1382 */
1383 int do_notify_parent(struct task_struct *tsk, int sig)
1384 {
1385 struct siginfo info;
1386 unsigned long flags;
1387 struct sighand_struct *psig;
1388 int ret = sig;
1389
1390 BUG_ON(sig == -1);
1391
1392 /* do_notify_parent_cldstop should have been called instead. */
1393 BUG_ON(task_is_stopped_or_traced(tsk));
1394
1395 BUG_ON(!task_ptrace(tsk) &&
1396 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1397
1398 info.si_signo = sig;
1399 info.si_errno = 0;
1400 /*
1401 * we are under tasklist_lock here so our parent is tied to
1402 * us and cannot exit and release its namespace.
1403 *
1404 * the only it can is to switch its nsproxy with sys_unshare,
1405 * bu uncharing pid namespaces is not allowed, so we'll always
1406 * see relevant namespace
1407 *
1408 * write_lock() currently calls preempt_disable() which is the
1409 * same as rcu_read_lock(), but according to Oleg, this is not
1410 * correct to rely on this
1411 */
1412 rcu_read_lock();
1413 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1414 info.si_uid = __task_cred(tsk)->uid;
1415 rcu_read_unlock();
1416
1417 info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime,
1418 tsk->signal->utime));
1419 info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime,
1420 tsk->signal->stime));
1421
1422 info.si_status = tsk->exit_code & 0x7f;
1423 if (tsk->exit_code & 0x80)
1424 info.si_code = CLD_DUMPED;
1425 else if (tsk->exit_code & 0x7f)
1426 info.si_code = CLD_KILLED;
1427 else {
1428 info.si_code = CLD_EXITED;
1429 info.si_status = tsk->exit_code >> 8;
1430 }
1431
1432 psig = tsk->parent->sighand;
1433 spin_lock_irqsave(&psig->siglock, flags);
1434 if (!task_ptrace(tsk) && sig == SIGCHLD &&
1435 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1436 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1437 /*
1438 * We are exiting and our parent doesn't care. POSIX.1
1439 * defines special semantics for setting SIGCHLD to SIG_IGN
1440 * or setting the SA_NOCLDWAIT flag: we should be reaped
1441 * automatically and not left for our parent's wait4 call.
1442 * Rather than having the parent do it as a magic kind of
1443 * signal handler, we just set this to tell do_exit that we
1444 * can be cleaned up without becoming a zombie. Note that
1445 * we still call __wake_up_parent in this case, because a
1446 * blocked sys_wait4 might now return -ECHILD.
1447 *
1448 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1449 * is implementation-defined: we do (if you don't want
1450 * it, just use SIG_IGN instead).
1451 */
1452 ret = tsk->exit_signal = -1;
1453 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1454 sig = -1;
1455 }
1456 if (valid_signal(sig) && sig > 0)
1457 __group_send_sig_info(sig, &info, tsk->parent);
1458 __wake_up_parent(tsk, tsk->parent);
1459 spin_unlock_irqrestore(&psig->siglock, flags);
1460
1461 return ret;
1462 }
1463
1464 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1465 {
1466 struct siginfo info;
1467 unsigned long flags;
1468 struct task_struct *parent;
1469 struct sighand_struct *sighand;
1470
1471 if (task_ptrace(tsk))
1472 parent = tsk->parent;
1473 else {
1474 tsk = tsk->group_leader;
1475 parent = tsk->real_parent;
1476 }
1477
1478 info.si_signo = SIGCHLD;
1479 info.si_errno = 0;
1480 /*
1481 * see comment in do_notify_parent() abot the following 3 lines
1482 */
1483 rcu_read_lock();
1484 info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1485 info.si_uid = __task_cred(tsk)->uid;
1486 rcu_read_unlock();
1487
1488 info.si_utime = cputime_to_clock_t(tsk->utime);
1489 info.si_stime = cputime_to_clock_t(tsk->stime);
1490
1491 info.si_code = why;
1492 switch (why) {
1493 case CLD_CONTINUED:
1494 info.si_status = SIGCONT;
1495 break;
1496 case CLD_STOPPED:
1497 info.si_status = tsk->signal->group_exit_code & 0x7f;
1498 break;
1499 case CLD_TRAPPED:
1500 info.si_status = tsk->exit_code & 0x7f;
1501 break;
1502 default:
1503 BUG();
1504 }
1505
1506 sighand = parent->sighand;
1507 spin_lock_irqsave(&sighand->siglock, flags);
1508 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1509 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1510 __group_send_sig_info(SIGCHLD, &info, parent);
1511 /*
1512 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1513 */
1514 __wake_up_parent(tsk, parent);
1515 spin_unlock_irqrestore(&sighand->siglock, flags);
1516 }
1517
1518 static inline int may_ptrace_stop(void)
1519 {
1520 if (!likely(task_ptrace(current)))
1521 return 0;
1522 /*
1523 * Are we in the middle of do_coredump?
1524 * If so and our tracer is also part of the coredump stopping
1525 * is a deadlock situation, and pointless because our tracer
1526 * is dead so don't allow us to stop.
1527 * If SIGKILL was already sent before the caller unlocked
1528 * ->siglock we must see ->core_state != NULL. Otherwise it
1529 * is safe to enter schedule().
1530 */
1531 if (unlikely(current->mm->core_state) &&
1532 unlikely(current->mm == current->parent->mm))
1533 return 0;
1534
1535 return 1;
1536 }
1537
1538 /*
1539 * Return nonzero if there is a SIGKILL that should be waking us up.
1540 * Called with the siglock held.
1541 */
1542 static int sigkill_pending(struct task_struct *tsk)
1543 {
1544 return sigismember(&tsk->pending.signal, SIGKILL) ||
1545 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1546 }
1547
1548 /*
1549 * This must be called with current->sighand->siglock held.
1550 *
1551 * This should be the path for all ptrace stops.
1552 * We always set current->last_siginfo while stopped here.
1553 * That makes it a way to test a stopped process for
1554 * being ptrace-stopped vs being job-control-stopped.
1555 *
1556 * If we actually decide not to stop at all because the tracer
1557 * is gone, we keep current->exit_code unless clear_code.
1558 */
1559 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1560 {
1561 if (arch_ptrace_stop_needed(exit_code, info)) {
1562 /*
1563 * The arch code has something special to do before a
1564 * ptrace stop. This is allowed to block, e.g. for faults
1565 * on user stack pages. We can't keep the siglock while
1566 * calling arch_ptrace_stop, so we must release it now.
1567 * To preserve proper semantics, we must do this before
1568 * any signal bookkeeping like checking group_stop_count.
1569 * Meanwhile, a SIGKILL could come in before we retake the
1570 * siglock. That must prevent us from sleeping in TASK_TRACED.
1571 * So after regaining the lock, we must check for SIGKILL.
1572 */
1573 spin_unlock_irq(&current->sighand->siglock);
1574 arch_ptrace_stop(exit_code, info);
1575 spin_lock_irq(&current->sighand->siglock);
1576 if (sigkill_pending(current))
1577 return;
1578 }
1579
1580 /*
1581 * If there is a group stop in progress,
1582 * we must participate in the bookkeeping.
1583 */
1584 if (current->signal->group_stop_count > 0)
1585 --current->signal->group_stop_count;
1586
1587 current->last_siginfo = info;
1588 current->exit_code = exit_code;
1589
1590 /* Let the debugger run. */
1591 __set_current_state(TASK_TRACED);
1592 spin_unlock_irq(&current->sighand->siglock);
1593 read_lock(&tasklist_lock);
1594 if (may_ptrace_stop()) {
1595 do_notify_parent_cldstop(current, CLD_TRAPPED);
1596 /*
1597 * Don't want to allow preemption here, because
1598 * sys_ptrace() needs this task to be inactive.
1599 *
1600 * XXX: implement read_unlock_no_resched().
1601 */
1602 preempt_disable();
1603 read_unlock(&tasklist_lock);
1604 preempt_enable_no_resched();
1605 schedule();
1606 } else {
1607 /*
1608 * By the time we got the lock, our tracer went away.
1609 * Don't drop the lock yet, another tracer may come.
1610 */
1611 __set_current_state(TASK_RUNNING);
1612 if (clear_code)
1613 current->exit_code = 0;
1614 read_unlock(&tasklist_lock);
1615 }
1616
1617 /*
1618 * While in TASK_TRACED, we were considered "frozen enough".
1619 * Now that we woke up, it's crucial if we're supposed to be
1620 * frozen that we freeze now before running anything substantial.
1621 */
1622 try_to_freeze();
1623
1624 /*
1625 * We are back. Now reacquire the siglock before touching
1626 * last_siginfo, so that we are sure to have synchronized with
1627 * any signal-sending on another CPU that wants to examine it.
1628 */
1629 spin_lock_irq(&current->sighand->siglock);
1630 current->last_siginfo = NULL;
1631
1632 /*
1633 * Queued signals ignored us while we were stopped for tracing.
1634 * So check for any that we should take before resuming user mode.
1635 * This sets TIF_SIGPENDING, but never clears it.
1636 */
1637 recalc_sigpending_tsk(current);
1638 }
1639
1640 void ptrace_notify(int exit_code)
1641 {
1642 siginfo_t info;
1643
1644 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1645
1646 memset(&info, 0, sizeof info);
1647 info.si_signo = SIGTRAP;
1648 info.si_code = exit_code;
1649 info.si_pid = task_pid_vnr(current);
1650 info.si_uid = current_uid();
1651
1652 /* Let the debugger run. */
1653 spin_lock_irq(&current->sighand->siglock);
1654 ptrace_stop(exit_code, 1, &info);
1655 spin_unlock_irq(&current->sighand->siglock);
1656 }
1657
1658 /*
1659 * This performs the stopping for SIGSTOP and other stop signals.
1660 * We have to stop all threads in the thread group.
1661 * Returns nonzero if we've actually stopped and released the siglock.
1662 * Returns zero if we didn't stop and still hold the siglock.
1663 */
1664 static int do_signal_stop(int signr)
1665 {
1666 struct signal_struct *sig = current->signal;
1667 int notify;
1668
1669 if (!sig->group_stop_count) {
1670 struct task_struct *t;
1671
1672 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1673 unlikely(signal_group_exit(sig)))
1674 return 0;
1675 /*
1676 * There is no group stop already in progress.
1677 * We must initiate one now.
1678 */
1679 sig->group_exit_code = signr;
1680
1681 sig->group_stop_count = 1;
1682 for (t = next_thread(current); t != current; t = next_thread(t))
1683 /*
1684 * Setting state to TASK_STOPPED for a group
1685 * stop is always done with the siglock held,
1686 * so this check has no races.
1687 */
1688 if (!(t->flags & PF_EXITING) &&
1689 !task_is_stopped_or_traced(t)) {
1690 sig->group_stop_count++;
1691 signal_wake_up(t, 0);
1692 }
1693 }
1694 /*
1695 * If there are no other threads in the group, or if there is
1696 * a group stop in progress and we are the last to stop, report
1697 * to the parent. When ptraced, every thread reports itself.
1698 */
1699 notify = sig->group_stop_count == 1 ? CLD_STOPPED : 0;
1700 notify = tracehook_notify_jctl(notify, CLD_STOPPED);
1701 /*
1702 * tracehook_notify_jctl() can drop and reacquire siglock, so
1703 * we keep ->group_stop_count != 0 before the call. If SIGCONT
1704 * or SIGKILL comes in between ->group_stop_count == 0.
1705 */
1706 if (sig->group_stop_count) {
1707 if (!--sig->group_stop_count)
1708 sig->flags = SIGNAL_STOP_STOPPED;
1709 current->exit_code = sig->group_exit_code;
1710 __set_current_state(TASK_STOPPED);
1711 }
1712 spin_unlock_irq(&current->sighand->siglock);
1713
1714 if (notify) {
1715 read_lock(&tasklist_lock);
1716 do_notify_parent_cldstop(current, notify);
1717 read_unlock(&tasklist_lock);
1718 }
1719
1720 /* Now we don't run again until woken by SIGCONT or SIGKILL */
1721 do {
1722 schedule();
1723 } while (try_to_freeze());
1724
1725 tracehook_finish_jctl();
1726 current->exit_code = 0;
1727
1728 return 1;
1729 }
1730
1731 static int ptrace_signal(int signr, siginfo_t *info,
1732 struct pt_regs *regs, void *cookie)
1733 {
1734 if (!task_ptrace(current))
1735 return signr;
1736
1737 ptrace_signal_deliver(regs, cookie);
1738
1739 /* Let the debugger run. */
1740 ptrace_stop(signr, 0, info);
1741
1742 /* We're back. Did the debugger cancel the sig? */
1743 signr = current->exit_code;
1744 if (signr == 0)
1745 return signr;
1746
1747 current->exit_code = 0;
1748
1749 /* Update the siginfo structure if the signal has
1750 changed. If the debugger wanted something
1751 specific in the siginfo structure then it should
1752 have updated *info via PTRACE_SETSIGINFO. */
1753 if (signr != info->si_signo) {
1754 info->si_signo = signr;
1755 info->si_errno = 0;
1756 info->si_code = SI_USER;
1757 info->si_pid = task_pid_vnr(current->parent);
1758 info->si_uid = task_uid(current->parent);
1759 }
1760
1761 /* If the (new) signal is now blocked, requeue it. */
1762 if (sigismember(&current->blocked, signr)) {
1763 specific_send_sig_info(signr, info, current);
1764 signr = 0;
1765 }
1766
1767 return signr;
1768 }
1769
1770 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1771 struct pt_regs *regs, void *cookie)
1772 {
1773 struct sighand_struct *sighand = current->sighand;
1774 struct signal_struct *signal = current->signal;
1775 int signr;
1776
1777 relock:
1778 /*
1779 * We'll jump back here after any time we were stopped in TASK_STOPPED.
1780 * While in TASK_STOPPED, we were considered "frozen enough".
1781 * Now that we woke up, it's crucial if we're supposed to be
1782 * frozen that we freeze now before running anything substantial.
1783 */
1784 try_to_freeze();
1785
1786 spin_lock_irq(&sighand->siglock);
1787 /*
1788 * Every stopped thread goes here after wakeup. Check to see if
1789 * we should notify the parent, prepare_signal(SIGCONT) encodes
1790 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
1791 */
1792 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
1793 int why = (signal->flags & SIGNAL_STOP_CONTINUED)
1794 ? CLD_CONTINUED : CLD_STOPPED;
1795 signal->flags &= ~SIGNAL_CLD_MASK;
1796
1797 why = tracehook_notify_jctl(why, CLD_CONTINUED);
1798 spin_unlock_irq(&sighand->siglock);
1799
1800 if (why) {
1801 read_lock(&tasklist_lock);
1802 do_notify_parent_cldstop(current->group_leader, why);
1803 read_unlock(&tasklist_lock);
1804 }
1805 goto relock;
1806 }
1807
1808 for (;;) {
1809 struct k_sigaction *ka;
1810
1811 if (unlikely(signal->group_stop_count > 0) &&
1812 do_signal_stop(0))
1813 goto relock;
1814
1815 /*
1816 * Tracing can induce an artifical signal and choose sigaction.
1817 * The return value in @signr determines the default action,
1818 * but @info->si_signo is the signal number we will report.
1819 */
1820 signr = tracehook_get_signal(current, regs, info, return_ka);
1821 if (unlikely(signr < 0))
1822 goto relock;
1823 if (unlikely(signr != 0))
1824 ka = return_ka;
1825 else {
1826 signr = dequeue_signal(current, &current->blocked,
1827 info);
1828
1829 if (!signr)
1830 break; /* will return 0 */
1831
1832 if (signr != SIGKILL) {
1833 signr = ptrace_signal(signr, info,
1834 regs, cookie);
1835 if (!signr)
1836 continue;
1837 }
1838
1839 ka = &sighand->action[signr-1];
1840 }
1841
1842 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1843 continue;
1844 if (ka->sa.sa_handler != SIG_DFL) {
1845 /* Run the handler. */
1846 *return_ka = *ka;
1847
1848 if (ka->sa.sa_flags & SA_ONESHOT)
1849 ka->sa.sa_handler = SIG_DFL;
1850
1851 break; /* will return non-zero "signr" value */
1852 }
1853
1854 /*
1855 * Now we are doing the default action for this signal.
1856 */
1857 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1858 continue;
1859
1860 /*
1861 * Global init gets no signals it doesn't want.
1862 * Container-init gets no signals it doesn't want from same
1863 * container.
1864 *
1865 * Note that if global/container-init sees a sig_kernel_only()
1866 * signal here, the signal must have been generated internally
1867 * or must have come from an ancestor namespace. In either
1868 * case, the signal cannot be dropped.
1869 */
1870 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
1871 !sig_kernel_only(signr))
1872 continue;
1873
1874 if (sig_kernel_stop(signr)) {
1875 /*
1876 * The default action is to stop all threads in
1877 * the thread group. The job control signals
1878 * do nothing in an orphaned pgrp, but SIGSTOP
1879 * always works. Note that siglock needs to be
1880 * dropped during the call to is_orphaned_pgrp()
1881 * because of lock ordering with tasklist_lock.
1882 * This allows an intervening SIGCONT to be posted.
1883 * We need to check for that and bail out if necessary.
1884 */
1885 if (signr != SIGSTOP) {
1886 spin_unlock_irq(&sighand->siglock);
1887
1888 /* signals can be posted during this window */
1889
1890 if (is_current_pgrp_orphaned())
1891 goto relock;
1892
1893 spin_lock_irq(&sighand->siglock);
1894 }
1895
1896 if (likely(do_signal_stop(info->si_signo))) {
1897 /* It released the siglock. */
1898 goto relock;
1899 }
1900
1901 /*
1902 * We didn't actually stop, due to a race
1903 * with SIGCONT or something like that.
1904 */
1905 continue;
1906 }
1907
1908 spin_unlock_irq(&sighand->siglock);
1909
1910 /*
1911 * Anything else is fatal, maybe with a core dump.
1912 */
1913 current->flags |= PF_SIGNALED;
1914
1915 if (sig_kernel_coredump(signr)) {
1916 if (print_fatal_signals)
1917 print_fatal_signal(regs, info->si_signo);
1918 /*
1919 * If it was able to dump core, this kills all
1920 * other threads in the group and synchronizes with
1921 * their demise. If we lost the race with another
1922 * thread getting here, it set group_exit_code
1923 * first and our do_group_exit call below will use
1924 * that value and ignore the one we pass it.
1925 */
1926 do_coredump(info->si_signo, info->si_signo, regs);
1927 }
1928
1929 /*
1930 * Death signals, no core dump.
1931 */
1932 do_group_exit(info->si_signo);
1933 /* NOTREACHED */
1934 }
1935 spin_unlock_irq(&sighand->siglock);
1936 return signr;
1937 }
1938
1939 void exit_signals(struct task_struct *tsk)
1940 {
1941 int group_stop = 0;
1942 struct task_struct *t;
1943
1944 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
1945 tsk->flags |= PF_EXITING;
1946 return;
1947 }
1948
1949 spin_lock_irq(&tsk->sighand->siglock);
1950 /*
1951 * From now this task is not visible for group-wide signals,
1952 * see wants_signal(), do_signal_stop().
1953 */
1954 tsk->flags |= PF_EXITING;
1955 if (!signal_pending(tsk))
1956 goto out;
1957
1958 /* It could be that __group_complete_signal() choose us to
1959 * notify about group-wide signal. Another thread should be
1960 * woken now to take the signal since we will not.
1961 */
1962 for (t = tsk; (t = next_thread(t)) != tsk; )
1963 if (!signal_pending(t) && !(t->flags & PF_EXITING))
1964 recalc_sigpending_and_wake(t);
1965
1966 if (unlikely(tsk->signal->group_stop_count) &&
1967 !--tsk->signal->group_stop_count) {
1968 tsk->signal->flags = SIGNAL_STOP_STOPPED;
1969 group_stop = tracehook_notify_jctl(CLD_STOPPED, CLD_STOPPED);
1970 }
1971 out:
1972 spin_unlock_irq(&tsk->sighand->siglock);
1973
1974 if (unlikely(group_stop)) {
1975 read_lock(&tasklist_lock);
1976 do_notify_parent_cldstop(tsk, group_stop);
1977 read_unlock(&tasklist_lock);
1978 }
1979 }
1980
1981 EXPORT_SYMBOL(recalc_sigpending);
1982 EXPORT_SYMBOL_GPL(dequeue_signal);
1983 EXPORT_SYMBOL(flush_signals);
1984 EXPORT_SYMBOL(force_sig);
1985 EXPORT_SYMBOL(send_sig);
1986 EXPORT_SYMBOL(send_sig_info);
1987 EXPORT_SYMBOL(sigprocmask);
1988 EXPORT_SYMBOL(block_all_signals);
1989 EXPORT_SYMBOL(unblock_all_signals);
1990
1991
1992 /*
1993 * System call entry points.
1994 */
1995
1996 SYSCALL_DEFINE0(restart_syscall)
1997 {
1998 struct restart_block *restart = &current_thread_info()->restart_block;
1999 return restart->fn(restart);
2000 }
2001
2002 long do_no_restart_syscall(struct restart_block *param)
2003 {
2004 return -EINTR;
2005 }
2006
2007 /*
2008 * We don't need to get the kernel lock - this is all local to this
2009 * particular thread.. (and that's good, because this is _heavily_
2010 * used by various programs)
2011 */
2012
2013 /*
2014 * This is also useful for kernel threads that want to temporarily
2015 * (or permanently) block certain signals.
2016 *
2017 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2018 * interface happily blocks "unblockable" signals like SIGKILL
2019 * and friends.
2020 */
2021 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2022 {
2023 int error;
2024
2025 spin_lock_irq(&current->sighand->siglock);
2026 if (oldset)
2027 *oldset = current->blocked;
2028
2029 error = 0;
2030 switch (how) {
2031 case SIG_BLOCK:
2032 sigorsets(&current->blocked, &current->blocked, set);
2033 break;
2034 case SIG_UNBLOCK:
2035 signandsets(&current->blocked, &current->blocked, set);
2036 break;
2037 case SIG_SETMASK:
2038 current->blocked = *set;
2039 break;
2040 default:
2041 error = -EINVAL;
2042 }
2043 recalc_sigpending();
2044 spin_unlock_irq(&current->sighand->siglock);
2045
2046 return error;
2047 }
2048
2049 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, set,
2050 sigset_t __user *, oset, size_t, sigsetsize)
2051 {
2052 int error = -EINVAL;
2053 sigset_t old_set, new_set;
2054
2055 /* XXX: Don't preclude handling different sized sigset_t's. */
2056 if (sigsetsize != sizeof(sigset_t))
2057 goto out;
2058
2059 if (set) {
2060 error = -EFAULT;
2061 if (copy_from_user(&new_set, set, sizeof(*set)))
2062 goto out;
2063 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2064
2065 error = sigprocmask(how, &new_set, &old_set);
2066 if (error)
2067 goto out;
2068 if (oset)
2069 goto set_old;
2070 } else if (oset) {
2071 spin_lock_irq(&current->sighand->siglock);
2072 old_set = current->blocked;
2073 spin_unlock_irq(&current->sighand->siglock);
2074
2075 set_old:
2076 error = -EFAULT;
2077 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2078 goto out;
2079 }
2080 error = 0;
2081 out:
2082 return error;
2083 }
2084
2085 long do_sigpending(void __user *set, unsigned long sigsetsize)
2086 {
2087 long error = -EINVAL;
2088 sigset_t pending;
2089
2090 if (sigsetsize > sizeof(sigset_t))
2091 goto out;
2092
2093 spin_lock_irq(&current->sighand->siglock);
2094 sigorsets(&pending, &current->pending.signal,
2095 &current->signal->shared_pending.signal);
2096 spin_unlock_irq(&current->sighand->siglock);
2097
2098 /* Outside the lock because only this thread touches it. */
2099 sigandsets(&pending, &current->blocked, &pending);
2100
2101 error = -EFAULT;
2102 if (!copy_to_user(set, &pending, sigsetsize))
2103 error = 0;
2104
2105 out:
2106 return error;
2107 }
2108
2109 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2110 {
2111 return do_sigpending(set, sigsetsize);
2112 }
2113
2114 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2115
2116 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2117 {
2118 int err;
2119
2120 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2121 return -EFAULT;
2122 if (from->si_code < 0)
2123 return __copy_to_user(to, from, sizeof(siginfo_t))
2124 ? -EFAULT : 0;
2125 /*
2126 * If you change siginfo_t structure, please be sure
2127 * this code is fixed accordingly.
2128 * Please remember to update the signalfd_copyinfo() function
2129 * inside fs/signalfd.c too, in case siginfo_t changes.
2130 * It should never copy any pad contained in the structure
2131 * to avoid security leaks, but must copy the generic
2132 * 3 ints plus the relevant union member.
2133 */
2134 err = __put_user(from->si_signo, &to->si_signo);
2135 err |= __put_user(from->si_errno, &to->si_errno);
2136 err |= __put_user((short)from->si_code, &to->si_code);
2137 switch (from->si_code & __SI_MASK) {
2138 case __SI_KILL:
2139 err |= __put_user(from->si_pid, &to->si_pid);
2140 err |= __put_user(from->si_uid, &to->si_uid);
2141 break;
2142 case __SI_TIMER:
2143 err |= __put_user(from->si_tid, &to->si_tid);
2144 err |= __put_user(from->si_overrun, &to->si_overrun);
2145 err |= __put_user(from->si_ptr, &to->si_ptr);
2146 break;
2147 case __SI_POLL:
2148 err |= __put_user(from->si_band, &to->si_band);
2149 err |= __put_user(from->si_fd, &to->si_fd);
2150 break;
2151 case __SI_FAULT:
2152 err |= __put_user(from->si_addr, &to->si_addr);
2153 #ifdef __ARCH_SI_TRAPNO
2154 err |= __put_user(from->si_trapno, &to->si_trapno);
2155 #endif
2156 break;
2157 case __SI_CHLD:
2158 err |= __put_user(from->si_pid, &to->si_pid);
2159 err |= __put_user(from->si_uid, &to->si_uid);
2160 err |= __put_user(from->si_status, &to->si_status);
2161 err |= __put_user(from->si_utime, &to->si_utime);
2162 err |= __put_user(from->si_stime, &to->si_stime);
2163 break;
2164 case __SI_RT: /* This is not generated by the kernel as of now. */
2165 case __SI_MESGQ: /* But this is */
2166 err |= __put_user(from->si_pid, &to->si_pid);
2167 err |= __put_user(from->si_uid, &to->si_uid);
2168 err |= __put_user(from->si_ptr, &to->si_ptr);
2169 break;
2170 default: /* this is just in case for now ... */
2171 err |= __put_user(from->si_pid, &to->si_pid);
2172 err |= __put_user(from->si_uid, &to->si_uid);
2173 break;
2174 }
2175 return err;
2176 }
2177
2178 #endif
2179
2180 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2181 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2182 size_t, sigsetsize)
2183 {
2184 int ret, sig;
2185 sigset_t these;
2186 struct timespec ts;
2187 siginfo_t info;
2188 long timeout = 0;
2189
2190 /* XXX: Don't preclude handling different sized sigset_t's. */
2191 if (sigsetsize != sizeof(sigset_t))
2192 return -EINVAL;
2193
2194 if (copy_from_user(&these, uthese, sizeof(these)))
2195 return -EFAULT;
2196
2197 /*
2198 * Invert the set of allowed signals to get those we
2199 * want to block.
2200 */
2201 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2202 signotset(&these);
2203
2204 if (uts) {
2205 if (copy_from_user(&ts, uts, sizeof(ts)))
2206 return -EFAULT;
2207 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2208 || ts.tv_sec < 0)
2209 return -EINVAL;
2210 }
2211
2212 spin_lock_irq(&current->sighand->siglock);
2213 sig = dequeue_signal(current, &these, &info);
2214 if (!sig) {
2215 timeout = MAX_SCHEDULE_TIMEOUT;
2216 if (uts)
2217 timeout = (timespec_to_jiffies(&ts)
2218 + (ts.tv_sec || ts.tv_nsec));
2219
2220 if (timeout) {
2221 /* None ready -- temporarily unblock those we're
2222 * interested while we are sleeping in so that we'll
2223 * be awakened when they arrive. */
2224 current->real_blocked = current->blocked;
2225 sigandsets(&current->blocked, &current->blocked, &these);
2226 recalc_sigpending();
2227 spin_unlock_irq(&current->sighand->siglock);
2228
2229 timeout = schedule_timeout_interruptible(timeout);
2230
2231 spin_lock_irq(&current->sighand->siglock);
2232 sig = dequeue_signal(current, &these, &info);
2233 current->blocked = current->real_blocked;
2234 siginitset(&current->real_blocked, 0);
2235 recalc_sigpending();
2236 }
2237 }
2238 spin_unlock_irq(&current->sighand->siglock);
2239
2240 if (sig) {
2241 ret = sig;
2242 if (uinfo) {
2243 if (copy_siginfo_to_user(uinfo, &info))
2244 ret = -EFAULT;
2245 }
2246 } else {
2247 ret = -EAGAIN;
2248 if (timeout)
2249 ret = -EINTR;
2250 }
2251
2252 return ret;
2253 }
2254
2255 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2256 {
2257 struct siginfo info;
2258
2259 info.si_signo = sig;
2260 info.si_errno = 0;
2261 info.si_code = SI_USER;
2262 info.si_pid = task_tgid_vnr(current);
2263 info.si_uid = current_uid();
2264
2265 return kill_something_info(sig, &info, pid);
2266 }
2267
2268 static int
2269 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2270 {
2271 struct task_struct *p;
2272 int error = -ESRCH;
2273
2274 rcu_read_lock();
2275 p = find_task_by_vpid(pid);
2276 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2277 error = check_kill_permission(sig, info, p);
2278 /*
2279 * The null signal is a permissions and process existence
2280 * probe. No signal is actually delivered.
2281 */
2282 if (!error && sig) {
2283 error = do_send_sig_info(sig, info, p, false);
2284 /*
2285 * If lock_task_sighand() failed we pretend the task
2286 * dies after receiving the signal. The window is tiny,
2287 * and the signal is private anyway.
2288 */
2289 if (unlikely(error == -ESRCH))
2290 error = 0;
2291 }
2292 }
2293 rcu_read_unlock();
2294
2295 return error;
2296 }
2297
2298 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2299 {
2300 struct siginfo info;
2301
2302 info.si_signo = sig;
2303 info.si_errno = 0;
2304 info.si_code = SI_TKILL;
2305 info.si_pid = task_tgid_vnr(current);
2306 info.si_uid = current_uid();
2307
2308 return do_send_specific(tgid, pid, sig, &info);
2309 }
2310
2311 /**
2312 * sys_tgkill - send signal to one specific thread
2313 * @tgid: the thread group ID of the thread
2314 * @pid: the PID of the thread
2315 * @sig: signal to be sent
2316 *
2317 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2318 * exists but it's not belonging to the target process anymore. This
2319 * method solves the problem of threads exiting and PIDs getting reused.
2320 */
2321 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2322 {
2323 /* This is only valid for single tasks */
2324 if (pid <= 0 || tgid <= 0)
2325 return -EINVAL;
2326
2327 return do_tkill(tgid, pid, sig);
2328 }
2329
2330 /*
2331 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2332 */
2333 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2334 {
2335 /* This is only valid for single tasks */
2336 if (pid <= 0)
2337 return -EINVAL;
2338
2339 return do_tkill(0, pid, sig);
2340 }
2341
2342 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2343 siginfo_t __user *, uinfo)
2344 {
2345 siginfo_t info;
2346
2347 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2348 return -EFAULT;
2349
2350 /* Not even root can pretend to send signals from the kernel.
2351 Nor can they impersonate a kill(), which adds source info. */
2352 if (info.si_code >= 0)
2353 return -EPERM;
2354 info.si_signo = sig;
2355
2356 /* POSIX.1b doesn't mention process groups. */
2357 return kill_proc_info(sig, &info, pid);
2358 }
2359
2360 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2361 {
2362 /* This is only valid for single tasks */
2363 if (pid <= 0 || tgid <= 0)
2364 return -EINVAL;
2365
2366 /* Not even root can pretend to send signals from the kernel.
2367 Nor can they impersonate a kill(), which adds source info. */
2368 if (info->si_code >= 0)
2369 return -EPERM;
2370 info->si_signo = sig;
2371
2372 return do_send_specific(tgid, pid, sig, info);
2373 }
2374
2375 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2376 siginfo_t __user *, uinfo)
2377 {
2378 siginfo_t info;
2379
2380 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2381 return -EFAULT;
2382
2383 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2384 }
2385
2386 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2387 {
2388 struct task_struct *t = current;
2389 struct k_sigaction *k;
2390 sigset_t mask;
2391
2392 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2393 return -EINVAL;
2394
2395 k = &t->sighand->action[sig-1];
2396
2397 spin_lock_irq(&current->sighand->siglock);
2398 if (oact)
2399 *oact = *k;
2400
2401 if (act) {
2402 sigdelsetmask(&act->sa.sa_mask,
2403 sigmask(SIGKILL) | sigmask(SIGSTOP));
2404 *k = *act;
2405 /*
2406 * POSIX 3.3.1.3:
2407 * "Setting a signal action to SIG_IGN for a signal that is
2408 * pending shall cause the pending signal to be discarded,
2409 * whether or not it is blocked."
2410 *
2411 * "Setting a signal action to SIG_DFL for a signal that is
2412 * pending and whose default action is to ignore the signal
2413 * (for example, SIGCHLD), shall cause the pending signal to
2414 * be discarded, whether or not it is blocked"
2415 */
2416 if (sig_handler_ignored(sig_handler(t, sig), sig)) {
2417 sigemptyset(&mask);
2418 sigaddset(&mask, sig);
2419 rm_from_queue_full(&mask, &t->signal->shared_pending);
2420 do {
2421 rm_from_queue_full(&mask, &t->pending);
2422 t = next_thread(t);
2423 } while (t != current);
2424 }
2425 }
2426
2427 spin_unlock_irq(&current->sighand->siglock);
2428 return 0;
2429 }
2430
2431 int
2432 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2433 {
2434 stack_t oss;
2435 int error;
2436
2437 oss.ss_sp = (void __user *) current->sas_ss_sp;
2438 oss.ss_size = current->sas_ss_size;
2439 oss.ss_flags = sas_ss_flags(sp);
2440
2441 if (uss) {
2442 void __user *ss_sp;
2443 size_t ss_size;
2444 int ss_flags;
2445
2446 error = -EFAULT;
2447 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
2448 goto out;
2449 error = __get_user(ss_sp, &uss->ss_sp) |
2450 __get_user(ss_flags, &uss->ss_flags) |
2451 __get_user(ss_size, &uss->ss_size);
2452 if (error)
2453 goto out;
2454
2455 error = -EPERM;
2456 if (on_sig_stack(sp))
2457 goto out;
2458
2459 error = -EINVAL;
2460 /*
2461 *
2462 * Note - this code used to test ss_flags incorrectly
2463 * old code may have been written using ss_flags==0
2464 * to mean ss_flags==SS_ONSTACK (as this was the only
2465 * way that worked) - this fix preserves that older
2466 * mechanism
2467 */
2468 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2469 goto out;
2470
2471 if (ss_flags == SS_DISABLE) {
2472 ss_size = 0;
2473 ss_sp = NULL;
2474 } else {
2475 error = -ENOMEM;
2476 if (ss_size < MINSIGSTKSZ)
2477 goto out;
2478 }
2479
2480 current->sas_ss_sp = (unsigned long) ss_sp;
2481 current->sas_ss_size = ss_size;
2482 }
2483
2484 error = 0;
2485 if (uoss) {
2486 error = -EFAULT;
2487 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
2488 goto out;
2489 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
2490 __put_user(oss.ss_size, &uoss->ss_size) |
2491 __put_user(oss.ss_flags, &uoss->ss_flags);
2492 }
2493
2494 out:
2495 return error;
2496 }
2497
2498 #ifdef __ARCH_WANT_SYS_SIGPENDING
2499
2500 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
2501 {
2502 return do_sigpending(set, sizeof(*set));
2503 }
2504
2505 #endif
2506
2507 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2508 /* Some platforms have their own version with special arguments others
2509 support only sys_rt_sigprocmask. */
2510
2511 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, set,
2512 old_sigset_t __user *, oset)
2513 {
2514 int error;
2515 old_sigset_t old_set, new_set;
2516
2517 if (set) {
2518 error = -EFAULT;
2519 if (copy_from_user(&new_set, set, sizeof(*set)))
2520 goto out;
2521 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2522
2523 spin_lock_irq(&current->sighand->siglock);
2524 old_set = current->blocked.sig[0];
2525
2526 error = 0;
2527 switch (how) {
2528 default:
2529 error = -EINVAL;
2530 break;
2531 case SIG_BLOCK:
2532 sigaddsetmask(&current->blocked, new_set);
2533 break;
2534 case SIG_UNBLOCK:
2535 sigdelsetmask(&current->blocked, new_set);
2536 break;
2537 case SIG_SETMASK:
2538 current->blocked.sig[0] = new_set;
2539 break;
2540 }
2541
2542 recalc_sigpending();
2543 spin_unlock_irq(&current->sighand->siglock);
2544 if (error)
2545 goto out;
2546 if (oset)
2547 goto set_old;
2548 } else if (oset) {
2549 old_set = current->blocked.sig[0];
2550 set_old:
2551 error = -EFAULT;
2552 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2553 goto out;
2554 }
2555 error = 0;
2556 out:
2557 return error;
2558 }
2559 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2560
2561 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2562 SYSCALL_DEFINE4(rt_sigaction, int, sig,
2563 const struct sigaction __user *, act,
2564 struct sigaction __user *, oact,
2565 size_t, sigsetsize)
2566 {
2567 struct k_sigaction new_sa, old_sa;
2568 int ret = -EINVAL;
2569
2570 /* XXX: Don't preclude handling different sized sigset_t's. */
2571 if (sigsetsize != sizeof(sigset_t))
2572 goto out;
2573
2574 if (act) {
2575 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2576 return -EFAULT;
2577 }
2578
2579 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2580
2581 if (!ret && oact) {
2582 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2583 return -EFAULT;
2584 }
2585 out:
2586 return ret;
2587 }
2588 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2589
2590 #ifdef __ARCH_WANT_SYS_SGETMASK
2591
2592 /*
2593 * For backwards compatibility. Functionality superseded by sigprocmask.
2594 */
2595 SYSCALL_DEFINE0(sgetmask)
2596 {
2597 /* SMP safe */
2598 return current->blocked.sig[0];
2599 }
2600
2601 SYSCALL_DEFINE1(ssetmask, int, newmask)
2602 {
2603 int old;
2604
2605 spin_lock_irq(&current->sighand->siglock);
2606 old = current->blocked.sig[0];
2607
2608 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2609 sigmask(SIGSTOP)));
2610 recalc_sigpending();
2611 spin_unlock_irq(&current->sighand->siglock);
2612
2613 return old;
2614 }
2615 #endif /* __ARCH_WANT_SGETMASK */
2616
2617 #ifdef __ARCH_WANT_SYS_SIGNAL
2618 /*
2619 * For backwards compatibility. Functionality superseded by sigaction.
2620 */
2621 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
2622 {
2623 struct k_sigaction new_sa, old_sa;
2624 int ret;
2625
2626 new_sa.sa.sa_handler = handler;
2627 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2628 sigemptyset(&new_sa.sa.sa_mask);
2629
2630 ret = do_sigaction(sig, &new_sa, &old_sa);
2631
2632 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2633 }
2634 #endif /* __ARCH_WANT_SYS_SIGNAL */
2635
2636 #ifdef __ARCH_WANT_SYS_PAUSE
2637
2638 SYSCALL_DEFINE0(pause)
2639 {
2640 current->state = TASK_INTERRUPTIBLE;
2641 schedule();
2642 return -ERESTARTNOHAND;
2643 }
2644
2645 #endif
2646
2647 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2648 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
2649 {
2650 sigset_t newset;
2651
2652 /* XXX: Don't preclude handling different sized sigset_t's. */
2653 if (sigsetsize != sizeof(sigset_t))
2654 return -EINVAL;
2655
2656 if (copy_from_user(&newset, unewset, sizeof(newset)))
2657 return -EFAULT;
2658 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2659
2660 spin_lock_irq(&current->sighand->siglock);
2661 current->saved_sigmask = current->blocked;
2662 current->blocked = newset;
2663 recalc_sigpending();
2664 spin_unlock_irq(&current->sighand->siglock);
2665
2666 current->state = TASK_INTERRUPTIBLE;
2667 schedule();
2668 set_restore_sigmask();
2669 return -ERESTARTNOHAND;
2670 }
2671 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2672
2673 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2674 {
2675 return NULL;
2676 }
2677
2678 void __init signals_init(void)
2679 {
2680 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2681 }