]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/signal.c
signals: turn LEGACY_QUEUE macro into static inline function
[mirror_ubuntu-zesty-kernel.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/capability.h>
26 #include <linux/freezer.h>
27 #include <linux/pid_namespace.h>
28 #include <linux/nsproxy.h>
29
30 #include <asm/param.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
33 #include <asm/siginfo.h>
34 #include "audit.h" /* audit_signal_info() */
35
36 /*
37 * SLAB caches for signal bits.
38 */
39
40 static struct kmem_cache *sigqueue_cachep;
41
42
43 static int sig_ignored(struct task_struct *t, int sig)
44 {
45 void __user * handler;
46
47 /*
48 * Tracers always want to know about signals..
49 */
50 if (t->ptrace & PT_PTRACED)
51 return 0;
52
53 /*
54 * Blocked signals are never ignored, since the
55 * signal handler may change by the time it is
56 * unblocked.
57 */
58 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
59 return 0;
60
61 /* Is it explicitly or implicitly ignored? */
62 handler = t->sighand->action[sig-1].sa.sa_handler;
63 return handler == SIG_IGN ||
64 (handler == SIG_DFL && sig_kernel_ignore(sig));
65 }
66
67 /*
68 * Re-calculate pending state from the set of locally pending
69 * signals, globally pending signals, and blocked signals.
70 */
71 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
72 {
73 unsigned long ready;
74 long i;
75
76 switch (_NSIG_WORDS) {
77 default:
78 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
79 ready |= signal->sig[i] &~ blocked->sig[i];
80 break;
81
82 case 4: ready = signal->sig[3] &~ blocked->sig[3];
83 ready |= signal->sig[2] &~ blocked->sig[2];
84 ready |= signal->sig[1] &~ blocked->sig[1];
85 ready |= signal->sig[0] &~ blocked->sig[0];
86 break;
87
88 case 2: ready = signal->sig[1] &~ blocked->sig[1];
89 ready |= signal->sig[0] &~ blocked->sig[0];
90 break;
91
92 case 1: ready = signal->sig[0] &~ blocked->sig[0];
93 }
94 return ready != 0;
95 }
96
97 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
98
99 static int recalc_sigpending_tsk(struct task_struct *t)
100 {
101 if (t->signal->group_stop_count > 0 ||
102 PENDING(&t->pending, &t->blocked) ||
103 PENDING(&t->signal->shared_pending, &t->blocked)) {
104 set_tsk_thread_flag(t, TIF_SIGPENDING);
105 return 1;
106 }
107 /*
108 * We must never clear the flag in another thread, or in current
109 * when it's possible the current syscall is returning -ERESTART*.
110 * So we don't clear it here, and only callers who know they should do.
111 */
112 return 0;
113 }
114
115 /*
116 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
117 * This is superfluous when called on current, the wakeup is a harmless no-op.
118 */
119 void recalc_sigpending_and_wake(struct task_struct *t)
120 {
121 if (recalc_sigpending_tsk(t))
122 signal_wake_up(t, 0);
123 }
124
125 void recalc_sigpending(void)
126 {
127 if (!recalc_sigpending_tsk(current) && !freezing(current))
128 clear_thread_flag(TIF_SIGPENDING);
129
130 }
131
132 /* Given the mask, find the first available signal that should be serviced. */
133
134 int next_signal(struct sigpending *pending, sigset_t *mask)
135 {
136 unsigned long i, *s, *m, x;
137 int sig = 0;
138
139 s = pending->signal.sig;
140 m = mask->sig;
141 switch (_NSIG_WORDS) {
142 default:
143 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
144 if ((x = *s &~ *m) != 0) {
145 sig = ffz(~x) + i*_NSIG_BPW + 1;
146 break;
147 }
148 break;
149
150 case 2: if ((x = s[0] &~ m[0]) != 0)
151 sig = 1;
152 else if ((x = s[1] &~ m[1]) != 0)
153 sig = _NSIG_BPW + 1;
154 else
155 break;
156 sig += ffz(~x);
157 break;
158
159 case 1: if ((x = *s &~ *m) != 0)
160 sig = ffz(~x) + 1;
161 break;
162 }
163
164 return sig;
165 }
166
167 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
168 int override_rlimit)
169 {
170 struct sigqueue *q = NULL;
171 struct user_struct *user;
172
173 /*
174 * In order to avoid problems with "switch_user()", we want to make
175 * sure that the compiler doesn't re-load "t->user"
176 */
177 user = t->user;
178 barrier();
179 atomic_inc(&user->sigpending);
180 if (override_rlimit ||
181 atomic_read(&user->sigpending) <=
182 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
183 q = kmem_cache_alloc(sigqueue_cachep, flags);
184 if (unlikely(q == NULL)) {
185 atomic_dec(&user->sigpending);
186 } else {
187 INIT_LIST_HEAD(&q->list);
188 q->flags = 0;
189 q->user = get_uid(user);
190 }
191 return(q);
192 }
193
194 static void __sigqueue_free(struct sigqueue *q)
195 {
196 if (q->flags & SIGQUEUE_PREALLOC)
197 return;
198 atomic_dec(&q->user->sigpending);
199 free_uid(q->user);
200 kmem_cache_free(sigqueue_cachep, q);
201 }
202
203 void flush_sigqueue(struct sigpending *queue)
204 {
205 struct sigqueue *q;
206
207 sigemptyset(&queue->signal);
208 while (!list_empty(&queue->list)) {
209 q = list_entry(queue->list.next, struct sigqueue , list);
210 list_del_init(&q->list);
211 __sigqueue_free(q);
212 }
213 }
214
215 /*
216 * Flush all pending signals for a task.
217 */
218 void flush_signals(struct task_struct *t)
219 {
220 unsigned long flags;
221
222 spin_lock_irqsave(&t->sighand->siglock, flags);
223 clear_tsk_thread_flag(t, TIF_SIGPENDING);
224 flush_sigqueue(&t->pending);
225 flush_sigqueue(&t->signal->shared_pending);
226 spin_unlock_irqrestore(&t->sighand->siglock, flags);
227 }
228
229 void ignore_signals(struct task_struct *t)
230 {
231 int i;
232
233 for (i = 0; i < _NSIG; ++i)
234 t->sighand->action[i].sa.sa_handler = SIG_IGN;
235
236 flush_signals(t);
237 }
238
239 /*
240 * Flush all handlers for a task.
241 */
242
243 void
244 flush_signal_handlers(struct task_struct *t, int force_default)
245 {
246 int i;
247 struct k_sigaction *ka = &t->sighand->action[0];
248 for (i = _NSIG ; i != 0 ; i--) {
249 if (force_default || ka->sa.sa_handler != SIG_IGN)
250 ka->sa.sa_handler = SIG_DFL;
251 ka->sa.sa_flags = 0;
252 sigemptyset(&ka->sa.sa_mask);
253 ka++;
254 }
255 }
256
257 int unhandled_signal(struct task_struct *tsk, int sig)
258 {
259 if (is_global_init(tsk))
260 return 1;
261 if (tsk->ptrace & PT_PTRACED)
262 return 0;
263 return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) ||
264 (tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL);
265 }
266
267
268 /* Notify the system that a driver wants to block all signals for this
269 * process, and wants to be notified if any signals at all were to be
270 * sent/acted upon. If the notifier routine returns non-zero, then the
271 * signal will be acted upon after all. If the notifier routine returns 0,
272 * then then signal will be blocked. Only one block per process is
273 * allowed. priv is a pointer to private data that the notifier routine
274 * can use to determine if the signal should be blocked or not. */
275
276 void
277 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
278 {
279 unsigned long flags;
280
281 spin_lock_irqsave(&current->sighand->siglock, flags);
282 current->notifier_mask = mask;
283 current->notifier_data = priv;
284 current->notifier = notifier;
285 spin_unlock_irqrestore(&current->sighand->siglock, flags);
286 }
287
288 /* Notify the system that blocking has ended. */
289
290 void
291 unblock_all_signals(void)
292 {
293 unsigned long flags;
294
295 spin_lock_irqsave(&current->sighand->siglock, flags);
296 current->notifier = NULL;
297 current->notifier_data = NULL;
298 recalc_sigpending();
299 spin_unlock_irqrestore(&current->sighand->siglock, flags);
300 }
301
302 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
303 {
304 struct sigqueue *q, *first = NULL;
305 int still_pending = 0;
306
307 if (unlikely(!sigismember(&list->signal, sig)))
308 return 0;
309
310 /*
311 * Collect the siginfo appropriate to this signal. Check if
312 * there is another siginfo for the same signal.
313 */
314 list_for_each_entry(q, &list->list, list) {
315 if (q->info.si_signo == sig) {
316 if (first) {
317 still_pending = 1;
318 break;
319 }
320 first = q;
321 }
322 }
323 if (first) {
324 list_del_init(&first->list);
325 copy_siginfo(info, &first->info);
326 __sigqueue_free(first);
327 if (!still_pending)
328 sigdelset(&list->signal, sig);
329 } else {
330
331 /* Ok, it wasn't in the queue. This must be
332 a fast-pathed signal or we must have been
333 out of queue space. So zero out the info.
334 */
335 sigdelset(&list->signal, sig);
336 info->si_signo = sig;
337 info->si_errno = 0;
338 info->si_code = 0;
339 info->si_pid = 0;
340 info->si_uid = 0;
341 }
342 return 1;
343 }
344
345 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
346 siginfo_t *info)
347 {
348 int sig = next_signal(pending, mask);
349
350 if (sig) {
351 if (current->notifier) {
352 if (sigismember(current->notifier_mask, sig)) {
353 if (!(current->notifier)(current->notifier_data)) {
354 clear_thread_flag(TIF_SIGPENDING);
355 return 0;
356 }
357 }
358 }
359
360 if (!collect_signal(sig, pending, info))
361 sig = 0;
362 }
363
364 return sig;
365 }
366
367 /*
368 * Dequeue a signal and return the element to the caller, which is
369 * expected to free it.
370 *
371 * All callers have to hold the siglock.
372 */
373 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
374 {
375 int signr = 0;
376
377 /* We only dequeue private signals from ourselves, we don't let
378 * signalfd steal them
379 */
380 signr = __dequeue_signal(&tsk->pending, mask, info);
381 if (!signr) {
382 signr = __dequeue_signal(&tsk->signal->shared_pending,
383 mask, info);
384 /*
385 * itimer signal ?
386 *
387 * itimers are process shared and we restart periodic
388 * itimers in the signal delivery path to prevent DoS
389 * attacks in the high resolution timer case. This is
390 * compliant with the old way of self restarting
391 * itimers, as the SIGALRM is a legacy signal and only
392 * queued once. Changing the restart behaviour to
393 * restart the timer in the signal dequeue path is
394 * reducing the timer noise on heavy loaded !highres
395 * systems too.
396 */
397 if (unlikely(signr == SIGALRM)) {
398 struct hrtimer *tmr = &tsk->signal->real_timer;
399
400 if (!hrtimer_is_queued(tmr) &&
401 tsk->signal->it_real_incr.tv64 != 0) {
402 hrtimer_forward(tmr, tmr->base->get_time(),
403 tsk->signal->it_real_incr);
404 hrtimer_restart(tmr);
405 }
406 }
407 }
408 recalc_sigpending();
409 if (signr && unlikely(sig_kernel_stop(signr))) {
410 /*
411 * Set a marker that we have dequeued a stop signal. Our
412 * caller might release the siglock and then the pending
413 * stop signal it is about to process is no longer in the
414 * pending bitmasks, but must still be cleared by a SIGCONT
415 * (and overruled by a SIGKILL). So those cases clear this
416 * shared flag after we've set it. Note that this flag may
417 * remain set after the signal we return is ignored or
418 * handled. That doesn't matter because its only purpose
419 * is to alert stop-signal processing code when another
420 * processor has come along and cleared the flag.
421 */
422 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
423 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
424 }
425 if (signr &&
426 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
427 info->si_sys_private) {
428 /*
429 * Release the siglock to ensure proper locking order
430 * of timer locks outside of siglocks. Note, we leave
431 * irqs disabled here, since the posix-timers code is
432 * about to disable them again anyway.
433 */
434 spin_unlock(&tsk->sighand->siglock);
435 do_schedule_next_timer(info);
436 spin_lock(&tsk->sighand->siglock);
437 }
438 return signr;
439 }
440
441 /*
442 * Tell a process that it has a new active signal..
443 *
444 * NOTE! we rely on the previous spin_lock to
445 * lock interrupts for us! We can only be called with
446 * "siglock" held, and the local interrupt must
447 * have been disabled when that got acquired!
448 *
449 * No need to set need_resched since signal event passing
450 * goes through ->blocked
451 */
452 void signal_wake_up(struct task_struct *t, int resume)
453 {
454 unsigned int mask;
455
456 set_tsk_thread_flag(t, TIF_SIGPENDING);
457
458 /*
459 * For SIGKILL, we want to wake it up in the stopped/traced/killable
460 * case. We don't check t->state here because there is a race with it
461 * executing another processor and just now entering stopped state.
462 * By using wake_up_state, we ensure the process will wake up and
463 * handle its death signal.
464 */
465 mask = TASK_INTERRUPTIBLE;
466 if (resume)
467 mask |= TASK_WAKEKILL;
468 if (!wake_up_state(t, mask))
469 kick_process(t);
470 }
471
472 /*
473 * Remove signals in mask from the pending set and queue.
474 * Returns 1 if any signals were found.
475 *
476 * All callers must be holding the siglock.
477 *
478 * This version takes a sigset mask and looks at all signals,
479 * not just those in the first mask word.
480 */
481 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
482 {
483 struct sigqueue *q, *n;
484 sigset_t m;
485
486 sigandsets(&m, mask, &s->signal);
487 if (sigisemptyset(&m))
488 return 0;
489
490 signandsets(&s->signal, &s->signal, mask);
491 list_for_each_entry_safe(q, n, &s->list, list) {
492 if (sigismember(mask, q->info.si_signo)) {
493 list_del_init(&q->list);
494 __sigqueue_free(q);
495 }
496 }
497 return 1;
498 }
499 /*
500 * Remove signals in mask from the pending set and queue.
501 * Returns 1 if any signals were found.
502 *
503 * All callers must be holding the siglock.
504 */
505 static int rm_from_queue(unsigned long mask, struct sigpending *s)
506 {
507 struct sigqueue *q, *n;
508
509 if (!sigtestsetmask(&s->signal, mask))
510 return 0;
511
512 sigdelsetmask(&s->signal, mask);
513 list_for_each_entry_safe(q, n, &s->list, list) {
514 if (q->info.si_signo < SIGRTMIN &&
515 (mask & sigmask(q->info.si_signo))) {
516 list_del_init(&q->list);
517 __sigqueue_free(q);
518 }
519 }
520 return 1;
521 }
522
523 /*
524 * Bad permissions for sending the signal
525 */
526 static int check_kill_permission(int sig, struct siginfo *info,
527 struct task_struct *t)
528 {
529 int error = -EINVAL;
530 if (!valid_signal(sig))
531 return error;
532
533 if (info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) {
534 error = audit_signal_info(sig, t); /* Let audit system see the signal */
535 if (error)
536 return error;
537 error = -EPERM;
538 if (((sig != SIGCONT) ||
539 (task_session_nr(current) != task_session_nr(t)))
540 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
541 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
542 && !capable(CAP_KILL))
543 return error;
544 }
545
546 return security_task_kill(t, info, sig, 0);
547 }
548
549 /* forward decl */
550 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
551
552 /*
553 * Handle magic process-wide effects of stop/continue signals.
554 * Unlike the signal actions, these happen immediately at signal-generation
555 * time regardless of blocking, ignoring, or handling. This does the
556 * actual continuing for SIGCONT, but not the actual stopping for stop
557 * signals. The process stop is done as a signal action for SIG_DFL.
558 */
559 static void handle_stop_signal(int sig, struct task_struct *p)
560 {
561 struct task_struct *t;
562
563 if (p->signal->flags & SIGNAL_GROUP_EXIT)
564 /*
565 * The process is in the middle of dying already.
566 */
567 return;
568
569 if (sig_kernel_stop(sig)) {
570 /*
571 * This is a stop signal. Remove SIGCONT from all queues.
572 */
573 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
574 t = p;
575 do {
576 rm_from_queue(sigmask(SIGCONT), &t->pending);
577 t = next_thread(t);
578 } while (t != p);
579 } else if (sig == SIGCONT) {
580 /*
581 * Remove all stop signals from all queues,
582 * and wake all threads.
583 */
584 if (unlikely(p->signal->group_stop_count > 0)) {
585 /*
586 * There was a group stop in progress. We'll
587 * pretend it finished before we got here. We are
588 * obliged to report it to the parent: if the
589 * SIGSTOP happened "after" this SIGCONT, then it
590 * would have cleared this pending SIGCONT. If it
591 * happened "before" this SIGCONT, then the parent
592 * got the SIGCHLD about the stop finishing before
593 * the continue happened. We do the notification
594 * now, and it's as if the stop had finished and
595 * the SIGCHLD was pending on entry to this kill.
596 */
597 p->signal->group_stop_count = 0;
598 p->signal->flags = SIGNAL_STOP_CONTINUED;
599 spin_unlock(&p->sighand->siglock);
600 do_notify_parent_cldstop(p, CLD_STOPPED);
601 spin_lock(&p->sighand->siglock);
602 }
603 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
604 t = p;
605 do {
606 unsigned int state;
607 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
608
609 /*
610 * If there is a handler for SIGCONT, we must make
611 * sure that no thread returns to user mode before
612 * we post the signal, in case it was the only
613 * thread eligible to run the signal handler--then
614 * it must not do anything between resuming and
615 * running the handler. With the TIF_SIGPENDING
616 * flag set, the thread will pause and acquire the
617 * siglock that we hold now and until we've queued
618 * the pending signal.
619 *
620 * Wake up the stopped thread _after_ setting
621 * TIF_SIGPENDING
622 */
623 state = __TASK_STOPPED;
624 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
625 set_tsk_thread_flag(t, TIF_SIGPENDING);
626 state |= TASK_INTERRUPTIBLE;
627 }
628 wake_up_state(t, state);
629
630 t = next_thread(t);
631 } while (t != p);
632
633 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
634 /*
635 * We were in fact stopped, and are now continued.
636 * Notify the parent with CLD_CONTINUED.
637 */
638 p->signal->flags = SIGNAL_STOP_CONTINUED;
639 p->signal->group_exit_code = 0;
640 spin_unlock(&p->sighand->siglock);
641 do_notify_parent_cldstop(p, CLD_CONTINUED);
642 spin_lock(&p->sighand->siglock);
643 } else {
644 /*
645 * We are not stopped, but there could be a stop
646 * signal in the middle of being processed after
647 * being removed from the queue. Clear that too.
648 */
649 p->signal->flags = 0;
650 }
651 } else if (sig == SIGKILL) {
652 /*
653 * Make sure that any pending stop signal already dequeued
654 * is undone by the wakeup for SIGKILL.
655 */
656 p->signal->flags = 0;
657 }
658 }
659
660 static inline int legacy_queue(struct sigpending *signals, int sig)
661 {
662 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
663 }
664
665 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
666 struct sigpending *signals)
667 {
668 struct sigqueue * q = NULL;
669
670 /*
671 * Deliver the signal to listening signalfds. This must be called
672 * with the sighand lock held.
673 */
674 signalfd_notify(t, sig);
675
676 /*
677 * fast-pathed signals for kernel-internal things like SIGSTOP
678 * or SIGKILL.
679 */
680 if (info == SEND_SIG_FORCED)
681 goto out_set;
682
683 /* Real-time signals must be queued if sent by sigqueue, or
684 some other real-time mechanism. It is implementation
685 defined whether kill() does so. We attempt to do so, on
686 the principle of least surprise, but since kill is not
687 allowed to fail with EAGAIN when low on memory we just
688 make sure at least one signal gets delivered and don't
689 pass on the info struct. */
690
691 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
692 (is_si_special(info) ||
693 info->si_code >= 0)));
694 if (q) {
695 list_add_tail(&q->list, &signals->list);
696 switch ((unsigned long) info) {
697 case (unsigned long) SEND_SIG_NOINFO:
698 q->info.si_signo = sig;
699 q->info.si_errno = 0;
700 q->info.si_code = SI_USER;
701 q->info.si_pid = task_pid_vnr(current);
702 q->info.si_uid = current->uid;
703 break;
704 case (unsigned long) SEND_SIG_PRIV:
705 q->info.si_signo = sig;
706 q->info.si_errno = 0;
707 q->info.si_code = SI_KERNEL;
708 q->info.si_pid = 0;
709 q->info.si_uid = 0;
710 break;
711 default:
712 copy_siginfo(&q->info, info);
713 break;
714 }
715 } else if (!is_si_special(info)) {
716 if (sig >= SIGRTMIN && info->si_code != SI_USER)
717 /*
718 * Queue overflow, abort. We may abort if the signal was rt
719 * and sent by user using something other than kill().
720 */
721 return -EAGAIN;
722 }
723
724 out_set:
725 sigaddset(&signals->signal, sig);
726 return 0;
727 }
728
729 int print_fatal_signals;
730
731 static void print_fatal_signal(struct pt_regs *regs, int signr)
732 {
733 printk("%s/%d: potentially unexpected fatal signal %d.\n",
734 current->comm, task_pid_nr(current), signr);
735
736 #if defined(__i386__) && !defined(__arch_um__)
737 printk("code at %08lx: ", regs->ip);
738 {
739 int i;
740 for (i = 0; i < 16; i++) {
741 unsigned char insn;
742
743 __get_user(insn, (unsigned char *)(regs->ip + i));
744 printk("%02x ", insn);
745 }
746 }
747 #endif
748 printk("\n");
749 show_regs(regs);
750 }
751
752 static int __init setup_print_fatal_signals(char *str)
753 {
754 get_option (&str, &print_fatal_signals);
755
756 return 1;
757 }
758
759 __setup("print-fatal-signals=", setup_print_fatal_signals);
760
761 static int
762 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
763 {
764 int ret = 0;
765
766 BUG_ON(!irqs_disabled());
767 assert_spin_locked(&t->sighand->siglock);
768
769 /* Short-circuit ignored signals. */
770 if (sig_ignored(t, sig))
771 goto out;
772
773 /* Support queueing exactly one non-rt signal, so that we
774 can get more detailed information about the cause of
775 the signal. */
776 if (legacy_queue(&t->pending, sig))
777 goto out;
778
779 ret = send_signal(sig, info, t, &t->pending);
780 if (!ret && !sigismember(&t->blocked, sig))
781 signal_wake_up(t, sig == SIGKILL);
782 out:
783 return ret;
784 }
785
786 /*
787 * Force a signal that the process can't ignore: if necessary
788 * we unblock the signal and change any SIG_IGN to SIG_DFL.
789 *
790 * Note: If we unblock the signal, we always reset it to SIG_DFL,
791 * since we do not want to have a signal handler that was blocked
792 * be invoked when user space had explicitly blocked it.
793 *
794 * We don't want to have recursive SIGSEGV's etc, for example.
795 */
796 int
797 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
798 {
799 unsigned long int flags;
800 int ret, blocked, ignored;
801 struct k_sigaction *action;
802
803 spin_lock_irqsave(&t->sighand->siglock, flags);
804 action = &t->sighand->action[sig-1];
805 ignored = action->sa.sa_handler == SIG_IGN;
806 blocked = sigismember(&t->blocked, sig);
807 if (blocked || ignored) {
808 action->sa.sa_handler = SIG_DFL;
809 if (blocked) {
810 sigdelset(&t->blocked, sig);
811 recalc_sigpending_and_wake(t);
812 }
813 }
814 ret = specific_send_sig_info(sig, info, t);
815 spin_unlock_irqrestore(&t->sighand->siglock, flags);
816
817 return ret;
818 }
819
820 void
821 force_sig_specific(int sig, struct task_struct *t)
822 {
823 force_sig_info(sig, SEND_SIG_FORCED, t);
824 }
825
826 /*
827 * Test if P wants to take SIG. After we've checked all threads with this,
828 * it's equivalent to finding no threads not blocking SIG. Any threads not
829 * blocking SIG were ruled out because they are not running and already
830 * have pending signals. Such threads will dequeue from the shared queue
831 * as soon as they're available, so putting the signal on the shared queue
832 * will be equivalent to sending it to one such thread.
833 */
834 static inline int wants_signal(int sig, struct task_struct *p)
835 {
836 if (sigismember(&p->blocked, sig))
837 return 0;
838 if (p->flags & PF_EXITING)
839 return 0;
840 if (sig == SIGKILL)
841 return 1;
842 if (task_is_stopped_or_traced(p))
843 return 0;
844 return task_curr(p) || !signal_pending(p);
845 }
846
847 static void
848 __group_complete_signal(int sig, struct task_struct *p)
849 {
850 struct task_struct *t;
851
852 /*
853 * Now find a thread we can wake up to take the signal off the queue.
854 *
855 * If the main thread wants the signal, it gets first crack.
856 * Probably the least surprising to the average bear.
857 */
858 if (wants_signal(sig, p))
859 t = p;
860 else if (thread_group_empty(p))
861 /*
862 * There is just one thread and it does not need to be woken.
863 * It will dequeue unblocked signals before it runs again.
864 */
865 return;
866 else {
867 /*
868 * Otherwise try to find a suitable thread.
869 */
870 t = p->signal->curr_target;
871 if (t == NULL)
872 /* restart balancing at this thread */
873 t = p->signal->curr_target = p;
874
875 while (!wants_signal(sig, t)) {
876 t = next_thread(t);
877 if (t == p->signal->curr_target)
878 /*
879 * No thread needs to be woken.
880 * Any eligible threads will see
881 * the signal in the queue soon.
882 */
883 return;
884 }
885 p->signal->curr_target = t;
886 }
887
888 /*
889 * Found a killable thread. If the signal will be fatal,
890 * then start taking the whole group down immediately.
891 */
892 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
893 !sigismember(&t->real_blocked, sig) &&
894 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
895 /*
896 * This signal will be fatal to the whole group.
897 */
898 if (!sig_kernel_coredump(sig)) {
899 /*
900 * Start a group exit and wake everybody up.
901 * This way we don't have other threads
902 * running and doing things after a slower
903 * thread has the fatal signal pending.
904 */
905 p->signal->flags = SIGNAL_GROUP_EXIT;
906 p->signal->group_exit_code = sig;
907 p->signal->group_stop_count = 0;
908 t = p;
909 do {
910 sigaddset(&t->pending.signal, SIGKILL);
911 signal_wake_up(t, 1);
912 } while_each_thread(p, t);
913 return;
914 }
915 }
916
917 /*
918 * The signal is already in the shared-pending queue.
919 * Tell the chosen thread to wake up and dequeue it.
920 */
921 signal_wake_up(t, sig == SIGKILL);
922 return;
923 }
924
925 int
926 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
927 {
928 int ret = 0;
929
930 assert_spin_locked(&p->sighand->siglock);
931 handle_stop_signal(sig, p);
932
933 /* Short-circuit ignored signals. */
934 if (sig_ignored(p, sig))
935 return ret;
936
937 if (legacy_queue(&p->signal->shared_pending, sig))
938 /* This is a non-RT signal and we already have one queued. */
939 return ret;
940
941 /*
942 * Put this signal on the shared-pending queue, or fail with EAGAIN.
943 * We always use the shared queue for process-wide signals,
944 * to avoid several races.
945 */
946 ret = send_signal(sig, info, p, &p->signal->shared_pending);
947 if (unlikely(ret))
948 return ret;
949
950 __group_complete_signal(sig, p);
951 return 0;
952 }
953
954 /*
955 * Nuke all other threads in the group.
956 */
957 void zap_other_threads(struct task_struct *p)
958 {
959 struct task_struct *t;
960
961 p->signal->group_stop_count = 0;
962
963 for (t = next_thread(p); t != p; t = next_thread(t)) {
964 /*
965 * Don't bother with already dead threads
966 */
967 if (t->exit_state)
968 continue;
969
970 /* SIGKILL will be handled before any pending SIGSTOP */
971 sigaddset(&t->pending.signal, SIGKILL);
972 signal_wake_up(t, 1);
973 }
974 }
975
976 int __fatal_signal_pending(struct task_struct *tsk)
977 {
978 return sigismember(&tsk->pending.signal, SIGKILL);
979 }
980 EXPORT_SYMBOL(__fatal_signal_pending);
981
982 /*
983 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
984 */
985 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
986 {
987 struct sighand_struct *sighand;
988
989 for (;;) {
990 sighand = rcu_dereference(tsk->sighand);
991 if (unlikely(sighand == NULL))
992 break;
993
994 spin_lock_irqsave(&sighand->siglock, *flags);
995 if (likely(sighand == tsk->sighand))
996 break;
997 spin_unlock_irqrestore(&sighand->siglock, *flags);
998 }
999
1000 return sighand;
1001 }
1002
1003 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1004 {
1005 unsigned long flags;
1006 int ret;
1007
1008 ret = check_kill_permission(sig, info, p);
1009
1010 if (!ret && sig) {
1011 ret = -ESRCH;
1012 if (lock_task_sighand(p, &flags)) {
1013 ret = __group_send_sig_info(sig, info, p);
1014 unlock_task_sighand(p, &flags);
1015 }
1016 }
1017
1018 return ret;
1019 }
1020
1021 /*
1022 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1023 * control characters do (^C, ^Z etc)
1024 */
1025
1026 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1027 {
1028 struct task_struct *p = NULL;
1029 int retval, success;
1030
1031 success = 0;
1032 retval = -ESRCH;
1033 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1034 int err = group_send_sig_info(sig, info, p);
1035 success |= !err;
1036 retval = err;
1037 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1038 return success ? 0 : retval;
1039 }
1040
1041 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1042 {
1043 int error = -ESRCH;
1044 struct task_struct *p;
1045
1046 rcu_read_lock();
1047 if (unlikely(sig_needs_tasklist(sig)))
1048 read_lock(&tasklist_lock);
1049
1050 retry:
1051 p = pid_task(pid, PIDTYPE_PID);
1052 if (p) {
1053 error = group_send_sig_info(sig, info, p);
1054 if (unlikely(error == -ESRCH))
1055 /*
1056 * The task was unhashed in between, try again.
1057 * If it is dead, pid_task() will return NULL,
1058 * if we race with de_thread() it will find the
1059 * new leader.
1060 */
1061 goto retry;
1062 }
1063
1064 if (unlikely(sig_needs_tasklist(sig)))
1065 read_unlock(&tasklist_lock);
1066 rcu_read_unlock();
1067 return error;
1068 }
1069
1070 int
1071 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1072 {
1073 int error;
1074 rcu_read_lock();
1075 error = kill_pid_info(sig, info, find_vpid(pid));
1076 rcu_read_unlock();
1077 return error;
1078 }
1079
1080 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1081 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1082 uid_t uid, uid_t euid, u32 secid)
1083 {
1084 int ret = -EINVAL;
1085 struct task_struct *p;
1086
1087 if (!valid_signal(sig))
1088 return ret;
1089
1090 read_lock(&tasklist_lock);
1091 p = pid_task(pid, PIDTYPE_PID);
1092 if (!p) {
1093 ret = -ESRCH;
1094 goto out_unlock;
1095 }
1096 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1097 && (euid != p->suid) && (euid != p->uid)
1098 && (uid != p->suid) && (uid != p->uid)) {
1099 ret = -EPERM;
1100 goto out_unlock;
1101 }
1102 ret = security_task_kill(p, info, sig, secid);
1103 if (ret)
1104 goto out_unlock;
1105 if (sig && p->sighand) {
1106 unsigned long flags;
1107 spin_lock_irqsave(&p->sighand->siglock, flags);
1108 ret = __group_send_sig_info(sig, info, p);
1109 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1110 }
1111 out_unlock:
1112 read_unlock(&tasklist_lock);
1113 return ret;
1114 }
1115 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1116
1117 /*
1118 * kill_something_info() interprets pid in interesting ways just like kill(2).
1119 *
1120 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1121 * is probably wrong. Should make it like BSD or SYSV.
1122 */
1123
1124 static int kill_something_info(int sig, struct siginfo *info, int pid)
1125 {
1126 int ret;
1127
1128 if (pid > 0) {
1129 rcu_read_lock();
1130 ret = kill_pid_info(sig, info, find_vpid(pid));
1131 rcu_read_unlock();
1132 return ret;
1133 }
1134
1135 read_lock(&tasklist_lock);
1136 if (pid != -1) {
1137 ret = __kill_pgrp_info(sig, info,
1138 pid ? find_vpid(-pid) : task_pgrp(current));
1139 } else {
1140 int retval = 0, count = 0;
1141 struct task_struct * p;
1142
1143 for_each_process(p) {
1144 if (p->pid > 1 && !same_thread_group(p, current)) {
1145 int err = group_send_sig_info(sig, info, p);
1146 ++count;
1147 if (err != -EPERM)
1148 retval = err;
1149 }
1150 }
1151 ret = count ? retval : -ESRCH;
1152 }
1153 read_unlock(&tasklist_lock);
1154
1155 return ret;
1156 }
1157
1158 /*
1159 * These are for backward compatibility with the rest of the kernel source.
1160 */
1161
1162 /*
1163 * These two are the most common entry points. They send a signal
1164 * just to the specific thread.
1165 */
1166 int
1167 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1168 {
1169 int ret;
1170 unsigned long flags;
1171
1172 /*
1173 * Make sure legacy kernel users don't send in bad values
1174 * (normal paths check this in check_kill_permission).
1175 */
1176 if (!valid_signal(sig))
1177 return -EINVAL;
1178
1179 /*
1180 * We need the tasklist lock even for the specific
1181 * thread case (when we don't need to follow the group
1182 * lists) in order to avoid races with "p->sighand"
1183 * going away or changing from under us.
1184 */
1185 read_lock(&tasklist_lock);
1186 spin_lock_irqsave(&p->sighand->siglock, flags);
1187 ret = specific_send_sig_info(sig, info, p);
1188 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1189 read_unlock(&tasklist_lock);
1190 return ret;
1191 }
1192
1193 #define __si_special(priv) \
1194 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1195
1196 int
1197 send_sig(int sig, struct task_struct *p, int priv)
1198 {
1199 return send_sig_info(sig, __si_special(priv), p);
1200 }
1201
1202 void
1203 force_sig(int sig, struct task_struct *p)
1204 {
1205 force_sig_info(sig, SEND_SIG_PRIV, p);
1206 }
1207
1208 /*
1209 * When things go south during signal handling, we
1210 * will force a SIGSEGV. And if the signal that caused
1211 * the problem was already a SIGSEGV, we'll want to
1212 * make sure we don't even try to deliver the signal..
1213 */
1214 int
1215 force_sigsegv(int sig, struct task_struct *p)
1216 {
1217 if (sig == SIGSEGV) {
1218 unsigned long flags;
1219 spin_lock_irqsave(&p->sighand->siglock, flags);
1220 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1221 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1222 }
1223 force_sig(SIGSEGV, p);
1224 return 0;
1225 }
1226
1227 int kill_pgrp(struct pid *pid, int sig, int priv)
1228 {
1229 int ret;
1230
1231 read_lock(&tasklist_lock);
1232 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1233 read_unlock(&tasklist_lock);
1234
1235 return ret;
1236 }
1237 EXPORT_SYMBOL(kill_pgrp);
1238
1239 int kill_pid(struct pid *pid, int sig, int priv)
1240 {
1241 return kill_pid_info(sig, __si_special(priv), pid);
1242 }
1243 EXPORT_SYMBOL(kill_pid);
1244
1245 int
1246 kill_proc(pid_t pid, int sig, int priv)
1247 {
1248 int ret;
1249
1250 rcu_read_lock();
1251 ret = kill_pid_info(sig, __si_special(priv), find_pid(pid));
1252 rcu_read_unlock();
1253 return ret;
1254 }
1255
1256 /*
1257 * These functions support sending signals using preallocated sigqueue
1258 * structures. This is needed "because realtime applications cannot
1259 * afford to lose notifications of asynchronous events, like timer
1260 * expirations or I/O completions". In the case of Posix Timers
1261 * we allocate the sigqueue structure from the timer_create. If this
1262 * allocation fails we are able to report the failure to the application
1263 * with an EAGAIN error.
1264 */
1265
1266 struct sigqueue *sigqueue_alloc(void)
1267 {
1268 struct sigqueue *q;
1269
1270 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1271 q->flags |= SIGQUEUE_PREALLOC;
1272 return(q);
1273 }
1274
1275 void sigqueue_free(struct sigqueue *q)
1276 {
1277 unsigned long flags;
1278 spinlock_t *lock = &current->sighand->siglock;
1279
1280 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1281 /*
1282 * If the signal is still pending remove it from the
1283 * pending queue. We must hold ->siglock while testing
1284 * q->list to serialize with collect_signal().
1285 */
1286 spin_lock_irqsave(lock, flags);
1287 if (!list_empty(&q->list))
1288 list_del_init(&q->list);
1289 spin_unlock_irqrestore(lock, flags);
1290
1291 q->flags &= ~SIGQUEUE_PREALLOC;
1292 __sigqueue_free(q);
1293 }
1294
1295 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1296 {
1297 unsigned long flags;
1298 int ret = 0;
1299
1300 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1301
1302 /*
1303 * The rcu based delayed sighand destroy makes it possible to
1304 * run this without tasklist lock held. The task struct itself
1305 * cannot go away as create_timer did get_task_struct().
1306 *
1307 * We return -1, when the task is marked exiting, so
1308 * posix_timer_event can redirect it to the group leader
1309 */
1310 rcu_read_lock();
1311
1312 if (!likely(lock_task_sighand(p, &flags))) {
1313 ret = -1;
1314 goto out_err;
1315 }
1316
1317 if (unlikely(!list_empty(&q->list))) {
1318 /*
1319 * If an SI_TIMER entry is already queue just increment
1320 * the overrun count.
1321 */
1322 BUG_ON(q->info.si_code != SI_TIMER);
1323 q->info.si_overrun++;
1324 goto out;
1325 }
1326 /* Short-circuit ignored signals. */
1327 if (sig_ignored(p, sig)) {
1328 ret = 1;
1329 goto out;
1330 }
1331 /*
1332 * Deliver the signal to listening signalfds. This must be called
1333 * with the sighand lock held.
1334 */
1335 signalfd_notify(p, sig);
1336
1337 list_add_tail(&q->list, &p->pending.list);
1338 sigaddset(&p->pending.signal, sig);
1339 if (!sigismember(&p->blocked, sig))
1340 signal_wake_up(p, sig == SIGKILL);
1341
1342 out:
1343 unlock_task_sighand(p, &flags);
1344 out_err:
1345 rcu_read_unlock();
1346
1347 return ret;
1348 }
1349
1350 int
1351 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1352 {
1353 unsigned long flags;
1354 int ret = 0;
1355
1356 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1357
1358 read_lock(&tasklist_lock);
1359 /* Since it_lock is held, p->sighand cannot be NULL. */
1360 spin_lock_irqsave(&p->sighand->siglock, flags);
1361 handle_stop_signal(sig, p);
1362
1363 /* Short-circuit ignored signals. */
1364 if (sig_ignored(p, sig)) {
1365 ret = 1;
1366 goto out;
1367 }
1368
1369 if (unlikely(!list_empty(&q->list))) {
1370 /*
1371 * If an SI_TIMER entry is already queue just increment
1372 * the overrun count. Other uses should not try to
1373 * send the signal multiple times.
1374 */
1375 BUG_ON(q->info.si_code != SI_TIMER);
1376 q->info.si_overrun++;
1377 goto out;
1378 }
1379 /*
1380 * Deliver the signal to listening signalfds. This must be called
1381 * with the sighand lock held.
1382 */
1383 signalfd_notify(p, sig);
1384
1385 /*
1386 * Put this signal on the shared-pending queue.
1387 * We always use the shared queue for process-wide signals,
1388 * to avoid several races.
1389 */
1390 list_add_tail(&q->list, &p->signal->shared_pending.list);
1391 sigaddset(&p->signal->shared_pending.signal, sig);
1392
1393 __group_complete_signal(sig, p);
1394 out:
1395 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1396 read_unlock(&tasklist_lock);
1397 return ret;
1398 }
1399
1400 /*
1401 * Wake up any threads in the parent blocked in wait* syscalls.
1402 */
1403 static inline void __wake_up_parent(struct task_struct *p,
1404 struct task_struct *parent)
1405 {
1406 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1407 }
1408
1409 /*
1410 * Let a parent know about the death of a child.
1411 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1412 */
1413
1414 void do_notify_parent(struct task_struct *tsk, int sig)
1415 {
1416 struct siginfo info;
1417 unsigned long flags;
1418 struct sighand_struct *psig;
1419
1420 BUG_ON(sig == -1);
1421
1422 /* do_notify_parent_cldstop should have been called instead. */
1423 BUG_ON(task_is_stopped_or_traced(tsk));
1424
1425 BUG_ON(!tsk->ptrace &&
1426 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1427
1428 info.si_signo = sig;
1429 info.si_errno = 0;
1430 /*
1431 * we are under tasklist_lock here so our parent is tied to
1432 * us and cannot exit and release its namespace.
1433 *
1434 * the only it can is to switch its nsproxy with sys_unshare,
1435 * bu uncharing pid namespaces is not allowed, so we'll always
1436 * see relevant namespace
1437 *
1438 * write_lock() currently calls preempt_disable() which is the
1439 * same as rcu_read_lock(), but according to Oleg, this is not
1440 * correct to rely on this
1441 */
1442 rcu_read_lock();
1443 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1444 rcu_read_unlock();
1445
1446 info.si_uid = tsk->uid;
1447
1448 /* FIXME: find out whether or not this is supposed to be c*time. */
1449 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1450 tsk->signal->utime));
1451 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1452 tsk->signal->stime));
1453
1454 info.si_status = tsk->exit_code & 0x7f;
1455 if (tsk->exit_code & 0x80)
1456 info.si_code = CLD_DUMPED;
1457 else if (tsk->exit_code & 0x7f)
1458 info.si_code = CLD_KILLED;
1459 else {
1460 info.si_code = CLD_EXITED;
1461 info.si_status = tsk->exit_code >> 8;
1462 }
1463
1464 psig = tsk->parent->sighand;
1465 spin_lock_irqsave(&psig->siglock, flags);
1466 if (!tsk->ptrace && sig == SIGCHLD &&
1467 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1468 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1469 /*
1470 * We are exiting and our parent doesn't care. POSIX.1
1471 * defines special semantics for setting SIGCHLD to SIG_IGN
1472 * or setting the SA_NOCLDWAIT flag: we should be reaped
1473 * automatically and not left for our parent's wait4 call.
1474 * Rather than having the parent do it as a magic kind of
1475 * signal handler, we just set this to tell do_exit that we
1476 * can be cleaned up without becoming a zombie. Note that
1477 * we still call __wake_up_parent in this case, because a
1478 * blocked sys_wait4 might now return -ECHILD.
1479 *
1480 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1481 * is implementation-defined: we do (if you don't want
1482 * it, just use SIG_IGN instead).
1483 */
1484 tsk->exit_signal = -1;
1485 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1486 sig = 0;
1487 }
1488 if (valid_signal(sig) && sig > 0)
1489 __group_send_sig_info(sig, &info, tsk->parent);
1490 __wake_up_parent(tsk, tsk->parent);
1491 spin_unlock_irqrestore(&psig->siglock, flags);
1492 }
1493
1494 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1495 {
1496 struct siginfo info;
1497 unsigned long flags;
1498 struct task_struct *parent;
1499 struct sighand_struct *sighand;
1500
1501 if (tsk->ptrace & PT_PTRACED)
1502 parent = tsk->parent;
1503 else {
1504 tsk = tsk->group_leader;
1505 parent = tsk->real_parent;
1506 }
1507
1508 info.si_signo = SIGCHLD;
1509 info.si_errno = 0;
1510 /*
1511 * see comment in do_notify_parent() abot the following 3 lines
1512 */
1513 rcu_read_lock();
1514 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1515 rcu_read_unlock();
1516
1517 info.si_uid = tsk->uid;
1518
1519 /* FIXME: find out whether or not this is supposed to be c*time. */
1520 info.si_utime = cputime_to_jiffies(tsk->utime);
1521 info.si_stime = cputime_to_jiffies(tsk->stime);
1522
1523 info.si_code = why;
1524 switch (why) {
1525 case CLD_CONTINUED:
1526 info.si_status = SIGCONT;
1527 break;
1528 case CLD_STOPPED:
1529 info.si_status = tsk->signal->group_exit_code & 0x7f;
1530 break;
1531 case CLD_TRAPPED:
1532 info.si_status = tsk->exit_code & 0x7f;
1533 break;
1534 default:
1535 BUG();
1536 }
1537
1538 sighand = parent->sighand;
1539 spin_lock_irqsave(&sighand->siglock, flags);
1540 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1541 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1542 __group_send_sig_info(SIGCHLD, &info, parent);
1543 /*
1544 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1545 */
1546 __wake_up_parent(tsk, parent);
1547 spin_unlock_irqrestore(&sighand->siglock, flags);
1548 }
1549
1550 static inline int may_ptrace_stop(void)
1551 {
1552 if (!likely(current->ptrace & PT_PTRACED))
1553 return 0;
1554 /*
1555 * Are we in the middle of do_coredump?
1556 * If so and our tracer is also part of the coredump stopping
1557 * is a deadlock situation, and pointless because our tracer
1558 * is dead so don't allow us to stop.
1559 * If SIGKILL was already sent before the caller unlocked
1560 * ->siglock we must see ->core_waiters != 0. Otherwise it
1561 * is safe to enter schedule().
1562 */
1563 if (unlikely(current->mm->core_waiters) &&
1564 unlikely(current->mm == current->parent->mm))
1565 return 0;
1566
1567 return 1;
1568 }
1569
1570 /*
1571 * Return nonzero if there is a SIGKILL that should be waking us up.
1572 * Called with the siglock held.
1573 */
1574 static int sigkill_pending(struct task_struct *tsk)
1575 {
1576 return ((sigismember(&tsk->pending.signal, SIGKILL) ||
1577 sigismember(&tsk->signal->shared_pending.signal, SIGKILL)) &&
1578 !unlikely(sigismember(&tsk->blocked, SIGKILL)));
1579 }
1580
1581 /*
1582 * This must be called with current->sighand->siglock held.
1583 *
1584 * This should be the path for all ptrace stops.
1585 * We always set current->last_siginfo while stopped here.
1586 * That makes it a way to test a stopped process for
1587 * being ptrace-stopped vs being job-control-stopped.
1588 *
1589 * If we actually decide not to stop at all because the tracer
1590 * is gone, we keep current->exit_code unless clear_code.
1591 */
1592 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1593 {
1594 int killed = 0;
1595
1596 if (arch_ptrace_stop_needed(exit_code, info)) {
1597 /*
1598 * The arch code has something special to do before a
1599 * ptrace stop. This is allowed to block, e.g. for faults
1600 * on user stack pages. We can't keep the siglock while
1601 * calling arch_ptrace_stop, so we must release it now.
1602 * To preserve proper semantics, we must do this before
1603 * any signal bookkeeping like checking group_stop_count.
1604 * Meanwhile, a SIGKILL could come in before we retake the
1605 * siglock. That must prevent us from sleeping in TASK_TRACED.
1606 * So after regaining the lock, we must check for SIGKILL.
1607 */
1608 spin_unlock_irq(&current->sighand->siglock);
1609 arch_ptrace_stop(exit_code, info);
1610 spin_lock_irq(&current->sighand->siglock);
1611 killed = sigkill_pending(current);
1612 }
1613
1614 /*
1615 * If there is a group stop in progress,
1616 * we must participate in the bookkeeping.
1617 */
1618 if (current->signal->group_stop_count > 0)
1619 --current->signal->group_stop_count;
1620
1621 current->last_siginfo = info;
1622 current->exit_code = exit_code;
1623
1624 /* Let the debugger run. */
1625 __set_current_state(TASK_TRACED);
1626 spin_unlock_irq(&current->sighand->siglock);
1627 read_lock(&tasklist_lock);
1628 if (!unlikely(killed) && may_ptrace_stop()) {
1629 do_notify_parent_cldstop(current, CLD_TRAPPED);
1630 read_unlock(&tasklist_lock);
1631 schedule();
1632 } else {
1633 /*
1634 * By the time we got the lock, our tracer went away.
1635 * Don't drop the lock yet, another tracer may come.
1636 */
1637 __set_current_state(TASK_RUNNING);
1638 if (clear_code)
1639 current->exit_code = 0;
1640 read_unlock(&tasklist_lock);
1641 }
1642
1643 /*
1644 * While in TASK_TRACED, we were considered "frozen enough".
1645 * Now that we woke up, it's crucial if we're supposed to be
1646 * frozen that we freeze now before running anything substantial.
1647 */
1648 try_to_freeze();
1649
1650 /*
1651 * We are back. Now reacquire the siglock before touching
1652 * last_siginfo, so that we are sure to have synchronized with
1653 * any signal-sending on another CPU that wants to examine it.
1654 */
1655 spin_lock_irq(&current->sighand->siglock);
1656 current->last_siginfo = NULL;
1657
1658 /*
1659 * Queued signals ignored us while we were stopped for tracing.
1660 * So check for any that we should take before resuming user mode.
1661 * This sets TIF_SIGPENDING, but never clears it.
1662 */
1663 recalc_sigpending_tsk(current);
1664 }
1665
1666 void ptrace_notify(int exit_code)
1667 {
1668 siginfo_t info;
1669
1670 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1671
1672 memset(&info, 0, sizeof info);
1673 info.si_signo = SIGTRAP;
1674 info.si_code = exit_code;
1675 info.si_pid = task_pid_vnr(current);
1676 info.si_uid = current->uid;
1677
1678 /* Let the debugger run. */
1679 spin_lock_irq(&current->sighand->siglock);
1680 ptrace_stop(exit_code, 1, &info);
1681 spin_unlock_irq(&current->sighand->siglock);
1682 }
1683
1684 static void
1685 finish_stop(int stop_count)
1686 {
1687 /*
1688 * If there are no other threads in the group, or if there is
1689 * a group stop in progress and we are the last to stop,
1690 * report to the parent. When ptraced, every thread reports itself.
1691 */
1692 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1693 read_lock(&tasklist_lock);
1694 do_notify_parent_cldstop(current, CLD_STOPPED);
1695 read_unlock(&tasklist_lock);
1696 }
1697
1698 do {
1699 schedule();
1700 } while (try_to_freeze());
1701 /*
1702 * Now we don't run again until continued.
1703 */
1704 current->exit_code = 0;
1705 }
1706
1707 /*
1708 * This performs the stopping for SIGSTOP and other stop signals.
1709 * We have to stop all threads in the thread group.
1710 * Returns nonzero if we've actually stopped and released the siglock.
1711 * Returns zero if we didn't stop and still hold the siglock.
1712 */
1713 static int do_signal_stop(int signr)
1714 {
1715 struct signal_struct *sig = current->signal;
1716 int stop_count;
1717
1718 if (sig->group_stop_count > 0) {
1719 /*
1720 * There is a group stop in progress. We don't need to
1721 * start another one.
1722 */
1723 stop_count = --sig->group_stop_count;
1724 } else {
1725 struct task_struct *t;
1726
1727 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1728 unlikely(sig->group_exit_task))
1729 return 0;
1730 /*
1731 * There is no group stop already in progress.
1732 * We must initiate one now.
1733 */
1734 sig->group_exit_code = signr;
1735
1736 stop_count = 0;
1737 for (t = next_thread(current); t != current; t = next_thread(t))
1738 /*
1739 * Setting state to TASK_STOPPED for a group
1740 * stop is always done with the siglock held,
1741 * so this check has no races.
1742 */
1743 if (!(t->flags & PF_EXITING) &&
1744 !task_is_stopped_or_traced(t)) {
1745 stop_count++;
1746 signal_wake_up(t, 0);
1747 }
1748 sig->group_stop_count = stop_count;
1749 }
1750
1751 if (stop_count == 0)
1752 sig->flags = SIGNAL_STOP_STOPPED;
1753 current->exit_code = sig->group_exit_code;
1754 __set_current_state(TASK_STOPPED);
1755
1756 spin_unlock_irq(&current->sighand->siglock);
1757 finish_stop(stop_count);
1758 return 1;
1759 }
1760
1761 static int ptrace_signal(int signr, siginfo_t *info,
1762 struct pt_regs *regs, void *cookie)
1763 {
1764 if (!(current->ptrace & PT_PTRACED))
1765 return signr;
1766
1767 ptrace_signal_deliver(regs, cookie);
1768
1769 /* Let the debugger run. */
1770 ptrace_stop(signr, 0, info);
1771
1772 /* We're back. Did the debugger cancel the sig? */
1773 signr = current->exit_code;
1774 if (signr == 0)
1775 return signr;
1776
1777 current->exit_code = 0;
1778
1779 /* Update the siginfo structure if the signal has
1780 changed. If the debugger wanted something
1781 specific in the siginfo structure then it should
1782 have updated *info via PTRACE_SETSIGINFO. */
1783 if (signr != info->si_signo) {
1784 info->si_signo = signr;
1785 info->si_errno = 0;
1786 info->si_code = SI_USER;
1787 info->si_pid = task_pid_vnr(current->parent);
1788 info->si_uid = current->parent->uid;
1789 }
1790
1791 /* If the (new) signal is now blocked, requeue it. */
1792 if (sigismember(&current->blocked, signr)) {
1793 specific_send_sig_info(signr, info, current);
1794 signr = 0;
1795 }
1796
1797 return signr;
1798 }
1799
1800 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1801 struct pt_regs *regs, void *cookie)
1802 {
1803 sigset_t *mask = &current->blocked;
1804 int signr = 0;
1805
1806 relock:
1807 /*
1808 * We'll jump back here after any time we were stopped in TASK_STOPPED.
1809 * While in TASK_STOPPED, we were considered "frozen enough".
1810 * Now that we woke up, it's crucial if we're supposed to be
1811 * frozen that we freeze now before running anything substantial.
1812 */
1813 try_to_freeze();
1814
1815 spin_lock_irq(&current->sighand->siglock);
1816 for (;;) {
1817 struct k_sigaction *ka;
1818
1819 if (unlikely(current->signal->group_stop_count > 0) &&
1820 do_signal_stop(0))
1821 goto relock;
1822
1823 signr = dequeue_signal(current, mask, info);
1824
1825 if (!signr)
1826 break; /* will return 0 */
1827
1828 if (signr != SIGKILL) {
1829 signr = ptrace_signal(signr, info, regs, cookie);
1830 if (!signr)
1831 continue;
1832 }
1833
1834 ka = &current->sighand->action[signr-1];
1835 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1836 continue;
1837 if (ka->sa.sa_handler != SIG_DFL) {
1838 /* Run the handler. */
1839 *return_ka = *ka;
1840
1841 if (ka->sa.sa_flags & SA_ONESHOT)
1842 ka->sa.sa_handler = SIG_DFL;
1843
1844 break; /* will return non-zero "signr" value */
1845 }
1846
1847 /*
1848 * Now we are doing the default action for this signal.
1849 */
1850 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1851 continue;
1852
1853 /*
1854 * Global init gets no signals it doesn't want.
1855 */
1856 if (is_global_init(current))
1857 continue;
1858
1859 if (sig_kernel_stop(signr)) {
1860 /*
1861 * The default action is to stop all threads in
1862 * the thread group. The job control signals
1863 * do nothing in an orphaned pgrp, but SIGSTOP
1864 * always works. Note that siglock needs to be
1865 * dropped during the call to is_orphaned_pgrp()
1866 * because of lock ordering with tasklist_lock.
1867 * This allows an intervening SIGCONT to be posted.
1868 * We need to check for that and bail out if necessary.
1869 */
1870 if (signr != SIGSTOP) {
1871 spin_unlock_irq(&current->sighand->siglock);
1872
1873 /* signals can be posted during this window */
1874
1875 if (is_current_pgrp_orphaned())
1876 goto relock;
1877
1878 spin_lock_irq(&current->sighand->siglock);
1879 }
1880
1881 if (likely(do_signal_stop(signr))) {
1882 /* It released the siglock. */
1883 goto relock;
1884 }
1885
1886 /*
1887 * We didn't actually stop, due to a race
1888 * with SIGCONT or something like that.
1889 */
1890 continue;
1891 }
1892
1893 spin_unlock_irq(&current->sighand->siglock);
1894
1895 /*
1896 * Anything else is fatal, maybe with a core dump.
1897 */
1898 current->flags |= PF_SIGNALED;
1899 if ((signr != SIGKILL) && print_fatal_signals)
1900 print_fatal_signal(regs, signr);
1901 if (sig_kernel_coredump(signr)) {
1902 /*
1903 * If it was able to dump core, this kills all
1904 * other threads in the group and synchronizes with
1905 * their demise. If we lost the race with another
1906 * thread getting here, it set group_exit_code
1907 * first and our do_group_exit call below will use
1908 * that value and ignore the one we pass it.
1909 */
1910 do_coredump((long)signr, signr, regs);
1911 }
1912
1913 /*
1914 * Death signals, no core dump.
1915 */
1916 do_group_exit(signr);
1917 /* NOTREACHED */
1918 }
1919 spin_unlock_irq(&current->sighand->siglock);
1920 return signr;
1921 }
1922
1923 void exit_signals(struct task_struct *tsk)
1924 {
1925 int group_stop = 0;
1926 struct task_struct *t;
1927
1928 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
1929 tsk->flags |= PF_EXITING;
1930 return;
1931 }
1932
1933 spin_lock_irq(&tsk->sighand->siglock);
1934 /*
1935 * From now this task is not visible for group-wide signals,
1936 * see wants_signal(), do_signal_stop().
1937 */
1938 tsk->flags |= PF_EXITING;
1939 if (!signal_pending(tsk))
1940 goto out;
1941
1942 /* It could be that __group_complete_signal() choose us to
1943 * notify about group-wide signal. Another thread should be
1944 * woken now to take the signal since we will not.
1945 */
1946 for (t = tsk; (t = next_thread(t)) != tsk; )
1947 if (!signal_pending(t) && !(t->flags & PF_EXITING))
1948 recalc_sigpending_and_wake(t);
1949
1950 if (unlikely(tsk->signal->group_stop_count) &&
1951 !--tsk->signal->group_stop_count) {
1952 tsk->signal->flags = SIGNAL_STOP_STOPPED;
1953 group_stop = 1;
1954 }
1955 out:
1956 spin_unlock_irq(&tsk->sighand->siglock);
1957
1958 if (unlikely(group_stop)) {
1959 read_lock(&tasklist_lock);
1960 do_notify_parent_cldstop(tsk, CLD_STOPPED);
1961 read_unlock(&tasklist_lock);
1962 }
1963 }
1964
1965 EXPORT_SYMBOL(recalc_sigpending);
1966 EXPORT_SYMBOL_GPL(dequeue_signal);
1967 EXPORT_SYMBOL(flush_signals);
1968 EXPORT_SYMBOL(force_sig);
1969 EXPORT_SYMBOL(kill_proc);
1970 EXPORT_SYMBOL(ptrace_notify);
1971 EXPORT_SYMBOL(send_sig);
1972 EXPORT_SYMBOL(send_sig_info);
1973 EXPORT_SYMBOL(sigprocmask);
1974 EXPORT_SYMBOL(block_all_signals);
1975 EXPORT_SYMBOL(unblock_all_signals);
1976
1977
1978 /*
1979 * System call entry points.
1980 */
1981
1982 asmlinkage long sys_restart_syscall(void)
1983 {
1984 struct restart_block *restart = &current_thread_info()->restart_block;
1985 return restart->fn(restart);
1986 }
1987
1988 long do_no_restart_syscall(struct restart_block *param)
1989 {
1990 return -EINTR;
1991 }
1992
1993 /*
1994 * We don't need to get the kernel lock - this is all local to this
1995 * particular thread.. (and that's good, because this is _heavily_
1996 * used by various programs)
1997 */
1998
1999 /*
2000 * This is also useful for kernel threads that want to temporarily
2001 * (or permanently) block certain signals.
2002 *
2003 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2004 * interface happily blocks "unblockable" signals like SIGKILL
2005 * and friends.
2006 */
2007 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2008 {
2009 int error;
2010
2011 spin_lock_irq(&current->sighand->siglock);
2012 if (oldset)
2013 *oldset = current->blocked;
2014
2015 error = 0;
2016 switch (how) {
2017 case SIG_BLOCK:
2018 sigorsets(&current->blocked, &current->blocked, set);
2019 break;
2020 case SIG_UNBLOCK:
2021 signandsets(&current->blocked, &current->blocked, set);
2022 break;
2023 case SIG_SETMASK:
2024 current->blocked = *set;
2025 break;
2026 default:
2027 error = -EINVAL;
2028 }
2029 recalc_sigpending();
2030 spin_unlock_irq(&current->sighand->siglock);
2031
2032 return error;
2033 }
2034
2035 asmlinkage long
2036 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2037 {
2038 int error = -EINVAL;
2039 sigset_t old_set, new_set;
2040
2041 /* XXX: Don't preclude handling different sized sigset_t's. */
2042 if (sigsetsize != sizeof(sigset_t))
2043 goto out;
2044
2045 if (set) {
2046 error = -EFAULT;
2047 if (copy_from_user(&new_set, set, sizeof(*set)))
2048 goto out;
2049 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2050
2051 error = sigprocmask(how, &new_set, &old_set);
2052 if (error)
2053 goto out;
2054 if (oset)
2055 goto set_old;
2056 } else if (oset) {
2057 spin_lock_irq(&current->sighand->siglock);
2058 old_set = current->blocked;
2059 spin_unlock_irq(&current->sighand->siglock);
2060
2061 set_old:
2062 error = -EFAULT;
2063 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2064 goto out;
2065 }
2066 error = 0;
2067 out:
2068 return error;
2069 }
2070
2071 long do_sigpending(void __user *set, unsigned long sigsetsize)
2072 {
2073 long error = -EINVAL;
2074 sigset_t pending;
2075
2076 if (sigsetsize > sizeof(sigset_t))
2077 goto out;
2078
2079 spin_lock_irq(&current->sighand->siglock);
2080 sigorsets(&pending, &current->pending.signal,
2081 &current->signal->shared_pending.signal);
2082 spin_unlock_irq(&current->sighand->siglock);
2083
2084 /* Outside the lock because only this thread touches it. */
2085 sigandsets(&pending, &current->blocked, &pending);
2086
2087 error = -EFAULT;
2088 if (!copy_to_user(set, &pending, sigsetsize))
2089 error = 0;
2090
2091 out:
2092 return error;
2093 }
2094
2095 asmlinkage long
2096 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2097 {
2098 return do_sigpending(set, sigsetsize);
2099 }
2100
2101 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2102
2103 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2104 {
2105 int err;
2106
2107 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2108 return -EFAULT;
2109 if (from->si_code < 0)
2110 return __copy_to_user(to, from, sizeof(siginfo_t))
2111 ? -EFAULT : 0;
2112 /*
2113 * If you change siginfo_t structure, please be sure
2114 * this code is fixed accordingly.
2115 * Please remember to update the signalfd_copyinfo() function
2116 * inside fs/signalfd.c too, in case siginfo_t changes.
2117 * It should never copy any pad contained in the structure
2118 * to avoid security leaks, but must copy the generic
2119 * 3 ints plus the relevant union member.
2120 */
2121 err = __put_user(from->si_signo, &to->si_signo);
2122 err |= __put_user(from->si_errno, &to->si_errno);
2123 err |= __put_user((short)from->si_code, &to->si_code);
2124 switch (from->si_code & __SI_MASK) {
2125 case __SI_KILL:
2126 err |= __put_user(from->si_pid, &to->si_pid);
2127 err |= __put_user(from->si_uid, &to->si_uid);
2128 break;
2129 case __SI_TIMER:
2130 err |= __put_user(from->si_tid, &to->si_tid);
2131 err |= __put_user(from->si_overrun, &to->si_overrun);
2132 err |= __put_user(from->si_ptr, &to->si_ptr);
2133 break;
2134 case __SI_POLL:
2135 err |= __put_user(from->si_band, &to->si_band);
2136 err |= __put_user(from->si_fd, &to->si_fd);
2137 break;
2138 case __SI_FAULT:
2139 err |= __put_user(from->si_addr, &to->si_addr);
2140 #ifdef __ARCH_SI_TRAPNO
2141 err |= __put_user(from->si_trapno, &to->si_trapno);
2142 #endif
2143 break;
2144 case __SI_CHLD:
2145 err |= __put_user(from->si_pid, &to->si_pid);
2146 err |= __put_user(from->si_uid, &to->si_uid);
2147 err |= __put_user(from->si_status, &to->si_status);
2148 err |= __put_user(from->si_utime, &to->si_utime);
2149 err |= __put_user(from->si_stime, &to->si_stime);
2150 break;
2151 case __SI_RT: /* This is not generated by the kernel as of now. */
2152 case __SI_MESGQ: /* But this is */
2153 err |= __put_user(from->si_pid, &to->si_pid);
2154 err |= __put_user(from->si_uid, &to->si_uid);
2155 err |= __put_user(from->si_ptr, &to->si_ptr);
2156 break;
2157 default: /* this is just in case for now ... */
2158 err |= __put_user(from->si_pid, &to->si_pid);
2159 err |= __put_user(from->si_uid, &to->si_uid);
2160 break;
2161 }
2162 return err;
2163 }
2164
2165 #endif
2166
2167 asmlinkage long
2168 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2169 siginfo_t __user *uinfo,
2170 const struct timespec __user *uts,
2171 size_t sigsetsize)
2172 {
2173 int ret, sig;
2174 sigset_t these;
2175 struct timespec ts;
2176 siginfo_t info;
2177 long timeout = 0;
2178
2179 /* XXX: Don't preclude handling different sized sigset_t's. */
2180 if (sigsetsize != sizeof(sigset_t))
2181 return -EINVAL;
2182
2183 if (copy_from_user(&these, uthese, sizeof(these)))
2184 return -EFAULT;
2185
2186 /*
2187 * Invert the set of allowed signals to get those we
2188 * want to block.
2189 */
2190 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2191 signotset(&these);
2192
2193 if (uts) {
2194 if (copy_from_user(&ts, uts, sizeof(ts)))
2195 return -EFAULT;
2196 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2197 || ts.tv_sec < 0)
2198 return -EINVAL;
2199 }
2200
2201 spin_lock_irq(&current->sighand->siglock);
2202 sig = dequeue_signal(current, &these, &info);
2203 if (!sig) {
2204 timeout = MAX_SCHEDULE_TIMEOUT;
2205 if (uts)
2206 timeout = (timespec_to_jiffies(&ts)
2207 + (ts.tv_sec || ts.tv_nsec));
2208
2209 if (timeout) {
2210 /* None ready -- temporarily unblock those we're
2211 * interested while we are sleeping in so that we'll
2212 * be awakened when they arrive. */
2213 current->real_blocked = current->blocked;
2214 sigandsets(&current->blocked, &current->blocked, &these);
2215 recalc_sigpending();
2216 spin_unlock_irq(&current->sighand->siglock);
2217
2218 timeout = schedule_timeout_interruptible(timeout);
2219
2220 spin_lock_irq(&current->sighand->siglock);
2221 sig = dequeue_signal(current, &these, &info);
2222 current->blocked = current->real_blocked;
2223 siginitset(&current->real_blocked, 0);
2224 recalc_sigpending();
2225 }
2226 }
2227 spin_unlock_irq(&current->sighand->siglock);
2228
2229 if (sig) {
2230 ret = sig;
2231 if (uinfo) {
2232 if (copy_siginfo_to_user(uinfo, &info))
2233 ret = -EFAULT;
2234 }
2235 } else {
2236 ret = -EAGAIN;
2237 if (timeout)
2238 ret = -EINTR;
2239 }
2240
2241 return ret;
2242 }
2243
2244 asmlinkage long
2245 sys_kill(int pid, int sig)
2246 {
2247 struct siginfo info;
2248
2249 info.si_signo = sig;
2250 info.si_errno = 0;
2251 info.si_code = SI_USER;
2252 info.si_pid = task_tgid_vnr(current);
2253 info.si_uid = current->uid;
2254
2255 return kill_something_info(sig, &info, pid);
2256 }
2257
2258 static int do_tkill(int tgid, int pid, int sig)
2259 {
2260 int error;
2261 struct siginfo info;
2262 struct task_struct *p;
2263
2264 error = -ESRCH;
2265 info.si_signo = sig;
2266 info.si_errno = 0;
2267 info.si_code = SI_TKILL;
2268 info.si_pid = task_tgid_vnr(current);
2269 info.si_uid = current->uid;
2270
2271 read_lock(&tasklist_lock);
2272 p = find_task_by_vpid(pid);
2273 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2274 error = check_kill_permission(sig, &info, p);
2275 /*
2276 * The null signal is a permissions and process existence
2277 * probe. No signal is actually delivered.
2278 */
2279 if (!error && sig && p->sighand) {
2280 spin_lock_irq(&p->sighand->siglock);
2281 handle_stop_signal(sig, p);
2282 error = specific_send_sig_info(sig, &info, p);
2283 spin_unlock_irq(&p->sighand->siglock);
2284 }
2285 }
2286 read_unlock(&tasklist_lock);
2287
2288 return error;
2289 }
2290
2291 /**
2292 * sys_tgkill - send signal to one specific thread
2293 * @tgid: the thread group ID of the thread
2294 * @pid: the PID of the thread
2295 * @sig: signal to be sent
2296 *
2297 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2298 * exists but it's not belonging to the target process anymore. This
2299 * method solves the problem of threads exiting and PIDs getting reused.
2300 */
2301 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2302 {
2303 /* This is only valid for single tasks */
2304 if (pid <= 0 || tgid <= 0)
2305 return -EINVAL;
2306
2307 return do_tkill(tgid, pid, sig);
2308 }
2309
2310 /*
2311 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2312 */
2313 asmlinkage long
2314 sys_tkill(int pid, int sig)
2315 {
2316 /* This is only valid for single tasks */
2317 if (pid <= 0)
2318 return -EINVAL;
2319
2320 return do_tkill(0, pid, sig);
2321 }
2322
2323 asmlinkage long
2324 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2325 {
2326 siginfo_t info;
2327
2328 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2329 return -EFAULT;
2330
2331 /* Not even root can pretend to send signals from the kernel.
2332 Nor can they impersonate a kill(), which adds source info. */
2333 if (info.si_code >= 0)
2334 return -EPERM;
2335 info.si_signo = sig;
2336
2337 /* POSIX.1b doesn't mention process groups. */
2338 return kill_proc_info(sig, &info, pid);
2339 }
2340
2341 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2342 {
2343 struct k_sigaction *k;
2344 sigset_t mask;
2345
2346 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2347 return -EINVAL;
2348
2349 k = &current->sighand->action[sig-1];
2350
2351 spin_lock_irq(&current->sighand->siglock);
2352 if (oact)
2353 *oact = *k;
2354
2355 if (act) {
2356 sigdelsetmask(&act->sa.sa_mask,
2357 sigmask(SIGKILL) | sigmask(SIGSTOP));
2358 *k = *act;
2359 /*
2360 * POSIX 3.3.1.3:
2361 * "Setting a signal action to SIG_IGN for a signal that is
2362 * pending shall cause the pending signal to be discarded,
2363 * whether or not it is blocked."
2364 *
2365 * "Setting a signal action to SIG_DFL for a signal that is
2366 * pending and whose default action is to ignore the signal
2367 * (for example, SIGCHLD), shall cause the pending signal to
2368 * be discarded, whether or not it is blocked"
2369 */
2370 if (act->sa.sa_handler == SIG_IGN ||
2371 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2372 struct task_struct *t = current;
2373 sigemptyset(&mask);
2374 sigaddset(&mask, sig);
2375 rm_from_queue_full(&mask, &t->signal->shared_pending);
2376 do {
2377 rm_from_queue_full(&mask, &t->pending);
2378 t = next_thread(t);
2379 } while (t != current);
2380 }
2381 }
2382
2383 spin_unlock_irq(&current->sighand->siglock);
2384 return 0;
2385 }
2386
2387 int
2388 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2389 {
2390 stack_t oss;
2391 int error;
2392
2393 if (uoss) {
2394 oss.ss_sp = (void __user *) current->sas_ss_sp;
2395 oss.ss_size = current->sas_ss_size;
2396 oss.ss_flags = sas_ss_flags(sp);
2397 }
2398
2399 if (uss) {
2400 void __user *ss_sp;
2401 size_t ss_size;
2402 int ss_flags;
2403
2404 error = -EFAULT;
2405 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2406 || __get_user(ss_sp, &uss->ss_sp)
2407 || __get_user(ss_flags, &uss->ss_flags)
2408 || __get_user(ss_size, &uss->ss_size))
2409 goto out;
2410
2411 error = -EPERM;
2412 if (on_sig_stack(sp))
2413 goto out;
2414
2415 error = -EINVAL;
2416 /*
2417 *
2418 * Note - this code used to test ss_flags incorrectly
2419 * old code may have been written using ss_flags==0
2420 * to mean ss_flags==SS_ONSTACK (as this was the only
2421 * way that worked) - this fix preserves that older
2422 * mechanism
2423 */
2424 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2425 goto out;
2426
2427 if (ss_flags == SS_DISABLE) {
2428 ss_size = 0;
2429 ss_sp = NULL;
2430 } else {
2431 error = -ENOMEM;
2432 if (ss_size < MINSIGSTKSZ)
2433 goto out;
2434 }
2435
2436 current->sas_ss_sp = (unsigned long) ss_sp;
2437 current->sas_ss_size = ss_size;
2438 }
2439
2440 if (uoss) {
2441 error = -EFAULT;
2442 if (copy_to_user(uoss, &oss, sizeof(oss)))
2443 goto out;
2444 }
2445
2446 error = 0;
2447 out:
2448 return error;
2449 }
2450
2451 #ifdef __ARCH_WANT_SYS_SIGPENDING
2452
2453 asmlinkage long
2454 sys_sigpending(old_sigset_t __user *set)
2455 {
2456 return do_sigpending(set, sizeof(*set));
2457 }
2458
2459 #endif
2460
2461 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2462 /* Some platforms have their own version with special arguments others
2463 support only sys_rt_sigprocmask. */
2464
2465 asmlinkage long
2466 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2467 {
2468 int error;
2469 old_sigset_t old_set, new_set;
2470
2471 if (set) {
2472 error = -EFAULT;
2473 if (copy_from_user(&new_set, set, sizeof(*set)))
2474 goto out;
2475 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2476
2477 spin_lock_irq(&current->sighand->siglock);
2478 old_set = current->blocked.sig[0];
2479
2480 error = 0;
2481 switch (how) {
2482 default:
2483 error = -EINVAL;
2484 break;
2485 case SIG_BLOCK:
2486 sigaddsetmask(&current->blocked, new_set);
2487 break;
2488 case SIG_UNBLOCK:
2489 sigdelsetmask(&current->blocked, new_set);
2490 break;
2491 case SIG_SETMASK:
2492 current->blocked.sig[0] = new_set;
2493 break;
2494 }
2495
2496 recalc_sigpending();
2497 spin_unlock_irq(&current->sighand->siglock);
2498 if (error)
2499 goto out;
2500 if (oset)
2501 goto set_old;
2502 } else if (oset) {
2503 old_set = current->blocked.sig[0];
2504 set_old:
2505 error = -EFAULT;
2506 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2507 goto out;
2508 }
2509 error = 0;
2510 out:
2511 return error;
2512 }
2513 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2514
2515 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2516 asmlinkage long
2517 sys_rt_sigaction(int sig,
2518 const struct sigaction __user *act,
2519 struct sigaction __user *oact,
2520 size_t sigsetsize)
2521 {
2522 struct k_sigaction new_sa, old_sa;
2523 int ret = -EINVAL;
2524
2525 /* XXX: Don't preclude handling different sized sigset_t's. */
2526 if (sigsetsize != sizeof(sigset_t))
2527 goto out;
2528
2529 if (act) {
2530 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2531 return -EFAULT;
2532 }
2533
2534 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2535
2536 if (!ret && oact) {
2537 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2538 return -EFAULT;
2539 }
2540 out:
2541 return ret;
2542 }
2543 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2544
2545 #ifdef __ARCH_WANT_SYS_SGETMASK
2546
2547 /*
2548 * For backwards compatibility. Functionality superseded by sigprocmask.
2549 */
2550 asmlinkage long
2551 sys_sgetmask(void)
2552 {
2553 /* SMP safe */
2554 return current->blocked.sig[0];
2555 }
2556
2557 asmlinkage long
2558 sys_ssetmask(int newmask)
2559 {
2560 int old;
2561
2562 spin_lock_irq(&current->sighand->siglock);
2563 old = current->blocked.sig[0];
2564
2565 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2566 sigmask(SIGSTOP)));
2567 recalc_sigpending();
2568 spin_unlock_irq(&current->sighand->siglock);
2569
2570 return old;
2571 }
2572 #endif /* __ARCH_WANT_SGETMASK */
2573
2574 #ifdef __ARCH_WANT_SYS_SIGNAL
2575 /*
2576 * For backwards compatibility. Functionality superseded by sigaction.
2577 */
2578 asmlinkage unsigned long
2579 sys_signal(int sig, __sighandler_t handler)
2580 {
2581 struct k_sigaction new_sa, old_sa;
2582 int ret;
2583
2584 new_sa.sa.sa_handler = handler;
2585 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2586 sigemptyset(&new_sa.sa.sa_mask);
2587
2588 ret = do_sigaction(sig, &new_sa, &old_sa);
2589
2590 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2591 }
2592 #endif /* __ARCH_WANT_SYS_SIGNAL */
2593
2594 #ifdef __ARCH_WANT_SYS_PAUSE
2595
2596 asmlinkage long
2597 sys_pause(void)
2598 {
2599 current->state = TASK_INTERRUPTIBLE;
2600 schedule();
2601 return -ERESTARTNOHAND;
2602 }
2603
2604 #endif
2605
2606 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2607 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2608 {
2609 sigset_t newset;
2610
2611 /* XXX: Don't preclude handling different sized sigset_t's. */
2612 if (sigsetsize != sizeof(sigset_t))
2613 return -EINVAL;
2614
2615 if (copy_from_user(&newset, unewset, sizeof(newset)))
2616 return -EFAULT;
2617 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2618
2619 spin_lock_irq(&current->sighand->siglock);
2620 current->saved_sigmask = current->blocked;
2621 current->blocked = newset;
2622 recalc_sigpending();
2623 spin_unlock_irq(&current->sighand->siglock);
2624
2625 current->state = TASK_INTERRUPTIBLE;
2626 schedule();
2627 set_thread_flag(TIF_RESTORE_SIGMASK);
2628 return -ERESTARTNOHAND;
2629 }
2630 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2631
2632 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2633 {
2634 return NULL;
2635 }
2636
2637 void __init signals_init(void)
2638 {
2639 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2640 }