]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/signal.c
Merge tag 'cris-for-linus-3.7' of git://jni.nu/cris
[mirror_ubuntu-bionic-kernel.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/ratelimit.h>
26 #include <linux/tracehook.h>
27 #include <linux/capability.h>
28 #include <linux/freezer.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/nsproxy.h>
31 #include <linux/user_namespace.h>
32 #include <linux/uprobes.h>
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/signal.h>
35
36 #include <asm/param.h>
37 #include <asm/uaccess.h>
38 #include <asm/unistd.h>
39 #include <asm/siginfo.h>
40 #include <asm/cacheflush.h>
41 #include "audit.h" /* audit_signal_info() */
42
43 /*
44 * SLAB caches for signal bits.
45 */
46
47 static struct kmem_cache *sigqueue_cachep;
48
49 int print_fatal_signals __read_mostly;
50
51 static void __user *sig_handler(struct task_struct *t, int sig)
52 {
53 return t->sighand->action[sig - 1].sa.sa_handler;
54 }
55
56 static int sig_handler_ignored(void __user *handler, int sig)
57 {
58 /* Is it explicitly or implicitly ignored? */
59 return handler == SIG_IGN ||
60 (handler == SIG_DFL && sig_kernel_ignore(sig));
61 }
62
63 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
64 {
65 void __user *handler;
66
67 handler = sig_handler(t, sig);
68
69 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
70 handler == SIG_DFL && !force)
71 return 1;
72
73 return sig_handler_ignored(handler, sig);
74 }
75
76 static int sig_ignored(struct task_struct *t, int sig, bool force)
77 {
78 /*
79 * Blocked signals are never ignored, since the
80 * signal handler may change by the time it is
81 * unblocked.
82 */
83 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
84 return 0;
85
86 if (!sig_task_ignored(t, sig, force))
87 return 0;
88
89 /*
90 * Tracers may want to know about even ignored signals.
91 */
92 return !t->ptrace;
93 }
94
95 /*
96 * Re-calculate pending state from the set of locally pending
97 * signals, globally pending signals, and blocked signals.
98 */
99 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
100 {
101 unsigned long ready;
102 long i;
103
104 switch (_NSIG_WORDS) {
105 default:
106 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
107 ready |= signal->sig[i] &~ blocked->sig[i];
108 break;
109
110 case 4: ready = signal->sig[3] &~ blocked->sig[3];
111 ready |= signal->sig[2] &~ blocked->sig[2];
112 ready |= signal->sig[1] &~ blocked->sig[1];
113 ready |= signal->sig[0] &~ blocked->sig[0];
114 break;
115
116 case 2: ready = signal->sig[1] &~ blocked->sig[1];
117 ready |= signal->sig[0] &~ blocked->sig[0];
118 break;
119
120 case 1: ready = signal->sig[0] &~ blocked->sig[0];
121 }
122 return ready != 0;
123 }
124
125 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
126
127 static int recalc_sigpending_tsk(struct task_struct *t)
128 {
129 if ((t->jobctl & JOBCTL_PENDING_MASK) ||
130 PENDING(&t->pending, &t->blocked) ||
131 PENDING(&t->signal->shared_pending, &t->blocked)) {
132 set_tsk_thread_flag(t, TIF_SIGPENDING);
133 return 1;
134 }
135 /*
136 * We must never clear the flag in another thread, or in current
137 * when it's possible the current syscall is returning -ERESTART*.
138 * So we don't clear it here, and only callers who know they should do.
139 */
140 return 0;
141 }
142
143 /*
144 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
145 * This is superfluous when called on current, the wakeup is a harmless no-op.
146 */
147 void recalc_sigpending_and_wake(struct task_struct *t)
148 {
149 if (recalc_sigpending_tsk(t))
150 signal_wake_up(t, 0);
151 }
152
153 void recalc_sigpending(void)
154 {
155 if (!recalc_sigpending_tsk(current) && !freezing(current))
156 clear_thread_flag(TIF_SIGPENDING);
157
158 }
159
160 /* Given the mask, find the first available signal that should be serviced. */
161
162 #define SYNCHRONOUS_MASK \
163 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
164 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
165
166 int next_signal(struct sigpending *pending, sigset_t *mask)
167 {
168 unsigned long i, *s, *m, x;
169 int sig = 0;
170
171 s = pending->signal.sig;
172 m = mask->sig;
173
174 /*
175 * Handle the first word specially: it contains the
176 * synchronous signals that need to be dequeued first.
177 */
178 x = *s &~ *m;
179 if (x) {
180 if (x & SYNCHRONOUS_MASK)
181 x &= SYNCHRONOUS_MASK;
182 sig = ffz(~x) + 1;
183 return sig;
184 }
185
186 switch (_NSIG_WORDS) {
187 default:
188 for (i = 1; i < _NSIG_WORDS; ++i) {
189 x = *++s &~ *++m;
190 if (!x)
191 continue;
192 sig = ffz(~x) + i*_NSIG_BPW + 1;
193 break;
194 }
195 break;
196
197 case 2:
198 x = s[1] &~ m[1];
199 if (!x)
200 break;
201 sig = ffz(~x) + _NSIG_BPW + 1;
202 break;
203
204 case 1:
205 /* Nothing to do */
206 break;
207 }
208
209 return sig;
210 }
211
212 static inline void print_dropped_signal(int sig)
213 {
214 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
215
216 if (!print_fatal_signals)
217 return;
218
219 if (!__ratelimit(&ratelimit_state))
220 return;
221
222 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
223 current->comm, current->pid, sig);
224 }
225
226 /**
227 * task_set_jobctl_pending - set jobctl pending bits
228 * @task: target task
229 * @mask: pending bits to set
230 *
231 * Clear @mask from @task->jobctl. @mask must be subset of
232 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
233 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
234 * cleared. If @task is already being killed or exiting, this function
235 * becomes noop.
236 *
237 * CONTEXT:
238 * Must be called with @task->sighand->siglock held.
239 *
240 * RETURNS:
241 * %true if @mask is set, %false if made noop because @task was dying.
242 */
243 bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
244 {
245 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
246 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
247 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
248
249 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
250 return false;
251
252 if (mask & JOBCTL_STOP_SIGMASK)
253 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
254
255 task->jobctl |= mask;
256 return true;
257 }
258
259 /**
260 * task_clear_jobctl_trapping - clear jobctl trapping bit
261 * @task: target task
262 *
263 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
264 * Clear it and wake up the ptracer. Note that we don't need any further
265 * locking. @task->siglock guarantees that @task->parent points to the
266 * ptracer.
267 *
268 * CONTEXT:
269 * Must be called with @task->sighand->siglock held.
270 */
271 void task_clear_jobctl_trapping(struct task_struct *task)
272 {
273 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
274 task->jobctl &= ~JOBCTL_TRAPPING;
275 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
276 }
277 }
278
279 /**
280 * task_clear_jobctl_pending - clear jobctl pending bits
281 * @task: target task
282 * @mask: pending bits to clear
283 *
284 * Clear @mask from @task->jobctl. @mask must be subset of
285 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
286 * STOP bits are cleared together.
287 *
288 * If clearing of @mask leaves no stop or trap pending, this function calls
289 * task_clear_jobctl_trapping().
290 *
291 * CONTEXT:
292 * Must be called with @task->sighand->siglock held.
293 */
294 void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
295 {
296 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
297
298 if (mask & JOBCTL_STOP_PENDING)
299 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
300
301 task->jobctl &= ~mask;
302
303 if (!(task->jobctl & JOBCTL_PENDING_MASK))
304 task_clear_jobctl_trapping(task);
305 }
306
307 /**
308 * task_participate_group_stop - participate in a group stop
309 * @task: task participating in a group stop
310 *
311 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
312 * Group stop states are cleared and the group stop count is consumed if
313 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
314 * stop, the appropriate %SIGNAL_* flags are set.
315 *
316 * CONTEXT:
317 * Must be called with @task->sighand->siglock held.
318 *
319 * RETURNS:
320 * %true if group stop completion should be notified to the parent, %false
321 * otherwise.
322 */
323 static bool task_participate_group_stop(struct task_struct *task)
324 {
325 struct signal_struct *sig = task->signal;
326 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
327
328 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
329
330 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
331
332 if (!consume)
333 return false;
334
335 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
336 sig->group_stop_count--;
337
338 /*
339 * Tell the caller to notify completion iff we are entering into a
340 * fresh group stop. Read comment in do_signal_stop() for details.
341 */
342 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
343 sig->flags = SIGNAL_STOP_STOPPED;
344 return true;
345 }
346 return false;
347 }
348
349 /*
350 * allocate a new signal queue record
351 * - this may be called without locks if and only if t == current, otherwise an
352 * appropriate lock must be held to stop the target task from exiting
353 */
354 static struct sigqueue *
355 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
356 {
357 struct sigqueue *q = NULL;
358 struct user_struct *user;
359
360 /*
361 * Protect access to @t credentials. This can go away when all
362 * callers hold rcu read lock.
363 */
364 rcu_read_lock();
365 user = get_uid(__task_cred(t)->user);
366 atomic_inc(&user->sigpending);
367 rcu_read_unlock();
368
369 if (override_rlimit ||
370 atomic_read(&user->sigpending) <=
371 task_rlimit(t, RLIMIT_SIGPENDING)) {
372 q = kmem_cache_alloc(sigqueue_cachep, flags);
373 } else {
374 print_dropped_signal(sig);
375 }
376
377 if (unlikely(q == NULL)) {
378 atomic_dec(&user->sigpending);
379 free_uid(user);
380 } else {
381 INIT_LIST_HEAD(&q->list);
382 q->flags = 0;
383 q->user = user;
384 }
385
386 return q;
387 }
388
389 static void __sigqueue_free(struct sigqueue *q)
390 {
391 if (q->flags & SIGQUEUE_PREALLOC)
392 return;
393 atomic_dec(&q->user->sigpending);
394 free_uid(q->user);
395 kmem_cache_free(sigqueue_cachep, q);
396 }
397
398 void flush_sigqueue(struct sigpending *queue)
399 {
400 struct sigqueue *q;
401
402 sigemptyset(&queue->signal);
403 while (!list_empty(&queue->list)) {
404 q = list_entry(queue->list.next, struct sigqueue , list);
405 list_del_init(&q->list);
406 __sigqueue_free(q);
407 }
408 }
409
410 /*
411 * Flush all pending signals for a task.
412 */
413 void __flush_signals(struct task_struct *t)
414 {
415 clear_tsk_thread_flag(t, TIF_SIGPENDING);
416 flush_sigqueue(&t->pending);
417 flush_sigqueue(&t->signal->shared_pending);
418 }
419
420 void flush_signals(struct task_struct *t)
421 {
422 unsigned long flags;
423
424 spin_lock_irqsave(&t->sighand->siglock, flags);
425 __flush_signals(t);
426 spin_unlock_irqrestore(&t->sighand->siglock, flags);
427 }
428
429 static void __flush_itimer_signals(struct sigpending *pending)
430 {
431 sigset_t signal, retain;
432 struct sigqueue *q, *n;
433
434 signal = pending->signal;
435 sigemptyset(&retain);
436
437 list_for_each_entry_safe(q, n, &pending->list, list) {
438 int sig = q->info.si_signo;
439
440 if (likely(q->info.si_code != SI_TIMER)) {
441 sigaddset(&retain, sig);
442 } else {
443 sigdelset(&signal, sig);
444 list_del_init(&q->list);
445 __sigqueue_free(q);
446 }
447 }
448
449 sigorsets(&pending->signal, &signal, &retain);
450 }
451
452 void flush_itimer_signals(void)
453 {
454 struct task_struct *tsk = current;
455 unsigned long flags;
456
457 spin_lock_irqsave(&tsk->sighand->siglock, flags);
458 __flush_itimer_signals(&tsk->pending);
459 __flush_itimer_signals(&tsk->signal->shared_pending);
460 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
461 }
462
463 void ignore_signals(struct task_struct *t)
464 {
465 int i;
466
467 for (i = 0; i < _NSIG; ++i)
468 t->sighand->action[i].sa.sa_handler = SIG_IGN;
469
470 flush_signals(t);
471 }
472
473 /*
474 * Flush all handlers for a task.
475 */
476
477 void
478 flush_signal_handlers(struct task_struct *t, int force_default)
479 {
480 int i;
481 struct k_sigaction *ka = &t->sighand->action[0];
482 for (i = _NSIG ; i != 0 ; i--) {
483 if (force_default || ka->sa.sa_handler != SIG_IGN)
484 ka->sa.sa_handler = SIG_DFL;
485 ka->sa.sa_flags = 0;
486 sigemptyset(&ka->sa.sa_mask);
487 ka++;
488 }
489 }
490
491 int unhandled_signal(struct task_struct *tsk, int sig)
492 {
493 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
494 if (is_global_init(tsk))
495 return 1;
496 if (handler != SIG_IGN && handler != SIG_DFL)
497 return 0;
498 /* if ptraced, let the tracer determine */
499 return !tsk->ptrace;
500 }
501
502 /*
503 * Notify the system that a driver wants to block all signals for this
504 * process, and wants to be notified if any signals at all were to be
505 * sent/acted upon. If the notifier routine returns non-zero, then the
506 * signal will be acted upon after all. If the notifier routine returns 0,
507 * then then signal will be blocked. Only one block per process is
508 * allowed. priv is a pointer to private data that the notifier routine
509 * can use to determine if the signal should be blocked or not.
510 */
511 void
512 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
513 {
514 unsigned long flags;
515
516 spin_lock_irqsave(&current->sighand->siglock, flags);
517 current->notifier_mask = mask;
518 current->notifier_data = priv;
519 current->notifier = notifier;
520 spin_unlock_irqrestore(&current->sighand->siglock, flags);
521 }
522
523 /* Notify the system that blocking has ended. */
524
525 void
526 unblock_all_signals(void)
527 {
528 unsigned long flags;
529
530 spin_lock_irqsave(&current->sighand->siglock, flags);
531 current->notifier = NULL;
532 current->notifier_data = NULL;
533 recalc_sigpending();
534 spin_unlock_irqrestore(&current->sighand->siglock, flags);
535 }
536
537 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
538 {
539 struct sigqueue *q, *first = NULL;
540
541 /*
542 * Collect the siginfo appropriate to this signal. Check if
543 * there is another siginfo for the same signal.
544 */
545 list_for_each_entry(q, &list->list, list) {
546 if (q->info.si_signo == sig) {
547 if (first)
548 goto still_pending;
549 first = q;
550 }
551 }
552
553 sigdelset(&list->signal, sig);
554
555 if (first) {
556 still_pending:
557 list_del_init(&first->list);
558 copy_siginfo(info, &first->info);
559 __sigqueue_free(first);
560 } else {
561 /*
562 * Ok, it wasn't in the queue. This must be
563 * a fast-pathed signal or we must have been
564 * out of queue space. So zero out the info.
565 */
566 info->si_signo = sig;
567 info->si_errno = 0;
568 info->si_code = SI_USER;
569 info->si_pid = 0;
570 info->si_uid = 0;
571 }
572 }
573
574 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
575 siginfo_t *info)
576 {
577 int sig = next_signal(pending, mask);
578
579 if (sig) {
580 if (current->notifier) {
581 if (sigismember(current->notifier_mask, sig)) {
582 if (!(current->notifier)(current->notifier_data)) {
583 clear_thread_flag(TIF_SIGPENDING);
584 return 0;
585 }
586 }
587 }
588
589 collect_signal(sig, pending, info);
590 }
591
592 return sig;
593 }
594
595 /*
596 * Dequeue a signal and return the element to the caller, which is
597 * expected to free it.
598 *
599 * All callers have to hold the siglock.
600 */
601 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
602 {
603 int signr;
604
605 /* We only dequeue private signals from ourselves, we don't let
606 * signalfd steal them
607 */
608 signr = __dequeue_signal(&tsk->pending, mask, info);
609 if (!signr) {
610 signr = __dequeue_signal(&tsk->signal->shared_pending,
611 mask, info);
612 /*
613 * itimer signal ?
614 *
615 * itimers are process shared and we restart periodic
616 * itimers in the signal delivery path to prevent DoS
617 * attacks in the high resolution timer case. This is
618 * compliant with the old way of self-restarting
619 * itimers, as the SIGALRM is a legacy signal and only
620 * queued once. Changing the restart behaviour to
621 * restart the timer in the signal dequeue path is
622 * reducing the timer noise on heavy loaded !highres
623 * systems too.
624 */
625 if (unlikely(signr == SIGALRM)) {
626 struct hrtimer *tmr = &tsk->signal->real_timer;
627
628 if (!hrtimer_is_queued(tmr) &&
629 tsk->signal->it_real_incr.tv64 != 0) {
630 hrtimer_forward(tmr, tmr->base->get_time(),
631 tsk->signal->it_real_incr);
632 hrtimer_restart(tmr);
633 }
634 }
635 }
636
637 recalc_sigpending();
638 if (!signr)
639 return 0;
640
641 if (unlikely(sig_kernel_stop(signr))) {
642 /*
643 * Set a marker that we have dequeued a stop signal. Our
644 * caller might release the siglock and then the pending
645 * stop signal it is about to process is no longer in the
646 * pending bitmasks, but must still be cleared by a SIGCONT
647 * (and overruled by a SIGKILL). So those cases clear this
648 * shared flag after we've set it. Note that this flag may
649 * remain set after the signal we return is ignored or
650 * handled. That doesn't matter because its only purpose
651 * is to alert stop-signal processing code when another
652 * processor has come along and cleared the flag.
653 */
654 current->jobctl |= JOBCTL_STOP_DEQUEUED;
655 }
656 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
657 /*
658 * Release the siglock to ensure proper locking order
659 * of timer locks outside of siglocks. Note, we leave
660 * irqs disabled here, since the posix-timers code is
661 * about to disable them again anyway.
662 */
663 spin_unlock(&tsk->sighand->siglock);
664 do_schedule_next_timer(info);
665 spin_lock(&tsk->sighand->siglock);
666 }
667 return signr;
668 }
669
670 /*
671 * Tell a process that it has a new active signal..
672 *
673 * NOTE! we rely on the previous spin_lock to
674 * lock interrupts for us! We can only be called with
675 * "siglock" held, and the local interrupt must
676 * have been disabled when that got acquired!
677 *
678 * No need to set need_resched since signal event passing
679 * goes through ->blocked
680 */
681 void signal_wake_up(struct task_struct *t, int resume)
682 {
683 unsigned int mask;
684
685 set_tsk_thread_flag(t, TIF_SIGPENDING);
686
687 /*
688 * For SIGKILL, we want to wake it up in the stopped/traced/killable
689 * case. We don't check t->state here because there is a race with it
690 * executing another processor and just now entering stopped state.
691 * By using wake_up_state, we ensure the process will wake up and
692 * handle its death signal.
693 */
694 mask = TASK_INTERRUPTIBLE;
695 if (resume)
696 mask |= TASK_WAKEKILL;
697 if (!wake_up_state(t, mask))
698 kick_process(t);
699 }
700
701 /*
702 * Remove signals in mask from the pending set and queue.
703 * Returns 1 if any signals were found.
704 *
705 * All callers must be holding the siglock.
706 *
707 * This version takes a sigset mask and looks at all signals,
708 * not just those in the first mask word.
709 */
710 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
711 {
712 struct sigqueue *q, *n;
713 sigset_t m;
714
715 sigandsets(&m, mask, &s->signal);
716 if (sigisemptyset(&m))
717 return 0;
718
719 sigandnsets(&s->signal, &s->signal, mask);
720 list_for_each_entry_safe(q, n, &s->list, list) {
721 if (sigismember(mask, q->info.si_signo)) {
722 list_del_init(&q->list);
723 __sigqueue_free(q);
724 }
725 }
726 return 1;
727 }
728 /*
729 * Remove signals in mask from the pending set and queue.
730 * Returns 1 if any signals were found.
731 *
732 * All callers must be holding the siglock.
733 */
734 static int rm_from_queue(unsigned long mask, struct sigpending *s)
735 {
736 struct sigqueue *q, *n;
737
738 if (!sigtestsetmask(&s->signal, mask))
739 return 0;
740
741 sigdelsetmask(&s->signal, mask);
742 list_for_each_entry_safe(q, n, &s->list, list) {
743 if (q->info.si_signo < SIGRTMIN &&
744 (mask & sigmask(q->info.si_signo))) {
745 list_del_init(&q->list);
746 __sigqueue_free(q);
747 }
748 }
749 return 1;
750 }
751
752 static inline int is_si_special(const struct siginfo *info)
753 {
754 return info <= SEND_SIG_FORCED;
755 }
756
757 static inline bool si_fromuser(const struct siginfo *info)
758 {
759 return info == SEND_SIG_NOINFO ||
760 (!is_si_special(info) && SI_FROMUSER(info));
761 }
762
763 /*
764 * called with RCU read lock from check_kill_permission()
765 */
766 static int kill_ok_by_cred(struct task_struct *t)
767 {
768 const struct cred *cred = current_cred();
769 const struct cred *tcred = __task_cred(t);
770
771 if (uid_eq(cred->euid, tcred->suid) ||
772 uid_eq(cred->euid, tcred->uid) ||
773 uid_eq(cred->uid, tcred->suid) ||
774 uid_eq(cred->uid, tcred->uid))
775 return 1;
776
777 if (ns_capable(tcred->user_ns, CAP_KILL))
778 return 1;
779
780 return 0;
781 }
782
783 /*
784 * Bad permissions for sending the signal
785 * - the caller must hold the RCU read lock
786 */
787 static int check_kill_permission(int sig, struct siginfo *info,
788 struct task_struct *t)
789 {
790 struct pid *sid;
791 int error;
792
793 if (!valid_signal(sig))
794 return -EINVAL;
795
796 if (!si_fromuser(info))
797 return 0;
798
799 error = audit_signal_info(sig, t); /* Let audit system see the signal */
800 if (error)
801 return error;
802
803 if (!same_thread_group(current, t) &&
804 !kill_ok_by_cred(t)) {
805 switch (sig) {
806 case SIGCONT:
807 sid = task_session(t);
808 /*
809 * We don't return the error if sid == NULL. The
810 * task was unhashed, the caller must notice this.
811 */
812 if (!sid || sid == task_session(current))
813 break;
814 default:
815 return -EPERM;
816 }
817 }
818
819 return security_task_kill(t, info, sig, 0);
820 }
821
822 /**
823 * ptrace_trap_notify - schedule trap to notify ptracer
824 * @t: tracee wanting to notify tracer
825 *
826 * This function schedules sticky ptrace trap which is cleared on the next
827 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
828 * ptracer.
829 *
830 * If @t is running, STOP trap will be taken. If trapped for STOP and
831 * ptracer is listening for events, tracee is woken up so that it can
832 * re-trap for the new event. If trapped otherwise, STOP trap will be
833 * eventually taken without returning to userland after the existing traps
834 * are finished by PTRACE_CONT.
835 *
836 * CONTEXT:
837 * Must be called with @task->sighand->siglock held.
838 */
839 static void ptrace_trap_notify(struct task_struct *t)
840 {
841 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
842 assert_spin_locked(&t->sighand->siglock);
843
844 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
845 signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
846 }
847
848 /*
849 * Handle magic process-wide effects of stop/continue signals. Unlike
850 * the signal actions, these happen immediately at signal-generation
851 * time regardless of blocking, ignoring, or handling. This does the
852 * actual continuing for SIGCONT, but not the actual stopping for stop
853 * signals. The process stop is done as a signal action for SIG_DFL.
854 *
855 * Returns true if the signal should be actually delivered, otherwise
856 * it should be dropped.
857 */
858 static int prepare_signal(int sig, struct task_struct *p, bool force)
859 {
860 struct signal_struct *signal = p->signal;
861 struct task_struct *t;
862
863 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
864 /*
865 * The process is in the middle of dying, nothing to do.
866 */
867 } else if (sig_kernel_stop(sig)) {
868 /*
869 * This is a stop signal. Remove SIGCONT from all queues.
870 */
871 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
872 t = p;
873 do {
874 rm_from_queue(sigmask(SIGCONT), &t->pending);
875 } while_each_thread(p, t);
876 } else if (sig == SIGCONT) {
877 unsigned int why;
878 /*
879 * Remove all stop signals from all queues, wake all threads.
880 */
881 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
882 t = p;
883 do {
884 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
885 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
886 if (likely(!(t->ptrace & PT_SEIZED)))
887 wake_up_state(t, __TASK_STOPPED);
888 else
889 ptrace_trap_notify(t);
890 } while_each_thread(p, t);
891
892 /*
893 * Notify the parent with CLD_CONTINUED if we were stopped.
894 *
895 * If we were in the middle of a group stop, we pretend it
896 * was already finished, and then continued. Since SIGCHLD
897 * doesn't queue we report only CLD_STOPPED, as if the next
898 * CLD_CONTINUED was dropped.
899 */
900 why = 0;
901 if (signal->flags & SIGNAL_STOP_STOPPED)
902 why |= SIGNAL_CLD_CONTINUED;
903 else if (signal->group_stop_count)
904 why |= SIGNAL_CLD_STOPPED;
905
906 if (why) {
907 /*
908 * The first thread which returns from do_signal_stop()
909 * will take ->siglock, notice SIGNAL_CLD_MASK, and
910 * notify its parent. See get_signal_to_deliver().
911 */
912 signal->flags = why | SIGNAL_STOP_CONTINUED;
913 signal->group_stop_count = 0;
914 signal->group_exit_code = 0;
915 }
916 }
917
918 return !sig_ignored(p, sig, force);
919 }
920
921 /*
922 * Test if P wants to take SIG. After we've checked all threads with this,
923 * it's equivalent to finding no threads not blocking SIG. Any threads not
924 * blocking SIG were ruled out because they are not running and already
925 * have pending signals. Such threads will dequeue from the shared queue
926 * as soon as they're available, so putting the signal on the shared queue
927 * will be equivalent to sending it to one such thread.
928 */
929 static inline int wants_signal(int sig, struct task_struct *p)
930 {
931 if (sigismember(&p->blocked, sig))
932 return 0;
933 if (p->flags & PF_EXITING)
934 return 0;
935 if (sig == SIGKILL)
936 return 1;
937 if (task_is_stopped_or_traced(p))
938 return 0;
939 return task_curr(p) || !signal_pending(p);
940 }
941
942 static void complete_signal(int sig, struct task_struct *p, int group)
943 {
944 struct signal_struct *signal = p->signal;
945 struct task_struct *t;
946
947 /*
948 * Now find a thread we can wake up to take the signal off the queue.
949 *
950 * If the main thread wants the signal, it gets first crack.
951 * Probably the least surprising to the average bear.
952 */
953 if (wants_signal(sig, p))
954 t = p;
955 else if (!group || thread_group_empty(p))
956 /*
957 * There is just one thread and it does not need to be woken.
958 * It will dequeue unblocked signals before it runs again.
959 */
960 return;
961 else {
962 /*
963 * Otherwise try to find a suitable thread.
964 */
965 t = signal->curr_target;
966 while (!wants_signal(sig, t)) {
967 t = next_thread(t);
968 if (t == signal->curr_target)
969 /*
970 * No thread needs to be woken.
971 * Any eligible threads will see
972 * the signal in the queue soon.
973 */
974 return;
975 }
976 signal->curr_target = t;
977 }
978
979 /*
980 * Found a killable thread. If the signal will be fatal,
981 * then start taking the whole group down immediately.
982 */
983 if (sig_fatal(p, sig) &&
984 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
985 !sigismember(&t->real_blocked, sig) &&
986 (sig == SIGKILL || !t->ptrace)) {
987 /*
988 * This signal will be fatal to the whole group.
989 */
990 if (!sig_kernel_coredump(sig)) {
991 /*
992 * Start a group exit and wake everybody up.
993 * This way we don't have other threads
994 * running and doing things after a slower
995 * thread has the fatal signal pending.
996 */
997 signal->flags = SIGNAL_GROUP_EXIT;
998 signal->group_exit_code = sig;
999 signal->group_stop_count = 0;
1000 t = p;
1001 do {
1002 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1003 sigaddset(&t->pending.signal, SIGKILL);
1004 signal_wake_up(t, 1);
1005 } while_each_thread(p, t);
1006 return;
1007 }
1008 }
1009
1010 /*
1011 * The signal is already in the shared-pending queue.
1012 * Tell the chosen thread to wake up and dequeue it.
1013 */
1014 signal_wake_up(t, sig == SIGKILL);
1015 return;
1016 }
1017
1018 static inline int legacy_queue(struct sigpending *signals, int sig)
1019 {
1020 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1021 }
1022
1023 #ifdef CONFIG_USER_NS
1024 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1025 {
1026 if (current_user_ns() == task_cred_xxx(t, user_ns))
1027 return;
1028
1029 if (SI_FROMKERNEL(info))
1030 return;
1031
1032 rcu_read_lock();
1033 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1034 make_kuid(current_user_ns(), info->si_uid));
1035 rcu_read_unlock();
1036 }
1037 #else
1038 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1039 {
1040 return;
1041 }
1042 #endif
1043
1044 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1045 int group, int from_ancestor_ns)
1046 {
1047 struct sigpending *pending;
1048 struct sigqueue *q;
1049 int override_rlimit;
1050 int ret = 0, result;
1051
1052 assert_spin_locked(&t->sighand->siglock);
1053
1054 result = TRACE_SIGNAL_IGNORED;
1055 if (!prepare_signal(sig, t,
1056 from_ancestor_ns || (info == SEND_SIG_FORCED)))
1057 goto ret;
1058
1059 pending = group ? &t->signal->shared_pending : &t->pending;
1060 /*
1061 * Short-circuit ignored signals and support queuing
1062 * exactly one non-rt signal, so that we can get more
1063 * detailed information about the cause of the signal.
1064 */
1065 result = TRACE_SIGNAL_ALREADY_PENDING;
1066 if (legacy_queue(pending, sig))
1067 goto ret;
1068
1069 result = TRACE_SIGNAL_DELIVERED;
1070 /*
1071 * fast-pathed signals for kernel-internal things like SIGSTOP
1072 * or SIGKILL.
1073 */
1074 if (info == SEND_SIG_FORCED)
1075 goto out_set;
1076
1077 /*
1078 * Real-time signals must be queued if sent by sigqueue, or
1079 * some other real-time mechanism. It is implementation
1080 * defined whether kill() does so. We attempt to do so, on
1081 * the principle of least surprise, but since kill is not
1082 * allowed to fail with EAGAIN when low on memory we just
1083 * make sure at least one signal gets delivered and don't
1084 * pass on the info struct.
1085 */
1086 if (sig < SIGRTMIN)
1087 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1088 else
1089 override_rlimit = 0;
1090
1091 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1092 override_rlimit);
1093 if (q) {
1094 list_add_tail(&q->list, &pending->list);
1095 switch ((unsigned long) info) {
1096 case (unsigned long) SEND_SIG_NOINFO:
1097 q->info.si_signo = sig;
1098 q->info.si_errno = 0;
1099 q->info.si_code = SI_USER;
1100 q->info.si_pid = task_tgid_nr_ns(current,
1101 task_active_pid_ns(t));
1102 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1103 break;
1104 case (unsigned long) SEND_SIG_PRIV:
1105 q->info.si_signo = sig;
1106 q->info.si_errno = 0;
1107 q->info.si_code = SI_KERNEL;
1108 q->info.si_pid = 0;
1109 q->info.si_uid = 0;
1110 break;
1111 default:
1112 copy_siginfo(&q->info, info);
1113 if (from_ancestor_ns)
1114 q->info.si_pid = 0;
1115 break;
1116 }
1117
1118 userns_fixup_signal_uid(&q->info, t);
1119
1120 } else if (!is_si_special(info)) {
1121 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1122 /*
1123 * Queue overflow, abort. We may abort if the
1124 * signal was rt and sent by user using something
1125 * other than kill().
1126 */
1127 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1128 ret = -EAGAIN;
1129 goto ret;
1130 } else {
1131 /*
1132 * This is a silent loss of information. We still
1133 * send the signal, but the *info bits are lost.
1134 */
1135 result = TRACE_SIGNAL_LOSE_INFO;
1136 }
1137 }
1138
1139 out_set:
1140 signalfd_notify(t, sig);
1141 sigaddset(&pending->signal, sig);
1142 complete_signal(sig, t, group);
1143 ret:
1144 trace_signal_generate(sig, info, t, group, result);
1145 return ret;
1146 }
1147
1148 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1149 int group)
1150 {
1151 int from_ancestor_ns = 0;
1152
1153 #ifdef CONFIG_PID_NS
1154 from_ancestor_ns = si_fromuser(info) &&
1155 !task_pid_nr_ns(current, task_active_pid_ns(t));
1156 #endif
1157
1158 return __send_signal(sig, info, t, group, from_ancestor_ns);
1159 }
1160
1161 static void print_fatal_signal(struct pt_regs *regs, int signr)
1162 {
1163 printk("%s/%d: potentially unexpected fatal signal %d.\n",
1164 current->comm, task_pid_nr(current), signr);
1165
1166 #if defined(__i386__) && !defined(__arch_um__)
1167 printk("code at %08lx: ", regs->ip);
1168 {
1169 int i;
1170 for (i = 0; i < 16; i++) {
1171 unsigned char insn;
1172
1173 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1174 break;
1175 printk("%02x ", insn);
1176 }
1177 }
1178 #endif
1179 printk("\n");
1180 preempt_disable();
1181 show_regs(regs);
1182 preempt_enable();
1183 }
1184
1185 static int __init setup_print_fatal_signals(char *str)
1186 {
1187 get_option (&str, &print_fatal_signals);
1188
1189 return 1;
1190 }
1191
1192 __setup("print-fatal-signals=", setup_print_fatal_signals);
1193
1194 int
1195 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1196 {
1197 return send_signal(sig, info, p, 1);
1198 }
1199
1200 static int
1201 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1202 {
1203 return send_signal(sig, info, t, 0);
1204 }
1205
1206 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1207 bool group)
1208 {
1209 unsigned long flags;
1210 int ret = -ESRCH;
1211
1212 if (lock_task_sighand(p, &flags)) {
1213 ret = send_signal(sig, info, p, group);
1214 unlock_task_sighand(p, &flags);
1215 }
1216
1217 return ret;
1218 }
1219
1220 /*
1221 * Force a signal that the process can't ignore: if necessary
1222 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1223 *
1224 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1225 * since we do not want to have a signal handler that was blocked
1226 * be invoked when user space had explicitly blocked it.
1227 *
1228 * We don't want to have recursive SIGSEGV's etc, for example,
1229 * that is why we also clear SIGNAL_UNKILLABLE.
1230 */
1231 int
1232 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1233 {
1234 unsigned long int flags;
1235 int ret, blocked, ignored;
1236 struct k_sigaction *action;
1237
1238 spin_lock_irqsave(&t->sighand->siglock, flags);
1239 action = &t->sighand->action[sig-1];
1240 ignored = action->sa.sa_handler == SIG_IGN;
1241 blocked = sigismember(&t->blocked, sig);
1242 if (blocked || ignored) {
1243 action->sa.sa_handler = SIG_DFL;
1244 if (blocked) {
1245 sigdelset(&t->blocked, sig);
1246 recalc_sigpending_and_wake(t);
1247 }
1248 }
1249 if (action->sa.sa_handler == SIG_DFL)
1250 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1251 ret = specific_send_sig_info(sig, info, t);
1252 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1253
1254 return ret;
1255 }
1256
1257 /*
1258 * Nuke all other threads in the group.
1259 */
1260 int zap_other_threads(struct task_struct *p)
1261 {
1262 struct task_struct *t = p;
1263 int count = 0;
1264
1265 p->signal->group_stop_count = 0;
1266
1267 while_each_thread(p, t) {
1268 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1269 count++;
1270
1271 /* Don't bother with already dead threads */
1272 if (t->exit_state)
1273 continue;
1274 sigaddset(&t->pending.signal, SIGKILL);
1275 signal_wake_up(t, 1);
1276 }
1277
1278 return count;
1279 }
1280
1281 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1282 unsigned long *flags)
1283 {
1284 struct sighand_struct *sighand;
1285
1286 for (;;) {
1287 local_irq_save(*flags);
1288 rcu_read_lock();
1289 sighand = rcu_dereference(tsk->sighand);
1290 if (unlikely(sighand == NULL)) {
1291 rcu_read_unlock();
1292 local_irq_restore(*flags);
1293 break;
1294 }
1295
1296 spin_lock(&sighand->siglock);
1297 if (likely(sighand == tsk->sighand)) {
1298 rcu_read_unlock();
1299 break;
1300 }
1301 spin_unlock(&sighand->siglock);
1302 rcu_read_unlock();
1303 local_irq_restore(*flags);
1304 }
1305
1306 return sighand;
1307 }
1308
1309 /*
1310 * send signal info to all the members of a group
1311 */
1312 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1313 {
1314 int ret;
1315
1316 rcu_read_lock();
1317 ret = check_kill_permission(sig, info, p);
1318 rcu_read_unlock();
1319
1320 if (!ret && sig)
1321 ret = do_send_sig_info(sig, info, p, true);
1322
1323 return ret;
1324 }
1325
1326 /*
1327 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1328 * control characters do (^C, ^Z etc)
1329 * - the caller must hold at least a readlock on tasklist_lock
1330 */
1331 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1332 {
1333 struct task_struct *p = NULL;
1334 int retval, success;
1335
1336 success = 0;
1337 retval = -ESRCH;
1338 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1339 int err = group_send_sig_info(sig, info, p);
1340 success |= !err;
1341 retval = err;
1342 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1343 return success ? 0 : retval;
1344 }
1345
1346 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1347 {
1348 int error = -ESRCH;
1349 struct task_struct *p;
1350
1351 rcu_read_lock();
1352 retry:
1353 p = pid_task(pid, PIDTYPE_PID);
1354 if (p) {
1355 error = group_send_sig_info(sig, info, p);
1356 if (unlikely(error == -ESRCH))
1357 /*
1358 * The task was unhashed in between, try again.
1359 * If it is dead, pid_task() will return NULL,
1360 * if we race with de_thread() it will find the
1361 * new leader.
1362 */
1363 goto retry;
1364 }
1365 rcu_read_unlock();
1366
1367 return error;
1368 }
1369
1370 int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1371 {
1372 int error;
1373 rcu_read_lock();
1374 error = kill_pid_info(sig, info, find_vpid(pid));
1375 rcu_read_unlock();
1376 return error;
1377 }
1378
1379 static int kill_as_cred_perm(const struct cred *cred,
1380 struct task_struct *target)
1381 {
1382 const struct cred *pcred = __task_cred(target);
1383 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1384 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid))
1385 return 0;
1386 return 1;
1387 }
1388
1389 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1390 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1391 const struct cred *cred, u32 secid)
1392 {
1393 int ret = -EINVAL;
1394 struct task_struct *p;
1395 unsigned long flags;
1396
1397 if (!valid_signal(sig))
1398 return ret;
1399
1400 rcu_read_lock();
1401 p = pid_task(pid, PIDTYPE_PID);
1402 if (!p) {
1403 ret = -ESRCH;
1404 goto out_unlock;
1405 }
1406 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1407 ret = -EPERM;
1408 goto out_unlock;
1409 }
1410 ret = security_task_kill(p, info, sig, secid);
1411 if (ret)
1412 goto out_unlock;
1413
1414 if (sig) {
1415 if (lock_task_sighand(p, &flags)) {
1416 ret = __send_signal(sig, info, p, 1, 0);
1417 unlock_task_sighand(p, &flags);
1418 } else
1419 ret = -ESRCH;
1420 }
1421 out_unlock:
1422 rcu_read_unlock();
1423 return ret;
1424 }
1425 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1426
1427 /*
1428 * kill_something_info() interprets pid in interesting ways just like kill(2).
1429 *
1430 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1431 * is probably wrong. Should make it like BSD or SYSV.
1432 */
1433
1434 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1435 {
1436 int ret;
1437
1438 if (pid > 0) {
1439 rcu_read_lock();
1440 ret = kill_pid_info(sig, info, find_vpid(pid));
1441 rcu_read_unlock();
1442 return ret;
1443 }
1444
1445 read_lock(&tasklist_lock);
1446 if (pid != -1) {
1447 ret = __kill_pgrp_info(sig, info,
1448 pid ? find_vpid(-pid) : task_pgrp(current));
1449 } else {
1450 int retval = 0, count = 0;
1451 struct task_struct * p;
1452
1453 for_each_process(p) {
1454 if (task_pid_vnr(p) > 1 &&
1455 !same_thread_group(p, current)) {
1456 int err = group_send_sig_info(sig, info, p);
1457 ++count;
1458 if (err != -EPERM)
1459 retval = err;
1460 }
1461 }
1462 ret = count ? retval : -ESRCH;
1463 }
1464 read_unlock(&tasklist_lock);
1465
1466 return ret;
1467 }
1468
1469 /*
1470 * These are for backward compatibility with the rest of the kernel source.
1471 */
1472
1473 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1474 {
1475 /*
1476 * Make sure legacy kernel users don't send in bad values
1477 * (normal paths check this in check_kill_permission).
1478 */
1479 if (!valid_signal(sig))
1480 return -EINVAL;
1481
1482 return do_send_sig_info(sig, info, p, false);
1483 }
1484
1485 #define __si_special(priv) \
1486 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1487
1488 int
1489 send_sig(int sig, struct task_struct *p, int priv)
1490 {
1491 return send_sig_info(sig, __si_special(priv), p);
1492 }
1493
1494 void
1495 force_sig(int sig, struct task_struct *p)
1496 {
1497 force_sig_info(sig, SEND_SIG_PRIV, p);
1498 }
1499
1500 /*
1501 * When things go south during signal handling, we
1502 * will force a SIGSEGV. And if the signal that caused
1503 * the problem was already a SIGSEGV, we'll want to
1504 * make sure we don't even try to deliver the signal..
1505 */
1506 int
1507 force_sigsegv(int sig, struct task_struct *p)
1508 {
1509 if (sig == SIGSEGV) {
1510 unsigned long flags;
1511 spin_lock_irqsave(&p->sighand->siglock, flags);
1512 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1513 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1514 }
1515 force_sig(SIGSEGV, p);
1516 return 0;
1517 }
1518
1519 int kill_pgrp(struct pid *pid, int sig, int priv)
1520 {
1521 int ret;
1522
1523 read_lock(&tasklist_lock);
1524 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1525 read_unlock(&tasklist_lock);
1526
1527 return ret;
1528 }
1529 EXPORT_SYMBOL(kill_pgrp);
1530
1531 int kill_pid(struct pid *pid, int sig, int priv)
1532 {
1533 return kill_pid_info(sig, __si_special(priv), pid);
1534 }
1535 EXPORT_SYMBOL(kill_pid);
1536
1537 /*
1538 * These functions support sending signals using preallocated sigqueue
1539 * structures. This is needed "because realtime applications cannot
1540 * afford to lose notifications of asynchronous events, like timer
1541 * expirations or I/O completions". In the case of POSIX Timers
1542 * we allocate the sigqueue structure from the timer_create. If this
1543 * allocation fails we are able to report the failure to the application
1544 * with an EAGAIN error.
1545 */
1546 struct sigqueue *sigqueue_alloc(void)
1547 {
1548 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1549
1550 if (q)
1551 q->flags |= SIGQUEUE_PREALLOC;
1552
1553 return q;
1554 }
1555
1556 void sigqueue_free(struct sigqueue *q)
1557 {
1558 unsigned long flags;
1559 spinlock_t *lock = &current->sighand->siglock;
1560
1561 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1562 /*
1563 * We must hold ->siglock while testing q->list
1564 * to serialize with collect_signal() or with
1565 * __exit_signal()->flush_sigqueue().
1566 */
1567 spin_lock_irqsave(lock, flags);
1568 q->flags &= ~SIGQUEUE_PREALLOC;
1569 /*
1570 * If it is queued it will be freed when dequeued,
1571 * like the "regular" sigqueue.
1572 */
1573 if (!list_empty(&q->list))
1574 q = NULL;
1575 spin_unlock_irqrestore(lock, flags);
1576
1577 if (q)
1578 __sigqueue_free(q);
1579 }
1580
1581 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1582 {
1583 int sig = q->info.si_signo;
1584 struct sigpending *pending;
1585 unsigned long flags;
1586 int ret, result;
1587
1588 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1589
1590 ret = -1;
1591 if (!likely(lock_task_sighand(t, &flags)))
1592 goto ret;
1593
1594 ret = 1; /* the signal is ignored */
1595 result = TRACE_SIGNAL_IGNORED;
1596 if (!prepare_signal(sig, t, false))
1597 goto out;
1598
1599 ret = 0;
1600 if (unlikely(!list_empty(&q->list))) {
1601 /*
1602 * If an SI_TIMER entry is already queue just increment
1603 * the overrun count.
1604 */
1605 BUG_ON(q->info.si_code != SI_TIMER);
1606 q->info.si_overrun++;
1607 result = TRACE_SIGNAL_ALREADY_PENDING;
1608 goto out;
1609 }
1610 q->info.si_overrun = 0;
1611
1612 signalfd_notify(t, sig);
1613 pending = group ? &t->signal->shared_pending : &t->pending;
1614 list_add_tail(&q->list, &pending->list);
1615 sigaddset(&pending->signal, sig);
1616 complete_signal(sig, t, group);
1617 result = TRACE_SIGNAL_DELIVERED;
1618 out:
1619 trace_signal_generate(sig, &q->info, t, group, result);
1620 unlock_task_sighand(t, &flags);
1621 ret:
1622 return ret;
1623 }
1624
1625 /*
1626 * Let a parent know about the death of a child.
1627 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1628 *
1629 * Returns true if our parent ignored us and so we've switched to
1630 * self-reaping.
1631 */
1632 bool do_notify_parent(struct task_struct *tsk, int sig)
1633 {
1634 struct siginfo info;
1635 unsigned long flags;
1636 struct sighand_struct *psig;
1637 bool autoreap = false;
1638
1639 BUG_ON(sig == -1);
1640
1641 /* do_notify_parent_cldstop should have been called instead. */
1642 BUG_ON(task_is_stopped_or_traced(tsk));
1643
1644 BUG_ON(!tsk->ptrace &&
1645 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1646
1647 if (sig != SIGCHLD) {
1648 /*
1649 * This is only possible if parent == real_parent.
1650 * Check if it has changed security domain.
1651 */
1652 if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1653 sig = SIGCHLD;
1654 }
1655
1656 info.si_signo = sig;
1657 info.si_errno = 0;
1658 /*
1659 * We are under tasklist_lock here so our parent is tied to
1660 * us and cannot change.
1661 *
1662 * task_active_pid_ns will always return the same pid namespace
1663 * until a task passes through release_task.
1664 *
1665 * write_lock() currently calls preempt_disable() which is the
1666 * same as rcu_read_lock(), but according to Oleg, this is not
1667 * correct to rely on this
1668 */
1669 rcu_read_lock();
1670 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1671 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1672 task_uid(tsk));
1673 rcu_read_unlock();
1674
1675 info.si_utime = cputime_to_clock_t(tsk->utime + tsk->signal->utime);
1676 info.si_stime = cputime_to_clock_t(tsk->stime + tsk->signal->stime);
1677
1678 info.si_status = tsk->exit_code & 0x7f;
1679 if (tsk->exit_code & 0x80)
1680 info.si_code = CLD_DUMPED;
1681 else if (tsk->exit_code & 0x7f)
1682 info.si_code = CLD_KILLED;
1683 else {
1684 info.si_code = CLD_EXITED;
1685 info.si_status = tsk->exit_code >> 8;
1686 }
1687
1688 psig = tsk->parent->sighand;
1689 spin_lock_irqsave(&psig->siglock, flags);
1690 if (!tsk->ptrace && sig == SIGCHLD &&
1691 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1692 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1693 /*
1694 * We are exiting and our parent doesn't care. POSIX.1
1695 * defines special semantics for setting SIGCHLD to SIG_IGN
1696 * or setting the SA_NOCLDWAIT flag: we should be reaped
1697 * automatically and not left for our parent's wait4 call.
1698 * Rather than having the parent do it as a magic kind of
1699 * signal handler, we just set this to tell do_exit that we
1700 * can be cleaned up without becoming a zombie. Note that
1701 * we still call __wake_up_parent in this case, because a
1702 * blocked sys_wait4 might now return -ECHILD.
1703 *
1704 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1705 * is implementation-defined: we do (if you don't want
1706 * it, just use SIG_IGN instead).
1707 */
1708 autoreap = true;
1709 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1710 sig = 0;
1711 }
1712 if (valid_signal(sig) && sig)
1713 __group_send_sig_info(sig, &info, tsk->parent);
1714 __wake_up_parent(tsk, tsk->parent);
1715 spin_unlock_irqrestore(&psig->siglock, flags);
1716
1717 return autoreap;
1718 }
1719
1720 /**
1721 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1722 * @tsk: task reporting the state change
1723 * @for_ptracer: the notification is for ptracer
1724 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1725 *
1726 * Notify @tsk's parent that the stopped/continued state has changed. If
1727 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1728 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1729 *
1730 * CONTEXT:
1731 * Must be called with tasklist_lock at least read locked.
1732 */
1733 static void do_notify_parent_cldstop(struct task_struct *tsk,
1734 bool for_ptracer, int why)
1735 {
1736 struct siginfo info;
1737 unsigned long flags;
1738 struct task_struct *parent;
1739 struct sighand_struct *sighand;
1740
1741 if (for_ptracer) {
1742 parent = tsk->parent;
1743 } else {
1744 tsk = tsk->group_leader;
1745 parent = tsk->real_parent;
1746 }
1747
1748 info.si_signo = SIGCHLD;
1749 info.si_errno = 0;
1750 /*
1751 * see comment in do_notify_parent() about the following 4 lines
1752 */
1753 rcu_read_lock();
1754 info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1755 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1756 rcu_read_unlock();
1757
1758 info.si_utime = cputime_to_clock_t(tsk->utime);
1759 info.si_stime = cputime_to_clock_t(tsk->stime);
1760
1761 info.si_code = why;
1762 switch (why) {
1763 case CLD_CONTINUED:
1764 info.si_status = SIGCONT;
1765 break;
1766 case CLD_STOPPED:
1767 info.si_status = tsk->signal->group_exit_code & 0x7f;
1768 break;
1769 case CLD_TRAPPED:
1770 info.si_status = tsk->exit_code & 0x7f;
1771 break;
1772 default:
1773 BUG();
1774 }
1775
1776 sighand = parent->sighand;
1777 spin_lock_irqsave(&sighand->siglock, flags);
1778 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1779 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1780 __group_send_sig_info(SIGCHLD, &info, parent);
1781 /*
1782 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1783 */
1784 __wake_up_parent(tsk, parent);
1785 spin_unlock_irqrestore(&sighand->siglock, flags);
1786 }
1787
1788 static inline int may_ptrace_stop(void)
1789 {
1790 if (!likely(current->ptrace))
1791 return 0;
1792 /*
1793 * Are we in the middle of do_coredump?
1794 * If so and our tracer is also part of the coredump stopping
1795 * is a deadlock situation, and pointless because our tracer
1796 * is dead so don't allow us to stop.
1797 * If SIGKILL was already sent before the caller unlocked
1798 * ->siglock we must see ->core_state != NULL. Otherwise it
1799 * is safe to enter schedule().
1800 */
1801 if (unlikely(current->mm->core_state) &&
1802 unlikely(current->mm == current->parent->mm))
1803 return 0;
1804
1805 return 1;
1806 }
1807
1808 /*
1809 * Return non-zero if there is a SIGKILL that should be waking us up.
1810 * Called with the siglock held.
1811 */
1812 static int sigkill_pending(struct task_struct *tsk)
1813 {
1814 return sigismember(&tsk->pending.signal, SIGKILL) ||
1815 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1816 }
1817
1818 /*
1819 * This must be called with current->sighand->siglock held.
1820 *
1821 * This should be the path for all ptrace stops.
1822 * We always set current->last_siginfo while stopped here.
1823 * That makes it a way to test a stopped process for
1824 * being ptrace-stopped vs being job-control-stopped.
1825 *
1826 * If we actually decide not to stop at all because the tracer
1827 * is gone, we keep current->exit_code unless clear_code.
1828 */
1829 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1830 __releases(&current->sighand->siglock)
1831 __acquires(&current->sighand->siglock)
1832 {
1833 bool gstop_done = false;
1834
1835 if (arch_ptrace_stop_needed(exit_code, info)) {
1836 /*
1837 * The arch code has something special to do before a
1838 * ptrace stop. This is allowed to block, e.g. for faults
1839 * on user stack pages. We can't keep the siglock while
1840 * calling arch_ptrace_stop, so we must release it now.
1841 * To preserve proper semantics, we must do this before
1842 * any signal bookkeeping like checking group_stop_count.
1843 * Meanwhile, a SIGKILL could come in before we retake the
1844 * siglock. That must prevent us from sleeping in TASK_TRACED.
1845 * So after regaining the lock, we must check for SIGKILL.
1846 */
1847 spin_unlock_irq(&current->sighand->siglock);
1848 arch_ptrace_stop(exit_code, info);
1849 spin_lock_irq(&current->sighand->siglock);
1850 if (sigkill_pending(current))
1851 return;
1852 }
1853
1854 /*
1855 * We're committing to trapping. TRACED should be visible before
1856 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1857 * Also, transition to TRACED and updates to ->jobctl should be
1858 * atomic with respect to siglock and should be done after the arch
1859 * hook as siglock is released and regrabbed across it.
1860 */
1861 set_current_state(TASK_TRACED);
1862
1863 current->last_siginfo = info;
1864 current->exit_code = exit_code;
1865
1866 /*
1867 * If @why is CLD_STOPPED, we're trapping to participate in a group
1868 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
1869 * across siglock relocks since INTERRUPT was scheduled, PENDING
1870 * could be clear now. We act as if SIGCONT is received after
1871 * TASK_TRACED is entered - ignore it.
1872 */
1873 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1874 gstop_done = task_participate_group_stop(current);
1875
1876 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1877 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1878 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1879 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1880
1881 /* entering a trap, clear TRAPPING */
1882 task_clear_jobctl_trapping(current);
1883
1884 spin_unlock_irq(&current->sighand->siglock);
1885 read_lock(&tasklist_lock);
1886 if (may_ptrace_stop()) {
1887 /*
1888 * Notify parents of the stop.
1889 *
1890 * While ptraced, there are two parents - the ptracer and
1891 * the real_parent of the group_leader. The ptracer should
1892 * know about every stop while the real parent is only
1893 * interested in the completion of group stop. The states
1894 * for the two don't interact with each other. Notify
1895 * separately unless they're gonna be duplicates.
1896 */
1897 do_notify_parent_cldstop(current, true, why);
1898 if (gstop_done && ptrace_reparented(current))
1899 do_notify_parent_cldstop(current, false, why);
1900
1901 /*
1902 * Don't want to allow preemption here, because
1903 * sys_ptrace() needs this task to be inactive.
1904 *
1905 * XXX: implement read_unlock_no_resched().
1906 */
1907 preempt_disable();
1908 read_unlock(&tasklist_lock);
1909 preempt_enable_no_resched();
1910 schedule();
1911 } else {
1912 /*
1913 * By the time we got the lock, our tracer went away.
1914 * Don't drop the lock yet, another tracer may come.
1915 *
1916 * If @gstop_done, the ptracer went away between group stop
1917 * completion and here. During detach, it would have set
1918 * JOBCTL_STOP_PENDING on us and we'll re-enter
1919 * TASK_STOPPED in do_signal_stop() on return, so notifying
1920 * the real parent of the group stop completion is enough.
1921 */
1922 if (gstop_done)
1923 do_notify_parent_cldstop(current, false, why);
1924
1925 __set_current_state(TASK_RUNNING);
1926 if (clear_code)
1927 current->exit_code = 0;
1928 read_unlock(&tasklist_lock);
1929 }
1930
1931 /*
1932 * While in TASK_TRACED, we were considered "frozen enough".
1933 * Now that we woke up, it's crucial if we're supposed to be
1934 * frozen that we freeze now before running anything substantial.
1935 */
1936 try_to_freeze();
1937
1938 /*
1939 * We are back. Now reacquire the siglock before touching
1940 * last_siginfo, so that we are sure to have synchronized with
1941 * any signal-sending on another CPU that wants to examine it.
1942 */
1943 spin_lock_irq(&current->sighand->siglock);
1944 current->last_siginfo = NULL;
1945
1946 /* LISTENING can be set only during STOP traps, clear it */
1947 current->jobctl &= ~JOBCTL_LISTENING;
1948
1949 /*
1950 * Queued signals ignored us while we were stopped for tracing.
1951 * So check for any that we should take before resuming user mode.
1952 * This sets TIF_SIGPENDING, but never clears it.
1953 */
1954 recalc_sigpending_tsk(current);
1955 }
1956
1957 static void ptrace_do_notify(int signr, int exit_code, int why)
1958 {
1959 siginfo_t info;
1960
1961 memset(&info, 0, sizeof info);
1962 info.si_signo = signr;
1963 info.si_code = exit_code;
1964 info.si_pid = task_pid_vnr(current);
1965 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1966
1967 /* Let the debugger run. */
1968 ptrace_stop(exit_code, why, 1, &info);
1969 }
1970
1971 void ptrace_notify(int exit_code)
1972 {
1973 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1974 if (unlikely(current->task_works))
1975 task_work_run();
1976
1977 spin_lock_irq(&current->sighand->siglock);
1978 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1979 spin_unlock_irq(&current->sighand->siglock);
1980 }
1981
1982 /**
1983 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1984 * @signr: signr causing group stop if initiating
1985 *
1986 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1987 * and participate in it. If already set, participate in the existing
1988 * group stop. If participated in a group stop (and thus slept), %true is
1989 * returned with siglock released.
1990 *
1991 * If ptraced, this function doesn't handle stop itself. Instead,
1992 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1993 * untouched. The caller must ensure that INTERRUPT trap handling takes
1994 * places afterwards.
1995 *
1996 * CONTEXT:
1997 * Must be called with @current->sighand->siglock held, which is released
1998 * on %true return.
1999 *
2000 * RETURNS:
2001 * %false if group stop is already cancelled or ptrace trap is scheduled.
2002 * %true if participated in group stop.
2003 */
2004 static bool do_signal_stop(int signr)
2005 __releases(&current->sighand->siglock)
2006 {
2007 struct signal_struct *sig = current->signal;
2008
2009 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2010 unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2011 struct task_struct *t;
2012
2013 /* signr will be recorded in task->jobctl for retries */
2014 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2015
2016 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2017 unlikely(signal_group_exit(sig)))
2018 return false;
2019 /*
2020 * There is no group stop already in progress. We must
2021 * initiate one now.
2022 *
2023 * While ptraced, a task may be resumed while group stop is
2024 * still in effect and then receive a stop signal and
2025 * initiate another group stop. This deviates from the
2026 * usual behavior as two consecutive stop signals can't
2027 * cause two group stops when !ptraced. That is why we
2028 * also check !task_is_stopped(t) below.
2029 *
2030 * The condition can be distinguished by testing whether
2031 * SIGNAL_STOP_STOPPED is already set. Don't generate
2032 * group_exit_code in such case.
2033 *
2034 * This is not necessary for SIGNAL_STOP_CONTINUED because
2035 * an intervening stop signal is required to cause two
2036 * continued events regardless of ptrace.
2037 */
2038 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2039 sig->group_exit_code = signr;
2040
2041 sig->group_stop_count = 0;
2042
2043 if (task_set_jobctl_pending(current, signr | gstop))
2044 sig->group_stop_count++;
2045
2046 for (t = next_thread(current); t != current;
2047 t = next_thread(t)) {
2048 /*
2049 * Setting state to TASK_STOPPED for a group
2050 * stop is always done with the siglock held,
2051 * so this check has no races.
2052 */
2053 if (!task_is_stopped(t) &&
2054 task_set_jobctl_pending(t, signr | gstop)) {
2055 sig->group_stop_count++;
2056 if (likely(!(t->ptrace & PT_SEIZED)))
2057 signal_wake_up(t, 0);
2058 else
2059 ptrace_trap_notify(t);
2060 }
2061 }
2062 }
2063
2064 if (likely(!current->ptrace)) {
2065 int notify = 0;
2066
2067 /*
2068 * If there are no other threads in the group, or if there
2069 * is a group stop in progress and we are the last to stop,
2070 * report to the parent.
2071 */
2072 if (task_participate_group_stop(current))
2073 notify = CLD_STOPPED;
2074
2075 __set_current_state(TASK_STOPPED);
2076 spin_unlock_irq(&current->sighand->siglock);
2077
2078 /*
2079 * Notify the parent of the group stop completion. Because
2080 * we're not holding either the siglock or tasklist_lock
2081 * here, ptracer may attach inbetween; however, this is for
2082 * group stop and should always be delivered to the real
2083 * parent of the group leader. The new ptracer will get
2084 * its notification when this task transitions into
2085 * TASK_TRACED.
2086 */
2087 if (notify) {
2088 read_lock(&tasklist_lock);
2089 do_notify_parent_cldstop(current, false, notify);
2090 read_unlock(&tasklist_lock);
2091 }
2092
2093 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2094 schedule();
2095 return true;
2096 } else {
2097 /*
2098 * While ptraced, group stop is handled by STOP trap.
2099 * Schedule it and let the caller deal with it.
2100 */
2101 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2102 return false;
2103 }
2104 }
2105
2106 /**
2107 * do_jobctl_trap - take care of ptrace jobctl traps
2108 *
2109 * When PT_SEIZED, it's used for both group stop and explicit
2110 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2111 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2112 * the stop signal; otherwise, %SIGTRAP.
2113 *
2114 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2115 * number as exit_code and no siginfo.
2116 *
2117 * CONTEXT:
2118 * Must be called with @current->sighand->siglock held, which may be
2119 * released and re-acquired before returning with intervening sleep.
2120 */
2121 static void do_jobctl_trap(void)
2122 {
2123 struct signal_struct *signal = current->signal;
2124 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2125
2126 if (current->ptrace & PT_SEIZED) {
2127 if (!signal->group_stop_count &&
2128 !(signal->flags & SIGNAL_STOP_STOPPED))
2129 signr = SIGTRAP;
2130 WARN_ON_ONCE(!signr);
2131 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2132 CLD_STOPPED);
2133 } else {
2134 WARN_ON_ONCE(!signr);
2135 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2136 current->exit_code = 0;
2137 }
2138 }
2139
2140 static int ptrace_signal(int signr, siginfo_t *info,
2141 struct pt_regs *regs, void *cookie)
2142 {
2143 ptrace_signal_deliver(regs, cookie);
2144 /*
2145 * We do not check sig_kernel_stop(signr) but set this marker
2146 * unconditionally because we do not know whether debugger will
2147 * change signr. This flag has no meaning unless we are going
2148 * to stop after return from ptrace_stop(). In this case it will
2149 * be checked in do_signal_stop(), we should only stop if it was
2150 * not cleared by SIGCONT while we were sleeping. See also the
2151 * comment in dequeue_signal().
2152 */
2153 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2154 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2155
2156 /* We're back. Did the debugger cancel the sig? */
2157 signr = current->exit_code;
2158 if (signr == 0)
2159 return signr;
2160
2161 current->exit_code = 0;
2162
2163 /*
2164 * Update the siginfo structure if the signal has
2165 * changed. If the debugger wanted something
2166 * specific in the siginfo structure then it should
2167 * have updated *info via PTRACE_SETSIGINFO.
2168 */
2169 if (signr != info->si_signo) {
2170 info->si_signo = signr;
2171 info->si_errno = 0;
2172 info->si_code = SI_USER;
2173 rcu_read_lock();
2174 info->si_pid = task_pid_vnr(current->parent);
2175 info->si_uid = from_kuid_munged(current_user_ns(),
2176 task_uid(current->parent));
2177 rcu_read_unlock();
2178 }
2179
2180 /* If the (new) signal is now blocked, requeue it. */
2181 if (sigismember(&current->blocked, signr)) {
2182 specific_send_sig_info(signr, info, current);
2183 signr = 0;
2184 }
2185
2186 return signr;
2187 }
2188
2189 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2190 struct pt_regs *regs, void *cookie)
2191 {
2192 struct sighand_struct *sighand = current->sighand;
2193 struct signal_struct *signal = current->signal;
2194 int signr;
2195
2196 if (unlikely(current->task_works))
2197 task_work_run();
2198
2199 if (unlikely(uprobe_deny_signal()))
2200 return 0;
2201
2202 relock:
2203 /*
2204 * We'll jump back here after any time we were stopped in TASK_STOPPED.
2205 * While in TASK_STOPPED, we were considered "frozen enough".
2206 * Now that we woke up, it's crucial if we're supposed to be
2207 * frozen that we freeze now before running anything substantial.
2208 */
2209 try_to_freeze();
2210
2211 spin_lock_irq(&sighand->siglock);
2212 /*
2213 * Every stopped thread goes here after wakeup. Check to see if
2214 * we should notify the parent, prepare_signal(SIGCONT) encodes
2215 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2216 */
2217 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2218 int why;
2219
2220 if (signal->flags & SIGNAL_CLD_CONTINUED)
2221 why = CLD_CONTINUED;
2222 else
2223 why = CLD_STOPPED;
2224
2225 signal->flags &= ~SIGNAL_CLD_MASK;
2226
2227 spin_unlock_irq(&sighand->siglock);
2228
2229 /*
2230 * Notify the parent that we're continuing. This event is
2231 * always per-process and doesn't make whole lot of sense
2232 * for ptracers, who shouldn't consume the state via
2233 * wait(2) either, but, for backward compatibility, notify
2234 * the ptracer of the group leader too unless it's gonna be
2235 * a duplicate.
2236 */
2237 read_lock(&tasklist_lock);
2238 do_notify_parent_cldstop(current, false, why);
2239
2240 if (ptrace_reparented(current->group_leader))
2241 do_notify_parent_cldstop(current->group_leader,
2242 true, why);
2243 read_unlock(&tasklist_lock);
2244
2245 goto relock;
2246 }
2247
2248 for (;;) {
2249 struct k_sigaction *ka;
2250
2251 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2252 do_signal_stop(0))
2253 goto relock;
2254
2255 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2256 do_jobctl_trap();
2257 spin_unlock_irq(&sighand->siglock);
2258 goto relock;
2259 }
2260
2261 signr = dequeue_signal(current, &current->blocked, info);
2262
2263 if (!signr)
2264 break; /* will return 0 */
2265
2266 if (unlikely(current->ptrace) && signr != SIGKILL) {
2267 signr = ptrace_signal(signr, info,
2268 regs, cookie);
2269 if (!signr)
2270 continue;
2271 }
2272
2273 ka = &sighand->action[signr-1];
2274
2275 /* Trace actually delivered signals. */
2276 trace_signal_deliver(signr, info, ka);
2277
2278 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2279 continue;
2280 if (ka->sa.sa_handler != SIG_DFL) {
2281 /* Run the handler. */
2282 *return_ka = *ka;
2283
2284 if (ka->sa.sa_flags & SA_ONESHOT)
2285 ka->sa.sa_handler = SIG_DFL;
2286
2287 break; /* will return non-zero "signr" value */
2288 }
2289
2290 /*
2291 * Now we are doing the default action for this signal.
2292 */
2293 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2294 continue;
2295
2296 /*
2297 * Global init gets no signals it doesn't want.
2298 * Container-init gets no signals it doesn't want from same
2299 * container.
2300 *
2301 * Note that if global/container-init sees a sig_kernel_only()
2302 * signal here, the signal must have been generated internally
2303 * or must have come from an ancestor namespace. In either
2304 * case, the signal cannot be dropped.
2305 */
2306 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2307 !sig_kernel_only(signr))
2308 continue;
2309
2310 if (sig_kernel_stop(signr)) {
2311 /*
2312 * The default action is to stop all threads in
2313 * the thread group. The job control signals
2314 * do nothing in an orphaned pgrp, but SIGSTOP
2315 * always works. Note that siglock needs to be
2316 * dropped during the call to is_orphaned_pgrp()
2317 * because of lock ordering with tasklist_lock.
2318 * This allows an intervening SIGCONT to be posted.
2319 * We need to check for that and bail out if necessary.
2320 */
2321 if (signr != SIGSTOP) {
2322 spin_unlock_irq(&sighand->siglock);
2323
2324 /* signals can be posted during this window */
2325
2326 if (is_current_pgrp_orphaned())
2327 goto relock;
2328
2329 spin_lock_irq(&sighand->siglock);
2330 }
2331
2332 if (likely(do_signal_stop(info->si_signo))) {
2333 /* It released the siglock. */
2334 goto relock;
2335 }
2336
2337 /*
2338 * We didn't actually stop, due to a race
2339 * with SIGCONT or something like that.
2340 */
2341 continue;
2342 }
2343
2344 spin_unlock_irq(&sighand->siglock);
2345
2346 /*
2347 * Anything else is fatal, maybe with a core dump.
2348 */
2349 current->flags |= PF_SIGNALED;
2350
2351 if (sig_kernel_coredump(signr)) {
2352 if (print_fatal_signals)
2353 print_fatal_signal(regs, info->si_signo);
2354 /*
2355 * If it was able to dump core, this kills all
2356 * other threads in the group and synchronizes with
2357 * their demise. If we lost the race with another
2358 * thread getting here, it set group_exit_code
2359 * first and our do_group_exit call below will use
2360 * that value and ignore the one we pass it.
2361 */
2362 do_coredump(info->si_signo, info->si_signo, regs);
2363 }
2364
2365 /*
2366 * Death signals, no core dump.
2367 */
2368 do_group_exit(info->si_signo);
2369 /* NOTREACHED */
2370 }
2371 spin_unlock_irq(&sighand->siglock);
2372 return signr;
2373 }
2374
2375 /**
2376 * signal_delivered -
2377 * @sig: number of signal being delivered
2378 * @info: siginfo_t of signal being delivered
2379 * @ka: sigaction setting that chose the handler
2380 * @regs: user register state
2381 * @stepping: nonzero if debugger single-step or block-step in use
2382 *
2383 * This function should be called when a signal has succesfully been
2384 * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask
2385 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2386 * is set in @ka->sa.sa_flags. Tracing is notified.
2387 */
2388 void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka,
2389 struct pt_regs *regs, int stepping)
2390 {
2391 sigset_t blocked;
2392
2393 /* A signal was successfully delivered, and the
2394 saved sigmask was stored on the signal frame,
2395 and will be restored by sigreturn. So we can
2396 simply clear the restore sigmask flag. */
2397 clear_restore_sigmask();
2398
2399 sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
2400 if (!(ka->sa.sa_flags & SA_NODEFER))
2401 sigaddset(&blocked, sig);
2402 set_current_blocked(&blocked);
2403 tracehook_signal_handler(sig, info, ka, regs, stepping);
2404 }
2405
2406 /*
2407 * It could be that complete_signal() picked us to notify about the
2408 * group-wide signal. Other threads should be notified now to take
2409 * the shared signals in @which since we will not.
2410 */
2411 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2412 {
2413 sigset_t retarget;
2414 struct task_struct *t;
2415
2416 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2417 if (sigisemptyset(&retarget))
2418 return;
2419
2420 t = tsk;
2421 while_each_thread(tsk, t) {
2422 if (t->flags & PF_EXITING)
2423 continue;
2424
2425 if (!has_pending_signals(&retarget, &t->blocked))
2426 continue;
2427 /* Remove the signals this thread can handle. */
2428 sigandsets(&retarget, &retarget, &t->blocked);
2429
2430 if (!signal_pending(t))
2431 signal_wake_up(t, 0);
2432
2433 if (sigisemptyset(&retarget))
2434 break;
2435 }
2436 }
2437
2438 void exit_signals(struct task_struct *tsk)
2439 {
2440 int group_stop = 0;
2441 sigset_t unblocked;
2442
2443 /*
2444 * @tsk is about to have PF_EXITING set - lock out users which
2445 * expect stable threadgroup.
2446 */
2447 threadgroup_change_begin(tsk);
2448
2449 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2450 tsk->flags |= PF_EXITING;
2451 threadgroup_change_end(tsk);
2452 return;
2453 }
2454
2455 spin_lock_irq(&tsk->sighand->siglock);
2456 /*
2457 * From now this task is not visible for group-wide signals,
2458 * see wants_signal(), do_signal_stop().
2459 */
2460 tsk->flags |= PF_EXITING;
2461
2462 threadgroup_change_end(tsk);
2463
2464 if (!signal_pending(tsk))
2465 goto out;
2466
2467 unblocked = tsk->blocked;
2468 signotset(&unblocked);
2469 retarget_shared_pending(tsk, &unblocked);
2470
2471 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2472 task_participate_group_stop(tsk))
2473 group_stop = CLD_STOPPED;
2474 out:
2475 spin_unlock_irq(&tsk->sighand->siglock);
2476
2477 /*
2478 * If group stop has completed, deliver the notification. This
2479 * should always go to the real parent of the group leader.
2480 */
2481 if (unlikely(group_stop)) {
2482 read_lock(&tasklist_lock);
2483 do_notify_parent_cldstop(tsk, false, group_stop);
2484 read_unlock(&tasklist_lock);
2485 }
2486 }
2487
2488 EXPORT_SYMBOL(recalc_sigpending);
2489 EXPORT_SYMBOL_GPL(dequeue_signal);
2490 EXPORT_SYMBOL(flush_signals);
2491 EXPORT_SYMBOL(force_sig);
2492 EXPORT_SYMBOL(send_sig);
2493 EXPORT_SYMBOL(send_sig_info);
2494 EXPORT_SYMBOL(sigprocmask);
2495 EXPORT_SYMBOL(block_all_signals);
2496 EXPORT_SYMBOL(unblock_all_signals);
2497
2498
2499 /*
2500 * System call entry points.
2501 */
2502
2503 /**
2504 * sys_restart_syscall - restart a system call
2505 */
2506 SYSCALL_DEFINE0(restart_syscall)
2507 {
2508 struct restart_block *restart = &current_thread_info()->restart_block;
2509 return restart->fn(restart);
2510 }
2511
2512 long do_no_restart_syscall(struct restart_block *param)
2513 {
2514 return -EINTR;
2515 }
2516
2517 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2518 {
2519 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2520 sigset_t newblocked;
2521 /* A set of now blocked but previously unblocked signals. */
2522 sigandnsets(&newblocked, newset, &current->blocked);
2523 retarget_shared_pending(tsk, &newblocked);
2524 }
2525 tsk->blocked = *newset;
2526 recalc_sigpending();
2527 }
2528
2529 /**
2530 * set_current_blocked - change current->blocked mask
2531 * @newset: new mask
2532 *
2533 * It is wrong to change ->blocked directly, this helper should be used
2534 * to ensure the process can't miss a shared signal we are going to block.
2535 */
2536 void set_current_blocked(sigset_t *newset)
2537 {
2538 struct task_struct *tsk = current;
2539 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2540 spin_lock_irq(&tsk->sighand->siglock);
2541 __set_task_blocked(tsk, newset);
2542 spin_unlock_irq(&tsk->sighand->siglock);
2543 }
2544
2545 void __set_current_blocked(const sigset_t *newset)
2546 {
2547 struct task_struct *tsk = current;
2548
2549 spin_lock_irq(&tsk->sighand->siglock);
2550 __set_task_blocked(tsk, newset);
2551 spin_unlock_irq(&tsk->sighand->siglock);
2552 }
2553
2554 /*
2555 * This is also useful for kernel threads that want to temporarily
2556 * (or permanently) block certain signals.
2557 *
2558 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2559 * interface happily blocks "unblockable" signals like SIGKILL
2560 * and friends.
2561 */
2562 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2563 {
2564 struct task_struct *tsk = current;
2565 sigset_t newset;
2566
2567 /* Lockless, only current can change ->blocked, never from irq */
2568 if (oldset)
2569 *oldset = tsk->blocked;
2570
2571 switch (how) {
2572 case SIG_BLOCK:
2573 sigorsets(&newset, &tsk->blocked, set);
2574 break;
2575 case SIG_UNBLOCK:
2576 sigandnsets(&newset, &tsk->blocked, set);
2577 break;
2578 case SIG_SETMASK:
2579 newset = *set;
2580 break;
2581 default:
2582 return -EINVAL;
2583 }
2584
2585 __set_current_blocked(&newset);
2586 return 0;
2587 }
2588
2589 /**
2590 * sys_rt_sigprocmask - change the list of currently blocked signals
2591 * @how: whether to add, remove, or set signals
2592 * @nset: stores pending signals
2593 * @oset: previous value of signal mask if non-null
2594 * @sigsetsize: size of sigset_t type
2595 */
2596 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2597 sigset_t __user *, oset, size_t, sigsetsize)
2598 {
2599 sigset_t old_set, new_set;
2600 int error;
2601
2602 /* XXX: Don't preclude handling different sized sigset_t's. */
2603 if (sigsetsize != sizeof(sigset_t))
2604 return -EINVAL;
2605
2606 old_set = current->blocked;
2607
2608 if (nset) {
2609 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2610 return -EFAULT;
2611 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2612
2613 error = sigprocmask(how, &new_set, NULL);
2614 if (error)
2615 return error;
2616 }
2617
2618 if (oset) {
2619 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2620 return -EFAULT;
2621 }
2622
2623 return 0;
2624 }
2625
2626 long do_sigpending(void __user *set, unsigned long sigsetsize)
2627 {
2628 long error = -EINVAL;
2629 sigset_t pending;
2630
2631 if (sigsetsize > sizeof(sigset_t))
2632 goto out;
2633
2634 spin_lock_irq(&current->sighand->siglock);
2635 sigorsets(&pending, &current->pending.signal,
2636 &current->signal->shared_pending.signal);
2637 spin_unlock_irq(&current->sighand->siglock);
2638
2639 /* Outside the lock because only this thread touches it. */
2640 sigandsets(&pending, &current->blocked, &pending);
2641
2642 error = -EFAULT;
2643 if (!copy_to_user(set, &pending, sigsetsize))
2644 error = 0;
2645
2646 out:
2647 return error;
2648 }
2649
2650 /**
2651 * sys_rt_sigpending - examine a pending signal that has been raised
2652 * while blocked
2653 * @set: stores pending signals
2654 * @sigsetsize: size of sigset_t type or larger
2655 */
2656 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2657 {
2658 return do_sigpending(set, sigsetsize);
2659 }
2660
2661 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2662
2663 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2664 {
2665 int err;
2666
2667 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2668 return -EFAULT;
2669 if (from->si_code < 0)
2670 return __copy_to_user(to, from, sizeof(siginfo_t))
2671 ? -EFAULT : 0;
2672 /*
2673 * If you change siginfo_t structure, please be sure
2674 * this code is fixed accordingly.
2675 * Please remember to update the signalfd_copyinfo() function
2676 * inside fs/signalfd.c too, in case siginfo_t changes.
2677 * It should never copy any pad contained in the structure
2678 * to avoid security leaks, but must copy the generic
2679 * 3 ints plus the relevant union member.
2680 */
2681 err = __put_user(from->si_signo, &to->si_signo);
2682 err |= __put_user(from->si_errno, &to->si_errno);
2683 err |= __put_user((short)from->si_code, &to->si_code);
2684 switch (from->si_code & __SI_MASK) {
2685 case __SI_KILL:
2686 err |= __put_user(from->si_pid, &to->si_pid);
2687 err |= __put_user(from->si_uid, &to->si_uid);
2688 break;
2689 case __SI_TIMER:
2690 err |= __put_user(from->si_tid, &to->si_tid);
2691 err |= __put_user(from->si_overrun, &to->si_overrun);
2692 err |= __put_user(from->si_ptr, &to->si_ptr);
2693 break;
2694 case __SI_POLL:
2695 err |= __put_user(from->si_band, &to->si_band);
2696 err |= __put_user(from->si_fd, &to->si_fd);
2697 break;
2698 case __SI_FAULT:
2699 err |= __put_user(from->si_addr, &to->si_addr);
2700 #ifdef __ARCH_SI_TRAPNO
2701 err |= __put_user(from->si_trapno, &to->si_trapno);
2702 #endif
2703 #ifdef BUS_MCEERR_AO
2704 /*
2705 * Other callers might not initialize the si_lsb field,
2706 * so check explicitly for the right codes here.
2707 */
2708 if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2709 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2710 #endif
2711 break;
2712 case __SI_CHLD:
2713 err |= __put_user(from->si_pid, &to->si_pid);
2714 err |= __put_user(from->si_uid, &to->si_uid);
2715 err |= __put_user(from->si_status, &to->si_status);
2716 err |= __put_user(from->si_utime, &to->si_utime);
2717 err |= __put_user(from->si_stime, &to->si_stime);
2718 break;
2719 case __SI_RT: /* This is not generated by the kernel as of now. */
2720 case __SI_MESGQ: /* But this is */
2721 err |= __put_user(from->si_pid, &to->si_pid);
2722 err |= __put_user(from->si_uid, &to->si_uid);
2723 err |= __put_user(from->si_ptr, &to->si_ptr);
2724 break;
2725 #ifdef __ARCH_SIGSYS
2726 case __SI_SYS:
2727 err |= __put_user(from->si_call_addr, &to->si_call_addr);
2728 err |= __put_user(from->si_syscall, &to->si_syscall);
2729 err |= __put_user(from->si_arch, &to->si_arch);
2730 break;
2731 #endif
2732 default: /* this is just in case for now ... */
2733 err |= __put_user(from->si_pid, &to->si_pid);
2734 err |= __put_user(from->si_uid, &to->si_uid);
2735 break;
2736 }
2737 return err;
2738 }
2739
2740 #endif
2741
2742 /**
2743 * do_sigtimedwait - wait for queued signals specified in @which
2744 * @which: queued signals to wait for
2745 * @info: if non-null, the signal's siginfo is returned here
2746 * @ts: upper bound on process time suspension
2747 */
2748 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2749 const struct timespec *ts)
2750 {
2751 struct task_struct *tsk = current;
2752 long timeout = MAX_SCHEDULE_TIMEOUT;
2753 sigset_t mask = *which;
2754 int sig;
2755
2756 if (ts) {
2757 if (!timespec_valid(ts))
2758 return -EINVAL;
2759 timeout = timespec_to_jiffies(ts);
2760 /*
2761 * We can be close to the next tick, add another one
2762 * to ensure we will wait at least the time asked for.
2763 */
2764 if (ts->tv_sec || ts->tv_nsec)
2765 timeout++;
2766 }
2767
2768 /*
2769 * Invert the set of allowed signals to get those we want to block.
2770 */
2771 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2772 signotset(&mask);
2773
2774 spin_lock_irq(&tsk->sighand->siglock);
2775 sig = dequeue_signal(tsk, &mask, info);
2776 if (!sig && timeout) {
2777 /*
2778 * None ready, temporarily unblock those we're interested
2779 * while we are sleeping in so that we'll be awakened when
2780 * they arrive. Unblocking is always fine, we can avoid
2781 * set_current_blocked().
2782 */
2783 tsk->real_blocked = tsk->blocked;
2784 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2785 recalc_sigpending();
2786 spin_unlock_irq(&tsk->sighand->siglock);
2787
2788 timeout = schedule_timeout_interruptible(timeout);
2789
2790 spin_lock_irq(&tsk->sighand->siglock);
2791 __set_task_blocked(tsk, &tsk->real_blocked);
2792 siginitset(&tsk->real_blocked, 0);
2793 sig = dequeue_signal(tsk, &mask, info);
2794 }
2795 spin_unlock_irq(&tsk->sighand->siglock);
2796
2797 if (sig)
2798 return sig;
2799 return timeout ? -EINTR : -EAGAIN;
2800 }
2801
2802 /**
2803 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
2804 * in @uthese
2805 * @uthese: queued signals to wait for
2806 * @uinfo: if non-null, the signal's siginfo is returned here
2807 * @uts: upper bound on process time suspension
2808 * @sigsetsize: size of sigset_t type
2809 */
2810 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2811 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2812 size_t, sigsetsize)
2813 {
2814 sigset_t these;
2815 struct timespec ts;
2816 siginfo_t info;
2817 int ret;
2818
2819 /* XXX: Don't preclude handling different sized sigset_t's. */
2820 if (sigsetsize != sizeof(sigset_t))
2821 return -EINVAL;
2822
2823 if (copy_from_user(&these, uthese, sizeof(these)))
2824 return -EFAULT;
2825
2826 if (uts) {
2827 if (copy_from_user(&ts, uts, sizeof(ts)))
2828 return -EFAULT;
2829 }
2830
2831 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2832
2833 if (ret > 0 && uinfo) {
2834 if (copy_siginfo_to_user(uinfo, &info))
2835 ret = -EFAULT;
2836 }
2837
2838 return ret;
2839 }
2840
2841 /**
2842 * sys_kill - send a signal to a process
2843 * @pid: the PID of the process
2844 * @sig: signal to be sent
2845 */
2846 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2847 {
2848 struct siginfo info;
2849
2850 info.si_signo = sig;
2851 info.si_errno = 0;
2852 info.si_code = SI_USER;
2853 info.si_pid = task_tgid_vnr(current);
2854 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2855
2856 return kill_something_info(sig, &info, pid);
2857 }
2858
2859 static int
2860 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2861 {
2862 struct task_struct *p;
2863 int error = -ESRCH;
2864
2865 rcu_read_lock();
2866 p = find_task_by_vpid(pid);
2867 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2868 error = check_kill_permission(sig, info, p);
2869 /*
2870 * The null signal is a permissions and process existence
2871 * probe. No signal is actually delivered.
2872 */
2873 if (!error && sig) {
2874 error = do_send_sig_info(sig, info, p, false);
2875 /*
2876 * If lock_task_sighand() failed we pretend the task
2877 * dies after receiving the signal. The window is tiny,
2878 * and the signal is private anyway.
2879 */
2880 if (unlikely(error == -ESRCH))
2881 error = 0;
2882 }
2883 }
2884 rcu_read_unlock();
2885
2886 return error;
2887 }
2888
2889 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2890 {
2891 struct siginfo info;
2892
2893 info.si_signo = sig;
2894 info.si_errno = 0;
2895 info.si_code = SI_TKILL;
2896 info.si_pid = task_tgid_vnr(current);
2897 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2898
2899 return do_send_specific(tgid, pid, sig, &info);
2900 }
2901
2902 /**
2903 * sys_tgkill - send signal to one specific thread
2904 * @tgid: the thread group ID of the thread
2905 * @pid: the PID of the thread
2906 * @sig: signal to be sent
2907 *
2908 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2909 * exists but it's not belonging to the target process anymore. This
2910 * method solves the problem of threads exiting and PIDs getting reused.
2911 */
2912 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2913 {
2914 /* This is only valid for single tasks */
2915 if (pid <= 0 || tgid <= 0)
2916 return -EINVAL;
2917
2918 return do_tkill(tgid, pid, sig);
2919 }
2920
2921 /**
2922 * sys_tkill - send signal to one specific task
2923 * @pid: the PID of the task
2924 * @sig: signal to be sent
2925 *
2926 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2927 */
2928 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2929 {
2930 /* This is only valid for single tasks */
2931 if (pid <= 0)
2932 return -EINVAL;
2933
2934 return do_tkill(0, pid, sig);
2935 }
2936
2937 /**
2938 * sys_rt_sigqueueinfo - send signal information to a signal
2939 * @pid: the PID of the thread
2940 * @sig: signal to be sent
2941 * @uinfo: signal info to be sent
2942 */
2943 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2944 siginfo_t __user *, uinfo)
2945 {
2946 siginfo_t info;
2947
2948 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2949 return -EFAULT;
2950
2951 /* Not even root can pretend to send signals from the kernel.
2952 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2953 */
2954 if (info.si_code >= 0 || info.si_code == SI_TKILL) {
2955 /* We used to allow any < 0 si_code */
2956 WARN_ON_ONCE(info.si_code < 0);
2957 return -EPERM;
2958 }
2959 info.si_signo = sig;
2960
2961 /* POSIX.1b doesn't mention process groups. */
2962 return kill_proc_info(sig, &info, pid);
2963 }
2964
2965 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2966 {
2967 /* This is only valid for single tasks */
2968 if (pid <= 0 || tgid <= 0)
2969 return -EINVAL;
2970
2971 /* Not even root can pretend to send signals from the kernel.
2972 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2973 */
2974 if (info->si_code >= 0 || info->si_code == SI_TKILL) {
2975 /* We used to allow any < 0 si_code */
2976 WARN_ON_ONCE(info->si_code < 0);
2977 return -EPERM;
2978 }
2979 info->si_signo = sig;
2980
2981 return do_send_specific(tgid, pid, sig, info);
2982 }
2983
2984 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2985 siginfo_t __user *, uinfo)
2986 {
2987 siginfo_t info;
2988
2989 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2990 return -EFAULT;
2991
2992 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2993 }
2994
2995 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2996 {
2997 struct task_struct *t = current;
2998 struct k_sigaction *k;
2999 sigset_t mask;
3000
3001 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3002 return -EINVAL;
3003
3004 k = &t->sighand->action[sig-1];
3005
3006 spin_lock_irq(&current->sighand->siglock);
3007 if (oact)
3008 *oact = *k;
3009
3010 if (act) {
3011 sigdelsetmask(&act->sa.sa_mask,
3012 sigmask(SIGKILL) | sigmask(SIGSTOP));
3013 *k = *act;
3014 /*
3015 * POSIX 3.3.1.3:
3016 * "Setting a signal action to SIG_IGN for a signal that is
3017 * pending shall cause the pending signal to be discarded,
3018 * whether or not it is blocked."
3019 *
3020 * "Setting a signal action to SIG_DFL for a signal that is
3021 * pending and whose default action is to ignore the signal
3022 * (for example, SIGCHLD), shall cause the pending signal to
3023 * be discarded, whether or not it is blocked"
3024 */
3025 if (sig_handler_ignored(sig_handler(t, sig), sig)) {
3026 sigemptyset(&mask);
3027 sigaddset(&mask, sig);
3028 rm_from_queue_full(&mask, &t->signal->shared_pending);
3029 do {
3030 rm_from_queue_full(&mask, &t->pending);
3031 t = next_thread(t);
3032 } while (t != current);
3033 }
3034 }
3035
3036 spin_unlock_irq(&current->sighand->siglock);
3037 return 0;
3038 }
3039
3040 int
3041 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3042 {
3043 stack_t oss;
3044 int error;
3045
3046 oss.ss_sp = (void __user *) current->sas_ss_sp;
3047 oss.ss_size = current->sas_ss_size;
3048 oss.ss_flags = sas_ss_flags(sp);
3049
3050 if (uss) {
3051 void __user *ss_sp;
3052 size_t ss_size;
3053 int ss_flags;
3054
3055 error = -EFAULT;
3056 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3057 goto out;
3058 error = __get_user(ss_sp, &uss->ss_sp) |
3059 __get_user(ss_flags, &uss->ss_flags) |
3060 __get_user(ss_size, &uss->ss_size);
3061 if (error)
3062 goto out;
3063
3064 error = -EPERM;
3065 if (on_sig_stack(sp))
3066 goto out;
3067
3068 error = -EINVAL;
3069 /*
3070 * Note - this code used to test ss_flags incorrectly:
3071 * old code may have been written using ss_flags==0
3072 * to mean ss_flags==SS_ONSTACK (as this was the only
3073 * way that worked) - this fix preserves that older
3074 * mechanism.
3075 */
3076 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3077 goto out;
3078
3079 if (ss_flags == SS_DISABLE) {
3080 ss_size = 0;
3081 ss_sp = NULL;
3082 } else {
3083 error = -ENOMEM;
3084 if (ss_size < MINSIGSTKSZ)
3085 goto out;
3086 }
3087
3088 current->sas_ss_sp = (unsigned long) ss_sp;
3089 current->sas_ss_size = ss_size;
3090 }
3091
3092 error = 0;
3093 if (uoss) {
3094 error = -EFAULT;
3095 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3096 goto out;
3097 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3098 __put_user(oss.ss_size, &uoss->ss_size) |
3099 __put_user(oss.ss_flags, &uoss->ss_flags);
3100 }
3101
3102 out:
3103 return error;
3104 }
3105
3106 #ifdef __ARCH_WANT_SYS_SIGPENDING
3107
3108 /**
3109 * sys_sigpending - examine pending signals
3110 * @set: where mask of pending signal is returned
3111 */
3112 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3113 {
3114 return do_sigpending(set, sizeof(*set));
3115 }
3116
3117 #endif
3118
3119 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3120 /**
3121 * sys_sigprocmask - examine and change blocked signals
3122 * @how: whether to add, remove, or set signals
3123 * @nset: signals to add or remove (if non-null)
3124 * @oset: previous value of signal mask if non-null
3125 *
3126 * Some platforms have their own version with special arguments;
3127 * others support only sys_rt_sigprocmask.
3128 */
3129
3130 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3131 old_sigset_t __user *, oset)
3132 {
3133 old_sigset_t old_set, new_set;
3134 sigset_t new_blocked;
3135
3136 old_set = current->blocked.sig[0];
3137
3138 if (nset) {
3139 if (copy_from_user(&new_set, nset, sizeof(*nset)))
3140 return -EFAULT;
3141 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
3142
3143 new_blocked = current->blocked;
3144
3145 switch (how) {
3146 case SIG_BLOCK:
3147 sigaddsetmask(&new_blocked, new_set);
3148 break;
3149 case SIG_UNBLOCK:
3150 sigdelsetmask(&new_blocked, new_set);
3151 break;
3152 case SIG_SETMASK:
3153 new_blocked.sig[0] = new_set;
3154 break;
3155 default:
3156 return -EINVAL;
3157 }
3158
3159 __set_current_blocked(&new_blocked);
3160 }
3161
3162 if (oset) {
3163 if (copy_to_user(oset, &old_set, sizeof(*oset)))
3164 return -EFAULT;
3165 }
3166
3167 return 0;
3168 }
3169 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3170
3171 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
3172 /**
3173 * sys_rt_sigaction - alter an action taken by a process
3174 * @sig: signal to be sent
3175 * @act: new sigaction
3176 * @oact: used to save the previous sigaction
3177 * @sigsetsize: size of sigset_t type
3178 */
3179 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3180 const struct sigaction __user *, act,
3181 struct sigaction __user *, oact,
3182 size_t, sigsetsize)
3183 {
3184 struct k_sigaction new_sa, old_sa;
3185 int ret = -EINVAL;
3186
3187 /* XXX: Don't preclude handling different sized sigset_t's. */
3188 if (sigsetsize != sizeof(sigset_t))
3189 goto out;
3190
3191 if (act) {
3192 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3193 return -EFAULT;
3194 }
3195
3196 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3197
3198 if (!ret && oact) {
3199 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3200 return -EFAULT;
3201 }
3202 out:
3203 return ret;
3204 }
3205 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
3206
3207 #ifdef __ARCH_WANT_SYS_SGETMASK
3208
3209 /*
3210 * For backwards compatibility. Functionality superseded by sigprocmask.
3211 */
3212 SYSCALL_DEFINE0(sgetmask)
3213 {
3214 /* SMP safe */
3215 return current->blocked.sig[0];
3216 }
3217
3218 SYSCALL_DEFINE1(ssetmask, int, newmask)
3219 {
3220 int old = current->blocked.sig[0];
3221 sigset_t newset;
3222
3223 set_current_blocked(&newset);
3224
3225 return old;
3226 }
3227 #endif /* __ARCH_WANT_SGETMASK */
3228
3229 #ifdef __ARCH_WANT_SYS_SIGNAL
3230 /*
3231 * For backwards compatibility. Functionality superseded by sigaction.
3232 */
3233 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3234 {
3235 struct k_sigaction new_sa, old_sa;
3236 int ret;
3237
3238 new_sa.sa.sa_handler = handler;
3239 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3240 sigemptyset(&new_sa.sa.sa_mask);
3241
3242 ret = do_sigaction(sig, &new_sa, &old_sa);
3243
3244 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3245 }
3246 #endif /* __ARCH_WANT_SYS_SIGNAL */
3247
3248 #ifdef __ARCH_WANT_SYS_PAUSE
3249
3250 SYSCALL_DEFINE0(pause)
3251 {
3252 while (!signal_pending(current)) {
3253 current->state = TASK_INTERRUPTIBLE;
3254 schedule();
3255 }
3256 return -ERESTARTNOHAND;
3257 }
3258
3259 #endif
3260
3261 int sigsuspend(sigset_t *set)
3262 {
3263 current->saved_sigmask = current->blocked;
3264 set_current_blocked(set);
3265
3266 current->state = TASK_INTERRUPTIBLE;
3267 schedule();
3268 set_restore_sigmask();
3269 return -ERESTARTNOHAND;
3270 }
3271
3272 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
3273 /**
3274 * sys_rt_sigsuspend - replace the signal mask for a value with the
3275 * @unewset value until a signal is received
3276 * @unewset: new signal mask value
3277 * @sigsetsize: size of sigset_t type
3278 */
3279 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3280 {
3281 sigset_t newset;
3282
3283 /* XXX: Don't preclude handling different sized sigset_t's. */
3284 if (sigsetsize != sizeof(sigset_t))
3285 return -EINVAL;
3286
3287 if (copy_from_user(&newset, unewset, sizeof(newset)))
3288 return -EFAULT;
3289 return sigsuspend(&newset);
3290 }
3291 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
3292
3293 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3294 {
3295 return NULL;
3296 }
3297
3298 void __init signals_init(void)
3299 {
3300 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3301 }
3302
3303 #ifdef CONFIG_KGDB_KDB
3304 #include <linux/kdb.h>
3305 /*
3306 * kdb_send_sig_info - Allows kdb to send signals without exposing
3307 * signal internals. This function checks if the required locks are
3308 * available before calling the main signal code, to avoid kdb
3309 * deadlocks.
3310 */
3311 void
3312 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3313 {
3314 static struct task_struct *kdb_prev_t;
3315 int sig, new_t;
3316 if (!spin_trylock(&t->sighand->siglock)) {
3317 kdb_printf("Can't do kill command now.\n"
3318 "The sigmask lock is held somewhere else in "
3319 "kernel, try again later\n");
3320 return;
3321 }
3322 spin_unlock(&t->sighand->siglock);
3323 new_t = kdb_prev_t != t;
3324 kdb_prev_t = t;
3325 if (t->state != TASK_RUNNING && new_t) {
3326 kdb_printf("Process is not RUNNING, sending a signal from "
3327 "kdb risks deadlock\n"
3328 "on the run queue locks. "
3329 "The signal has _not_ been sent.\n"
3330 "Reissue the kill command if you want to risk "
3331 "the deadlock.\n");
3332 return;
3333 }
3334 sig = info->si_signo;
3335 if (send_sig_info(sig, info, t))
3336 kdb_printf("Fail to deliver Signal %d to process %d.\n",
3337 sig, t->pid);
3338 else
3339 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3340 }
3341 #endif /* CONFIG_KGDB_KDB */