]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/signal.c
Merge tag 'for-v4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/sre/linux...
[mirror_ubuntu-jammy-kernel.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/user.h>
18 #include <linux/sched/debug.h>
19 #include <linux/sched/task.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/sched/cputime.h>
22 #include <linux/fs.h>
23 #include <linux/tty.h>
24 #include <linux/binfmts.h>
25 #include <linux/coredump.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/ptrace.h>
29 #include <linux/signal.h>
30 #include <linux/signalfd.h>
31 #include <linux/ratelimit.h>
32 #include <linux/tracehook.h>
33 #include <linux/capability.h>
34 #include <linux/freezer.h>
35 #include <linux/pid_namespace.h>
36 #include <linux/nsproxy.h>
37 #include <linux/user_namespace.h>
38 #include <linux/uprobes.h>
39 #include <linux/compat.h>
40 #include <linux/cn_proc.h>
41 #include <linux/compiler.h>
42 #include <linux/posix-timers.h>
43 #include <linux/livepatch.h>
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/signal.h>
47
48 #include <asm/param.h>
49 #include <linux/uaccess.h>
50 #include <asm/unistd.h>
51 #include <asm/siginfo.h>
52 #include <asm/cacheflush.h>
53 #include "audit.h" /* audit_signal_info() */
54
55 /*
56 * SLAB caches for signal bits.
57 */
58
59 static struct kmem_cache *sigqueue_cachep;
60
61 int print_fatal_signals __read_mostly;
62
63 static void __user *sig_handler(struct task_struct *t, int sig)
64 {
65 return t->sighand->action[sig - 1].sa.sa_handler;
66 }
67
68 static int sig_handler_ignored(void __user *handler, int sig)
69 {
70 /* Is it explicitly or implicitly ignored? */
71 return handler == SIG_IGN ||
72 (handler == SIG_DFL && sig_kernel_ignore(sig));
73 }
74
75 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
76 {
77 void __user *handler;
78
79 handler = sig_handler(t, sig);
80
81 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
82 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
83 return 1;
84
85 return sig_handler_ignored(handler, sig);
86 }
87
88 static int sig_ignored(struct task_struct *t, int sig, bool force)
89 {
90 /*
91 * Blocked signals are never ignored, since the
92 * signal handler may change by the time it is
93 * unblocked.
94 */
95 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
96 return 0;
97
98 /*
99 * Tracers may want to know about even ignored signal unless it
100 * is SIGKILL which can't be reported anyway but can be ignored
101 * by SIGNAL_UNKILLABLE task.
102 */
103 if (t->ptrace && sig != SIGKILL)
104 return 0;
105
106 return sig_task_ignored(t, sig, force);
107 }
108
109 /*
110 * Re-calculate pending state from the set of locally pending
111 * signals, globally pending signals, and blocked signals.
112 */
113 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
114 {
115 unsigned long ready;
116 long i;
117
118 switch (_NSIG_WORDS) {
119 default:
120 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
121 ready |= signal->sig[i] &~ blocked->sig[i];
122 break;
123
124 case 4: ready = signal->sig[3] &~ blocked->sig[3];
125 ready |= signal->sig[2] &~ blocked->sig[2];
126 ready |= signal->sig[1] &~ blocked->sig[1];
127 ready |= signal->sig[0] &~ blocked->sig[0];
128 break;
129
130 case 2: ready = signal->sig[1] &~ blocked->sig[1];
131 ready |= signal->sig[0] &~ blocked->sig[0];
132 break;
133
134 case 1: ready = signal->sig[0] &~ blocked->sig[0];
135 }
136 return ready != 0;
137 }
138
139 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
140
141 static int recalc_sigpending_tsk(struct task_struct *t)
142 {
143 if ((t->jobctl & JOBCTL_PENDING_MASK) ||
144 PENDING(&t->pending, &t->blocked) ||
145 PENDING(&t->signal->shared_pending, &t->blocked)) {
146 set_tsk_thread_flag(t, TIF_SIGPENDING);
147 return 1;
148 }
149 /*
150 * We must never clear the flag in another thread, or in current
151 * when it's possible the current syscall is returning -ERESTART*.
152 * So we don't clear it here, and only callers who know they should do.
153 */
154 return 0;
155 }
156
157 /*
158 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
159 * This is superfluous when called on current, the wakeup is a harmless no-op.
160 */
161 void recalc_sigpending_and_wake(struct task_struct *t)
162 {
163 if (recalc_sigpending_tsk(t))
164 signal_wake_up(t, 0);
165 }
166
167 void recalc_sigpending(void)
168 {
169 if (!recalc_sigpending_tsk(current) && !freezing(current) &&
170 !klp_patch_pending(current))
171 clear_thread_flag(TIF_SIGPENDING);
172
173 }
174
175 void calculate_sigpending(void)
176 {
177 /* Have any signals or users of TIF_SIGPENDING been delayed
178 * until after fork?
179 */
180 spin_lock_irq(&current->sighand->siglock);
181 set_tsk_thread_flag(current, TIF_SIGPENDING);
182 recalc_sigpending();
183 spin_unlock_irq(&current->sighand->siglock);
184 }
185
186 /* Given the mask, find the first available signal that should be serviced. */
187
188 #define SYNCHRONOUS_MASK \
189 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
190 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
191
192 int next_signal(struct sigpending *pending, sigset_t *mask)
193 {
194 unsigned long i, *s, *m, x;
195 int sig = 0;
196
197 s = pending->signal.sig;
198 m = mask->sig;
199
200 /*
201 * Handle the first word specially: it contains the
202 * synchronous signals that need to be dequeued first.
203 */
204 x = *s &~ *m;
205 if (x) {
206 if (x & SYNCHRONOUS_MASK)
207 x &= SYNCHRONOUS_MASK;
208 sig = ffz(~x) + 1;
209 return sig;
210 }
211
212 switch (_NSIG_WORDS) {
213 default:
214 for (i = 1; i < _NSIG_WORDS; ++i) {
215 x = *++s &~ *++m;
216 if (!x)
217 continue;
218 sig = ffz(~x) + i*_NSIG_BPW + 1;
219 break;
220 }
221 break;
222
223 case 2:
224 x = s[1] &~ m[1];
225 if (!x)
226 break;
227 sig = ffz(~x) + _NSIG_BPW + 1;
228 break;
229
230 case 1:
231 /* Nothing to do */
232 break;
233 }
234
235 return sig;
236 }
237
238 static inline void print_dropped_signal(int sig)
239 {
240 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
241
242 if (!print_fatal_signals)
243 return;
244
245 if (!__ratelimit(&ratelimit_state))
246 return;
247
248 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
249 current->comm, current->pid, sig);
250 }
251
252 /**
253 * task_set_jobctl_pending - set jobctl pending bits
254 * @task: target task
255 * @mask: pending bits to set
256 *
257 * Clear @mask from @task->jobctl. @mask must be subset of
258 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
259 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
260 * cleared. If @task is already being killed or exiting, this function
261 * becomes noop.
262 *
263 * CONTEXT:
264 * Must be called with @task->sighand->siglock held.
265 *
266 * RETURNS:
267 * %true if @mask is set, %false if made noop because @task was dying.
268 */
269 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
270 {
271 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
272 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
273 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
274
275 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
276 return false;
277
278 if (mask & JOBCTL_STOP_SIGMASK)
279 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
280
281 task->jobctl |= mask;
282 return true;
283 }
284
285 /**
286 * task_clear_jobctl_trapping - clear jobctl trapping bit
287 * @task: target task
288 *
289 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
290 * Clear it and wake up the ptracer. Note that we don't need any further
291 * locking. @task->siglock guarantees that @task->parent points to the
292 * ptracer.
293 *
294 * CONTEXT:
295 * Must be called with @task->sighand->siglock held.
296 */
297 void task_clear_jobctl_trapping(struct task_struct *task)
298 {
299 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
300 task->jobctl &= ~JOBCTL_TRAPPING;
301 smp_mb(); /* advised by wake_up_bit() */
302 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
303 }
304 }
305
306 /**
307 * task_clear_jobctl_pending - clear jobctl pending bits
308 * @task: target task
309 * @mask: pending bits to clear
310 *
311 * Clear @mask from @task->jobctl. @mask must be subset of
312 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
313 * STOP bits are cleared together.
314 *
315 * If clearing of @mask leaves no stop or trap pending, this function calls
316 * task_clear_jobctl_trapping().
317 *
318 * CONTEXT:
319 * Must be called with @task->sighand->siglock held.
320 */
321 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
322 {
323 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
324
325 if (mask & JOBCTL_STOP_PENDING)
326 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
327
328 task->jobctl &= ~mask;
329
330 if (!(task->jobctl & JOBCTL_PENDING_MASK))
331 task_clear_jobctl_trapping(task);
332 }
333
334 /**
335 * task_participate_group_stop - participate in a group stop
336 * @task: task participating in a group stop
337 *
338 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
339 * Group stop states are cleared and the group stop count is consumed if
340 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
341 * stop, the appropriate %SIGNAL_* flags are set.
342 *
343 * CONTEXT:
344 * Must be called with @task->sighand->siglock held.
345 *
346 * RETURNS:
347 * %true if group stop completion should be notified to the parent, %false
348 * otherwise.
349 */
350 static bool task_participate_group_stop(struct task_struct *task)
351 {
352 struct signal_struct *sig = task->signal;
353 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
354
355 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
356
357 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
358
359 if (!consume)
360 return false;
361
362 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
363 sig->group_stop_count--;
364
365 /*
366 * Tell the caller to notify completion iff we are entering into a
367 * fresh group stop. Read comment in do_signal_stop() for details.
368 */
369 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
370 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
371 return true;
372 }
373 return false;
374 }
375
376 void task_join_group_stop(struct task_struct *task)
377 {
378 /* Have the new thread join an on-going signal group stop */
379 unsigned long jobctl = current->jobctl;
380 if (jobctl & JOBCTL_STOP_PENDING) {
381 struct signal_struct *sig = current->signal;
382 unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK;
383 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
384 if (task_set_jobctl_pending(task, signr | gstop)) {
385 sig->group_stop_count++;
386 }
387 }
388 }
389
390 /*
391 * allocate a new signal queue record
392 * - this may be called without locks if and only if t == current, otherwise an
393 * appropriate lock must be held to stop the target task from exiting
394 */
395 static struct sigqueue *
396 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
397 {
398 struct sigqueue *q = NULL;
399 struct user_struct *user;
400
401 /*
402 * Protect access to @t credentials. This can go away when all
403 * callers hold rcu read lock.
404 */
405 rcu_read_lock();
406 user = get_uid(__task_cred(t)->user);
407 atomic_inc(&user->sigpending);
408 rcu_read_unlock();
409
410 if (override_rlimit ||
411 atomic_read(&user->sigpending) <=
412 task_rlimit(t, RLIMIT_SIGPENDING)) {
413 q = kmem_cache_alloc(sigqueue_cachep, flags);
414 } else {
415 print_dropped_signal(sig);
416 }
417
418 if (unlikely(q == NULL)) {
419 atomic_dec(&user->sigpending);
420 free_uid(user);
421 } else {
422 INIT_LIST_HEAD(&q->list);
423 q->flags = 0;
424 q->user = user;
425 }
426
427 return q;
428 }
429
430 static void __sigqueue_free(struct sigqueue *q)
431 {
432 if (q->flags & SIGQUEUE_PREALLOC)
433 return;
434 atomic_dec(&q->user->sigpending);
435 free_uid(q->user);
436 kmem_cache_free(sigqueue_cachep, q);
437 }
438
439 void flush_sigqueue(struct sigpending *queue)
440 {
441 struct sigqueue *q;
442
443 sigemptyset(&queue->signal);
444 while (!list_empty(&queue->list)) {
445 q = list_entry(queue->list.next, struct sigqueue , list);
446 list_del_init(&q->list);
447 __sigqueue_free(q);
448 }
449 }
450
451 /*
452 * Flush all pending signals for this kthread.
453 */
454 void flush_signals(struct task_struct *t)
455 {
456 unsigned long flags;
457
458 spin_lock_irqsave(&t->sighand->siglock, flags);
459 clear_tsk_thread_flag(t, TIF_SIGPENDING);
460 flush_sigqueue(&t->pending);
461 flush_sigqueue(&t->signal->shared_pending);
462 spin_unlock_irqrestore(&t->sighand->siglock, flags);
463 }
464
465 #ifdef CONFIG_POSIX_TIMERS
466 static void __flush_itimer_signals(struct sigpending *pending)
467 {
468 sigset_t signal, retain;
469 struct sigqueue *q, *n;
470
471 signal = pending->signal;
472 sigemptyset(&retain);
473
474 list_for_each_entry_safe(q, n, &pending->list, list) {
475 int sig = q->info.si_signo;
476
477 if (likely(q->info.si_code != SI_TIMER)) {
478 sigaddset(&retain, sig);
479 } else {
480 sigdelset(&signal, sig);
481 list_del_init(&q->list);
482 __sigqueue_free(q);
483 }
484 }
485
486 sigorsets(&pending->signal, &signal, &retain);
487 }
488
489 void flush_itimer_signals(void)
490 {
491 struct task_struct *tsk = current;
492 unsigned long flags;
493
494 spin_lock_irqsave(&tsk->sighand->siglock, flags);
495 __flush_itimer_signals(&tsk->pending);
496 __flush_itimer_signals(&tsk->signal->shared_pending);
497 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
498 }
499 #endif
500
501 void ignore_signals(struct task_struct *t)
502 {
503 int i;
504
505 for (i = 0; i < _NSIG; ++i)
506 t->sighand->action[i].sa.sa_handler = SIG_IGN;
507
508 flush_signals(t);
509 }
510
511 /*
512 * Flush all handlers for a task.
513 */
514
515 void
516 flush_signal_handlers(struct task_struct *t, int force_default)
517 {
518 int i;
519 struct k_sigaction *ka = &t->sighand->action[0];
520 for (i = _NSIG ; i != 0 ; i--) {
521 if (force_default || ka->sa.sa_handler != SIG_IGN)
522 ka->sa.sa_handler = SIG_DFL;
523 ka->sa.sa_flags = 0;
524 #ifdef __ARCH_HAS_SA_RESTORER
525 ka->sa.sa_restorer = NULL;
526 #endif
527 sigemptyset(&ka->sa.sa_mask);
528 ka++;
529 }
530 }
531
532 int unhandled_signal(struct task_struct *tsk, int sig)
533 {
534 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
535 if (is_global_init(tsk))
536 return 1;
537 if (handler != SIG_IGN && handler != SIG_DFL)
538 return 0;
539 /* if ptraced, let the tracer determine */
540 return !tsk->ptrace;
541 }
542
543 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info,
544 bool *resched_timer)
545 {
546 struct sigqueue *q, *first = NULL;
547
548 /*
549 * Collect the siginfo appropriate to this signal. Check if
550 * there is another siginfo for the same signal.
551 */
552 list_for_each_entry(q, &list->list, list) {
553 if (q->info.si_signo == sig) {
554 if (first)
555 goto still_pending;
556 first = q;
557 }
558 }
559
560 sigdelset(&list->signal, sig);
561
562 if (first) {
563 still_pending:
564 list_del_init(&first->list);
565 copy_siginfo(info, &first->info);
566
567 *resched_timer =
568 (first->flags & SIGQUEUE_PREALLOC) &&
569 (info->si_code == SI_TIMER) &&
570 (info->si_sys_private);
571
572 __sigqueue_free(first);
573 } else {
574 /*
575 * Ok, it wasn't in the queue. This must be
576 * a fast-pathed signal or we must have been
577 * out of queue space. So zero out the info.
578 */
579 clear_siginfo(info);
580 info->si_signo = sig;
581 info->si_errno = 0;
582 info->si_code = SI_USER;
583 info->si_pid = 0;
584 info->si_uid = 0;
585 }
586 }
587
588 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
589 siginfo_t *info, bool *resched_timer)
590 {
591 int sig = next_signal(pending, mask);
592
593 if (sig)
594 collect_signal(sig, pending, info, resched_timer);
595 return sig;
596 }
597
598 /*
599 * Dequeue a signal and return the element to the caller, which is
600 * expected to free it.
601 *
602 * All callers have to hold the siglock.
603 */
604 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
605 {
606 bool resched_timer = false;
607 int signr;
608
609 /* We only dequeue private signals from ourselves, we don't let
610 * signalfd steal them
611 */
612 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
613 if (!signr) {
614 signr = __dequeue_signal(&tsk->signal->shared_pending,
615 mask, info, &resched_timer);
616 #ifdef CONFIG_POSIX_TIMERS
617 /*
618 * itimer signal ?
619 *
620 * itimers are process shared and we restart periodic
621 * itimers in the signal delivery path to prevent DoS
622 * attacks in the high resolution timer case. This is
623 * compliant with the old way of self-restarting
624 * itimers, as the SIGALRM is a legacy signal and only
625 * queued once. Changing the restart behaviour to
626 * restart the timer in the signal dequeue path is
627 * reducing the timer noise on heavy loaded !highres
628 * systems too.
629 */
630 if (unlikely(signr == SIGALRM)) {
631 struct hrtimer *tmr = &tsk->signal->real_timer;
632
633 if (!hrtimer_is_queued(tmr) &&
634 tsk->signal->it_real_incr != 0) {
635 hrtimer_forward(tmr, tmr->base->get_time(),
636 tsk->signal->it_real_incr);
637 hrtimer_restart(tmr);
638 }
639 }
640 #endif
641 }
642
643 recalc_sigpending();
644 if (!signr)
645 return 0;
646
647 if (unlikely(sig_kernel_stop(signr))) {
648 /*
649 * Set a marker that we have dequeued a stop signal. Our
650 * caller might release the siglock and then the pending
651 * stop signal it is about to process is no longer in the
652 * pending bitmasks, but must still be cleared by a SIGCONT
653 * (and overruled by a SIGKILL). So those cases clear this
654 * shared flag after we've set it. Note that this flag may
655 * remain set after the signal we return is ignored or
656 * handled. That doesn't matter because its only purpose
657 * is to alert stop-signal processing code when another
658 * processor has come along and cleared the flag.
659 */
660 current->jobctl |= JOBCTL_STOP_DEQUEUED;
661 }
662 #ifdef CONFIG_POSIX_TIMERS
663 if (resched_timer) {
664 /*
665 * Release the siglock to ensure proper locking order
666 * of timer locks outside of siglocks. Note, we leave
667 * irqs disabled here, since the posix-timers code is
668 * about to disable them again anyway.
669 */
670 spin_unlock(&tsk->sighand->siglock);
671 posixtimer_rearm(info);
672 spin_lock(&tsk->sighand->siglock);
673
674 /* Don't expose the si_sys_private value to userspace */
675 info->si_sys_private = 0;
676 }
677 #endif
678 return signr;
679 }
680
681 /*
682 * Tell a process that it has a new active signal..
683 *
684 * NOTE! we rely on the previous spin_lock to
685 * lock interrupts for us! We can only be called with
686 * "siglock" held, and the local interrupt must
687 * have been disabled when that got acquired!
688 *
689 * No need to set need_resched since signal event passing
690 * goes through ->blocked
691 */
692 void signal_wake_up_state(struct task_struct *t, unsigned int state)
693 {
694 set_tsk_thread_flag(t, TIF_SIGPENDING);
695 /*
696 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
697 * case. We don't check t->state here because there is a race with it
698 * executing another processor and just now entering stopped state.
699 * By using wake_up_state, we ensure the process will wake up and
700 * handle its death signal.
701 */
702 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
703 kick_process(t);
704 }
705
706 /*
707 * Remove signals in mask from the pending set and queue.
708 * Returns 1 if any signals were found.
709 *
710 * All callers must be holding the siglock.
711 */
712 static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
713 {
714 struct sigqueue *q, *n;
715 sigset_t m;
716
717 sigandsets(&m, mask, &s->signal);
718 if (sigisemptyset(&m))
719 return 0;
720
721 sigandnsets(&s->signal, &s->signal, mask);
722 list_for_each_entry_safe(q, n, &s->list, list) {
723 if (sigismember(mask, q->info.si_signo)) {
724 list_del_init(&q->list);
725 __sigqueue_free(q);
726 }
727 }
728 return 1;
729 }
730
731 static inline int is_si_special(const struct siginfo *info)
732 {
733 return info <= SEND_SIG_FORCED;
734 }
735
736 static inline bool si_fromuser(const struct siginfo *info)
737 {
738 return info == SEND_SIG_NOINFO ||
739 (!is_si_special(info) && SI_FROMUSER(info));
740 }
741
742 /*
743 * called with RCU read lock from check_kill_permission()
744 */
745 static int kill_ok_by_cred(struct task_struct *t)
746 {
747 const struct cred *cred = current_cred();
748 const struct cred *tcred = __task_cred(t);
749
750 if (uid_eq(cred->euid, tcred->suid) ||
751 uid_eq(cred->euid, tcred->uid) ||
752 uid_eq(cred->uid, tcred->suid) ||
753 uid_eq(cred->uid, tcred->uid))
754 return 1;
755
756 if (ns_capable(tcred->user_ns, CAP_KILL))
757 return 1;
758
759 return 0;
760 }
761
762 /*
763 * Bad permissions for sending the signal
764 * - the caller must hold the RCU read lock
765 */
766 static int check_kill_permission(int sig, struct siginfo *info,
767 struct task_struct *t)
768 {
769 struct pid *sid;
770 int error;
771
772 if (!valid_signal(sig))
773 return -EINVAL;
774
775 if (!si_fromuser(info))
776 return 0;
777
778 error = audit_signal_info(sig, t); /* Let audit system see the signal */
779 if (error)
780 return error;
781
782 if (!same_thread_group(current, t) &&
783 !kill_ok_by_cred(t)) {
784 switch (sig) {
785 case SIGCONT:
786 sid = task_session(t);
787 /*
788 * We don't return the error if sid == NULL. The
789 * task was unhashed, the caller must notice this.
790 */
791 if (!sid || sid == task_session(current))
792 break;
793 default:
794 return -EPERM;
795 }
796 }
797
798 return security_task_kill(t, info, sig, NULL);
799 }
800
801 /**
802 * ptrace_trap_notify - schedule trap to notify ptracer
803 * @t: tracee wanting to notify tracer
804 *
805 * This function schedules sticky ptrace trap which is cleared on the next
806 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
807 * ptracer.
808 *
809 * If @t is running, STOP trap will be taken. If trapped for STOP and
810 * ptracer is listening for events, tracee is woken up so that it can
811 * re-trap for the new event. If trapped otherwise, STOP trap will be
812 * eventually taken without returning to userland after the existing traps
813 * are finished by PTRACE_CONT.
814 *
815 * CONTEXT:
816 * Must be called with @task->sighand->siglock held.
817 */
818 static void ptrace_trap_notify(struct task_struct *t)
819 {
820 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
821 assert_spin_locked(&t->sighand->siglock);
822
823 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
824 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
825 }
826
827 /*
828 * Handle magic process-wide effects of stop/continue signals. Unlike
829 * the signal actions, these happen immediately at signal-generation
830 * time regardless of blocking, ignoring, or handling. This does the
831 * actual continuing for SIGCONT, but not the actual stopping for stop
832 * signals. The process stop is done as a signal action for SIG_DFL.
833 *
834 * Returns true if the signal should be actually delivered, otherwise
835 * it should be dropped.
836 */
837 static bool prepare_signal(int sig, struct task_struct *p, bool force)
838 {
839 struct signal_struct *signal = p->signal;
840 struct task_struct *t;
841 sigset_t flush;
842
843 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
844 if (!(signal->flags & SIGNAL_GROUP_EXIT))
845 return sig == SIGKILL;
846 /*
847 * The process is in the middle of dying, nothing to do.
848 */
849 } else if (sig_kernel_stop(sig)) {
850 /*
851 * This is a stop signal. Remove SIGCONT from all queues.
852 */
853 siginitset(&flush, sigmask(SIGCONT));
854 flush_sigqueue_mask(&flush, &signal->shared_pending);
855 for_each_thread(p, t)
856 flush_sigqueue_mask(&flush, &t->pending);
857 } else if (sig == SIGCONT) {
858 unsigned int why;
859 /*
860 * Remove all stop signals from all queues, wake all threads.
861 */
862 siginitset(&flush, SIG_KERNEL_STOP_MASK);
863 flush_sigqueue_mask(&flush, &signal->shared_pending);
864 for_each_thread(p, t) {
865 flush_sigqueue_mask(&flush, &t->pending);
866 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
867 if (likely(!(t->ptrace & PT_SEIZED)))
868 wake_up_state(t, __TASK_STOPPED);
869 else
870 ptrace_trap_notify(t);
871 }
872
873 /*
874 * Notify the parent with CLD_CONTINUED if we were stopped.
875 *
876 * If we were in the middle of a group stop, we pretend it
877 * was already finished, and then continued. Since SIGCHLD
878 * doesn't queue we report only CLD_STOPPED, as if the next
879 * CLD_CONTINUED was dropped.
880 */
881 why = 0;
882 if (signal->flags & SIGNAL_STOP_STOPPED)
883 why |= SIGNAL_CLD_CONTINUED;
884 else if (signal->group_stop_count)
885 why |= SIGNAL_CLD_STOPPED;
886
887 if (why) {
888 /*
889 * The first thread which returns from do_signal_stop()
890 * will take ->siglock, notice SIGNAL_CLD_MASK, and
891 * notify its parent. See get_signal_to_deliver().
892 */
893 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
894 signal->group_stop_count = 0;
895 signal->group_exit_code = 0;
896 }
897 }
898
899 return !sig_ignored(p, sig, force);
900 }
901
902 /*
903 * Test if P wants to take SIG. After we've checked all threads with this,
904 * it's equivalent to finding no threads not blocking SIG. Any threads not
905 * blocking SIG were ruled out because they are not running and already
906 * have pending signals. Such threads will dequeue from the shared queue
907 * as soon as they're available, so putting the signal on the shared queue
908 * will be equivalent to sending it to one such thread.
909 */
910 static inline int wants_signal(int sig, struct task_struct *p)
911 {
912 if (sigismember(&p->blocked, sig))
913 return 0;
914 if (p->flags & PF_EXITING)
915 return 0;
916 if (sig == SIGKILL)
917 return 1;
918 if (task_is_stopped_or_traced(p))
919 return 0;
920 return task_curr(p) || !signal_pending(p);
921 }
922
923 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
924 {
925 struct signal_struct *signal = p->signal;
926 struct task_struct *t;
927
928 /*
929 * Now find a thread we can wake up to take the signal off the queue.
930 *
931 * If the main thread wants the signal, it gets first crack.
932 * Probably the least surprising to the average bear.
933 */
934 if (wants_signal(sig, p))
935 t = p;
936 else if ((type == PIDTYPE_PID) || thread_group_empty(p))
937 /*
938 * There is just one thread and it does not need to be woken.
939 * It will dequeue unblocked signals before it runs again.
940 */
941 return;
942 else {
943 /*
944 * Otherwise try to find a suitable thread.
945 */
946 t = signal->curr_target;
947 while (!wants_signal(sig, t)) {
948 t = next_thread(t);
949 if (t == signal->curr_target)
950 /*
951 * No thread needs to be woken.
952 * Any eligible threads will see
953 * the signal in the queue soon.
954 */
955 return;
956 }
957 signal->curr_target = t;
958 }
959
960 /*
961 * Found a killable thread. If the signal will be fatal,
962 * then start taking the whole group down immediately.
963 */
964 if (sig_fatal(p, sig) &&
965 !(signal->flags & SIGNAL_GROUP_EXIT) &&
966 !sigismember(&t->real_blocked, sig) &&
967 (sig == SIGKILL || !p->ptrace)) {
968 /*
969 * This signal will be fatal to the whole group.
970 */
971 if (!sig_kernel_coredump(sig)) {
972 /*
973 * Start a group exit and wake everybody up.
974 * This way we don't have other threads
975 * running and doing things after a slower
976 * thread has the fatal signal pending.
977 */
978 signal->flags = SIGNAL_GROUP_EXIT;
979 signal->group_exit_code = sig;
980 signal->group_stop_count = 0;
981 t = p;
982 do {
983 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
984 sigaddset(&t->pending.signal, SIGKILL);
985 signal_wake_up(t, 1);
986 } while_each_thread(p, t);
987 return;
988 }
989 }
990
991 /*
992 * The signal is already in the shared-pending queue.
993 * Tell the chosen thread to wake up and dequeue it.
994 */
995 signal_wake_up(t, sig == SIGKILL);
996 return;
997 }
998
999 static inline int legacy_queue(struct sigpending *signals, int sig)
1000 {
1001 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1002 }
1003
1004 #ifdef CONFIG_USER_NS
1005 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1006 {
1007 if (current_user_ns() == task_cred_xxx(t, user_ns))
1008 return;
1009
1010 if (SI_FROMKERNEL(info))
1011 return;
1012
1013 rcu_read_lock();
1014 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1015 make_kuid(current_user_ns(), info->si_uid));
1016 rcu_read_unlock();
1017 }
1018 #else
1019 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1020 {
1021 return;
1022 }
1023 #endif
1024
1025 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1026 enum pid_type type, int from_ancestor_ns)
1027 {
1028 struct sigpending *pending;
1029 struct sigqueue *q;
1030 int override_rlimit;
1031 int ret = 0, result;
1032
1033 assert_spin_locked(&t->sighand->siglock);
1034
1035 result = TRACE_SIGNAL_IGNORED;
1036 if (!prepare_signal(sig, t,
1037 from_ancestor_ns || (info == SEND_SIG_FORCED)))
1038 goto ret;
1039
1040 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1041 /*
1042 * Short-circuit ignored signals and support queuing
1043 * exactly one non-rt signal, so that we can get more
1044 * detailed information about the cause of the signal.
1045 */
1046 result = TRACE_SIGNAL_ALREADY_PENDING;
1047 if (legacy_queue(pending, sig))
1048 goto ret;
1049
1050 result = TRACE_SIGNAL_DELIVERED;
1051 /*
1052 * fast-pathed signals for kernel-internal things like SIGSTOP
1053 * or SIGKILL.
1054 */
1055 if (info == SEND_SIG_FORCED)
1056 goto out_set;
1057
1058 /*
1059 * Real-time signals must be queued if sent by sigqueue, or
1060 * some other real-time mechanism. It is implementation
1061 * defined whether kill() does so. We attempt to do so, on
1062 * the principle of least surprise, but since kill is not
1063 * allowed to fail with EAGAIN when low on memory we just
1064 * make sure at least one signal gets delivered and don't
1065 * pass on the info struct.
1066 */
1067 if (sig < SIGRTMIN)
1068 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1069 else
1070 override_rlimit = 0;
1071
1072 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1073 if (q) {
1074 list_add_tail(&q->list, &pending->list);
1075 switch ((unsigned long) info) {
1076 case (unsigned long) SEND_SIG_NOINFO:
1077 clear_siginfo(&q->info);
1078 q->info.si_signo = sig;
1079 q->info.si_errno = 0;
1080 q->info.si_code = SI_USER;
1081 q->info.si_pid = task_tgid_nr_ns(current,
1082 task_active_pid_ns(t));
1083 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1084 break;
1085 case (unsigned long) SEND_SIG_PRIV:
1086 clear_siginfo(&q->info);
1087 q->info.si_signo = sig;
1088 q->info.si_errno = 0;
1089 q->info.si_code = SI_KERNEL;
1090 q->info.si_pid = 0;
1091 q->info.si_uid = 0;
1092 break;
1093 default:
1094 copy_siginfo(&q->info, info);
1095 if (from_ancestor_ns)
1096 q->info.si_pid = 0;
1097 break;
1098 }
1099
1100 userns_fixup_signal_uid(&q->info, t);
1101
1102 } else if (!is_si_special(info)) {
1103 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1104 /*
1105 * Queue overflow, abort. We may abort if the
1106 * signal was rt and sent by user using something
1107 * other than kill().
1108 */
1109 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1110 ret = -EAGAIN;
1111 goto ret;
1112 } else {
1113 /*
1114 * This is a silent loss of information. We still
1115 * send the signal, but the *info bits are lost.
1116 */
1117 result = TRACE_SIGNAL_LOSE_INFO;
1118 }
1119 }
1120
1121 out_set:
1122 signalfd_notify(t, sig);
1123 sigaddset(&pending->signal, sig);
1124
1125 /* Let multiprocess signals appear after on-going forks */
1126 if (type > PIDTYPE_TGID) {
1127 struct multiprocess_signals *delayed;
1128 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1129 sigset_t *signal = &delayed->signal;
1130 /* Can't queue both a stop and a continue signal */
1131 if (sig == SIGCONT)
1132 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1133 else if (sig_kernel_stop(sig))
1134 sigdelset(signal, SIGCONT);
1135 sigaddset(signal, sig);
1136 }
1137 }
1138
1139 complete_signal(sig, t, type);
1140 ret:
1141 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1142 return ret;
1143 }
1144
1145 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1146 enum pid_type type)
1147 {
1148 int from_ancestor_ns = 0;
1149
1150 #ifdef CONFIG_PID_NS
1151 from_ancestor_ns = si_fromuser(info) &&
1152 !task_pid_nr_ns(current, task_active_pid_ns(t));
1153 #endif
1154
1155 return __send_signal(sig, info, t, type, from_ancestor_ns);
1156 }
1157
1158 static void print_fatal_signal(int signr)
1159 {
1160 struct pt_regs *regs = signal_pt_regs();
1161 pr_info("potentially unexpected fatal signal %d.\n", signr);
1162
1163 #if defined(__i386__) && !defined(__arch_um__)
1164 pr_info("code at %08lx: ", regs->ip);
1165 {
1166 int i;
1167 for (i = 0; i < 16; i++) {
1168 unsigned char insn;
1169
1170 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1171 break;
1172 pr_cont("%02x ", insn);
1173 }
1174 }
1175 pr_cont("\n");
1176 #endif
1177 preempt_disable();
1178 show_regs(regs);
1179 preempt_enable();
1180 }
1181
1182 static int __init setup_print_fatal_signals(char *str)
1183 {
1184 get_option (&str, &print_fatal_signals);
1185
1186 return 1;
1187 }
1188
1189 __setup("print-fatal-signals=", setup_print_fatal_signals);
1190
1191 int
1192 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1193 {
1194 return send_signal(sig, info, p, PIDTYPE_TGID);
1195 }
1196
1197 static int
1198 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1199 {
1200 return send_signal(sig, info, t, PIDTYPE_PID);
1201 }
1202
1203 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1204 enum pid_type type)
1205 {
1206 unsigned long flags;
1207 int ret = -ESRCH;
1208
1209 if (lock_task_sighand(p, &flags)) {
1210 ret = send_signal(sig, info, p, type);
1211 unlock_task_sighand(p, &flags);
1212 }
1213
1214 return ret;
1215 }
1216
1217 /*
1218 * Force a signal that the process can't ignore: if necessary
1219 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1220 *
1221 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1222 * since we do not want to have a signal handler that was blocked
1223 * be invoked when user space had explicitly blocked it.
1224 *
1225 * We don't want to have recursive SIGSEGV's etc, for example,
1226 * that is why we also clear SIGNAL_UNKILLABLE.
1227 */
1228 int
1229 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1230 {
1231 unsigned long int flags;
1232 int ret, blocked, ignored;
1233 struct k_sigaction *action;
1234
1235 spin_lock_irqsave(&t->sighand->siglock, flags);
1236 action = &t->sighand->action[sig-1];
1237 ignored = action->sa.sa_handler == SIG_IGN;
1238 blocked = sigismember(&t->blocked, sig);
1239 if (blocked || ignored) {
1240 action->sa.sa_handler = SIG_DFL;
1241 if (blocked) {
1242 sigdelset(&t->blocked, sig);
1243 recalc_sigpending_and_wake(t);
1244 }
1245 }
1246 /*
1247 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1248 * debugging to leave init killable.
1249 */
1250 if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1251 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1252 ret = specific_send_sig_info(sig, info, t);
1253 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1254
1255 return ret;
1256 }
1257
1258 /*
1259 * Nuke all other threads in the group.
1260 */
1261 int zap_other_threads(struct task_struct *p)
1262 {
1263 struct task_struct *t = p;
1264 int count = 0;
1265
1266 p->signal->group_stop_count = 0;
1267
1268 while_each_thread(p, t) {
1269 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1270 count++;
1271
1272 /* Don't bother with already dead threads */
1273 if (t->exit_state)
1274 continue;
1275 sigaddset(&t->pending.signal, SIGKILL);
1276 signal_wake_up(t, 1);
1277 }
1278
1279 return count;
1280 }
1281
1282 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1283 unsigned long *flags)
1284 {
1285 struct sighand_struct *sighand;
1286
1287 rcu_read_lock();
1288 for (;;) {
1289 sighand = rcu_dereference(tsk->sighand);
1290 if (unlikely(sighand == NULL))
1291 break;
1292
1293 /*
1294 * This sighand can be already freed and even reused, but
1295 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1296 * initializes ->siglock: this slab can't go away, it has
1297 * the same object type, ->siglock can't be reinitialized.
1298 *
1299 * We need to ensure that tsk->sighand is still the same
1300 * after we take the lock, we can race with de_thread() or
1301 * __exit_signal(). In the latter case the next iteration
1302 * must see ->sighand == NULL.
1303 */
1304 spin_lock_irqsave(&sighand->siglock, *flags);
1305 if (likely(sighand == tsk->sighand))
1306 break;
1307 spin_unlock_irqrestore(&sighand->siglock, *flags);
1308 }
1309 rcu_read_unlock();
1310
1311 return sighand;
1312 }
1313
1314 /*
1315 * send signal info to all the members of a group
1316 */
1317 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1318 enum pid_type type)
1319 {
1320 int ret;
1321
1322 rcu_read_lock();
1323 ret = check_kill_permission(sig, info, p);
1324 rcu_read_unlock();
1325
1326 if (!ret && sig)
1327 ret = do_send_sig_info(sig, info, p, type);
1328
1329 return ret;
1330 }
1331
1332 /*
1333 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1334 * control characters do (^C, ^Z etc)
1335 * - the caller must hold at least a readlock on tasklist_lock
1336 */
1337 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1338 {
1339 struct task_struct *p = NULL;
1340 int retval, success;
1341
1342 success = 0;
1343 retval = -ESRCH;
1344 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1345 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1346 success |= !err;
1347 retval = err;
1348 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1349 return success ? 0 : retval;
1350 }
1351
1352 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1353 {
1354 int error = -ESRCH;
1355 struct task_struct *p;
1356
1357 for (;;) {
1358 rcu_read_lock();
1359 p = pid_task(pid, PIDTYPE_PID);
1360 if (p)
1361 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1362 rcu_read_unlock();
1363 if (likely(!p || error != -ESRCH))
1364 return error;
1365
1366 /*
1367 * The task was unhashed in between, try again. If it
1368 * is dead, pid_task() will return NULL, if we race with
1369 * de_thread() it will find the new leader.
1370 */
1371 }
1372 }
1373
1374 static int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1375 {
1376 int error;
1377 rcu_read_lock();
1378 error = kill_pid_info(sig, info, find_vpid(pid));
1379 rcu_read_unlock();
1380 return error;
1381 }
1382
1383 static int kill_as_cred_perm(const struct cred *cred,
1384 struct task_struct *target)
1385 {
1386 const struct cred *pcred = __task_cred(target);
1387 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1388 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid))
1389 return 0;
1390 return 1;
1391 }
1392
1393 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1394 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1395 const struct cred *cred)
1396 {
1397 int ret = -EINVAL;
1398 struct task_struct *p;
1399 unsigned long flags;
1400
1401 if (!valid_signal(sig))
1402 return ret;
1403
1404 rcu_read_lock();
1405 p = pid_task(pid, PIDTYPE_PID);
1406 if (!p) {
1407 ret = -ESRCH;
1408 goto out_unlock;
1409 }
1410 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1411 ret = -EPERM;
1412 goto out_unlock;
1413 }
1414 ret = security_task_kill(p, info, sig, cred);
1415 if (ret)
1416 goto out_unlock;
1417
1418 if (sig) {
1419 if (lock_task_sighand(p, &flags)) {
1420 ret = __send_signal(sig, info, p, PIDTYPE_TGID, 0);
1421 unlock_task_sighand(p, &flags);
1422 } else
1423 ret = -ESRCH;
1424 }
1425 out_unlock:
1426 rcu_read_unlock();
1427 return ret;
1428 }
1429 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1430
1431 /*
1432 * kill_something_info() interprets pid in interesting ways just like kill(2).
1433 *
1434 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1435 * is probably wrong. Should make it like BSD or SYSV.
1436 */
1437
1438 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1439 {
1440 int ret;
1441
1442 if (pid > 0) {
1443 rcu_read_lock();
1444 ret = kill_pid_info(sig, info, find_vpid(pid));
1445 rcu_read_unlock();
1446 return ret;
1447 }
1448
1449 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1450 if (pid == INT_MIN)
1451 return -ESRCH;
1452
1453 read_lock(&tasklist_lock);
1454 if (pid != -1) {
1455 ret = __kill_pgrp_info(sig, info,
1456 pid ? find_vpid(-pid) : task_pgrp(current));
1457 } else {
1458 int retval = 0, count = 0;
1459 struct task_struct * p;
1460
1461 for_each_process(p) {
1462 if (task_pid_vnr(p) > 1 &&
1463 !same_thread_group(p, current)) {
1464 int err = group_send_sig_info(sig, info, p,
1465 PIDTYPE_MAX);
1466 ++count;
1467 if (err != -EPERM)
1468 retval = err;
1469 }
1470 }
1471 ret = count ? retval : -ESRCH;
1472 }
1473 read_unlock(&tasklist_lock);
1474
1475 return ret;
1476 }
1477
1478 /*
1479 * These are for backward compatibility with the rest of the kernel source.
1480 */
1481
1482 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1483 {
1484 /*
1485 * Make sure legacy kernel users don't send in bad values
1486 * (normal paths check this in check_kill_permission).
1487 */
1488 if (!valid_signal(sig))
1489 return -EINVAL;
1490
1491 return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1492 }
1493
1494 #define __si_special(priv) \
1495 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1496
1497 int
1498 send_sig(int sig, struct task_struct *p, int priv)
1499 {
1500 return send_sig_info(sig, __si_special(priv), p);
1501 }
1502
1503 void
1504 force_sig(int sig, struct task_struct *p)
1505 {
1506 force_sig_info(sig, SEND_SIG_PRIV, p);
1507 }
1508
1509 /*
1510 * When things go south during signal handling, we
1511 * will force a SIGSEGV. And if the signal that caused
1512 * the problem was already a SIGSEGV, we'll want to
1513 * make sure we don't even try to deliver the signal..
1514 */
1515 int
1516 force_sigsegv(int sig, struct task_struct *p)
1517 {
1518 if (sig == SIGSEGV) {
1519 unsigned long flags;
1520 spin_lock_irqsave(&p->sighand->siglock, flags);
1521 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1522 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1523 }
1524 force_sig(SIGSEGV, p);
1525 return 0;
1526 }
1527
1528 int force_sig_fault(int sig, int code, void __user *addr
1529 ___ARCH_SI_TRAPNO(int trapno)
1530 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1531 , struct task_struct *t)
1532 {
1533 struct siginfo info;
1534
1535 clear_siginfo(&info);
1536 info.si_signo = sig;
1537 info.si_errno = 0;
1538 info.si_code = code;
1539 info.si_addr = addr;
1540 #ifdef __ARCH_SI_TRAPNO
1541 info.si_trapno = trapno;
1542 #endif
1543 #ifdef __ia64__
1544 info.si_imm = imm;
1545 info.si_flags = flags;
1546 info.si_isr = isr;
1547 #endif
1548 return force_sig_info(info.si_signo, &info, t);
1549 }
1550
1551 int send_sig_fault(int sig, int code, void __user *addr
1552 ___ARCH_SI_TRAPNO(int trapno)
1553 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1554 , struct task_struct *t)
1555 {
1556 struct siginfo info;
1557
1558 clear_siginfo(&info);
1559 info.si_signo = sig;
1560 info.si_errno = 0;
1561 info.si_code = code;
1562 info.si_addr = addr;
1563 #ifdef __ARCH_SI_TRAPNO
1564 info.si_trapno = trapno;
1565 #endif
1566 #ifdef __ia64__
1567 info.si_imm = imm;
1568 info.si_flags = flags;
1569 info.si_isr = isr;
1570 #endif
1571 return send_sig_info(info.si_signo, &info, t);
1572 }
1573
1574 int force_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1575 {
1576 struct siginfo info;
1577
1578 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1579 clear_siginfo(&info);
1580 info.si_signo = SIGBUS;
1581 info.si_errno = 0;
1582 info.si_code = code;
1583 info.si_addr = addr;
1584 info.si_addr_lsb = lsb;
1585 return force_sig_info(info.si_signo, &info, t);
1586 }
1587
1588 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1589 {
1590 struct siginfo info;
1591
1592 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1593 clear_siginfo(&info);
1594 info.si_signo = SIGBUS;
1595 info.si_errno = 0;
1596 info.si_code = code;
1597 info.si_addr = addr;
1598 info.si_addr_lsb = lsb;
1599 return send_sig_info(info.si_signo, &info, t);
1600 }
1601 EXPORT_SYMBOL(send_sig_mceerr);
1602
1603 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1604 {
1605 struct siginfo info;
1606
1607 clear_siginfo(&info);
1608 info.si_signo = SIGSEGV;
1609 info.si_errno = 0;
1610 info.si_code = SEGV_BNDERR;
1611 info.si_addr = addr;
1612 info.si_lower = lower;
1613 info.si_upper = upper;
1614 return force_sig_info(info.si_signo, &info, current);
1615 }
1616
1617 #ifdef SEGV_PKUERR
1618 int force_sig_pkuerr(void __user *addr, u32 pkey)
1619 {
1620 struct siginfo info;
1621
1622 clear_siginfo(&info);
1623 info.si_signo = SIGSEGV;
1624 info.si_errno = 0;
1625 info.si_code = SEGV_PKUERR;
1626 info.si_addr = addr;
1627 info.si_pkey = pkey;
1628 return force_sig_info(info.si_signo, &info, current);
1629 }
1630 #endif
1631
1632 /* For the crazy architectures that include trap information in
1633 * the errno field, instead of an actual errno value.
1634 */
1635 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1636 {
1637 struct siginfo info;
1638
1639 clear_siginfo(&info);
1640 info.si_signo = SIGTRAP;
1641 info.si_errno = errno;
1642 info.si_code = TRAP_HWBKPT;
1643 info.si_addr = addr;
1644 return force_sig_info(info.si_signo, &info, current);
1645 }
1646
1647 int kill_pgrp(struct pid *pid, int sig, int priv)
1648 {
1649 int ret;
1650
1651 read_lock(&tasklist_lock);
1652 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1653 read_unlock(&tasklist_lock);
1654
1655 return ret;
1656 }
1657 EXPORT_SYMBOL(kill_pgrp);
1658
1659 int kill_pid(struct pid *pid, int sig, int priv)
1660 {
1661 return kill_pid_info(sig, __si_special(priv), pid);
1662 }
1663 EXPORT_SYMBOL(kill_pid);
1664
1665 /*
1666 * These functions support sending signals using preallocated sigqueue
1667 * structures. This is needed "because realtime applications cannot
1668 * afford to lose notifications of asynchronous events, like timer
1669 * expirations or I/O completions". In the case of POSIX Timers
1670 * we allocate the sigqueue structure from the timer_create. If this
1671 * allocation fails we are able to report the failure to the application
1672 * with an EAGAIN error.
1673 */
1674 struct sigqueue *sigqueue_alloc(void)
1675 {
1676 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1677
1678 if (q)
1679 q->flags |= SIGQUEUE_PREALLOC;
1680
1681 return q;
1682 }
1683
1684 void sigqueue_free(struct sigqueue *q)
1685 {
1686 unsigned long flags;
1687 spinlock_t *lock = &current->sighand->siglock;
1688
1689 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1690 /*
1691 * We must hold ->siglock while testing q->list
1692 * to serialize with collect_signal() or with
1693 * __exit_signal()->flush_sigqueue().
1694 */
1695 spin_lock_irqsave(lock, flags);
1696 q->flags &= ~SIGQUEUE_PREALLOC;
1697 /*
1698 * If it is queued it will be freed when dequeued,
1699 * like the "regular" sigqueue.
1700 */
1701 if (!list_empty(&q->list))
1702 q = NULL;
1703 spin_unlock_irqrestore(lock, flags);
1704
1705 if (q)
1706 __sigqueue_free(q);
1707 }
1708
1709 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1710 {
1711 int sig = q->info.si_signo;
1712 struct sigpending *pending;
1713 struct task_struct *t;
1714 unsigned long flags;
1715 int ret, result;
1716
1717 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1718
1719 ret = -1;
1720 rcu_read_lock();
1721 t = pid_task(pid, type);
1722 if (!t || !likely(lock_task_sighand(t, &flags)))
1723 goto ret;
1724
1725 ret = 1; /* the signal is ignored */
1726 result = TRACE_SIGNAL_IGNORED;
1727 if (!prepare_signal(sig, t, false))
1728 goto out;
1729
1730 ret = 0;
1731 if (unlikely(!list_empty(&q->list))) {
1732 /*
1733 * If an SI_TIMER entry is already queue just increment
1734 * the overrun count.
1735 */
1736 BUG_ON(q->info.si_code != SI_TIMER);
1737 q->info.si_overrun++;
1738 result = TRACE_SIGNAL_ALREADY_PENDING;
1739 goto out;
1740 }
1741 q->info.si_overrun = 0;
1742
1743 signalfd_notify(t, sig);
1744 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1745 list_add_tail(&q->list, &pending->list);
1746 sigaddset(&pending->signal, sig);
1747 complete_signal(sig, t, type);
1748 result = TRACE_SIGNAL_DELIVERED;
1749 out:
1750 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1751 unlock_task_sighand(t, &flags);
1752 ret:
1753 rcu_read_unlock();
1754 return ret;
1755 }
1756
1757 /*
1758 * Let a parent know about the death of a child.
1759 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1760 *
1761 * Returns true if our parent ignored us and so we've switched to
1762 * self-reaping.
1763 */
1764 bool do_notify_parent(struct task_struct *tsk, int sig)
1765 {
1766 struct siginfo info;
1767 unsigned long flags;
1768 struct sighand_struct *psig;
1769 bool autoreap = false;
1770 u64 utime, stime;
1771
1772 BUG_ON(sig == -1);
1773
1774 /* do_notify_parent_cldstop should have been called instead. */
1775 BUG_ON(task_is_stopped_or_traced(tsk));
1776
1777 BUG_ON(!tsk->ptrace &&
1778 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1779
1780 if (sig != SIGCHLD) {
1781 /*
1782 * This is only possible if parent == real_parent.
1783 * Check if it has changed security domain.
1784 */
1785 if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1786 sig = SIGCHLD;
1787 }
1788
1789 clear_siginfo(&info);
1790 info.si_signo = sig;
1791 info.si_errno = 0;
1792 /*
1793 * We are under tasklist_lock here so our parent is tied to
1794 * us and cannot change.
1795 *
1796 * task_active_pid_ns will always return the same pid namespace
1797 * until a task passes through release_task.
1798 *
1799 * write_lock() currently calls preempt_disable() which is the
1800 * same as rcu_read_lock(), but according to Oleg, this is not
1801 * correct to rely on this
1802 */
1803 rcu_read_lock();
1804 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1805 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1806 task_uid(tsk));
1807 rcu_read_unlock();
1808
1809 task_cputime(tsk, &utime, &stime);
1810 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1811 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1812
1813 info.si_status = tsk->exit_code & 0x7f;
1814 if (tsk->exit_code & 0x80)
1815 info.si_code = CLD_DUMPED;
1816 else if (tsk->exit_code & 0x7f)
1817 info.si_code = CLD_KILLED;
1818 else {
1819 info.si_code = CLD_EXITED;
1820 info.si_status = tsk->exit_code >> 8;
1821 }
1822
1823 psig = tsk->parent->sighand;
1824 spin_lock_irqsave(&psig->siglock, flags);
1825 if (!tsk->ptrace && sig == SIGCHLD &&
1826 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1827 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1828 /*
1829 * We are exiting and our parent doesn't care. POSIX.1
1830 * defines special semantics for setting SIGCHLD to SIG_IGN
1831 * or setting the SA_NOCLDWAIT flag: we should be reaped
1832 * automatically and not left for our parent's wait4 call.
1833 * Rather than having the parent do it as a magic kind of
1834 * signal handler, we just set this to tell do_exit that we
1835 * can be cleaned up without becoming a zombie. Note that
1836 * we still call __wake_up_parent in this case, because a
1837 * blocked sys_wait4 might now return -ECHILD.
1838 *
1839 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1840 * is implementation-defined: we do (if you don't want
1841 * it, just use SIG_IGN instead).
1842 */
1843 autoreap = true;
1844 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1845 sig = 0;
1846 }
1847 if (valid_signal(sig) && sig)
1848 __group_send_sig_info(sig, &info, tsk->parent);
1849 __wake_up_parent(tsk, tsk->parent);
1850 spin_unlock_irqrestore(&psig->siglock, flags);
1851
1852 return autoreap;
1853 }
1854
1855 /**
1856 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1857 * @tsk: task reporting the state change
1858 * @for_ptracer: the notification is for ptracer
1859 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1860 *
1861 * Notify @tsk's parent that the stopped/continued state has changed. If
1862 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1863 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1864 *
1865 * CONTEXT:
1866 * Must be called with tasklist_lock at least read locked.
1867 */
1868 static void do_notify_parent_cldstop(struct task_struct *tsk,
1869 bool for_ptracer, int why)
1870 {
1871 struct siginfo info;
1872 unsigned long flags;
1873 struct task_struct *parent;
1874 struct sighand_struct *sighand;
1875 u64 utime, stime;
1876
1877 if (for_ptracer) {
1878 parent = tsk->parent;
1879 } else {
1880 tsk = tsk->group_leader;
1881 parent = tsk->real_parent;
1882 }
1883
1884 clear_siginfo(&info);
1885 info.si_signo = SIGCHLD;
1886 info.si_errno = 0;
1887 /*
1888 * see comment in do_notify_parent() about the following 4 lines
1889 */
1890 rcu_read_lock();
1891 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1892 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1893 rcu_read_unlock();
1894
1895 task_cputime(tsk, &utime, &stime);
1896 info.si_utime = nsec_to_clock_t(utime);
1897 info.si_stime = nsec_to_clock_t(stime);
1898
1899 info.si_code = why;
1900 switch (why) {
1901 case CLD_CONTINUED:
1902 info.si_status = SIGCONT;
1903 break;
1904 case CLD_STOPPED:
1905 info.si_status = tsk->signal->group_exit_code & 0x7f;
1906 break;
1907 case CLD_TRAPPED:
1908 info.si_status = tsk->exit_code & 0x7f;
1909 break;
1910 default:
1911 BUG();
1912 }
1913
1914 sighand = parent->sighand;
1915 spin_lock_irqsave(&sighand->siglock, flags);
1916 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1917 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1918 __group_send_sig_info(SIGCHLD, &info, parent);
1919 /*
1920 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1921 */
1922 __wake_up_parent(tsk, parent);
1923 spin_unlock_irqrestore(&sighand->siglock, flags);
1924 }
1925
1926 static inline int may_ptrace_stop(void)
1927 {
1928 if (!likely(current->ptrace))
1929 return 0;
1930 /*
1931 * Are we in the middle of do_coredump?
1932 * If so and our tracer is also part of the coredump stopping
1933 * is a deadlock situation, and pointless because our tracer
1934 * is dead so don't allow us to stop.
1935 * If SIGKILL was already sent before the caller unlocked
1936 * ->siglock we must see ->core_state != NULL. Otherwise it
1937 * is safe to enter schedule().
1938 *
1939 * This is almost outdated, a task with the pending SIGKILL can't
1940 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1941 * after SIGKILL was already dequeued.
1942 */
1943 if (unlikely(current->mm->core_state) &&
1944 unlikely(current->mm == current->parent->mm))
1945 return 0;
1946
1947 return 1;
1948 }
1949
1950 /*
1951 * Return non-zero if there is a SIGKILL that should be waking us up.
1952 * Called with the siglock held.
1953 */
1954 static int sigkill_pending(struct task_struct *tsk)
1955 {
1956 return sigismember(&tsk->pending.signal, SIGKILL) ||
1957 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1958 }
1959
1960 /*
1961 * This must be called with current->sighand->siglock held.
1962 *
1963 * This should be the path for all ptrace stops.
1964 * We always set current->last_siginfo while stopped here.
1965 * That makes it a way to test a stopped process for
1966 * being ptrace-stopped vs being job-control-stopped.
1967 *
1968 * If we actually decide not to stop at all because the tracer
1969 * is gone, we keep current->exit_code unless clear_code.
1970 */
1971 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1972 __releases(&current->sighand->siglock)
1973 __acquires(&current->sighand->siglock)
1974 {
1975 bool gstop_done = false;
1976
1977 if (arch_ptrace_stop_needed(exit_code, info)) {
1978 /*
1979 * The arch code has something special to do before a
1980 * ptrace stop. This is allowed to block, e.g. for faults
1981 * on user stack pages. We can't keep the siglock while
1982 * calling arch_ptrace_stop, so we must release it now.
1983 * To preserve proper semantics, we must do this before
1984 * any signal bookkeeping like checking group_stop_count.
1985 * Meanwhile, a SIGKILL could come in before we retake the
1986 * siglock. That must prevent us from sleeping in TASK_TRACED.
1987 * So after regaining the lock, we must check for SIGKILL.
1988 */
1989 spin_unlock_irq(&current->sighand->siglock);
1990 arch_ptrace_stop(exit_code, info);
1991 spin_lock_irq(&current->sighand->siglock);
1992 if (sigkill_pending(current))
1993 return;
1994 }
1995
1996 set_special_state(TASK_TRACED);
1997
1998 /*
1999 * We're committing to trapping. TRACED should be visible before
2000 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2001 * Also, transition to TRACED and updates to ->jobctl should be
2002 * atomic with respect to siglock and should be done after the arch
2003 * hook as siglock is released and regrabbed across it.
2004 *
2005 * TRACER TRACEE
2006 *
2007 * ptrace_attach()
2008 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
2009 * do_wait()
2010 * set_current_state() smp_wmb();
2011 * ptrace_do_wait()
2012 * wait_task_stopped()
2013 * task_stopped_code()
2014 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
2015 */
2016 smp_wmb();
2017
2018 current->last_siginfo = info;
2019 current->exit_code = exit_code;
2020
2021 /*
2022 * If @why is CLD_STOPPED, we're trapping to participate in a group
2023 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
2024 * across siglock relocks since INTERRUPT was scheduled, PENDING
2025 * could be clear now. We act as if SIGCONT is received after
2026 * TASK_TRACED is entered - ignore it.
2027 */
2028 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2029 gstop_done = task_participate_group_stop(current);
2030
2031 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2032 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2033 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2034 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2035
2036 /* entering a trap, clear TRAPPING */
2037 task_clear_jobctl_trapping(current);
2038
2039 spin_unlock_irq(&current->sighand->siglock);
2040 read_lock(&tasklist_lock);
2041 if (may_ptrace_stop()) {
2042 /*
2043 * Notify parents of the stop.
2044 *
2045 * While ptraced, there are two parents - the ptracer and
2046 * the real_parent of the group_leader. The ptracer should
2047 * know about every stop while the real parent is only
2048 * interested in the completion of group stop. The states
2049 * for the two don't interact with each other. Notify
2050 * separately unless they're gonna be duplicates.
2051 */
2052 do_notify_parent_cldstop(current, true, why);
2053 if (gstop_done && ptrace_reparented(current))
2054 do_notify_parent_cldstop(current, false, why);
2055
2056 /*
2057 * Don't want to allow preemption here, because
2058 * sys_ptrace() needs this task to be inactive.
2059 *
2060 * XXX: implement read_unlock_no_resched().
2061 */
2062 preempt_disable();
2063 read_unlock(&tasklist_lock);
2064 preempt_enable_no_resched();
2065 freezable_schedule();
2066 } else {
2067 /*
2068 * By the time we got the lock, our tracer went away.
2069 * Don't drop the lock yet, another tracer may come.
2070 *
2071 * If @gstop_done, the ptracer went away between group stop
2072 * completion and here. During detach, it would have set
2073 * JOBCTL_STOP_PENDING on us and we'll re-enter
2074 * TASK_STOPPED in do_signal_stop() on return, so notifying
2075 * the real parent of the group stop completion is enough.
2076 */
2077 if (gstop_done)
2078 do_notify_parent_cldstop(current, false, why);
2079
2080 /* tasklist protects us from ptrace_freeze_traced() */
2081 __set_current_state(TASK_RUNNING);
2082 if (clear_code)
2083 current->exit_code = 0;
2084 read_unlock(&tasklist_lock);
2085 }
2086
2087 /*
2088 * We are back. Now reacquire the siglock before touching
2089 * last_siginfo, so that we are sure to have synchronized with
2090 * any signal-sending on another CPU that wants to examine it.
2091 */
2092 spin_lock_irq(&current->sighand->siglock);
2093 current->last_siginfo = NULL;
2094
2095 /* LISTENING can be set only during STOP traps, clear it */
2096 current->jobctl &= ~JOBCTL_LISTENING;
2097
2098 /*
2099 * Queued signals ignored us while we were stopped for tracing.
2100 * So check for any that we should take before resuming user mode.
2101 * This sets TIF_SIGPENDING, but never clears it.
2102 */
2103 recalc_sigpending_tsk(current);
2104 }
2105
2106 static void ptrace_do_notify(int signr, int exit_code, int why)
2107 {
2108 siginfo_t info;
2109
2110 clear_siginfo(&info);
2111 info.si_signo = signr;
2112 info.si_code = exit_code;
2113 info.si_pid = task_pid_vnr(current);
2114 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2115
2116 /* Let the debugger run. */
2117 ptrace_stop(exit_code, why, 1, &info);
2118 }
2119
2120 void ptrace_notify(int exit_code)
2121 {
2122 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2123 if (unlikely(current->task_works))
2124 task_work_run();
2125
2126 spin_lock_irq(&current->sighand->siglock);
2127 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2128 spin_unlock_irq(&current->sighand->siglock);
2129 }
2130
2131 /**
2132 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2133 * @signr: signr causing group stop if initiating
2134 *
2135 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2136 * and participate in it. If already set, participate in the existing
2137 * group stop. If participated in a group stop (and thus slept), %true is
2138 * returned with siglock released.
2139 *
2140 * If ptraced, this function doesn't handle stop itself. Instead,
2141 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2142 * untouched. The caller must ensure that INTERRUPT trap handling takes
2143 * places afterwards.
2144 *
2145 * CONTEXT:
2146 * Must be called with @current->sighand->siglock held, which is released
2147 * on %true return.
2148 *
2149 * RETURNS:
2150 * %false if group stop is already cancelled or ptrace trap is scheduled.
2151 * %true if participated in group stop.
2152 */
2153 static bool do_signal_stop(int signr)
2154 __releases(&current->sighand->siglock)
2155 {
2156 struct signal_struct *sig = current->signal;
2157
2158 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2159 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2160 struct task_struct *t;
2161
2162 /* signr will be recorded in task->jobctl for retries */
2163 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2164
2165 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2166 unlikely(signal_group_exit(sig)))
2167 return false;
2168 /*
2169 * There is no group stop already in progress. We must
2170 * initiate one now.
2171 *
2172 * While ptraced, a task may be resumed while group stop is
2173 * still in effect and then receive a stop signal and
2174 * initiate another group stop. This deviates from the
2175 * usual behavior as two consecutive stop signals can't
2176 * cause two group stops when !ptraced. That is why we
2177 * also check !task_is_stopped(t) below.
2178 *
2179 * The condition can be distinguished by testing whether
2180 * SIGNAL_STOP_STOPPED is already set. Don't generate
2181 * group_exit_code in such case.
2182 *
2183 * This is not necessary for SIGNAL_STOP_CONTINUED because
2184 * an intervening stop signal is required to cause two
2185 * continued events regardless of ptrace.
2186 */
2187 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2188 sig->group_exit_code = signr;
2189
2190 sig->group_stop_count = 0;
2191
2192 if (task_set_jobctl_pending(current, signr | gstop))
2193 sig->group_stop_count++;
2194
2195 t = current;
2196 while_each_thread(current, t) {
2197 /*
2198 * Setting state to TASK_STOPPED for a group
2199 * stop is always done with the siglock held,
2200 * so this check has no races.
2201 */
2202 if (!task_is_stopped(t) &&
2203 task_set_jobctl_pending(t, signr | gstop)) {
2204 sig->group_stop_count++;
2205 if (likely(!(t->ptrace & PT_SEIZED)))
2206 signal_wake_up(t, 0);
2207 else
2208 ptrace_trap_notify(t);
2209 }
2210 }
2211 }
2212
2213 if (likely(!current->ptrace)) {
2214 int notify = 0;
2215
2216 /*
2217 * If there are no other threads in the group, or if there
2218 * is a group stop in progress and we are the last to stop,
2219 * report to the parent.
2220 */
2221 if (task_participate_group_stop(current))
2222 notify = CLD_STOPPED;
2223
2224 set_special_state(TASK_STOPPED);
2225 spin_unlock_irq(&current->sighand->siglock);
2226
2227 /*
2228 * Notify the parent of the group stop completion. Because
2229 * we're not holding either the siglock or tasklist_lock
2230 * here, ptracer may attach inbetween; however, this is for
2231 * group stop and should always be delivered to the real
2232 * parent of the group leader. The new ptracer will get
2233 * its notification when this task transitions into
2234 * TASK_TRACED.
2235 */
2236 if (notify) {
2237 read_lock(&tasklist_lock);
2238 do_notify_parent_cldstop(current, false, notify);
2239 read_unlock(&tasklist_lock);
2240 }
2241
2242 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2243 freezable_schedule();
2244 return true;
2245 } else {
2246 /*
2247 * While ptraced, group stop is handled by STOP trap.
2248 * Schedule it and let the caller deal with it.
2249 */
2250 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2251 return false;
2252 }
2253 }
2254
2255 /**
2256 * do_jobctl_trap - take care of ptrace jobctl traps
2257 *
2258 * When PT_SEIZED, it's used for both group stop and explicit
2259 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2260 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2261 * the stop signal; otherwise, %SIGTRAP.
2262 *
2263 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2264 * number as exit_code and no siginfo.
2265 *
2266 * CONTEXT:
2267 * Must be called with @current->sighand->siglock held, which may be
2268 * released and re-acquired before returning with intervening sleep.
2269 */
2270 static void do_jobctl_trap(void)
2271 {
2272 struct signal_struct *signal = current->signal;
2273 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2274
2275 if (current->ptrace & PT_SEIZED) {
2276 if (!signal->group_stop_count &&
2277 !(signal->flags & SIGNAL_STOP_STOPPED))
2278 signr = SIGTRAP;
2279 WARN_ON_ONCE(!signr);
2280 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2281 CLD_STOPPED);
2282 } else {
2283 WARN_ON_ONCE(!signr);
2284 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2285 current->exit_code = 0;
2286 }
2287 }
2288
2289 static int ptrace_signal(int signr, siginfo_t *info)
2290 {
2291 /*
2292 * We do not check sig_kernel_stop(signr) but set this marker
2293 * unconditionally because we do not know whether debugger will
2294 * change signr. This flag has no meaning unless we are going
2295 * to stop after return from ptrace_stop(). In this case it will
2296 * be checked in do_signal_stop(), we should only stop if it was
2297 * not cleared by SIGCONT while we were sleeping. See also the
2298 * comment in dequeue_signal().
2299 */
2300 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2301 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2302
2303 /* We're back. Did the debugger cancel the sig? */
2304 signr = current->exit_code;
2305 if (signr == 0)
2306 return signr;
2307
2308 current->exit_code = 0;
2309
2310 /*
2311 * Update the siginfo structure if the signal has
2312 * changed. If the debugger wanted something
2313 * specific in the siginfo structure then it should
2314 * have updated *info via PTRACE_SETSIGINFO.
2315 */
2316 if (signr != info->si_signo) {
2317 clear_siginfo(info);
2318 info->si_signo = signr;
2319 info->si_errno = 0;
2320 info->si_code = SI_USER;
2321 rcu_read_lock();
2322 info->si_pid = task_pid_vnr(current->parent);
2323 info->si_uid = from_kuid_munged(current_user_ns(),
2324 task_uid(current->parent));
2325 rcu_read_unlock();
2326 }
2327
2328 /* If the (new) signal is now blocked, requeue it. */
2329 if (sigismember(&current->blocked, signr)) {
2330 specific_send_sig_info(signr, info, current);
2331 signr = 0;
2332 }
2333
2334 return signr;
2335 }
2336
2337 int get_signal(struct ksignal *ksig)
2338 {
2339 struct sighand_struct *sighand = current->sighand;
2340 struct signal_struct *signal = current->signal;
2341 int signr;
2342
2343 if (unlikely(current->task_works))
2344 task_work_run();
2345
2346 if (unlikely(uprobe_deny_signal()))
2347 return 0;
2348
2349 /*
2350 * Do this once, we can't return to user-mode if freezing() == T.
2351 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2352 * thus do not need another check after return.
2353 */
2354 try_to_freeze();
2355
2356 relock:
2357 spin_lock_irq(&sighand->siglock);
2358 /*
2359 * Every stopped thread goes here after wakeup. Check to see if
2360 * we should notify the parent, prepare_signal(SIGCONT) encodes
2361 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2362 */
2363 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2364 int why;
2365
2366 if (signal->flags & SIGNAL_CLD_CONTINUED)
2367 why = CLD_CONTINUED;
2368 else
2369 why = CLD_STOPPED;
2370
2371 signal->flags &= ~SIGNAL_CLD_MASK;
2372
2373 spin_unlock_irq(&sighand->siglock);
2374
2375 /*
2376 * Notify the parent that we're continuing. This event is
2377 * always per-process and doesn't make whole lot of sense
2378 * for ptracers, who shouldn't consume the state via
2379 * wait(2) either, but, for backward compatibility, notify
2380 * the ptracer of the group leader too unless it's gonna be
2381 * a duplicate.
2382 */
2383 read_lock(&tasklist_lock);
2384 do_notify_parent_cldstop(current, false, why);
2385
2386 if (ptrace_reparented(current->group_leader))
2387 do_notify_parent_cldstop(current->group_leader,
2388 true, why);
2389 read_unlock(&tasklist_lock);
2390
2391 goto relock;
2392 }
2393
2394 for (;;) {
2395 struct k_sigaction *ka;
2396
2397 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2398 do_signal_stop(0))
2399 goto relock;
2400
2401 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2402 do_jobctl_trap();
2403 spin_unlock_irq(&sighand->siglock);
2404 goto relock;
2405 }
2406
2407 signr = dequeue_signal(current, &current->blocked, &ksig->info);
2408
2409 if (!signr)
2410 break; /* will return 0 */
2411
2412 if (unlikely(current->ptrace) && signr != SIGKILL) {
2413 signr = ptrace_signal(signr, &ksig->info);
2414 if (!signr)
2415 continue;
2416 }
2417
2418 ka = &sighand->action[signr-1];
2419
2420 /* Trace actually delivered signals. */
2421 trace_signal_deliver(signr, &ksig->info, ka);
2422
2423 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2424 continue;
2425 if (ka->sa.sa_handler != SIG_DFL) {
2426 /* Run the handler. */
2427 ksig->ka = *ka;
2428
2429 if (ka->sa.sa_flags & SA_ONESHOT)
2430 ka->sa.sa_handler = SIG_DFL;
2431
2432 break; /* will return non-zero "signr" value */
2433 }
2434
2435 /*
2436 * Now we are doing the default action for this signal.
2437 */
2438 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2439 continue;
2440
2441 /*
2442 * Global init gets no signals it doesn't want.
2443 * Container-init gets no signals it doesn't want from same
2444 * container.
2445 *
2446 * Note that if global/container-init sees a sig_kernel_only()
2447 * signal here, the signal must have been generated internally
2448 * or must have come from an ancestor namespace. In either
2449 * case, the signal cannot be dropped.
2450 */
2451 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2452 !sig_kernel_only(signr))
2453 continue;
2454
2455 if (sig_kernel_stop(signr)) {
2456 /*
2457 * The default action is to stop all threads in
2458 * the thread group. The job control signals
2459 * do nothing in an orphaned pgrp, but SIGSTOP
2460 * always works. Note that siglock needs to be
2461 * dropped during the call to is_orphaned_pgrp()
2462 * because of lock ordering with tasklist_lock.
2463 * This allows an intervening SIGCONT to be posted.
2464 * We need to check for that and bail out if necessary.
2465 */
2466 if (signr != SIGSTOP) {
2467 spin_unlock_irq(&sighand->siglock);
2468
2469 /* signals can be posted during this window */
2470
2471 if (is_current_pgrp_orphaned())
2472 goto relock;
2473
2474 spin_lock_irq(&sighand->siglock);
2475 }
2476
2477 if (likely(do_signal_stop(ksig->info.si_signo))) {
2478 /* It released the siglock. */
2479 goto relock;
2480 }
2481
2482 /*
2483 * We didn't actually stop, due to a race
2484 * with SIGCONT or something like that.
2485 */
2486 continue;
2487 }
2488
2489 spin_unlock_irq(&sighand->siglock);
2490
2491 /*
2492 * Anything else is fatal, maybe with a core dump.
2493 */
2494 current->flags |= PF_SIGNALED;
2495
2496 if (sig_kernel_coredump(signr)) {
2497 if (print_fatal_signals)
2498 print_fatal_signal(ksig->info.si_signo);
2499 proc_coredump_connector(current);
2500 /*
2501 * If it was able to dump core, this kills all
2502 * other threads in the group and synchronizes with
2503 * their demise. If we lost the race with another
2504 * thread getting here, it set group_exit_code
2505 * first and our do_group_exit call below will use
2506 * that value and ignore the one we pass it.
2507 */
2508 do_coredump(&ksig->info);
2509 }
2510
2511 /*
2512 * Death signals, no core dump.
2513 */
2514 do_group_exit(ksig->info.si_signo);
2515 /* NOTREACHED */
2516 }
2517 spin_unlock_irq(&sighand->siglock);
2518
2519 ksig->sig = signr;
2520 return ksig->sig > 0;
2521 }
2522
2523 /**
2524 * signal_delivered -
2525 * @ksig: kernel signal struct
2526 * @stepping: nonzero if debugger single-step or block-step in use
2527 *
2528 * This function should be called when a signal has successfully been
2529 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2530 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2531 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2532 */
2533 static void signal_delivered(struct ksignal *ksig, int stepping)
2534 {
2535 sigset_t blocked;
2536
2537 /* A signal was successfully delivered, and the
2538 saved sigmask was stored on the signal frame,
2539 and will be restored by sigreturn. So we can
2540 simply clear the restore sigmask flag. */
2541 clear_restore_sigmask();
2542
2543 sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2544 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2545 sigaddset(&blocked, ksig->sig);
2546 set_current_blocked(&blocked);
2547 tracehook_signal_handler(stepping);
2548 }
2549
2550 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2551 {
2552 if (failed)
2553 force_sigsegv(ksig->sig, current);
2554 else
2555 signal_delivered(ksig, stepping);
2556 }
2557
2558 /*
2559 * It could be that complete_signal() picked us to notify about the
2560 * group-wide signal. Other threads should be notified now to take
2561 * the shared signals in @which since we will not.
2562 */
2563 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2564 {
2565 sigset_t retarget;
2566 struct task_struct *t;
2567
2568 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2569 if (sigisemptyset(&retarget))
2570 return;
2571
2572 t = tsk;
2573 while_each_thread(tsk, t) {
2574 if (t->flags & PF_EXITING)
2575 continue;
2576
2577 if (!has_pending_signals(&retarget, &t->blocked))
2578 continue;
2579 /* Remove the signals this thread can handle. */
2580 sigandsets(&retarget, &retarget, &t->blocked);
2581
2582 if (!signal_pending(t))
2583 signal_wake_up(t, 0);
2584
2585 if (sigisemptyset(&retarget))
2586 break;
2587 }
2588 }
2589
2590 void exit_signals(struct task_struct *tsk)
2591 {
2592 int group_stop = 0;
2593 sigset_t unblocked;
2594
2595 /*
2596 * @tsk is about to have PF_EXITING set - lock out users which
2597 * expect stable threadgroup.
2598 */
2599 cgroup_threadgroup_change_begin(tsk);
2600
2601 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2602 tsk->flags |= PF_EXITING;
2603 cgroup_threadgroup_change_end(tsk);
2604 return;
2605 }
2606
2607 spin_lock_irq(&tsk->sighand->siglock);
2608 /*
2609 * From now this task is not visible for group-wide signals,
2610 * see wants_signal(), do_signal_stop().
2611 */
2612 tsk->flags |= PF_EXITING;
2613
2614 cgroup_threadgroup_change_end(tsk);
2615
2616 if (!signal_pending(tsk))
2617 goto out;
2618
2619 unblocked = tsk->blocked;
2620 signotset(&unblocked);
2621 retarget_shared_pending(tsk, &unblocked);
2622
2623 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2624 task_participate_group_stop(tsk))
2625 group_stop = CLD_STOPPED;
2626 out:
2627 spin_unlock_irq(&tsk->sighand->siglock);
2628
2629 /*
2630 * If group stop has completed, deliver the notification. This
2631 * should always go to the real parent of the group leader.
2632 */
2633 if (unlikely(group_stop)) {
2634 read_lock(&tasklist_lock);
2635 do_notify_parent_cldstop(tsk, false, group_stop);
2636 read_unlock(&tasklist_lock);
2637 }
2638 }
2639
2640 EXPORT_SYMBOL(recalc_sigpending);
2641 EXPORT_SYMBOL_GPL(dequeue_signal);
2642 EXPORT_SYMBOL(flush_signals);
2643 EXPORT_SYMBOL(force_sig);
2644 EXPORT_SYMBOL(send_sig);
2645 EXPORT_SYMBOL(send_sig_info);
2646 EXPORT_SYMBOL(sigprocmask);
2647
2648 /*
2649 * System call entry points.
2650 */
2651
2652 /**
2653 * sys_restart_syscall - restart a system call
2654 */
2655 SYSCALL_DEFINE0(restart_syscall)
2656 {
2657 struct restart_block *restart = &current->restart_block;
2658 return restart->fn(restart);
2659 }
2660
2661 long do_no_restart_syscall(struct restart_block *param)
2662 {
2663 return -EINTR;
2664 }
2665
2666 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2667 {
2668 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2669 sigset_t newblocked;
2670 /* A set of now blocked but previously unblocked signals. */
2671 sigandnsets(&newblocked, newset, &current->blocked);
2672 retarget_shared_pending(tsk, &newblocked);
2673 }
2674 tsk->blocked = *newset;
2675 recalc_sigpending();
2676 }
2677
2678 /**
2679 * set_current_blocked - change current->blocked mask
2680 * @newset: new mask
2681 *
2682 * It is wrong to change ->blocked directly, this helper should be used
2683 * to ensure the process can't miss a shared signal we are going to block.
2684 */
2685 void set_current_blocked(sigset_t *newset)
2686 {
2687 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2688 __set_current_blocked(newset);
2689 }
2690
2691 void __set_current_blocked(const sigset_t *newset)
2692 {
2693 struct task_struct *tsk = current;
2694
2695 /*
2696 * In case the signal mask hasn't changed, there is nothing we need
2697 * to do. The current->blocked shouldn't be modified by other task.
2698 */
2699 if (sigequalsets(&tsk->blocked, newset))
2700 return;
2701
2702 spin_lock_irq(&tsk->sighand->siglock);
2703 __set_task_blocked(tsk, newset);
2704 spin_unlock_irq(&tsk->sighand->siglock);
2705 }
2706
2707 /*
2708 * This is also useful for kernel threads that want to temporarily
2709 * (or permanently) block certain signals.
2710 *
2711 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2712 * interface happily blocks "unblockable" signals like SIGKILL
2713 * and friends.
2714 */
2715 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2716 {
2717 struct task_struct *tsk = current;
2718 sigset_t newset;
2719
2720 /* Lockless, only current can change ->blocked, never from irq */
2721 if (oldset)
2722 *oldset = tsk->blocked;
2723
2724 switch (how) {
2725 case SIG_BLOCK:
2726 sigorsets(&newset, &tsk->blocked, set);
2727 break;
2728 case SIG_UNBLOCK:
2729 sigandnsets(&newset, &tsk->blocked, set);
2730 break;
2731 case SIG_SETMASK:
2732 newset = *set;
2733 break;
2734 default:
2735 return -EINVAL;
2736 }
2737
2738 __set_current_blocked(&newset);
2739 return 0;
2740 }
2741
2742 /**
2743 * sys_rt_sigprocmask - change the list of currently blocked signals
2744 * @how: whether to add, remove, or set signals
2745 * @nset: stores pending signals
2746 * @oset: previous value of signal mask if non-null
2747 * @sigsetsize: size of sigset_t type
2748 */
2749 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2750 sigset_t __user *, oset, size_t, sigsetsize)
2751 {
2752 sigset_t old_set, new_set;
2753 int error;
2754
2755 /* XXX: Don't preclude handling different sized sigset_t's. */
2756 if (sigsetsize != sizeof(sigset_t))
2757 return -EINVAL;
2758
2759 old_set = current->blocked;
2760
2761 if (nset) {
2762 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2763 return -EFAULT;
2764 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2765
2766 error = sigprocmask(how, &new_set, NULL);
2767 if (error)
2768 return error;
2769 }
2770
2771 if (oset) {
2772 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2773 return -EFAULT;
2774 }
2775
2776 return 0;
2777 }
2778
2779 #ifdef CONFIG_COMPAT
2780 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2781 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2782 {
2783 sigset_t old_set = current->blocked;
2784
2785 /* XXX: Don't preclude handling different sized sigset_t's. */
2786 if (sigsetsize != sizeof(sigset_t))
2787 return -EINVAL;
2788
2789 if (nset) {
2790 sigset_t new_set;
2791 int error;
2792 if (get_compat_sigset(&new_set, nset))
2793 return -EFAULT;
2794 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2795
2796 error = sigprocmask(how, &new_set, NULL);
2797 if (error)
2798 return error;
2799 }
2800 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
2801 }
2802 #endif
2803
2804 static int do_sigpending(sigset_t *set)
2805 {
2806 spin_lock_irq(&current->sighand->siglock);
2807 sigorsets(set, &current->pending.signal,
2808 &current->signal->shared_pending.signal);
2809 spin_unlock_irq(&current->sighand->siglock);
2810
2811 /* Outside the lock because only this thread touches it. */
2812 sigandsets(set, &current->blocked, set);
2813 return 0;
2814 }
2815
2816 /**
2817 * sys_rt_sigpending - examine a pending signal that has been raised
2818 * while blocked
2819 * @uset: stores pending signals
2820 * @sigsetsize: size of sigset_t type or larger
2821 */
2822 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2823 {
2824 sigset_t set;
2825 int err;
2826
2827 if (sigsetsize > sizeof(*uset))
2828 return -EINVAL;
2829
2830 err = do_sigpending(&set);
2831 if (!err && copy_to_user(uset, &set, sigsetsize))
2832 err = -EFAULT;
2833 return err;
2834 }
2835
2836 #ifdef CONFIG_COMPAT
2837 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2838 compat_size_t, sigsetsize)
2839 {
2840 sigset_t set;
2841 int err;
2842
2843 if (sigsetsize > sizeof(*uset))
2844 return -EINVAL;
2845
2846 err = do_sigpending(&set);
2847 if (!err)
2848 err = put_compat_sigset(uset, &set, sigsetsize);
2849 return err;
2850 }
2851 #endif
2852
2853 enum siginfo_layout siginfo_layout(int sig, int si_code)
2854 {
2855 enum siginfo_layout layout = SIL_KILL;
2856 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
2857 static const struct {
2858 unsigned char limit, layout;
2859 } filter[] = {
2860 [SIGILL] = { NSIGILL, SIL_FAULT },
2861 [SIGFPE] = { NSIGFPE, SIL_FAULT },
2862 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
2863 [SIGBUS] = { NSIGBUS, SIL_FAULT },
2864 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
2865 #if defined(SIGEMT) && defined(NSIGEMT)
2866 [SIGEMT] = { NSIGEMT, SIL_FAULT },
2867 #endif
2868 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
2869 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
2870 [SIGSYS] = { NSIGSYS, SIL_SYS },
2871 };
2872 if ((sig < ARRAY_SIZE(filter)) && (si_code <= filter[sig].limit)) {
2873 layout = filter[sig].layout;
2874 /* Handle the exceptions */
2875 if ((sig == SIGBUS) &&
2876 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
2877 layout = SIL_FAULT_MCEERR;
2878 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
2879 layout = SIL_FAULT_BNDERR;
2880 #ifdef SEGV_PKUERR
2881 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
2882 layout = SIL_FAULT_PKUERR;
2883 #endif
2884 }
2885 else if (si_code <= NSIGPOLL)
2886 layout = SIL_POLL;
2887 } else {
2888 if (si_code == SI_TIMER)
2889 layout = SIL_TIMER;
2890 else if (si_code == SI_SIGIO)
2891 layout = SIL_POLL;
2892 else if (si_code < 0)
2893 layout = SIL_RT;
2894 }
2895 return layout;
2896 }
2897
2898 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2899 {
2900 if (copy_to_user(to, from , sizeof(struct siginfo)))
2901 return -EFAULT;
2902 return 0;
2903 }
2904
2905 #ifdef CONFIG_COMPAT
2906 int copy_siginfo_to_user32(struct compat_siginfo __user *to,
2907 const struct siginfo *from)
2908 #if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
2909 {
2910 return __copy_siginfo_to_user32(to, from, in_x32_syscall());
2911 }
2912 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
2913 const struct siginfo *from, bool x32_ABI)
2914 #endif
2915 {
2916 struct compat_siginfo new;
2917 memset(&new, 0, sizeof(new));
2918
2919 new.si_signo = from->si_signo;
2920 new.si_errno = from->si_errno;
2921 new.si_code = from->si_code;
2922 switch(siginfo_layout(from->si_signo, from->si_code)) {
2923 case SIL_KILL:
2924 new.si_pid = from->si_pid;
2925 new.si_uid = from->si_uid;
2926 break;
2927 case SIL_TIMER:
2928 new.si_tid = from->si_tid;
2929 new.si_overrun = from->si_overrun;
2930 new.si_int = from->si_int;
2931 break;
2932 case SIL_POLL:
2933 new.si_band = from->si_band;
2934 new.si_fd = from->si_fd;
2935 break;
2936 case SIL_FAULT:
2937 new.si_addr = ptr_to_compat(from->si_addr);
2938 #ifdef __ARCH_SI_TRAPNO
2939 new.si_trapno = from->si_trapno;
2940 #endif
2941 break;
2942 case SIL_FAULT_MCEERR:
2943 new.si_addr = ptr_to_compat(from->si_addr);
2944 #ifdef __ARCH_SI_TRAPNO
2945 new.si_trapno = from->si_trapno;
2946 #endif
2947 new.si_addr_lsb = from->si_addr_lsb;
2948 break;
2949 case SIL_FAULT_BNDERR:
2950 new.si_addr = ptr_to_compat(from->si_addr);
2951 #ifdef __ARCH_SI_TRAPNO
2952 new.si_trapno = from->si_trapno;
2953 #endif
2954 new.si_lower = ptr_to_compat(from->si_lower);
2955 new.si_upper = ptr_to_compat(from->si_upper);
2956 break;
2957 case SIL_FAULT_PKUERR:
2958 new.si_addr = ptr_to_compat(from->si_addr);
2959 #ifdef __ARCH_SI_TRAPNO
2960 new.si_trapno = from->si_trapno;
2961 #endif
2962 new.si_pkey = from->si_pkey;
2963 break;
2964 case SIL_CHLD:
2965 new.si_pid = from->si_pid;
2966 new.si_uid = from->si_uid;
2967 new.si_status = from->si_status;
2968 #ifdef CONFIG_X86_X32_ABI
2969 if (x32_ABI) {
2970 new._sifields._sigchld_x32._utime = from->si_utime;
2971 new._sifields._sigchld_x32._stime = from->si_stime;
2972 } else
2973 #endif
2974 {
2975 new.si_utime = from->si_utime;
2976 new.si_stime = from->si_stime;
2977 }
2978 break;
2979 case SIL_RT:
2980 new.si_pid = from->si_pid;
2981 new.si_uid = from->si_uid;
2982 new.si_int = from->si_int;
2983 break;
2984 case SIL_SYS:
2985 new.si_call_addr = ptr_to_compat(from->si_call_addr);
2986 new.si_syscall = from->si_syscall;
2987 new.si_arch = from->si_arch;
2988 break;
2989 }
2990
2991 if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
2992 return -EFAULT;
2993
2994 return 0;
2995 }
2996
2997 int copy_siginfo_from_user32(struct siginfo *to,
2998 const struct compat_siginfo __user *ufrom)
2999 {
3000 struct compat_siginfo from;
3001
3002 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3003 return -EFAULT;
3004
3005 clear_siginfo(to);
3006 to->si_signo = from.si_signo;
3007 to->si_errno = from.si_errno;
3008 to->si_code = from.si_code;
3009 switch(siginfo_layout(from.si_signo, from.si_code)) {
3010 case SIL_KILL:
3011 to->si_pid = from.si_pid;
3012 to->si_uid = from.si_uid;
3013 break;
3014 case SIL_TIMER:
3015 to->si_tid = from.si_tid;
3016 to->si_overrun = from.si_overrun;
3017 to->si_int = from.si_int;
3018 break;
3019 case SIL_POLL:
3020 to->si_band = from.si_band;
3021 to->si_fd = from.si_fd;
3022 break;
3023 case SIL_FAULT:
3024 to->si_addr = compat_ptr(from.si_addr);
3025 #ifdef __ARCH_SI_TRAPNO
3026 to->si_trapno = from.si_trapno;
3027 #endif
3028 break;
3029 case SIL_FAULT_MCEERR:
3030 to->si_addr = compat_ptr(from.si_addr);
3031 #ifdef __ARCH_SI_TRAPNO
3032 to->si_trapno = from.si_trapno;
3033 #endif
3034 to->si_addr_lsb = from.si_addr_lsb;
3035 break;
3036 case SIL_FAULT_BNDERR:
3037 to->si_addr = compat_ptr(from.si_addr);
3038 #ifdef __ARCH_SI_TRAPNO
3039 to->si_trapno = from.si_trapno;
3040 #endif
3041 to->si_lower = compat_ptr(from.si_lower);
3042 to->si_upper = compat_ptr(from.si_upper);
3043 break;
3044 case SIL_FAULT_PKUERR:
3045 to->si_addr = compat_ptr(from.si_addr);
3046 #ifdef __ARCH_SI_TRAPNO
3047 to->si_trapno = from.si_trapno;
3048 #endif
3049 to->si_pkey = from.si_pkey;
3050 break;
3051 case SIL_CHLD:
3052 to->si_pid = from.si_pid;
3053 to->si_uid = from.si_uid;
3054 to->si_status = from.si_status;
3055 #ifdef CONFIG_X86_X32_ABI
3056 if (in_x32_syscall()) {
3057 to->si_utime = from._sifields._sigchld_x32._utime;
3058 to->si_stime = from._sifields._sigchld_x32._stime;
3059 } else
3060 #endif
3061 {
3062 to->si_utime = from.si_utime;
3063 to->si_stime = from.si_stime;
3064 }
3065 break;
3066 case SIL_RT:
3067 to->si_pid = from.si_pid;
3068 to->si_uid = from.si_uid;
3069 to->si_int = from.si_int;
3070 break;
3071 case SIL_SYS:
3072 to->si_call_addr = compat_ptr(from.si_call_addr);
3073 to->si_syscall = from.si_syscall;
3074 to->si_arch = from.si_arch;
3075 break;
3076 }
3077 return 0;
3078 }
3079 #endif /* CONFIG_COMPAT */
3080
3081 /**
3082 * do_sigtimedwait - wait for queued signals specified in @which
3083 * @which: queued signals to wait for
3084 * @info: if non-null, the signal's siginfo is returned here
3085 * @ts: upper bound on process time suspension
3086 */
3087 static int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
3088 const struct timespec *ts)
3089 {
3090 ktime_t *to = NULL, timeout = KTIME_MAX;
3091 struct task_struct *tsk = current;
3092 sigset_t mask = *which;
3093 int sig, ret = 0;
3094
3095 if (ts) {
3096 if (!timespec_valid(ts))
3097 return -EINVAL;
3098 timeout = timespec_to_ktime(*ts);
3099 to = &timeout;
3100 }
3101
3102 /*
3103 * Invert the set of allowed signals to get those we want to block.
3104 */
3105 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3106 signotset(&mask);
3107
3108 spin_lock_irq(&tsk->sighand->siglock);
3109 sig = dequeue_signal(tsk, &mask, info);
3110 if (!sig && timeout) {
3111 /*
3112 * None ready, temporarily unblock those we're interested
3113 * while we are sleeping in so that we'll be awakened when
3114 * they arrive. Unblocking is always fine, we can avoid
3115 * set_current_blocked().
3116 */
3117 tsk->real_blocked = tsk->blocked;
3118 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3119 recalc_sigpending();
3120 spin_unlock_irq(&tsk->sighand->siglock);
3121
3122 __set_current_state(TASK_INTERRUPTIBLE);
3123 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3124 HRTIMER_MODE_REL);
3125 spin_lock_irq(&tsk->sighand->siglock);
3126 __set_task_blocked(tsk, &tsk->real_blocked);
3127 sigemptyset(&tsk->real_blocked);
3128 sig = dequeue_signal(tsk, &mask, info);
3129 }
3130 spin_unlock_irq(&tsk->sighand->siglock);
3131
3132 if (sig)
3133 return sig;
3134 return ret ? -EINTR : -EAGAIN;
3135 }
3136
3137 /**
3138 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3139 * in @uthese
3140 * @uthese: queued signals to wait for
3141 * @uinfo: if non-null, the signal's siginfo is returned here
3142 * @uts: upper bound on process time suspension
3143 * @sigsetsize: size of sigset_t type
3144 */
3145 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3146 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
3147 size_t, sigsetsize)
3148 {
3149 sigset_t these;
3150 struct timespec ts;
3151 siginfo_t info;
3152 int ret;
3153
3154 /* XXX: Don't preclude handling different sized sigset_t's. */
3155 if (sigsetsize != sizeof(sigset_t))
3156 return -EINVAL;
3157
3158 if (copy_from_user(&these, uthese, sizeof(these)))
3159 return -EFAULT;
3160
3161 if (uts) {
3162 if (copy_from_user(&ts, uts, sizeof(ts)))
3163 return -EFAULT;
3164 }
3165
3166 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3167
3168 if (ret > 0 && uinfo) {
3169 if (copy_siginfo_to_user(uinfo, &info))
3170 ret = -EFAULT;
3171 }
3172
3173 return ret;
3174 }
3175
3176 #ifdef CONFIG_COMPAT
3177 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait, compat_sigset_t __user *, uthese,
3178 struct compat_siginfo __user *, uinfo,
3179 struct compat_timespec __user *, uts, compat_size_t, sigsetsize)
3180 {
3181 sigset_t s;
3182 struct timespec t;
3183 siginfo_t info;
3184 long ret;
3185
3186 if (sigsetsize != sizeof(sigset_t))
3187 return -EINVAL;
3188
3189 if (get_compat_sigset(&s, uthese))
3190 return -EFAULT;
3191
3192 if (uts) {
3193 if (compat_get_timespec(&t, uts))
3194 return -EFAULT;
3195 }
3196
3197 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3198
3199 if (ret > 0 && uinfo) {
3200 if (copy_siginfo_to_user32(uinfo, &info))
3201 ret = -EFAULT;
3202 }
3203
3204 return ret;
3205 }
3206 #endif
3207
3208 /**
3209 * sys_kill - send a signal to a process
3210 * @pid: the PID of the process
3211 * @sig: signal to be sent
3212 */
3213 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3214 {
3215 struct siginfo info;
3216
3217 clear_siginfo(&info);
3218 info.si_signo = sig;
3219 info.si_errno = 0;
3220 info.si_code = SI_USER;
3221 info.si_pid = task_tgid_vnr(current);
3222 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3223
3224 return kill_something_info(sig, &info, pid);
3225 }
3226
3227 static int
3228 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
3229 {
3230 struct task_struct *p;
3231 int error = -ESRCH;
3232
3233 rcu_read_lock();
3234 p = find_task_by_vpid(pid);
3235 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3236 error = check_kill_permission(sig, info, p);
3237 /*
3238 * The null signal is a permissions and process existence
3239 * probe. No signal is actually delivered.
3240 */
3241 if (!error && sig) {
3242 error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3243 /*
3244 * If lock_task_sighand() failed we pretend the task
3245 * dies after receiving the signal. The window is tiny,
3246 * and the signal is private anyway.
3247 */
3248 if (unlikely(error == -ESRCH))
3249 error = 0;
3250 }
3251 }
3252 rcu_read_unlock();
3253
3254 return error;
3255 }
3256
3257 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3258 {
3259 struct siginfo info;
3260
3261 clear_siginfo(&info);
3262 info.si_signo = sig;
3263 info.si_errno = 0;
3264 info.si_code = SI_TKILL;
3265 info.si_pid = task_tgid_vnr(current);
3266 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3267
3268 return do_send_specific(tgid, pid, sig, &info);
3269 }
3270
3271 /**
3272 * sys_tgkill - send signal to one specific thread
3273 * @tgid: the thread group ID of the thread
3274 * @pid: the PID of the thread
3275 * @sig: signal to be sent
3276 *
3277 * This syscall also checks the @tgid and returns -ESRCH even if the PID
3278 * exists but it's not belonging to the target process anymore. This
3279 * method solves the problem of threads exiting and PIDs getting reused.
3280 */
3281 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3282 {
3283 /* This is only valid for single tasks */
3284 if (pid <= 0 || tgid <= 0)
3285 return -EINVAL;
3286
3287 return do_tkill(tgid, pid, sig);
3288 }
3289
3290 /**
3291 * sys_tkill - send signal to one specific task
3292 * @pid: the PID of the task
3293 * @sig: signal to be sent
3294 *
3295 * Send a signal to only one task, even if it's a CLONE_THREAD task.
3296 */
3297 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3298 {
3299 /* This is only valid for single tasks */
3300 if (pid <= 0)
3301 return -EINVAL;
3302
3303 return do_tkill(0, pid, sig);
3304 }
3305
3306 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
3307 {
3308 /* Not even root can pretend to send signals from the kernel.
3309 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3310 */
3311 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3312 (task_pid_vnr(current) != pid))
3313 return -EPERM;
3314
3315 info->si_signo = sig;
3316
3317 /* POSIX.1b doesn't mention process groups. */
3318 return kill_proc_info(sig, info, pid);
3319 }
3320
3321 /**
3322 * sys_rt_sigqueueinfo - send signal information to a signal
3323 * @pid: the PID of the thread
3324 * @sig: signal to be sent
3325 * @uinfo: signal info to be sent
3326 */
3327 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3328 siginfo_t __user *, uinfo)
3329 {
3330 siginfo_t info;
3331 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3332 return -EFAULT;
3333 return do_rt_sigqueueinfo(pid, sig, &info);
3334 }
3335
3336 #ifdef CONFIG_COMPAT
3337 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3338 compat_pid_t, pid,
3339 int, sig,
3340 struct compat_siginfo __user *, uinfo)
3341 {
3342 siginfo_t info;
3343 int ret = copy_siginfo_from_user32(&info, uinfo);
3344 if (unlikely(ret))
3345 return ret;
3346 return do_rt_sigqueueinfo(pid, sig, &info);
3347 }
3348 #endif
3349
3350 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3351 {
3352 /* This is only valid for single tasks */
3353 if (pid <= 0 || tgid <= 0)
3354 return -EINVAL;
3355
3356 /* Not even root can pretend to send signals from the kernel.
3357 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3358 */
3359 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3360 (task_pid_vnr(current) != pid))
3361 return -EPERM;
3362
3363 info->si_signo = sig;
3364
3365 return do_send_specific(tgid, pid, sig, info);
3366 }
3367
3368 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3369 siginfo_t __user *, uinfo)
3370 {
3371 siginfo_t info;
3372
3373 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3374 return -EFAULT;
3375
3376 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3377 }
3378
3379 #ifdef CONFIG_COMPAT
3380 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3381 compat_pid_t, tgid,
3382 compat_pid_t, pid,
3383 int, sig,
3384 struct compat_siginfo __user *, uinfo)
3385 {
3386 siginfo_t info;
3387
3388 if (copy_siginfo_from_user32(&info, uinfo))
3389 return -EFAULT;
3390 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3391 }
3392 #endif
3393
3394 /*
3395 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3396 */
3397 void kernel_sigaction(int sig, __sighandler_t action)
3398 {
3399 spin_lock_irq(&current->sighand->siglock);
3400 current->sighand->action[sig - 1].sa.sa_handler = action;
3401 if (action == SIG_IGN) {
3402 sigset_t mask;
3403
3404 sigemptyset(&mask);
3405 sigaddset(&mask, sig);
3406
3407 flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3408 flush_sigqueue_mask(&mask, &current->pending);
3409 recalc_sigpending();
3410 }
3411 spin_unlock_irq(&current->sighand->siglock);
3412 }
3413 EXPORT_SYMBOL(kernel_sigaction);
3414
3415 void __weak sigaction_compat_abi(struct k_sigaction *act,
3416 struct k_sigaction *oact)
3417 {
3418 }
3419
3420 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3421 {
3422 struct task_struct *p = current, *t;
3423 struct k_sigaction *k;
3424 sigset_t mask;
3425
3426 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3427 return -EINVAL;
3428
3429 k = &p->sighand->action[sig-1];
3430
3431 spin_lock_irq(&p->sighand->siglock);
3432 if (oact)
3433 *oact = *k;
3434
3435 sigaction_compat_abi(act, oact);
3436
3437 if (act) {
3438 sigdelsetmask(&act->sa.sa_mask,
3439 sigmask(SIGKILL) | sigmask(SIGSTOP));
3440 *k = *act;
3441 /*
3442 * POSIX 3.3.1.3:
3443 * "Setting a signal action to SIG_IGN for a signal that is
3444 * pending shall cause the pending signal to be discarded,
3445 * whether or not it is blocked."
3446 *
3447 * "Setting a signal action to SIG_DFL for a signal that is
3448 * pending and whose default action is to ignore the signal
3449 * (for example, SIGCHLD), shall cause the pending signal to
3450 * be discarded, whether or not it is blocked"
3451 */
3452 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3453 sigemptyset(&mask);
3454 sigaddset(&mask, sig);
3455 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3456 for_each_thread(p, t)
3457 flush_sigqueue_mask(&mask, &t->pending);
3458 }
3459 }
3460
3461 spin_unlock_irq(&p->sighand->siglock);
3462 return 0;
3463 }
3464
3465 static int
3466 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp)
3467 {
3468 struct task_struct *t = current;
3469
3470 if (oss) {
3471 memset(oss, 0, sizeof(stack_t));
3472 oss->ss_sp = (void __user *) t->sas_ss_sp;
3473 oss->ss_size = t->sas_ss_size;
3474 oss->ss_flags = sas_ss_flags(sp) |
3475 (current->sas_ss_flags & SS_FLAG_BITS);
3476 }
3477
3478 if (ss) {
3479 void __user *ss_sp = ss->ss_sp;
3480 size_t ss_size = ss->ss_size;
3481 unsigned ss_flags = ss->ss_flags;
3482 int ss_mode;
3483
3484 if (unlikely(on_sig_stack(sp)))
3485 return -EPERM;
3486
3487 ss_mode = ss_flags & ~SS_FLAG_BITS;
3488 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3489 ss_mode != 0))
3490 return -EINVAL;
3491
3492 if (ss_mode == SS_DISABLE) {
3493 ss_size = 0;
3494 ss_sp = NULL;
3495 } else {
3496 if (unlikely(ss_size < MINSIGSTKSZ))
3497 return -ENOMEM;
3498 }
3499
3500 t->sas_ss_sp = (unsigned long) ss_sp;
3501 t->sas_ss_size = ss_size;
3502 t->sas_ss_flags = ss_flags;
3503 }
3504 return 0;
3505 }
3506
3507 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3508 {
3509 stack_t new, old;
3510 int err;
3511 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
3512 return -EFAULT;
3513 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
3514 current_user_stack_pointer());
3515 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
3516 err = -EFAULT;
3517 return err;
3518 }
3519
3520 int restore_altstack(const stack_t __user *uss)
3521 {
3522 stack_t new;
3523 if (copy_from_user(&new, uss, sizeof(stack_t)))
3524 return -EFAULT;
3525 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer());
3526 /* squash all but EFAULT for now */
3527 return 0;
3528 }
3529
3530 int __save_altstack(stack_t __user *uss, unsigned long sp)
3531 {
3532 struct task_struct *t = current;
3533 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3534 __put_user(t->sas_ss_flags, &uss->ss_flags) |
3535 __put_user(t->sas_ss_size, &uss->ss_size);
3536 if (err)
3537 return err;
3538 if (t->sas_ss_flags & SS_AUTODISARM)
3539 sas_ss_reset(t);
3540 return 0;
3541 }
3542
3543 #ifdef CONFIG_COMPAT
3544 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
3545 compat_stack_t __user *uoss_ptr)
3546 {
3547 stack_t uss, uoss;
3548 int ret;
3549
3550 if (uss_ptr) {
3551 compat_stack_t uss32;
3552 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3553 return -EFAULT;
3554 uss.ss_sp = compat_ptr(uss32.ss_sp);
3555 uss.ss_flags = uss32.ss_flags;
3556 uss.ss_size = uss32.ss_size;
3557 }
3558 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
3559 compat_user_stack_pointer());
3560 if (ret >= 0 && uoss_ptr) {
3561 compat_stack_t old;
3562 memset(&old, 0, sizeof(old));
3563 old.ss_sp = ptr_to_compat(uoss.ss_sp);
3564 old.ss_flags = uoss.ss_flags;
3565 old.ss_size = uoss.ss_size;
3566 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
3567 ret = -EFAULT;
3568 }
3569 return ret;
3570 }
3571
3572 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3573 const compat_stack_t __user *, uss_ptr,
3574 compat_stack_t __user *, uoss_ptr)
3575 {
3576 return do_compat_sigaltstack(uss_ptr, uoss_ptr);
3577 }
3578
3579 int compat_restore_altstack(const compat_stack_t __user *uss)
3580 {
3581 int err = do_compat_sigaltstack(uss, NULL);
3582 /* squash all but -EFAULT for now */
3583 return err == -EFAULT ? err : 0;
3584 }
3585
3586 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3587 {
3588 int err;
3589 struct task_struct *t = current;
3590 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
3591 &uss->ss_sp) |
3592 __put_user(t->sas_ss_flags, &uss->ss_flags) |
3593 __put_user(t->sas_ss_size, &uss->ss_size);
3594 if (err)
3595 return err;
3596 if (t->sas_ss_flags & SS_AUTODISARM)
3597 sas_ss_reset(t);
3598 return 0;
3599 }
3600 #endif
3601
3602 #ifdef __ARCH_WANT_SYS_SIGPENDING
3603
3604 /**
3605 * sys_sigpending - examine pending signals
3606 * @uset: where mask of pending signal is returned
3607 */
3608 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
3609 {
3610 sigset_t set;
3611 int err;
3612
3613 if (sizeof(old_sigset_t) > sizeof(*uset))
3614 return -EINVAL;
3615
3616 err = do_sigpending(&set);
3617 if (!err && copy_to_user(uset, &set, sizeof(old_sigset_t)))
3618 err = -EFAULT;
3619 return err;
3620 }
3621
3622 #ifdef CONFIG_COMPAT
3623 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
3624 {
3625 sigset_t set;
3626 int err = do_sigpending(&set);
3627 if (!err)
3628 err = put_user(set.sig[0], set32);
3629 return err;
3630 }
3631 #endif
3632
3633 #endif
3634
3635 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3636 /**
3637 * sys_sigprocmask - examine and change blocked signals
3638 * @how: whether to add, remove, or set signals
3639 * @nset: signals to add or remove (if non-null)
3640 * @oset: previous value of signal mask if non-null
3641 *
3642 * Some platforms have their own version with special arguments;
3643 * others support only sys_rt_sigprocmask.
3644 */
3645
3646 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3647 old_sigset_t __user *, oset)
3648 {
3649 old_sigset_t old_set, new_set;
3650 sigset_t new_blocked;
3651
3652 old_set = current->blocked.sig[0];
3653
3654 if (nset) {
3655 if (copy_from_user(&new_set, nset, sizeof(*nset)))
3656 return -EFAULT;
3657
3658 new_blocked = current->blocked;
3659
3660 switch (how) {
3661 case SIG_BLOCK:
3662 sigaddsetmask(&new_blocked, new_set);
3663 break;
3664 case SIG_UNBLOCK:
3665 sigdelsetmask(&new_blocked, new_set);
3666 break;
3667 case SIG_SETMASK:
3668 new_blocked.sig[0] = new_set;
3669 break;
3670 default:
3671 return -EINVAL;
3672 }
3673
3674 set_current_blocked(&new_blocked);
3675 }
3676
3677 if (oset) {
3678 if (copy_to_user(oset, &old_set, sizeof(*oset)))
3679 return -EFAULT;
3680 }
3681
3682 return 0;
3683 }
3684 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3685
3686 #ifndef CONFIG_ODD_RT_SIGACTION
3687 /**
3688 * sys_rt_sigaction - alter an action taken by a process
3689 * @sig: signal to be sent
3690 * @act: new sigaction
3691 * @oact: used to save the previous sigaction
3692 * @sigsetsize: size of sigset_t type
3693 */
3694 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3695 const struct sigaction __user *, act,
3696 struct sigaction __user *, oact,
3697 size_t, sigsetsize)
3698 {
3699 struct k_sigaction new_sa, old_sa;
3700 int ret = -EINVAL;
3701
3702 /* XXX: Don't preclude handling different sized sigset_t's. */
3703 if (sigsetsize != sizeof(sigset_t))
3704 goto out;
3705
3706 if (act) {
3707 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3708 return -EFAULT;
3709 }
3710
3711 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3712
3713 if (!ret && oact) {
3714 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3715 return -EFAULT;
3716 }
3717 out:
3718 return ret;
3719 }
3720 #ifdef CONFIG_COMPAT
3721 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3722 const struct compat_sigaction __user *, act,
3723 struct compat_sigaction __user *, oact,
3724 compat_size_t, sigsetsize)
3725 {
3726 struct k_sigaction new_ka, old_ka;
3727 #ifdef __ARCH_HAS_SA_RESTORER
3728 compat_uptr_t restorer;
3729 #endif
3730 int ret;
3731
3732 /* XXX: Don't preclude handling different sized sigset_t's. */
3733 if (sigsetsize != sizeof(compat_sigset_t))
3734 return -EINVAL;
3735
3736 if (act) {
3737 compat_uptr_t handler;
3738 ret = get_user(handler, &act->sa_handler);
3739 new_ka.sa.sa_handler = compat_ptr(handler);
3740 #ifdef __ARCH_HAS_SA_RESTORER
3741 ret |= get_user(restorer, &act->sa_restorer);
3742 new_ka.sa.sa_restorer = compat_ptr(restorer);
3743 #endif
3744 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
3745 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3746 if (ret)
3747 return -EFAULT;
3748 }
3749
3750 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3751 if (!ret && oact) {
3752 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3753 &oact->sa_handler);
3754 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
3755 sizeof(oact->sa_mask));
3756 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3757 #ifdef __ARCH_HAS_SA_RESTORER
3758 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3759 &oact->sa_restorer);
3760 #endif
3761 }
3762 return ret;
3763 }
3764 #endif
3765 #endif /* !CONFIG_ODD_RT_SIGACTION */
3766
3767 #ifdef CONFIG_OLD_SIGACTION
3768 SYSCALL_DEFINE3(sigaction, int, sig,
3769 const struct old_sigaction __user *, act,
3770 struct old_sigaction __user *, oact)
3771 {
3772 struct k_sigaction new_ka, old_ka;
3773 int ret;
3774
3775 if (act) {
3776 old_sigset_t mask;
3777 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3778 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3779 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3780 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3781 __get_user(mask, &act->sa_mask))
3782 return -EFAULT;
3783 #ifdef __ARCH_HAS_KA_RESTORER
3784 new_ka.ka_restorer = NULL;
3785 #endif
3786 siginitset(&new_ka.sa.sa_mask, mask);
3787 }
3788
3789 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3790
3791 if (!ret && oact) {
3792 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3793 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3794 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3795 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3796 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3797 return -EFAULT;
3798 }
3799
3800 return ret;
3801 }
3802 #endif
3803 #ifdef CONFIG_COMPAT_OLD_SIGACTION
3804 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3805 const struct compat_old_sigaction __user *, act,
3806 struct compat_old_sigaction __user *, oact)
3807 {
3808 struct k_sigaction new_ka, old_ka;
3809 int ret;
3810 compat_old_sigset_t mask;
3811 compat_uptr_t handler, restorer;
3812
3813 if (act) {
3814 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3815 __get_user(handler, &act->sa_handler) ||
3816 __get_user(restorer, &act->sa_restorer) ||
3817 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3818 __get_user(mask, &act->sa_mask))
3819 return -EFAULT;
3820
3821 #ifdef __ARCH_HAS_KA_RESTORER
3822 new_ka.ka_restorer = NULL;
3823 #endif
3824 new_ka.sa.sa_handler = compat_ptr(handler);
3825 new_ka.sa.sa_restorer = compat_ptr(restorer);
3826 siginitset(&new_ka.sa.sa_mask, mask);
3827 }
3828
3829 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3830
3831 if (!ret && oact) {
3832 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3833 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3834 &oact->sa_handler) ||
3835 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3836 &oact->sa_restorer) ||
3837 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3838 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3839 return -EFAULT;
3840 }
3841 return ret;
3842 }
3843 #endif
3844
3845 #ifdef CONFIG_SGETMASK_SYSCALL
3846
3847 /*
3848 * For backwards compatibility. Functionality superseded by sigprocmask.
3849 */
3850 SYSCALL_DEFINE0(sgetmask)
3851 {
3852 /* SMP safe */
3853 return current->blocked.sig[0];
3854 }
3855
3856 SYSCALL_DEFINE1(ssetmask, int, newmask)
3857 {
3858 int old = current->blocked.sig[0];
3859 sigset_t newset;
3860
3861 siginitset(&newset, newmask);
3862 set_current_blocked(&newset);
3863
3864 return old;
3865 }
3866 #endif /* CONFIG_SGETMASK_SYSCALL */
3867
3868 #ifdef __ARCH_WANT_SYS_SIGNAL
3869 /*
3870 * For backwards compatibility. Functionality superseded by sigaction.
3871 */
3872 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3873 {
3874 struct k_sigaction new_sa, old_sa;
3875 int ret;
3876
3877 new_sa.sa.sa_handler = handler;
3878 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3879 sigemptyset(&new_sa.sa.sa_mask);
3880
3881 ret = do_sigaction(sig, &new_sa, &old_sa);
3882
3883 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3884 }
3885 #endif /* __ARCH_WANT_SYS_SIGNAL */
3886
3887 #ifdef __ARCH_WANT_SYS_PAUSE
3888
3889 SYSCALL_DEFINE0(pause)
3890 {
3891 while (!signal_pending(current)) {
3892 __set_current_state(TASK_INTERRUPTIBLE);
3893 schedule();
3894 }
3895 return -ERESTARTNOHAND;
3896 }
3897
3898 #endif
3899
3900 static int sigsuspend(sigset_t *set)
3901 {
3902 current->saved_sigmask = current->blocked;
3903 set_current_blocked(set);
3904
3905 while (!signal_pending(current)) {
3906 __set_current_state(TASK_INTERRUPTIBLE);
3907 schedule();
3908 }
3909 set_restore_sigmask();
3910 return -ERESTARTNOHAND;
3911 }
3912
3913 /**
3914 * sys_rt_sigsuspend - replace the signal mask for a value with the
3915 * @unewset value until a signal is received
3916 * @unewset: new signal mask value
3917 * @sigsetsize: size of sigset_t type
3918 */
3919 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3920 {
3921 sigset_t newset;
3922
3923 /* XXX: Don't preclude handling different sized sigset_t's. */
3924 if (sigsetsize != sizeof(sigset_t))
3925 return -EINVAL;
3926
3927 if (copy_from_user(&newset, unewset, sizeof(newset)))
3928 return -EFAULT;
3929 return sigsuspend(&newset);
3930 }
3931
3932 #ifdef CONFIG_COMPAT
3933 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3934 {
3935 sigset_t newset;
3936
3937 /* XXX: Don't preclude handling different sized sigset_t's. */
3938 if (sigsetsize != sizeof(sigset_t))
3939 return -EINVAL;
3940
3941 if (get_compat_sigset(&newset, unewset))
3942 return -EFAULT;
3943 return sigsuspend(&newset);
3944 }
3945 #endif
3946
3947 #ifdef CONFIG_OLD_SIGSUSPEND
3948 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3949 {
3950 sigset_t blocked;
3951 siginitset(&blocked, mask);
3952 return sigsuspend(&blocked);
3953 }
3954 #endif
3955 #ifdef CONFIG_OLD_SIGSUSPEND3
3956 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3957 {
3958 sigset_t blocked;
3959 siginitset(&blocked, mask);
3960 return sigsuspend(&blocked);
3961 }
3962 #endif
3963
3964 __weak const char *arch_vma_name(struct vm_area_struct *vma)
3965 {
3966 return NULL;
3967 }
3968
3969 void __init signals_init(void)
3970 {
3971 /* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
3972 BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
3973 != offsetof(struct siginfo, _sifields._pad));
3974 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
3975
3976 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3977 }
3978
3979 #ifdef CONFIG_KGDB_KDB
3980 #include <linux/kdb.h>
3981 /*
3982 * kdb_send_sig - Allows kdb to send signals without exposing
3983 * signal internals. This function checks if the required locks are
3984 * available before calling the main signal code, to avoid kdb
3985 * deadlocks.
3986 */
3987 void kdb_send_sig(struct task_struct *t, int sig)
3988 {
3989 static struct task_struct *kdb_prev_t;
3990 int new_t, ret;
3991 if (!spin_trylock(&t->sighand->siglock)) {
3992 kdb_printf("Can't do kill command now.\n"
3993 "The sigmask lock is held somewhere else in "
3994 "kernel, try again later\n");
3995 return;
3996 }
3997 new_t = kdb_prev_t != t;
3998 kdb_prev_t = t;
3999 if (t->state != TASK_RUNNING && new_t) {
4000 spin_unlock(&t->sighand->siglock);
4001 kdb_printf("Process is not RUNNING, sending a signal from "
4002 "kdb risks deadlock\n"
4003 "on the run queue locks. "
4004 "The signal has _not_ been sent.\n"
4005 "Reissue the kill command if you want to risk "
4006 "the deadlock.\n");
4007 return;
4008 }
4009 ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4010 spin_unlock(&t->sighand->siglock);
4011 if (ret)
4012 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4013 sig, t->pid);
4014 else
4015 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4016 }
4017 #endif /* CONFIG_KGDB_KDB */