]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/signal.c
Merge tag 'gfs2-4.13.fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/gfs2...
[mirror_ubuntu-artful-kernel.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/user.h>
18 #include <linux/sched/debug.h>
19 #include <linux/sched/task.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/sched/cputime.h>
22 #include <linux/fs.h>
23 #include <linux/tty.h>
24 #include <linux/binfmts.h>
25 #include <linux/coredump.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/ptrace.h>
29 #include <linux/signal.h>
30 #include <linux/signalfd.h>
31 #include <linux/ratelimit.h>
32 #include <linux/tracehook.h>
33 #include <linux/capability.h>
34 #include <linux/freezer.h>
35 #include <linux/pid_namespace.h>
36 #include <linux/nsproxy.h>
37 #include <linux/user_namespace.h>
38 #include <linux/uprobes.h>
39 #include <linux/compat.h>
40 #include <linux/cn_proc.h>
41 #include <linux/compiler.h>
42 #include <linux/posix-timers.h>
43
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/signal.h>
46
47 #include <asm/param.h>
48 #include <linux/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/siginfo.h>
51 #include <asm/cacheflush.h>
52 #include "audit.h" /* audit_signal_info() */
53
54 /*
55 * SLAB caches for signal bits.
56 */
57
58 static struct kmem_cache *sigqueue_cachep;
59
60 int print_fatal_signals __read_mostly;
61
62 static void __user *sig_handler(struct task_struct *t, int sig)
63 {
64 return t->sighand->action[sig - 1].sa.sa_handler;
65 }
66
67 static int sig_handler_ignored(void __user *handler, int sig)
68 {
69 /* Is it explicitly or implicitly ignored? */
70 return handler == SIG_IGN ||
71 (handler == SIG_DFL && sig_kernel_ignore(sig));
72 }
73
74 static int sig_task_ignored(struct task_struct *t, int sig, bool force)
75 {
76 void __user *handler;
77
78 handler = sig_handler(t, sig);
79
80 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
81 handler == SIG_DFL && !force)
82 return 1;
83
84 return sig_handler_ignored(handler, sig);
85 }
86
87 static int sig_ignored(struct task_struct *t, int sig, bool force)
88 {
89 /*
90 * Blocked signals are never ignored, since the
91 * signal handler may change by the time it is
92 * unblocked.
93 */
94 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
95 return 0;
96
97 if (!sig_task_ignored(t, sig, force))
98 return 0;
99
100 /*
101 * Tracers may want to know about even ignored signals.
102 */
103 return !t->ptrace;
104 }
105
106 /*
107 * Re-calculate pending state from the set of locally pending
108 * signals, globally pending signals, and blocked signals.
109 */
110 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
111 {
112 unsigned long ready;
113 long i;
114
115 switch (_NSIG_WORDS) {
116 default:
117 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
118 ready |= signal->sig[i] &~ blocked->sig[i];
119 break;
120
121 case 4: ready = signal->sig[3] &~ blocked->sig[3];
122 ready |= signal->sig[2] &~ blocked->sig[2];
123 ready |= signal->sig[1] &~ blocked->sig[1];
124 ready |= signal->sig[0] &~ blocked->sig[0];
125 break;
126
127 case 2: ready = signal->sig[1] &~ blocked->sig[1];
128 ready |= signal->sig[0] &~ blocked->sig[0];
129 break;
130
131 case 1: ready = signal->sig[0] &~ blocked->sig[0];
132 }
133 return ready != 0;
134 }
135
136 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
137
138 static int recalc_sigpending_tsk(struct task_struct *t)
139 {
140 if ((t->jobctl & JOBCTL_PENDING_MASK) ||
141 PENDING(&t->pending, &t->blocked) ||
142 PENDING(&t->signal->shared_pending, &t->blocked)) {
143 set_tsk_thread_flag(t, TIF_SIGPENDING);
144 return 1;
145 }
146 /*
147 * We must never clear the flag in another thread, or in current
148 * when it's possible the current syscall is returning -ERESTART*.
149 * So we don't clear it here, and only callers who know they should do.
150 */
151 return 0;
152 }
153
154 /*
155 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
156 * This is superfluous when called on current, the wakeup is a harmless no-op.
157 */
158 void recalc_sigpending_and_wake(struct task_struct *t)
159 {
160 if (recalc_sigpending_tsk(t))
161 signal_wake_up(t, 0);
162 }
163
164 void recalc_sigpending(void)
165 {
166 if (!recalc_sigpending_tsk(current) && !freezing(current))
167 clear_thread_flag(TIF_SIGPENDING);
168
169 }
170
171 /* Given the mask, find the first available signal that should be serviced. */
172
173 #define SYNCHRONOUS_MASK \
174 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
175 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
176
177 int next_signal(struct sigpending *pending, sigset_t *mask)
178 {
179 unsigned long i, *s, *m, x;
180 int sig = 0;
181
182 s = pending->signal.sig;
183 m = mask->sig;
184
185 /*
186 * Handle the first word specially: it contains the
187 * synchronous signals that need to be dequeued first.
188 */
189 x = *s &~ *m;
190 if (x) {
191 if (x & SYNCHRONOUS_MASK)
192 x &= SYNCHRONOUS_MASK;
193 sig = ffz(~x) + 1;
194 return sig;
195 }
196
197 switch (_NSIG_WORDS) {
198 default:
199 for (i = 1; i < _NSIG_WORDS; ++i) {
200 x = *++s &~ *++m;
201 if (!x)
202 continue;
203 sig = ffz(~x) + i*_NSIG_BPW + 1;
204 break;
205 }
206 break;
207
208 case 2:
209 x = s[1] &~ m[1];
210 if (!x)
211 break;
212 sig = ffz(~x) + _NSIG_BPW + 1;
213 break;
214
215 case 1:
216 /* Nothing to do */
217 break;
218 }
219
220 return sig;
221 }
222
223 static inline void print_dropped_signal(int sig)
224 {
225 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
226
227 if (!print_fatal_signals)
228 return;
229
230 if (!__ratelimit(&ratelimit_state))
231 return;
232
233 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
234 current->comm, current->pid, sig);
235 }
236
237 /**
238 * task_set_jobctl_pending - set jobctl pending bits
239 * @task: target task
240 * @mask: pending bits to set
241 *
242 * Clear @mask from @task->jobctl. @mask must be subset of
243 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
244 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
245 * cleared. If @task is already being killed or exiting, this function
246 * becomes noop.
247 *
248 * CONTEXT:
249 * Must be called with @task->sighand->siglock held.
250 *
251 * RETURNS:
252 * %true if @mask is set, %false if made noop because @task was dying.
253 */
254 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
255 {
256 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
257 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
258 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
259
260 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
261 return false;
262
263 if (mask & JOBCTL_STOP_SIGMASK)
264 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
265
266 task->jobctl |= mask;
267 return true;
268 }
269
270 /**
271 * task_clear_jobctl_trapping - clear jobctl trapping bit
272 * @task: target task
273 *
274 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
275 * Clear it and wake up the ptracer. Note that we don't need any further
276 * locking. @task->siglock guarantees that @task->parent points to the
277 * ptracer.
278 *
279 * CONTEXT:
280 * Must be called with @task->sighand->siglock held.
281 */
282 void task_clear_jobctl_trapping(struct task_struct *task)
283 {
284 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
285 task->jobctl &= ~JOBCTL_TRAPPING;
286 smp_mb(); /* advised by wake_up_bit() */
287 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
288 }
289 }
290
291 /**
292 * task_clear_jobctl_pending - clear jobctl pending bits
293 * @task: target task
294 * @mask: pending bits to clear
295 *
296 * Clear @mask from @task->jobctl. @mask must be subset of
297 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
298 * STOP bits are cleared together.
299 *
300 * If clearing of @mask leaves no stop or trap pending, this function calls
301 * task_clear_jobctl_trapping().
302 *
303 * CONTEXT:
304 * Must be called with @task->sighand->siglock held.
305 */
306 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
307 {
308 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
309
310 if (mask & JOBCTL_STOP_PENDING)
311 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
312
313 task->jobctl &= ~mask;
314
315 if (!(task->jobctl & JOBCTL_PENDING_MASK))
316 task_clear_jobctl_trapping(task);
317 }
318
319 /**
320 * task_participate_group_stop - participate in a group stop
321 * @task: task participating in a group stop
322 *
323 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
324 * Group stop states are cleared and the group stop count is consumed if
325 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
326 * stop, the appropriate %SIGNAL_* flags are set.
327 *
328 * CONTEXT:
329 * Must be called with @task->sighand->siglock held.
330 *
331 * RETURNS:
332 * %true if group stop completion should be notified to the parent, %false
333 * otherwise.
334 */
335 static bool task_participate_group_stop(struct task_struct *task)
336 {
337 struct signal_struct *sig = task->signal;
338 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
339
340 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
341
342 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
343
344 if (!consume)
345 return false;
346
347 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
348 sig->group_stop_count--;
349
350 /*
351 * Tell the caller to notify completion iff we are entering into a
352 * fresh group stop. Read comment in do_signal_stop() for details.
353 */
354 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
355 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
356 return true;
357 }
358 return false;
359 }
360
361 /*
362 * allocate a new signal queue record
363 * - this may be called without locks if and only if t == current, otherwise an
364 * appropriate lock must be held to stop the target task from exiting
365 */
366 static struct sigqueue *
367 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
368 {
369 struct sigqueue *q = NULL;
370 struct user_struct *user;
371
372 /*
373 * Protect access to @t credentials. This can go away when all
374 * callers hold rcu read lock.
375 */
376 rcu_read_lock();
377 user = get_uid(__task_cred(t)->user);
378 atomic_inc(&user->sigpending);
379 rcu_read_unlock();
380
381 if (override_rlimit ||
382 atomic_read(&user->sigpending) <=
383 task_rlimit(t, RLIMIT_SIGPENDING)) {
384 q = kmem_cache_alloc(sigqueue_cachep, flags);
385 } else {
386 print_dropped_signal(sig);
387 }
388
389 if (unlikely(q == NULL)) {
390 atomic_dec(&user->sigpending);
391 free_uid(user);
392 } else {
393 INIT_LIST_HEAD(&q->list);
394 q->flags = 0;
395 q->user = user;
396 }
397
398 return q;
399 }
400
401 static void __sigqueue_free(struct sigqueue *q)
402 {
403 if (q->flags & SIGQUEUE_PREALLOC)
404 return;
405 atomic_dec(&q->user->sigpending);
406 free_uid(q->user);
407 kmem_cache_free(sigqueue_cachep, q);
408 }
409
410 void flush_sigqueue(struct sigpending *queue)
411 {
412 struct sigqueue *q;
413
414 sigemptyset(&queue->signal);
415 while (!list_empty(&queue->list)) {
416 q = list_entry(queue->list.next, struct sigqueue , list);
417 list_del_init(&q->list);
418 __sigqueue_free(q);
419 }
420 }
421
422 /*
423 * Flush all pending signals for this kthread.
424 */
425 void flush_signals(struct task_struct *t)
426 {
427 unsigned long flags;
428
429 spin_lock_irqsave(&t->sighand->siglock, flags);
430 clear_tsk_thread_flag(t, TIF_SIGPENDING);
431 flush_sigqueue(&t->pending);
432 flush_sigqueue(&t->signal->shared_pending);
433 spin_unlock_irqrestore(&t->sighand->siglock, flags);
434 }
435
436 #ifdef CONFIG_POSIX_TIMERS
437 static void __flush_itimer_signals(struct sigpending *pending)
438 {
439 sigset_t signal, retain;
440 struct sigqueue *q, *n;
441
442 signal = pending->signal;
443 sigemptyset(&retain);
444
445 list_for_each_entry_safe(q, n, &pending->list, list) {
446 int sig = q->info.si_signo;
447
448 if (likely(q->info.si_code != SI_TIMER)) {
449 sigaddset(&retain, sig);
450 } else {
451 sigdelset(&signal, sig);
452 list_del_init(&q->list);
453 __sigqueue_free(q);
454 }
455 }
456
457 sigorsets(&pending->signal, &signal, &retain);
458 }
459
460 void flush_itimer_signals(void)
461 {
462 struct task_struct *tsk = current;
463 unsigned long flags;
464
465 spin_lock_irqsave(&tsk->sighand->siglock, flags);
466 __flush_itimer_signals(&tsk->pending);
467 __flush_itimer_signals(&tsk->signal->shared_pending);
468 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
469 }
470 #endif
471
472 void ignore_signals(struct task_struct *t)
473 {
474 int i;
475
476 for (i = 0; i < _NSIG; ++i)
477 t->sighand->action[i].sa.sa_handler = SIG_IGN;
478
479 flush_signals(t);
480 }
481
482 /*
483 * Flush all handlers for a task.
484 */
485
486 void
487 flush_signal_handlers(struct task_struct *t, int force_default)
488 {
489 int i;
490 struct k_sigaction *ka = &t->sighand->action[0];
491 for (i = _NSIG ; i != 0 ; i--) {
492 if (force_default || ka->sa.sa_handler != SIG_IGN)
493 ka->sa.sa_handler = SIG_DFL;
494 ka->sa.sa_flags = 0;
495 #ifdef __ARCH_HAS_SA_RESTORER
496 ka->sa.sa_restorer = NULL;
497 #endif
498 sigemptyset(&ka->sa.sa_mask);
499 ka++;
500 }
501 }
502
503 int unhandled_signal(struct task_struct *tsk, int sig)
504 {
505 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
506 if (is_global_init(tsk))
507 return 1;
508 if (handler != SIG_IGN && handler != SIG_DFL)
509 return 0;
510 /* if ptraced, let the tracer determine */
511 return !tsk->ptrace;
512 }
513
514 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info,
515 bool *resched_timer)
516 {
517 struct sigqueue *q, *first = NULL;
518
519 /*
520 * Collect the siginfo appropriate to this signal. Check if
521 * there is another siginfo for the same signal.
522 */
523 list_for_each_entry(q, &list->list, list) {
524 if (q->info.si_signo == sig) {
525 if (first)
526 goto still_pending;
527 first = q;
528 }
529 }
530
531 sigdelset(&list->signal, sig);
532
533 if (first) {
534 still_pending:
535 list_del_init(&first->list);
536 copy_siginfo(info, &first->info);
537
538 *resched_timer =
539 (first->flags & SIGQUEUE_PREALLOC) &&
540 (info->si_code == SI_TIMER) &&
541 (info->si_sys_private);
542
543 __sigqueue_free(first);
544 } else {
545 /*
546 * Ok, it wasn't in the queue. This must be
547 * a fast-pathed signal or we must have been
548 * out of queue space. So zero out the info.
549 */
550 info->si_signo = sig;
551 info->si_errno = 0;
552 info->si_code = SI_USER;
553 info->si_pid = 0;
554 info->si_uid = 0;
555 }
556 }
557
558 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
559 siginfo_t *info, bool *resched_timer)
560 {
561 int sig = next_signal(pending, mask);
562
563 if (sig)
564 collect_signal(sig, pending, info, resched_timer);
565 return sig;
566 }
567
568 /*
569 * Dequeue a signal and return the element to the caller, which is
570 * expected to free it.
571 *
572 * All callers have to hold the siglock.
573 */
574 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
575 {
576 bool resched_timer = false;
577 int signr;
578
579 /* We only dequeue private signals from ourselves, we don't let
580 * signalfd steal them
581 */
582 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
583 if (!signr) {
584 signr = __dequeue_signal(&tsk->signal->shared_pending,
585 mask, info, &resched_timer);
586 #ifdef CONFIG_POSIX_TIMERS
587 /*
588 * itimer signal ?
589 *
590 * itimers are process shared and we restart periodic
591 * itimers in the signal delivery path to prevent DoS
592 * attacks in the high resolution timer case. This is
593 * compliant with the old way of self-restarting
594 * itimers, as the SIGALRM is a legacy signal and only
595 * queued once. Changing the restart behaviour to
596 * restart the timer in the signal dequeue path is
597 * reducing the timer noise on heavy loaded !highres
598 * systems too.
599 */
600 if (unlikely(signr == SIGALRM)) {
601 struct hrtimer *tmr = &tsk->signal->real_timer;
602
603 if (!hrtimer_is_queued(tmr) &&
604 tsk->signal->it_real_incr != 0) {
605 hrtimer_forward(tmr, tmr->base->get_time(),
606 tsk->signal->it_real_incr);
607 hrtimer_restart(tmr);
608 }
609 }
610 #endif
611 }
612
613 recalc_sigpending();
614 if (!signr)
615 return 0;
616
617 if (unlikely(sig_kernel_stop(signr))) {
618 /*
619 * Set a marker that we have dequeued a stop signal. Our
620 * caller might release the siglock and then the pending
621 * stop signal it is about to process is no longer in the
622 * pending bitmasks, but must still be cleared by a SIGCONT
623 * (and overruled by a SIGKILL). So those cases clear this
624 * shared flag after we've set it. Note that this flag may
625 * remain set after the signal we return is ignored or
626 * handled. That doesn't matter because its only purpose
627 * is to alert stop-signal processing code when another
628 * processor has come along and cleared the flag.
629 */
630 current->jobctl |= JOBCTL_STOP_DEQUEUED;
631 }
632 #ifdef CONFIG_POSIX_TIMERS
633 if (resched_timer) {
634 /*
635 * Release the siglock to ensure proper locking order
636 * of timer locks outside of siglocks. Note, we leave
637 * irqs disabled here, since the posix-timers code is
638 * about to disable them again anyway.
639 */
640 spin_unlock(&tsk->sighand->siglock);
641 posixtimer_rearm(info);
642 spin_lock(&tsk->sighand->siglock);
643 }
644 #endif
645 return signr;
646 }
647
648 /*
649 * Tell a process that it has a new active signal..
650 *
651 * NOTE! we rely on the previous spin_lock to
652 * lock interrupts for us! We can only be called with
653 * "siglock" held, and the local interrupt must
654 * have been disabled when that got acquired!
655 *
656 * No need to set need_resched since signal event passing
657 * goes through ->blocked
658 */
659 void signal_wake_up_state(struct task_struct *t, unsigned int state)
660 {
661 set_tsk_thread_flag(t, TIF_SIGPENDING);
662 /*
663 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
664 * case. We don't check t->state here because there is a race with it
665 * executing another processor and just now entering stopped state.
666 * By using wake_up_state, we ensure the process will wake up and
667 * handle its death signal.
668 */
669 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
670 kick_process(t);
671 }
672
673 /*
674 * Remove signals in mask from the pending set and queue.
675 * Returns 1 if any signals were found.
676 *
677 * All callers must be holding the siglock.
678 */
679 static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
680 {
681 struct sigqueue *q, *n;
682 sigset_t m;
683
684 sigandsets(&m, mask, &s->signal);
685 if (sigisemptyset(&m))
686 return 0;
687
688 sigandnsets(&s->signal, &s->signal, mask);
689 list_for_each_entry_safe(q, n, &s->list, list) {
690 if (sigismember(mask, q->info.si_signo)) {
691 list_del_init(&q->list);
692 __sigqueue_free(q);
693 }
694 }
695 return 1;
696 }
697
698 static inline int is_si_special(const struct siginfo *info)
699 {
700 return info <= SEND_SIG_FORCED;
701 }
702
703 static inline bool si_fromuser(const struct siginfo *info)
704 {
705 return info == SEND_SIG_NOINFO ||
706 (!is_si_special(info) && SI_FROMUSER(info));
707 }
708
709 /*
710 * called with RCU read lock from check_kill_permission()
711 */
712 static int kill_ok_by_cred(struct task_struct *t)
713 {
714 const struct cred *cred = current_cred();
715 const struct cred *tcred = __task_cred(t);
716
717 if (uid_eq(cred->euid, tcred->suid) ||
718 uid_eq(cred->euid, tcred->uid) ||
719 uid_eq(cred->uid, tcred->suid) ||
720 uid_eq(cred->uid, tcred->uid))
721 return 1;
722
723 if (ns_capable(tcred->user_ns, CAP_KILL))
724 return 1;
725
726 return 0;
727 }
728
729 /*
730 * Bad permissions for sending the signal
731 * - the caller must hold the RCU read lock
732 */
733 static int check_kill_permission(int sig, struct siginfo *info,
734 struct task_struct *t)
735 {
736 struct pid *sid;
737 int error;
738
739 if (!valid_signal(sig))
740 return -EINVAL;
741
742 if (!si_fromuser(info))
743 return 0;
744
745 error = audit_signal_info(sig, t); /* Let audit system see the signal */
746 if (error)
747 return error;
748
749 if (!same_thread_group(current, t) &&
750 !kill_ok_by_cred(t)) {
751 switch (sig) {
752 case SIGCONT:
753 sid = task_session(t);
754 /*
755 * We don't return the error if sid == NULL. The
756 * task was unhashed, the caller must notice this.
757 */
758 if (!sid || sid == task_session(current))
759 break;
760 default:
761 return -EPERM;
762 }
763 }
764
765 return security_task_kill(t, info, sig, 0);
766 }
767
768 /**
769 * ptrace_trap_notify - schedule trap to notify ptracer
770 * @t: tracee wanting to notify tracer
771 *
772 * This function schedules sticky ptrace trap which is cleared on the next
773 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
774 * ptracer.
775 *
776 * If @t is running, STOP trap will be taken. If trapped for STOP and
777 * ptracer is listening for events, tracee is woken up so that it can
778 * re-trap for the new event. If trapped otherwise, STOP trap will be
779 * eventually taken without returning to userland after the existing traps
780 * are finished by PTRACE_CONT.
781 *
782 * CONTEXT:
783 * Must be called with @task->sighand->siglock held.
784 */
785 static void ptrace_trap_notify(struct task_struct *t)
786 {
787 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
788 assert_spin_locked(&t->sighand->siglock);
789
790 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
791 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
792 }
793
794 /*
795 * Handle magic process-wide effects of stop/continue signals. Unlike
796 * the signal actions, these happen immediately at signal-generation
797 * time regardless of blocking, ignoring, or handling. This does the
798 * actual continuing for SIGCONT, but not the actual stopping for stop
799 * signals. The process stop is done as a signal action for SIG_DFL.
800 *
801 * Returns true if the signal should be actually delivered, otherwise
802 * it should be dropped.
803 */
804 static bool prepare_signal(int sig, struct task_struct *p, bool force)
805 {
806 struct signal_struct *signal = p->signal;
807 struct task_struct *t;
808 sigset_t flush;
809
810 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
811 if (!(signal->flags & SIGNAL_GROUP_EXIT))
812 return sig == SIGKILL;
813 /*
814 * The process is in the middle of dying, nothing to do.
815 */
816 } else if (sig_kernel_stop(sig)) {
817 /*
818 * This is a stop signal. Remove SIGCONT from all queues.
819 */
820 siginitset(&flush, sigmask(SIGCONT));
821 flush_sigqueue_mask(&flush, &signal->shared_pending);
822 for_each_thread(p, t)
823 flush_sigqueue_mask(&flush, &t->pending);
824 } else if (sig == SIGCONT) {
825 unsigned int why;
826 /*
827 * Remove all stop signals from all queues, wake all threads.
828 */
829 siginitset(&flush, SIG_KERNEL_STOP_MASK);
830 flush_sigqueue_mask(&flush, &signal->shared_pending);
831 for_each_thread(p, t) {
832 flush_sigqueue_mask(&flush, &t->pending);
833 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
834 if (likely(!(t->ptrace & PT_SEIZED)))
835 wake_up_state(t, __TASK_STOPPED);
836 else
837 ptrace_trap_notify(t);
838 }
839
840 /*
841 * Notify the parent with CLD_CONTINUED if we were stopped.
842 *
843 * If we were in the middle of a group stop, we pretend it
844 * was already finished, and then continued. Since SIGCHLD
845 * doesn't queue we report only CLD_STOPPED, as if the next
846 * CLD_CONTINUED was dropped.
847 */
848 why = 0;
849 if (signal->flags & SIGNAL_STOP_STOPPED)
850 why |= SIGNAL_CLD_CONTINUED;
851 else if (signal->group_stop_count)
852 why |= SIGNAL_CLD_STOPPED;
853
854 if (why) {
855 /*
856 * The first thread which returns from do_signal_stop()
857 * will take ->siglock, notice SIGNAL_CLD_MASK, and
858 * notify its parent. See get_signal_to_deliver().
859 */
860 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
861 signal->group_stop_count = 0;
862 signal->group_exit_code = 0;
863 }
864 }
865
866 return !sig_ignored(p, sig, force);
867 }
868
869 /*
870 * Test if P wants to take SIG. After we've checked all threads with this,
871 * it's equivalent to finding no threads not blocking SIG. Any threads not
872 * blocking SIG were ruled out because they are not running and already
873 * have pending signals. Such threads will dequeue from the shared queue
874 * as soon as they're available, so putting the signal on the shared queue
875 * will be equivalent to sending it to one such thread.
876 */
877 static inline int wants_signal(int sig, struct task_struct *p)
878 {
879 if (sigismember(&p->blocked, sig))
880 return 0;
881 if (p->flags & PF_EXITING)
882 return 0;
883 if (sig == SIGKILL)
884 return 1;
885 if (task_is_stopped_or_traced(p))
886 return 0;
887 return task_curr(p) || !signal_pending(p);
888 }
889
890 static void complete_signal(int sig, struct task_struct *p, int group)
891 {
892 struct signal_struct *signal = p->signal;
893 struct task_struct *t;
894
895 /*
896 * Now find a thread we can wake up to take the signal off the queue.
897 *
898 * If the main thread wants the signal, it gets first crack.
899 * Probably the least surprising to the average bear.
900 */
901 if (wants_signal(sig, p))
902 t = p;
903 else if (!group || thread_group_empty(p))
904 /*
905 * There is just one thread and it does not need to be woken.
906 * It will dequeue unblocked signals before it runs again.
907 */
908 return;
909 else {
910 /*
911 * Otherwise try to find a suitable thread.
912 */
913 t = signal->curr_target;
914 while (!wants_signal(sig, t)) {
915 t = next_thread(t);
916 if (t == signal->curr_target)
917 /*
918 * No thread needs to be woken.
919 * Any eligible threads will see
920 * the signal in the queue soon.
921 */
922 return;
923 }
924 signal->curr_target = t;
925 }
926
927 /*
928 * Found a killable thread. If the signal will be fatal,
929 * then start taking the whole group down immediately.
930 */
931 if (sig_fatal(p, sig) &&
932 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
933 !sigismember(&t->real_blocked, sig) &&
934 (sig == SIGKILL || !t->ptrace)) {
935 /*
936 * This signal will be fatal to the whole group.
937 */
938 if (!sig_kernel_coredump(sig)) {
939 /*
940 * Start a group exit and wake everybody up.
941 * This way we don't have other threads
942 * running and doing things after a slower
943 * thread has the fatal signal pending.
944 */
945 signal->flags = SIGNAL_GROUP_EXIT;
946 signal->group_exit_code = sig;
947 signal->group_stop_count = 0;
948 t = p;
949 do {
950 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
951 sigaddset(&t->pending.signal, SIGKILL);
952 signal_wake_up(t, 1);
953 } while_each_thread(p, t);
954 return;
955 }
956 }
957
958 /*
959 * The signal is already in the shared-pending queue.
960 * Tell the chosen thread to wake up and dequeue it.
961 */
962 signal_wake_up(t, sig == SIGKILL);
963 return;
964 }
965
966 static inline int legacy_queue(struct sigpending *signals, int sig)
967 {
968 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
969 }
970
971 #ifdef CONFIG_USER_NS
972 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
973 {
974 if (current_user_ns() == task_cred_xxx(t, user_ns))
975 return;
976
977 if (SI_FROMKERNEL(info))
978 return;
979
980 rcu_read_lock();
981 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
982 make_kuid(current_user_ns(), info->si_uid));
983 rcu_read_unlock();
984 }
985 #else
986 static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
987 {
988 return;
989 }
990 #endif
991
992 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
993 int group, int from_ancestor_ns)
994 {
995 struct sigpending *pending;
996 struct sigqueue *q;
997 int override_rlimit;
998 int ret = 0, result;
999
1000 assert_spin_locked(&t->sighand->siglock);
1001
1002 result = TRACE_SIGNAL_IGNORED;
1003 if (!prepare_signal(sig, t,
1004 from_ancestor_ns || (info == SEND_SIG_FORCED)))
1005 goto ret;
1006
1007 pending = group ? &t->signal->shared_pending : &t->pending;
1008 /*
1009 * Short-circuit ignored signals and support queuing
1010 * exactly one non-rt signal, so that we can get more
1011 * detailed information about the cause of the signal.
1012 */
1013 result = TRACE_SIGNAL_ALREADY_PENDING;
1014 if (legacy_queue(pending, sig))
1015 goto ret;
1016
1017 result = TRACE_SIGNAL_DELIVERED;
1018 /*
1019 * fast-pathed signals for kernel-internal things like SIGSTOP
1020 * or SIGKILL.
1021 */
1022 if (info == SEND_SIG_FORCED)
1023 goto out_set;
1024
1025 /*
1026 * Real-time signals must be queued if sent by sigqueue, or
1027 * some other real-time mechanism. It is implementation
1028 * defined whether kill() does so. We attempt to do so, on
1029 * the principle of least surprise, but since kill is not
1030 * allowed to fail with EAGAIN when low on memory we just
1031 * make sure at least one signal gets delivered and don't
1032 * pass on the info struct.
1033 */
1034 if (sig < SIGRTMIN)
1035 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1036 else
1037 override_rlimit = 0;
1038
1039 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1040 override_rlimit);
1041 if (q) {
1042 list_add_tail(&q->list, &pending->list);
1043 switch ((unsigned long) info) {
1044 case (unsigned long) SEND_SIG_NOINFO:
1045 q->info.si_signo = sig;
1046 q->info.si_errno = 0;
1047 q->info.si_code = SI_USER;
1048 q->info.si_pid = task_tgid_nr_ns(current,
1049 task_active_pid_ns(t));
1050 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1051 break;
1052 case (unsigned long) SEND_SIG_PRIV:
1053 q->info.si_signo = sig;
1054 q->info.si_errno = 0;
1055 q->info.si_code = SI_KERNEL;
1056 q->info.si_pid = 0;
1057 q->info.si_uid = 0;
1058 break;
1059 default:
1060 copy_siginfo(&q->info, info);
1061 if (from_ancestor_ns)
1062 q->info.si_pid = 0;
1063 break;
1064 }
1065
1066 userns_fixup_signal_uid(&q->info, t);
1067
1068 } else if (!is_si_special(info)) {
1069 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1070 /*
1071 * Queue overflow, abort. We may abort if the
1072 * signal was rt and sent by user using something
1073 * other than kill().
1074 */
1075 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1076 ret = -EAGAIN;
1077 goto ret;
1078 } else {
1079 /*
1080 * This is a silent loss of information. We still
1081 * send the signal, but the *info bits are lost.
1082 */
1083 result = TRACE_SIGNAL_LOSE_INFO;
1084 }
1085 }
1086
1087 out_set:
1088 signalfd_notify(t, sig);
1089 sigaddset(&pending->signal, sig);
1090 complete_signal(sig, t, group);
1091 ret:
1092 trace_signal_generate(sig, info, t, group, result);
1093 return ret;
1094 }
1095
1096 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1097 int group)
1098 {
1099 int from_ancestor_ns = 0;
1100
1101 #ifdef CONFIG_PID_NS
1102 from_ancestor_ns = si_fromuser(info) &&
1103 !task_pid_nr_ns(current, task_active_pid_ns(t));
1104 #endif
1105
1106 return __send_signal(sig, info, t, group, from_ancestor_ns);
1107 }
1108
1109 static void print_fatal_signal(int signr)
1110 {
1111 struct pt_regs *regs = signal_pt_regs();
1112 pr_info("potentially unexpected fatal signal %d.\n", signr);
1113
1114 #if defined(__i386__) && !defined(__arch_um__)
1115 pr_info("code at %08lx: ", regs->ip);
1116 {
1117 int i;
1118 for (i = 0; i < 16; i++) {
1119 unsigned char insn;
1120
1121 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1122 break;
1123 pr_cont("%02x ", insn);
1124 }
1125 }
1126 pr_cont("\n");
1127 #endif
1128 preempt_disable();
1129 show_regs(regs);
1130 preempt_enable();
1131 }
1132
1133 static int __init setup_print_fatal_signals(char *str)
1134 {
1135 get_option (&str, &print_fatal_signals);
1136
1137 return 1;
1138 }
1139
1140 __setup("print-fatal-signals=", setup_print_fatal_signals);
1141
1142 int
1143 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1144 {
1145 return send_signal(sig, info, p, 1);
1146 }
1147
1148 static int
1149 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1150 {
1151 return send_signal(sig, info, t, 0);
1152 }
1153
1154 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1155 bool group)
1156 {
1157 unsigned long flags;
1158 int ret = -ESRCH;
1159
1160 if (lock_task_sighand(p, &flags)) {
1161 ret = send_signal(sig, info, p, group);
1162 unlock_task_sighand(p, &flags);
1163 }
1164
1165 return ret;
1166 }
1167
1168 /*
1169 * Force a signal that the process can't ignore: if necessary
1170 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1171 *
1172 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1173 * since we do not want to have a signal handler that was blocked
1174 * be invoked when user space had explicitly blocked it.
1175 *
1176 * We don't want to have recursive SIGSEGV's etc, for example,
1177 * that is why we also clear SIGNAL_UNKILLABLE.
1178 */
1179 int
1180 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1181 {
1182 unsigned long int flags;
1183 int ret, blocked, ignored;
1184 struct k_sigaction *action;
1185
1186 spin_lock_irqsave(&t->sighand->siglock, flags);
1187 action = &t->sighand->action[sig-1];
1188 ignored = action->sa.sa_handler == SIG_IGN;
1189 blocked = sigismember(&t->blocked, sig);
1190 if (blocked || ignored) {
1191 action->sa.sa_handler = SIG_DFL;
1192 if (blocked) {
1193 sigdelset(&t->blocked, sig);
1194 recalc_sigpending_and_wake(t);
1195 }
1196 }
1197 if (action->sa.sa_handler == SIG_DFL)
1198 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1199 ret = specific_send_sig_info(sig, info, t);
1200 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1201
1202 return ret;
1203 }
1204
1205 /*
1206 * Nuke all other threads in the group.
1207 */
1208 int zap_other_threads(struct task_struct *p)
1209 {
1210 struct task_struct *t = p;
1211 int count = 0;
1212
1213 p->signal->group_stop_count = 0;
1214
1215 while_each_thread(p, t) {
1216 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1217 count++;
1218
1219 /* Don't bother with already dead threads */
1220 if (t->exit_state)
1221 continue;
1222 sigaddset(&t->pending.signal, SIGKILL);
1223 signal_wake_up(t, 1);
1224 }
1225
1226 return count;
1227 }
1228
1229 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1230 unsigned long *flags)
1231 {
1232 struct sighand_struct *sighand;
1233
1234 for (;;) {
1235 /*
1236 * Disable interrupts early to avoid deadlocks.
1237 * See rcu_read_unlock() comment header for details.
1238 */
1239 local_irq_save(*flags);
1240 rcu_read_lock();
1241 sighand = rcu_dereference(tsk->sighand);
1242 if (unlikely(sighand == NULL)) {
1243 rcu_read_unlock();
1244 local_irq_restore(*flags);
1245 break;
1246 }
1247 /*
1248 * This sighand can be already freed and even reused, but
1249 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1250 * initializes ->siglock: this slab can't go away, it has
1251 * the same object type, ->siglock can't be reinitialized.
1252 *
1253 * We need to ensure that tsk->sighand is still the same
1254 * after we take the lock, we can race with de_thread() or
1255 * __exit_signal(). In the latter case the next iteration
1256 * must see ->sighand == NULL.
1257 */
1258 spin_lock(&sighand->siglock);
1259 if (likely(sighand == tsk->sighand)) {
1260 rcu_read_unlock();
1261 break;
1262 }
1263 spin_unlock(&sighand->siglock);
1264 rcu_read_unlock();
1265 local_irq_restore(*flags);
1266 }
1267
1268 return sighand;
1269 }
1270
1271 /*
1272 * send signal info to all the members of a group
1273 */
1274 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1275 {
1276 int ret;
1277
1278 rcu_read_lock();
1279 ret = check_kill_permission(sig, info, p);
1280 rcu_read_unlock();
1281
1282 if (!ret && sig)
1283 ret = do_send_sig_info(sig, info, p, true);
1284
1285 return ret;
1286 }
1287
1288 /*
1289 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1290 * control characters do (^C, ^Z etc)
1291 * - the caller must hold at least a readlock on tasklist_lock
1292 */
1293 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1294 {
1295 struct task_struct *p = NULL;
1296 int retval, success;
1297
1298 success = 0;
1299 retval = -ESRCH;
1300 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1301 int err = group_send_sig_info(sig, info, p);
1302 success |= !err;
1303 retval = err;
1304 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1305 return success ? 0 : retval;
1306 }
1307
1308 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1309 {
1310 int error = -ESRCH;
1311 struct task_struct *p;
1312
1313 for (;;) {
1314 rcu_read_lock();
1315 p = pid_task(pid, PIDTYPE_PID);
1316 if (p)
1317 error = group_send_sig_info(sig, info, p);
1318 rcu_read_unlock();
1319 if (likely(!p || error != -ESRCH))
1320 return error;
1321
1322 /*
1323 * The task was unhashed in between, try again. If it
1324 * is dead, pid_task() will return NULL, if we race with
1325 * de_thread() it will find the new leader.
1326 */
1327 }
1328 }
1329
1330 static int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1331 {
1332 int error;
1333 rcu_read_lock();
1334 error = kill_pid_info(sig, info, find_vpid(pid));
1335 rcu_read_unlock();
1336 return error;
1337 }
1338
1339 static int kill_as_cred_perm(const struct cred *cred,
1340 struct task_struct *target)
1341 {
1342 const struct cred *pcred = __task_cred(target);
1343 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1344 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid))
1345 return 0;
1346 return 1;
1347 }
1348
1349 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1350 int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1351 const struct cred *cred, u32 secid)
1352 {
1353 int ret = -EINVAL;
1354 struct task_struct *p;
1355 unsigned long flags;
1356
1357 if (!valid_signal(sig))
1358 return ret;
1359
1360 rcu_read_lock();
1361 p = pid_task(pid, PIDTYPE_PID);
1362 if (!p) {
1363 ret = -ESRCH;
1364 goto out_unlock;
1365 }
1366 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1367 ret = -EPERM;
1368 goto out_unlock;
1369 }
1370 ret = security_task_kill(p, info, sig, secid);
1371 if (ret)
1372 goto out_unlock;
1373
1374 if (sig) {
1375 if (lock_task_sighand(p, &flags)) {
1376 ret = __send_signal(sig, info, p, 1, 0);
1377 unlock_task_sighand(p, &flags);
1378 } else
1379 ret = -ESRCH;
1380 }
1381 out_unlock:
1382 rcu_read_unlock();
1383 return ret;
1384 }
1385 EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1386
1387 /*
1388 * kill_something_info() interprets pid in interesting ways just like kill(2).
1389 *
1390 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1391 * is probably wrong. Should make it like BSD or SYSV.
1392 */
1393
1394 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1395 {
1396 int ret;
1397
1398 if (pid > 0) {
1399 rcu_read_lock();
1400 ret = kill_pid_info(sig, info, find_vpid(pid));
1401 rcu_read_unlock();
1402 return ret;
1403 }
1404
1405 read_lock(&tasklist_lock);
1406 if (pid != -1) {
1407 ret = __kill_pgrp_info(sig, info,
1408 pid ? find_vpid(-pid) : task_pgrp(current));
1409 } else {
1410 int retval = 0, count = 0;
1411 struct task_struct * p;
1412
1413 for_each_process(p) {
1414 if (task_pid_vnr(p) > 1 &&
1415 !same_thread_group(p, current)) {
1416 int err = group_send_sig_info(sig, info, p);
1417 ++count;
1418 if (err != -EPERM)
1419 retval = err;
1420 }
1421 }
1422 ret = count ? retval : -ESRCH;
1423 }
1424 read_unlock(&tasklist_lock);
1425
1426 return ret;
1427 }
1428
1429 /*
1430 * These are for backward compatibility with the rest of the kernel source.
1431 */
1432
1433 int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1434 {
1435 /*
1436 * Make sure legacy kernel users don't send in bad values
1437 * (normal paths check this in check_kill_permission).
1438 */
1439 if (!valid_signal(sig))
1440 return -EINVAL;
1441
1442 return do_send_sig_info(sig, info, p, false);
1443 }
1444
1445 #define __si_special(priv) \
1446 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1447
1448 int
1449 send_sig(int sig, struct task_struct *p, int priv)
1450 {
1451 return send_sig_info(sig, __si_special(priv), p);
1452 }
1453
1454 void
1455 force_sig(int sig, struct task_struct *p)
1456 {
1457 force_sig_info(sig, SEND_SIG_PRIV, p);
1458 }
1459
1460 /*
1461 * When things go south during signal handling, we
1462 * will force a SIGSEGV. And if the signal that caused
1463 * the problem was already a SIGSEGV, we'll want to
1464 * make sure we don't even try to deliver the signal..
1465 */
1466 int
1467 force_sigsegv(int sig, struct task_struct *p)
1468 {
1469 if (sig == SIGSEGV) {
1470 unsigned long flags;
1471 spin_lock_irqsave(&p->sighand->siglock, flags);
1472 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1473 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1474 }
1475 force_sig(SIGSEGV, p);
1476 return 0;
1477 }
1478
1479 int kill_pgrp(struct pid *pid, int sig, int priv)
1480 {
1481 int ret;
1482
1483 read_lock(&tasklist_lock);
1484 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1485 read_unlock(&tasklist_lock);
1486
1487 return ret;
1488 }
1489 EXPORT_SYMBOL(kill_pgrp);
1490
1491 int kill_pid(struct pid *pid, int sig, int priv)
1492 {
1493 return kill_pid_info(sig, __si_special(priv), pid);
1494 }
1495 EXPORT_SYMBOL(kill_pid);
1496
1497 /*
1498 * These functions support sending signals using preallocated sigqueue
1499 * structures. This is needed "because realtime applications cannot
1500 * afford to lose notifications of asynchronous events, like timer
1501 * expirations or I/O completions". In the case of POSIX Timers
1502 * we allocate the sigqueue structure from the timer_create. If this
1503 * allocation fails we are able to report the failure to the application
1504 * with an EAGAIN error.
1505 */
1506 struct sigqueue *sigqueue_alloc(void)
1507 {
1508 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1509
1510 if (q)
1511 q->flags |= SIGQUEUE_PREALLOC;
1512
1513 return q;
1514 }
1515
1516 void sigqueue_free(struct sigqueue *q)
1517 {
1518 unsigned long flags;
1519 spinlock_t *lock = &current->sighand->siglock;
1520
1521 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1522 /*
1523 * We must hold ->siglock while testing q->list
1524 * to serialize with collect_signal() or with
1525 * __exit_signal()->flush_sigqueue().
1526 */
1527 spin_lock_irqsave(lock, flags);
1528 q->flags &= ~SIGQUEUE_PREALLOC;
1529 /*
1530 * If it is queued it will be freed when dequeued,
1531 * like the "regular" sigqueue.
1532 */
1533 if (!list_empty(&q->list))
1534 q = NULL;
1535 spin_unlock_irqrestore(lock, flags);
1536
1537 if (q)
1538 __sigqueue_free(q);
1539 }
1540
1541 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1542 {
1543 int sig = q->info.si_signo;
1544 struct sigpending *pending;
1545 unsigned long flags;
1546 int ret, result;
1547
1548 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1549
1550 ret = -1;
1551 if (!likely(lock_task_sighand(t, &flags)))
1552 goto ret;
1553
1554 ret = 1; /* the signal is ignored */
1555 result = TRACE_SIGNAL_IGNORED;
1556 if (!prepare_signal(sig, t, false))
1557 goto out;
1558
1559 ret = 0;
1560 if (unlikely(!list_empty(&q->list))) {
1561 /*
1562 * If an SI_TIMER entry is already queue just increment
1563 * the overrun count.
1564 */
1565 BUG_ON(q->info.si_code != SI_TIMER);
1566 q->info.si_overrun++;
1567 result = TRACE_SIGNAL_ALREADY_PENDING;
1568 goto out;
1569 }
1570 q->info.si_overrun = 0;
1571
1572 signalfd_notify(t, sig);
1573 pending = group ? &t->signal->shared_pending : &t->pending;
1574 list_add_tail(&q->list, &pending->list);
1575 sigaddset(&pending->signal, sig);
1576 complete_signal(sig, t, group);
1577 result = TRACE_SIGNAL_DELIVERED;
1578 out:
1579 trace_signal_generate(sig, &q->info, t, group, result);
1580 unlock_task_sighand(t, &flags);
1581 ret:
1582 return ret;
1583 }
1584
1585 /*
1586 * Let a parent know about the death of a child.
1587 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1588 *
1589 * Returns true if our parent ignored us and so we've switched to
1590 * self-reaping.
1591 */
1592 bool do_notify_parent(struct task_struct *tsk, int sig)
1593 {
1594 struct siginfo info;
1595 unsigned long flags;
1596 struct sighand_struct *psig;
1597 bool autoreap = false;
1598 u64 utime, stime;
1599
1600 BUG_ON(sig == -1);
1601
1602 /* do_notify_parent_cldstop should have been called instead. */
1603 BUG_ON(task_is_stopped_or_traced(tsk));
1604
1605 BUG_ON(!tsk->ptrace &&
1606 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1607
1608 if (sig != SIGCHLD) {
1609 /*
1610 * This is only possible if parent == real_parent.
1611 * Check if it has changed security domain.
1612 */
1613 if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1614 sig = SIGCHLD;
1615 }
1616
1617 info.si_signo = sig;
1618 info.si_errno = 0;
1619 /*
1620 * We are under tasklist_lock here so our parent is tied to
1621 * us and cannot change.
1622 *
1623 * task_active_pid_ns will always return the same pid namespace
1624 * until a task passes through release_task.
1625 *
1626 * write_lock() currently calls preempt_disable() which is the
1627 * same as rcu_read_lock(), but according to Oleg, this is not
1628 * correct to rely on this
1629 */
1630 rcu_read_lock();
1631 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1632 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1633 task_uid(tsk));
1634 rcu_read_unlock();
1635
1636 task_cputime(tsk, &utime, &stime);
1637 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1638 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1639
1640 info.si_status = tsk->exit_code & 0x7f;
1641 if (tsk->exit_code & 0x80)
1642 info.si_code = CLD_DUMPED;
1643 else if (tsk->exit_code & 0x7f)
1644 info.si_code = CLD_KILLED;
1645 else {
1646 info.si_code = CLD_EXITED;
1647 info.si_status = tsk->exit_code >> 8;
1648 }
1649
1650 psig = tsk->parent->sighand;
1651 spin_lock_irqsave(&psig->siglock, flags);
1652 if (!tsk->ptrace && sig == SIGCHLD &&
1653 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1654 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1655 /*
1656 * We are exiting and our parent doesn't care. POSIX.1
1657 * defines special semantics for setting SIGCHLD to SIG_IGN
1658 * or setting the SA_NOCLDWAIT flag: we should be reaped
1659 * automatically and not left for our parent's wait4 call.
1660 * Rather than having the parent do it as a magic kind of
1661 * signal handler, we just set this to tell do_exit that we
1662 * can be cleaned up without becoming a zombie. Note that
1663 * we still call __wake_up_parent in this case, because a
1664 * blocked sys_wait4 might now return -ECHILD.
1665 *
1666 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1667 * is implementation-defined: we do (if you don't want
1668 * it, just use SIG_IGN instead).
1669 */
1670 autoreap = true;
1671 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1672 sig = 0;
1673 }
1674 if (valid_signal(sig) && sig)
1675 __group_send_sig_info(sig, &info, tsk->parent);
1676 __wake_up_parent(tsk, tsk->parent);
1677 spin_unlock_irqrestore(&psig->siglock, flags);
1678
1679 return autoreap;
1680 }
1681
1682 /**
1683 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1684 * @tsk: task reporting the state change
1685 * @for_ptracer: the notification is for ptracer
1686 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1687 *
1688 * Notify @tsk's parent that the stopped/continued state has changed. If
1689 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1690 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1691 *
1692 * CONTEXT:
1693 * Must be called with tasklist_lock at least read locked.
1694 */
1695 static void do_notify_parent_cldstop(struct task_struct *tsk,
1696 bool for_ptracer, int why)
1697 {
1698 struct siginfo info;
1699 unsigned long flags;
1700 struct task_struct *parent;
1701 struct sighand_struct *sighand;
1702 u64 utime, stime;
1703
1704 if (for_ptracer) {
1705 parent = tsk->parent;
1706 } else {
1707 tsk = tsk->group_leader;
1708 parent = tsk->real_parent;
1709 }
1710
1711 info.si_signo = SIGCHLD;
1712 info.si_errno = 0;
1713 /*
1714 * see comment in do_notify_parent() about the following 4 lines
1715 */
1716 rcu_read_lock();
1717 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1718 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1719 rcu_read_unlock();
1720
1721 task_cputime(tsk, &utime, &stime);
1722 info.si_utime = nsec_to_clock_t(utime);
1723 info.si_stime = nsec_to_clock_t(stime);
1724
1725 info.si_code = why;
1726 switch (why) {
1727 case CLD_CONTINUED:
1728 info.si_status = SIGCONT;
1729 break;
1730 case CLD_STOPPED:
1731 info.si_status = tsk->signal->group_exit_code & 0x7f;
1732 break;
1733 case CLD_TRAPPED:
1734 info.si_status = tsk->exit_code & 0x7f;
1735 break;
1736 default:
1737 BUG();
1738 }
1739
1740 sighand = parent->sighand;
1741 spin_lock_irqsave(&sighand->siglock, flags);
1742 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1743 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1744 __group_send_sig_info(SIGCHLD, &info, parent);
1745 /*
1746 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1747 */
1748 __wake_up_parent(tsk, parent);
1749 spin_unlock_irqrestore(&sighand->siglock, flags);
1750 }
1751
1752 static inline int may_ptrace_stop(void)
1753 {
1754 if (!likely(current->ptrace))
1755 return 0;
1756 /*
1757 * Are we in the middle of do_coredump?
1758 * If so and our tracer is also part of the coredump stopping
1759 * is a deadlock situation, and pointless because our tracer
1760 * is dead so don't allow us to stop.
1761 * If SIGKILL was already sent before the caller unlocked
1762 * ->siglock we must see ->core_state != NULL. Otherwise it
1763 * is safe to enter schedule().
1764 *
1765 * This is almost outdated, a task with the pending SIGKILL can't
1766 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1767 * after SIGKILL was already dequeued.
1768 */
1769 if (unlikely(current->mm->core_state) &&
1770 unlikely(current->mm == current->parent->mm))
1771 return 0;
1772
1773 return 1;
1774 }
1775
1776 /*
1777 * Return non-zero if there is a SIGKILL that should be waking us up.
1778 * Called with the siglock held.
1779 */
1780 static int sigkill_pending(struct task_struct *tsk)
1781 {
1782 return sigismember(&tsk->pending.signal, SIGKILL) ||
1783 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1784 }
1785
1786 /*
1787 * This must be called with current->sighand->siglock held.
1788 *
1789 * This should be the path for all ptrace stops.
1790 * We always set current->last_siginfo while stopped here.
1791 * That makes it a way to test a stopped process for
1792 * being ptrace-stopped vs being job-control-stopped.
1793 *
1794 * If we actually decide not to stop at all because the tracer
1795 * is gone, we keep current->exit_code unless clear_code.
1796 */
1797 static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1798 __releases(&current->sighand->siglock)
1799 __acquires(&current->sighand->siglock)
1800 {
1801 bool gstop_done = false;
1802
1803 if (arch_ptrace_stop_needed(exit_code, info)) {
1804 /*
1805 * The arch code has something special to do before a
1806 * ptrace stop. This is allowed to block, e.g. for faults
1807 * on user stack pages. We can't keep the siglock while
1808 * calling arch_ptrace_stop, so we must release it now.
1809 * To preserve proper semantics, we must do this before
1810 * any signal bookkeeping like checking group_stop_count.
1811 * Meanwhile, a SIGKILL could come in before we retake the
1812 * siglock. That must prevent us from sleeping in TASK_TRACED.
1813 * So after regaining the lock, we must check for SIGKILL.
1814 */
1815 spin_unlock_irq(&current->sighand->siglock);
1816 arch_ptrace_stop(exit_code, info);
1817 spin_lock_irq(&current->sighand->siglock);
1818 if (sigkill_pending(current))
1819 return;
1820 }
1821
1822 /*
1823 * We're committing to trapping. TRACED should be visible before
1824 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1825 * Also, transition to TRACED and updates to ->jobctl should be
1826 * atomic with respect to siglock and should be done after the arch
1827 * hook as siglock is released and regrabbed across it.
1828 */
1829 set_current_state(TASK_TRACED);
1830
1831 current->last_siginfo = info;
1832 current->exit_code = exit_code;
1833
1834 /*
1835 * If @why is CLD_STOPPED, we're trapping to participate in a group
1836 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
1837 * across siglock relocks since INTERRUPT was scheduled, PENDING
1838 * could be clear now. We act as if SIGCONT is received after
1839 * TASK_TRACED is entered - ignore it.
1840 */
1841 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1842 gstop_done = task_participate_group_stop(current);
1843
1844 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1845 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1846 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1847 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1848
1849 /* entering a trap, clear TRAPPING */
1850 task_clear_jobctl_trapping(current);
1851
1852 spin_unlock_irq(&current->sighand->siglock);
1853 read_lock(&tasklist_lock);
1854 if (may_ptrace_stop()) {
1855 /*
1856 * Notify parents of the stop.
1857 *
1858 * While ptraced, there are two parents - the ptracer and
1859 * the real_parent of the group_leader. The ptracer should
1860 * know about every stop while the real parent is only
1861 * interested in the completion of group stop. The states
1862 * for the two don't interact with each other. Notify
1863 * separately unless they're gonna be duplicates.
1864 */
1865 do_notify_parent_cldstop(current, true, why);
1866 if (gstop_done && ptrace_reparented(current))
1867 do_notify_parent_cldstop(current, false, why);
1868
1869 /*
1870 * Don't want to allow preemption here, because
1871 * sys_ptrace() needs this task to be inactive.
1872 *
1873 * XXX: implement read_unlock_no_resched().
1874 */
1875 preempt_disable();
1876 read_unlock(&tasklist_lock);
1877 preempt_enable_no_resched();
1878 freezable_schedule();
1879 } else {
1880 /*
1881 * By the time we got the lock, our tracer went away.
1882 * Don't drop the lock yet, another tracer may come.
1883 *
1884 * If @gstop_done, the ptracer went away between group stop
1885 * completion and here. During detach, it would have set
1886 * JOBCTL_STOP_PENDING on us and we'll re-enter
1887 * TASK_STOPPED in do_signal_stop() on return, so notifying
1888 * the real parent of the group stop completion is enough.
1889 */
1890 if (gstop_done)
1891 do_notify_parent_cldstop(current, false, why);
1892
1893 /* tasklist protects us from ptrace_freeze_traced() */
1894 __set_current_state(TASK_RUNNING);
1895 if (clear_code)
1896 current->exit_code = 0;
1897 read_unlock(&tasklist_lock);
1898 }
1899
1900 /*
1901 * We are back. Now reacquire the siglock before touching
1902 * last_siginfo, so that we are sure to have synchronized with
1903 * any signal-sending on another CPU that wants to examine it.
1904 */
1905 spin_lock_irq(&current->sighand->siglock);
1906 current->last_siginfo = NULL;
1907
1908 /* LISTENING can be set only during STOP traps, clear it */
1909 current->jobctl &= ~JOBCTL_LISTENING;
1910
1911 /*
1912 * Queued signals ignored us while we were stopped for tracing.
1913 * So check for any that we should take before resuming user mode.
1914 * This sets TIF_SIGPENDING, but never clears it.
1915 */
1916 recalc_sigpending_tsk(current);
1917 }
1918
1919 static void ptrace_do_notify(int signr, int exit_code, int why)
1920 {
1921 siginfo_t info;
1922
1923 memset(&info, 0, sizeof info);
1924 info.si_signo = signr;
1925 info.si_code = exit_code;
1926 info.si_pid = task_pid_vnr(current);
1927 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1928
1929 /* Let the debugger run. */
1930 ptrace_stop(exit_code, why, 1, &info);
1931 }
1932
1933 void ptrace_notify(int exit_code)
1934 {
1935 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1936 if (unlikely(current->task_works))
1937 task_work_run();
1938
1939 spin_lock_irq(&current->sighand->siglock);
1940 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1941 spin_unlock_irq(&current->sighand->siglock);
1942 }
1943
1944 /**
1945 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1946 * @signr: signr causing group stop if initiating
1947 *
1948 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1949 * and participate in it. If already set, participate in the existing
1950 * group stop. If participated in a group stop (and thus slept), %true is
1951 * returned with siglock released.
1952 *
1953 * If ptraced, this function doesn't handle stop itself. Instead,
1954 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1955 * untouched. The caller must ensure that INTERRUPT trap handling takes
1956 * places afterwards.
1957 *
1958 * CONTEXT:
1959 * Must be called with @current->sighand->siglock held, which is released
1960 * on %true return.
1961 *
1962 * RETURNS:
1963 * %false if group stop is already cancelled or ptrace trap is scheduled.
1964 * %true if participated in group stop.
1965 */
1966 static bool do_signal_stop(int signr)
1967 __releases(&current->sighand->siglock)
1968 {
1969 struct signal_struct *sig = current->signal;
1970
1971 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1972 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1973 struct task_struct *t;
1974
1975 /* signr will be recorded in task->jobctl for retries */
1976 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
1977
1978 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
1979 unlikely(signal_group_exit(sig)))
1980 return false;
1981 /*
1982 * There is no group stop already in progress. We must
1983 * initiate one now.
1984 *
1985 * While ptraced, a task may be resumed while group stop is
1986 * still in effect and then receive a stop signal and
1987 * initiate another group stop. This deviates from the
1988 * usual behavior as two consecutive stop signals can't
1989 * cause two group stops when !ptraced. That is why we
1990 * also check !task_is_stopped(t) below.
1991 *
1992 * The condition can be distinguished by testing whether
1993 * SIGNAL_STOP_STOPPED is already set. Don't generate
1994 * group_exit_code in such case.
1995 *
1996 * This is not necessary for SIGNAL_STOP_CONTINUED because
1997 * an intervening stop signal is required to cause two
1998 * continued events regardless of ptrace.
1999 */
2000 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2001 sig->group_exit_code = signr;
2002
2003 sig->group_stop_count = 0;
2004
2005 if (task_set_jobctl_pending(current, signr | gstop))
2006 sig->group_stop_count++;
2007
2008 t = current;
2009 while_each_thread(current, t) {
2010 /*
2011 * Setting state to TASK_STOPPED for a group
2012 * stop is always done with the siglock held,
2013 * so this check has no races.
2014 */
2015 if (!task_is_stopped(t) &&
2016 task_set_jobctl_pending(t, signr | gstop)) {
2017 sig->group_stop_count++;
2018 if (likely(!(t->ptrace & PT_SEIZED)))
2019 signal_wake_up(t, 0);
2020 else
2021 ptrace_trap_notify(t);
2022 }
2023 }
2024 }
2025
2026 if (likely(!current->ptrace)) {
2027 int notify = 0;
2028
2029 /*
2030 * If there are no other threads in the group, or if there
2031 * is a group stop in progress and we are the last to stop,
2032 * report to the parent.
2033 */
2034 if (task_participate_group_stop(current))
2035 notify = CLD_STOPPED;
2036
2037 __set_current_state(TASK_STOPPED);
2038 spin_unlock_irq(&current->sighand->siglock);
2039
2040 /*
2041 * Notify the parent of the group stop completion. Because
2042 * we're not holding either the siglock or tasklist_lock
2043 * here, ptracer may attach inbetween; however, this is for
2044 * group stop and should always be delivered to the real
2045 * parent of the group leader. The new ptracer will get
2046 * its notification when this task transitions into
2047 * TASK_TRACED.
2048 */
2049 if (notify) {
2050 read_lock(&tasklist_lock);
2051 do_notify_parent_cldstop(current, false, notify);
2052 read_unlock(&tasklist_lock);
2053 }
2054
2055 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2056 freezable_schedule();
2057 return true;
2058 } else {
2059 /*
2060 * While ptraced, group stop is handled by STOP trap.
2061 * Schedule it and let the caller deal with it.
2062 */
2063 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2064 return false;
2065 }
2066 }
2067
2068 /**
2069 * do_jobctl_trap - take care of ptrace jobctl traps
2070 *
2071 * When PT_SEIZED, it's used for both group stop and explicit
2072 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2073 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2074 * the stop signal; otherwise, %SIGTRAP.
2075 *
2076 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2077 * number as exit_code and no siginfo.
2078 *
2079 * CONTEXT:
2080 * Must be called with @current->sighand->siglock held, which may be
2081 * released and re-acquired before returning with intervening sleep.
2082 */
2083 static void do_jobctl_trap(void)
2084 {
2085 struct signal_struct *signal = current->signal;
2086 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2087
2088 if (current->ptrace & PT_SEIZED) {
2089 if (!signal->group_stop_count &&
2090 !(signal->flags & SIGNAL_STOP_STOPPED))
2091 signr = SIGTRAP;
2092 WARN_ON_ONCE(!signr);
2093 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2094 CLD_STOPPED);
2095 } else {
2096 WARN_ON_ONCE(!signr);
2097 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2098 current->exit_code = 0;
2099 }
2100 }
2101
2102 static int ptrace_signal(int signr, siginfo_t *info)
2103 {
2104 /*
2105 * We do not check sig_kernel_stop(signr) but set this marker
2106 * unconditionally because we do not know whether debugger will
2107 * change signr. This flag has no meaning unless we are going
2108 * to stop after return from ptrace_stop(). In this case it will
2109 * be checked in do_signal_stop(), we should only stop if it was
2110 * not cleared by SIGCONT while we were sleeping. See also the
2111 * comment in dequeue_signal().
2112 */
2113 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2114 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2115
2116 /* We're back. Did the debugger cancel the sig? */
2117 signr = current->exit_code;
2118 if (signr == 0)
2119 return signr;
2120
2121 current->exit_code = 0;
2122
2123 /*
2124 * Update the siginfo structure if the signal has
2125 * changed. If the debugger wanted something
2126 * specific in the siginfo structure then it should
2127 * have updated *info via PTRACE_SETSIGINFO.
2128 */
2129 if (signr != info->si_signo) {
2130 info->si_signo = signr;
2131 info->si_errno = 0;
2132 info->si_code = SI_USER;
2133 rcu_read_lock();
2134 info->si_pid = task_pid_vnr(current->parent);
2135 info->si_uid = from_kuid_munged(current_user_ns(),
2136 task_uid(current->parent));
2137 rcu_read_unlock();
2138 }
2139
2140 /* If the (new) signal is now blocked, requeue it. */
2141 if (sigismember(&current->blocked, signr)) {
2142 specific_send_sig_info(signr, info, current);
2143 signr = 0;
2144 }
2145
2146 return signr;
2147 }
2148
2149 int get_signal(struct ksignal *ksig)
2150 {
2151 struct sighand_struct *sighand = current->sighand;
2152 struct signal_struct *signal = current->signal;
2153 int signr;
2154
2155 if (unlikely(current->task_works))
2156 task_work_run();
2157
2158 if (unlikely(uprobe_deny_signal()))
2159 return 0;
2160
2161 /*
2162 * Do this once, we can't return to user-mode if freezing() == T.
2163 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2164 * thus do not need another check after return.
2165 */
2166 try_to_freeze();
2167
2168 relock:
2169 spin_lock_irq(&sighand->siglock);
2170 /*
2171 * Every stopped thread goes here after wakeup. Check to see if
2172 * we should notify the parent, prepare_signal(SIGCONT) encodes
2173 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2174 */
2175 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2176 int why;
2177
2178 if (signal->flags & SIGNAL_CLD_CONTINUED)
2179 why = CLD_CONTINUED;
2180 else
2181 why = CLD_STOPPED;
2182
2183 signal->flags &= ~SIGNAL_CLD_MASK;
2184
2185 spin_unlock_irq(&sighand->siglock);
2186
2187 /*
2188 * Notify the parent that we're continuing. This event is
2189 * always per-process and doesn't make whole lot of sense
2190 * for ptracers, who shouldn't consume the state via
2191 * wait(2) either, but, for backward compatibility, notify
2192 * the ptracer of the group leader too unless it's gonna be
2193 * a duplicate.
2194 */
2195 read_lock(&tasklist_lock);
2196 do_notify_parent_cldstop(current, false, why);
2197
2198 if (ptrace_reparented(current->group_leader))
2199 do_notify_parent_cldstop(current->group_leader,
2200 true, why);
2201 read_unlock(&tasklist_lock);
2202
2203 goto relock;
2204 }
2205
2206 for (;;) {
2207 struct k_sigaction *ka;
2208
2209 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2210 do_signal_stop(0))
2211 goto relock;
2212
2213 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2214 do_jobctl_trap();
2215 spin_unlock_irq(&sighand->siglock);
2216 goto relock;
2217 }
2218
2219 signr = dequeue_signal(current, &current->blocked, &ksig->info);
2220
2221 if (!signr)
2222 break; /* will return 0 */
2223
2224 if (unlikely(current->ptrace) && signr != SIGKILL) {
2225 signr = ptrace_signal(signr, &ksig->info);
2226 if (!signr)
2227 continue;
2228 }
2229
2230 ka = &sighand->action[signr-1];
2231
2232 /* Trace actually delivered signals. */
2233 trace_signal_deliver(signr, &ksig->info, ka);
2234
2235 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2236 continue;
2237 if (ka->sa.sa_handler != SIG_DFL) {
2238 /* Run the handler. */
2239 ksig->ka = *ka;
2240
2241 if (ka->sa.sa_flags & SA_ONESHOT)
2242 ka->sa.sa_handler = SIG_DFL;
2243
2244 break; /* will return non-zero "signr" value */
2245 }
2246
2247 /*
2248 * Now we are doing the default action for this signal.
2249 */
2250 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2251 continue;
2252
2253 /*
2254 * Global init gets no signals it doesn't want.
2255 * Container-init gets no signals it doesn't want from same
2256 * container.
2257 *
2258 * Note that if global/container-init sees a sig_kernel_only()
2259 * signal here, the signal must have been generated internally
2260 * or must have come from an ancestor namespace. In either
2261 * case, the signal cannot be dropped.
2262 */
2263 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2264 !sig_kernel_only(signr))
2265 continue;
2266
2267 if (sig_kernel_stop(signr)) {
2268 /*
2269 * The default action is to stop all threads in
2270 * the thread group. The job control signals
2271 * do nothing in an orphaned pgrp, but SIGSTOP
2272 * always works. Note that siglock needs to be
2273 * dropped during the call to is_orphaned_pgrp()
2274 * because of lock ordering with tasklist_lock.
2275 * This allows an intervening SIGCONT to be posted.
2276 * We need to check for that and bail out if necessary.
2277 */
2278 if (signr != SIGSTOP) {
2279 spin_unlock_irq(&sighand->siglock);
2280
2281 /* signals can be posted during this window */
2282
2283 if (is_current_pgrp_orphaned())
2284 goto relock;
2285
2286 spin_lock_irq(&sighand->siglock);
2287 }
2288
2289 if (likely(do_signal_stop(ksig->info.si_signo))) {
2290 /* It released the siglock. */
2291 goto relock;
2292 }
2293
2294 /*
2295 * We didn't actually stop, due to a race
2296 * with SIGCONT or something like that.
2297 */
2298 continue;
2299 }
2300
2301 spin_unlock_irq(&sighand->siglock);
2302
2303 /*
2304 * Anything else is fatal, maybe with a core dump.
2305 */
2306 current->flags |= PF_SIGNALED;
2307
2308 if (sig_kernel_coredump(signr)) {
2309 if (print_fatal_signals)
2310 print_fatal_signal(ksig->info.si_signo);
2311 proc_coredump_connector(current);
2312 /*
2313 * If it was able to dump core, this kills all
2314 * other threads in the group and synchronizes with
2315 * their demise. If we lost the race with another
2316 * thread getting here, it set group_exit_code
2317 * first and our do_group_exit call below will use
2318 * that value and ignore the one we pass it.
2319 */
2320 do_coredump(&ksig->info);
2321 }
2322
2323 /*
2324 * Death signals, no core dump.
2325 */
2326 do_group_exit(ksig->info.si_signo);
2327 /* NOTREACHED */
2328 }
2329 spin_unlock_irq(&sighand->siglock);
2330
2331 ksig->sig = signr;
2332 return ksig->sig > 0;
2333 }
2334
2335 /**
2336 * signal_delivered -
2337 * @ksig: kernel signal struct
2338 * @stepping: nonzero if debugger single-step or block-step in use
2339 *
2340 * This function should be called when a signal has successfully been
2341 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2342 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2343 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2344 */
2345 static void signal_delivered(struct ksignal *ksig, int stepping)
2346 {
2347 sigset_t blocked;
2348
2349 /* A signal was successfully delivered, and the
2350 saved sigmask was stored on the signal frame,
2351 and will be restored by sigreturn. So we can
2352 simply clear the restore sigmask flag. */
2353 clear_restore_sigmask();
2354
2355 sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2356 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2357 sigaddset(&blocked, ksig->sig);
2358 set_current_blocked(&blocked);
2359 tracehook_signal_handler(stepping);
2360 }
2361
2362 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2363 {
2364 if (failed)
2365 force_sigsegv(ksig->sig, current);
2366 else
2367 signal_delivered(ksig, stepping);
2368 }
2369
2370 /*
2371 * It could be that complete_signal() picked us to notify about the
2372 * group-wide signal. Other threads should be notified now to take
2373 * the shared signals in @which since we will not.
2374 */
2375 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2376 {
2377 sigset_t retarget;
2378 struct task_struct *t;
2379
2380 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2381 if (sigisemptyset(&retarget))
2382 return;
2383
2384 t = tsk;
2385 while_each_thread(tsk, t) {
2386 if (t->flags & PF_EXITING)
2387 continue;
2388
2389 if (!has_pending_signals(&retarget, &t->blocked))
2390 continue;
2391 /* Remove the signals this thread can handle. */
2392 sigandsets(&retarget, &retarget, &t->blocked);
2393
2394 if (!signal_pending(t))
2395 signal_wake_up(t, 0);
2396
2397 if (sigisemptyset(&retarget))
2398 break;
2399 }
2400 }
2401
2402 void exit_signals(struct task_struct *tsk)
2403 {
2404 int group_stop = 0;
2405 sigset_t unblocked;
2406
2407 /*
2408 * @tsk is about to have PF_EXITING set - lock out users which
2409 * expect stable threadgroup.
2410 */
2411 cgroup_threadgroup_change_begin(tsk);
2412
2413 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2414 tsk->flags |= PF_EXITING;
2415 cgroup_threadgroup_change_end(tsk);
2416 return;
2417 }
2418
2419 spin_lock_irq(&tsk->sighand->siglock);
2420 /*
2421 * From now this task is not visible for group-wide signals,
2422 * see wants_signal(), do_signal_stop().
2423 */
2424 tsk->flags |= PF_EXITING;
2425
2426 cgroup_threadgroup_change_end(tsk);
2427
2428 if (!signal_pending(tsk))
2429 goto out;
2430
2431 unblocked = tsk->blocked;
2432 signotset(&unblocked);
2433 retarget_shared_pending(tsk, &unblocked);
2434
2435 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2436 task_participate_group_stop(tsk))
2437 group_stop = CLD_STOPPED;
2438 out:
2439 spin_unlock_irq(&tsk->sighand->siglock);
2440
2441 /*
2442 * If group stop has completed, deliver the notification. This
2443 * should always go to the real parent of the group leader.
2444 */
2445 if (unlikely(group_stop)) {
2446 read_lock(&tasklist_lock);
2447 do_notify_parent_cldstop(tsk, false, group_stop);
2448 read_unlock(&tasklist_lock);
2449 }
2450 }
2451
2452 EXPORT_SYMBOL(recalc_sigpending);
2453 EXPORT_SYMBOL_GPL(dequeue_signal);
2454 EXPORT_SYMBOL(flush_signals);
2455 EXPORT_SYMBOL(force_sig);
2456 EXPORT_SYMBOL(send_sig);
2457 EXPORT_SYMBOL(send_sig_info);
2458 EXPORT_SYMBOL(sigprocmask);
2459
2460 /*
2461 * System call entry points.
2462 */
2463
2464 /**
2465 * sys_restart_syscall - restart a system call
2466 */
2467 SYSCALL_DEFINE0(restart_syscall)
2468 {
2469 struct restart_block *restart = &current->restart_block;
2470 return restart->fn(restart);
2471 }
2472
2473 long do_no_restart_syscall(struct restart_block *param)
2474 {
2475 return -EINTR;
2476 }
2477
2478 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2479 {
2480 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2481 sigset_t newblocked;
2482 /* A set of now blocked but previously unblocked signals. */
2483 sigandnsets(&newblocked, newset, &current->blocked);
2484 retarget_shared_pending(tsk, &newblocked);
2485 }
2486 tsk->blocked = *newset;
2487 recalc_sigpending();
2488 }
2489
2490 /**
2491 * set_current_blocked - change current->blocked mask
2492 * @newset: new mask
2493 *
2494 * It is wrong to change ->blocked directly, this helper should be used
2495 * to ensure the process can't miss a shared signal we are going to block.
2496 */
2497 void set_current_blocked(sigset_t *newset)
2498 {
2499 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2500 __set_current_blocked(newset);
2501 }
2502
2503 void __set_current_blocked(const sigset_t *newset)
2504 {
2505 struct task_struct *tsk = current;
2506
2507 /*
2508 * In case the signal mask hasn't changed, there is nothing we need
2509 * to do. The current->blocked shouldn't be modified by other task.
2510 */
2511 if (sigequalsets(&tsk->blocked, newset))
2512 return;
2513
2514 spin_lock_irq(&tsk->sighand->siglock);
2515 __set_task_blocked(tsk, newset);
2516 spin_unlock_irq(&tsk->sighand->siglock);
2517 }
2518
2519 /*
2520 * This is also useful for kernel threads that want to temporarily
2521 * (or permanently) block certain signals.
2522 *
2523 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2524 * interface happily blocks "unblockable" signals like SIGKILL
2525 * and friends.
2526 */
2527 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2528 {
2529 struct task_struct *tsk = current;
2530 sigset_t newset;
2531
2532 /* Lockless, only current can change ->blocked, never from irq */
2533 if (oldset)
2534 *oldset = tsk->blocked;
2535
2536 switch (how) {
2537 case SIG_BLOCK:
2538 sigorsets(&newset, &tsk->blocked, set);
2539 break;
2540 case SIG_UNBLOCK:
2541 sigandnsets(&newset, &tsk->blocked, set);
2542 break;
2543 case SIG_SETMASK:
2544 newset = *set;
2545 break;
2546 default:
2547 return -EINVAL;
2548 }
2549
2550 __set_current_blocked(&newset);
2551 return 0;
2552 }
2553
2554 /**
2555 * sys_rt_sigprocmask - change the list of currently blocked signals
2556 * @how: whether to add, remove, or set signals
2557 * @nset: stores pending signals
2558 * @oset: previous value of signal mask if non-null
2559 * @sigsetsize: size of sigset_t type
2560 */
2561 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2562 sigset_t __user *, oset, size_t, sigsetsize)
2563 {
2564 sigset_t old_set, new_set;
2565 int error;
2566
2567 /* XXX: Don't preclude handling different sized sigset_t's. */
2568 if (sigsetsize != sizeof(sigset_t))
2569 return -EINVAL;
2570
2571 old_set = current->blocked;
2572
2573 if (nset) {
2574 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2575 return -EFAULT;
2576 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2577
2578 error = sigprocmask(how, &new_set, NULL);
2579 if (error)
2580 return error;
2581 }
2582
2583 if (oset) {
2584 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2585 return -EFAULT;
2586 }
2587
2588 return 0;
2589 }
2590
2591 #ifdef CONFIG_COMPAT
2592 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2593 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2594 {
2595 #ifdef __BIG_ENDIAN
2596 sigset_t old_set = current->blocked;
2597
2598 /* XXX: Don't preclude handling different sized sigset_t's. */
2599 if (sigsetsize != sizeof(sigset_t))
2600 return -EINVAL;
2601
2602 if (nset) {
2603 compat_sigset_t new32;
2604 sigset_t new_set;
2605 int error;
2606 if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2607 return -EFAULT;
2608
2609 sigset_from_compat(&new_set, &new32);
2610 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2611
2612 error = sigprocmask(how, &new_set, NULL);
2613 if (error)
2614 return error;
2615 }
2616 if (oset) {
2617 compat_sigset_t old32;
2618 sigset_to_compat(&old32, &old_set);
2619 if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2620 return -EFAULT;
2621 }
2622 return 0;
2623 #else
2624 return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2625 (sigset_t __user *)oset, sigsetsize);
2626 #endif
2627 }
2628 #endif
2629
2630 static int do_sigpending(void *set, unsigned long sigsetsize)
2631 {
2632 if (sigsetsize > sizeof(sigset_t))
2633 return -EINVAL;
2634
2635 spin_lock_irq(&current->sighand->siglock);
2636 sigorsets(set, &current->pending.signal,
2637 &current->signal->shared_pending.signal);
2638 spin_unlock_irq(&current->sighand->siglock);
2639
2640 /* Outside the lock because only this thread touches it. */
2641 sigandsets(set, &current->blocked, set);
2642 return 0;
2643 }
2644
2645 /**
2646 * sys_rt_sigpending - examine a pending signal that has been raised
2647 * while blocked
2648 * @uset: stores pending signals
2649 * @sigsetsize: size of sigset_t type or larger
2650 */
2651 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2652 {
2653 sigset_t set;
2654 int err = do_sigpending(&set, sigsetsize);
2655 if (!err && copy_to_user(uset, &set, sigsetsize))
2656 err = -EFAULT;
2657 return err;
2658 }
2659
2660 #ifdef CONFIG_COMPAT
2661 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2662 compat_size_t, sigsetsize)
2663 {
2664 #ifdef __BIG_ENDIAN
2665 sigset_t set;
2666 int err = do_sigpending(&set, sigsetsize);
2667 if (!err) {
2668 compat_sigset_t set32;
2669 sigset_to_compat(&set32, &set);
2670 /* we can get here only if sigsetsize <= sizeof(set) */
2671 if (copy_to_user(uset, &set32, sigsetsize))
2672 err = -EFAULT;
2673 }
2674 return err;
2675 #else
2676 return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2677 #endif
2678 }
2679 #endif
2680
2681 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2682
2683 int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2684 {
2685 int err;
2686
2687 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2688 return -EFAULT;
2689 if (from->si_code < 0)
2690 return __copy_to_user(to, from, sizeof(siginfo_t))
2691 ? -EFAULT : 0;
2692 /*
2693 * If you change siginfo_t structure, please be sure
2694 * this code is fixed accordingly.
2695 * Please remember to update the signalfd_copyinfo() function
2696 * inside fs/signalfd.c too, in case siginfo_t changes.
2697 * It should never copy any pad contained in the structure
2698 * to avoid security leaks, but must copy the generic
2699 * 3 ints plus the relevant union member.
2700 */
2701 err = __put_user(from->si_signo, &to->si_signo);
2702 err |= __put_user(from->si_errno, &to->si_errno);
2703 err |= __put_user((short)from->si_code, &to->si_code);
2704 switch (from->si_code & __SI_MASK) {
2705 case __SI_KILL:
2706 err |= __put_user(from->si_pid, &to->si_pid);
2707 err |= __put_user(from->si_uid, &to->si_uid);
2708 break;
2709 case __SI_TIMER:
2710 err |= __put_user(from->si_tid, &to->si_tid);
2711 err |= __put_user(from->si_overrun, &to->si_overrun);
2712 err |= __put_user(from->si_ptr, &to->si_ptr);
2713 break;
2714 case __SI_POLL:
2715 err |= __put_user(from->si_band, &to->si_band);
2716 err |= __put_user(from->si_fd, &to->si_fd);
2717 break;
2718 case __SI_FAULT:
2719 err |= __put_user(from->si_addr, &to->si_addr);
2720 #ifdef __ARCH_SI_TRAPNO
2721 err |= __put_user(from->si_trapno, &to->si_trapno);
2722 #endif
2723 #ifdef BUS_MCEERR_AO
2724 /*
2725 * Other callers might not initialize the si_lsb field,
2726 * so check explicitly for the right codes here.
2727 */
2728 if (from->si_signo == SIGBUS &&
2729 (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO))
2730 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2731 #endif
2732 #ifdef SEGV_BNDERR
2733 if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2734 err |= __put_user(from->si_lower, &to->si_lower);
2735 err |= __put_user(from->si_upper, &to->si_upper);
2736 }
2737 #endif
2738 #ifdef SEGV_PKUERR
2739 if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR)
2740 err |= __put_user(from->si_pkey, &to->si_pkey);
2741 #endif
2742 break;
2743 case __SI_CHLD:
2744 err |= __put_user(from->si_pid, &to->si_pid);
2745 err |= __put_user(from->si_uid, &to->si_uid);
2746 err |= __put_user(from->si_status, &to->si_status);
2747 err |= __put_user(from->si_utime, &to->si_utime);
2748 err |= __put_user(from->si_stime, &to->si_stime);
2749 break;
2750 case __SI_RT: /* This is not generated by the kernel as of now. */
2751 case __SI_MESGQ: /* But this is */
2752 err |= __put_user(from->si_pid, &to->si_pid);
2753 err |= __put_user(from->si_uid, &to->si_uid);
2754 err |= __put_user(from->si_ptr, &to->si_ptr);
2755 break;
2756 #ifdef __ARCH_SIGSYS
2757 case __SI_SYS:
2758 err |= __put_user(from->si_call_addr, &to->si_call_addr);
2759 err |= __put_user(from->si_syscall, &to->si_syscall);
2760 err |= __put_user(from->si_arch, &to->si_arch);
2761 break;
2762 #endif
2763 default: /* this is just in case for now ... */
2764 err |= __put_user(from->si_pid, &to->si_pid);
2765 err |= __put_user(from->si_uid, &to->si_uid);
2766 break;
2767 }
2768 return err;
2769 }
2770
2771 #endif
2772
2773 /**
2774 * do_sigtimedwait - wait for queued signals specified in @which
2775 * @which: queued signals to wait for
2776 * @info: if non-null, the signal's siginfo is returned here
2777 * @ts: upper bound on process time suspension
2778 */
2779 int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2780 const struct timespec *ts)
2781 {
2782 ktime_t *to = NULL, timeout = KTIME_MAX;
2783 struct task_struct *tsk = current;
2784 sigset_t mask = *which;
2785 int sig, ret = 0;
2786
2787 if (ts) {
2788 if (!timespec_valid(ts))
2789 return -EINVAL;
2790 timeout = timespec_to_ktime(*ts);
2791 to = &timeout;
2792 }
2793
2794 /*
2795 * Invert the set of allowed signals to get those we want to block.
2796 */
2797 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2798 signotset(&mask);
2799
2800 spin_lock_irq(&tsk->sighand->siglock);
2801 sig = dequeue_signal(tsk, &mask, info);
2802 if (!sig && timeout) {
2803 /*
2804 * None ready, temporarily unblock those we're interested
2805 * while we are sleeping in so that we'll be awakened when
2806 * they arrive. Unblocking is always fine, we can avoid
2807 * set_current_blocked().
2808 */
2809 tsk->real_blocked = tsk->blocked;
2810 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2811 recalc_sigpending();
2812 spin_unlock_irq(&tsk->sighand->siglock);
2813
2814 __set_current_state(TASK_INTERRUPTIBLE);
2815 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
2816 HRTIMER_MODE_REL);
2817 spin_lock_irq(&tsk->sighand->siglock);
2818 __set_task_blocked(tsk, &tsk->real_blocked);
2819 sigemptyset(&tsk->real_blocked);
2820 sig = dequeue_signal(tsk, &mask, info);
2821 }
2822 spin_unlock_irq(&tsk->sighand->siglock);
2823
2824 if (sig)
2825 return sig;
2826 return ret ? -EINTR : -EAGAIN;
2827 }
2828
2829 /**
2830 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
2831 * in @uthese
2832 * @uthese: queued signals to wait for
2833 * @uinfo: if non-null, the signal's siginfo is returned here
2834 * @uts: upper bound on process time suspension
2835 * @sigsetsize: size of sigset_t type
2836 */
2837 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2838 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2839 size_t, sigsetsize)
2840 {
2841 sigset_t these;
2842 struct timespec ts;
2843 siginfo_t info;
2844 int ret;
2845
2846 /* XXX: Don't preclude handling different sized sigset_t's. */
2847 if (sigsetsize != sizeof(sigset_t))
2848 return -EINVAL;
2849
2850 if (copy_from_user(&these, uthese, sizeof(these)))
2851 return -EFAULT;
2852
2853 if (uts) {
2854 if (copy_from_user(&ts, uts, sizeof(ts)))
2855 return -EFAULT;
2856 }
2857
2858 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2859
2860 if (ret > 0 && uinfo) {
2861 if (copy_siginfo_to_user(uinfo, &info))
2862 ret = -EFAULT;
2863 }
2864
2865 return ret;
2866 }
2867
2868 /**
2869 * sys_kill - send a signal to a process
2870 * @pid: the PID of the process
2871 * @sig: signal to be sent
2872 */
2873 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2874 {
2875 struct siginfo info;
2876
2877 info.si_signo = sig;
2878 info.si_errno = 0;
2879 info.si_code = SI_USER;
2880 info.si_pid = task_tgid_vnr(current);
2881 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2882
2883 return kill_something_info(sig, &info, pid);
2884 }
2885
2886 static int
2887 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2888 {
2889 struct task_struct *p;
2890 int error = -ESRCH;
2891
2892 rcu_read_lock();
2893 p = find_task_by_vpid(pid);
2894 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2895 error = check_kill_permission(sig, info, p);
2896 /*
2897 * The null signal is a permissions and process existence
2898 * probe. No signal is actually delivered.
2899 */
2900 if (!error && sig) {
2901 error = do_send_sig_info(sig, info, p, false);
2902 /*
2903 * If lock_task_sighand() failed we pretend the task
2904 * dies after receiving the signal. The window is tiny,
2905 * and the signal is private anyway.
2906 */
2907 if (unlikely(error == -ESRCH))
2908 error = 0;
2909 }
2910 }
2911 rcu_read_unlock();
2912
2913 return error;
2914 }
2915
2916 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2917 {
2918 struct siginfo info = {};
2919
2920 info.si_signo = sig;
2921 info.si_errno = 0;
2922 info.si_code = SI_TKILL;
2923 info.si_pid = task_tgid_vnr(current);
2924 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2925
2926 return do_send_specific(tgid, pid, sig, &info);
2927 }
2928
2929 /**
2930 * sys_tgkill - send signal to one specific thread
2931 * @tgid: the thread group ID of the thread
2932 * @pid: the PID of the thread
2933 * @sig: signal to be sent
2934 *
2935 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2936 * exists but it's not belonging to the target process anymore. This
2937 * method solves the problem of threads exiting and PIDs getting reused.
2938 */
2939 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2940 {
2941 /* This is only valid for single tasks */
2942 if (pid <= 0 || tgid <= 0)
2943 return -EINVAL;
2944
2945 return do_tkill(tgid, pid, sig);
2946 }
2947
2948 /**
2949 * sys_tkill - send signal to one specific task
2950 * @pid: the PID of the task
2951 * @sig: signal to be sent
2952 *
2953 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2954 */
2955 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2956 {
2957 /* This is only valid for single tasks */
2958 if (pid <= 0)
2959 return -EINVAL;
2960
2961 return do_tkill(0, pid, sig);
2962 }
2963
2964 static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
2965 {
2966 /* Not even root can pretend to send signals from the kernel.
2967 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2968 */
2969 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
2970 (task_pid_vnr(current) != pid))
2971 return -EPERM;
2972
2973 info->si_signo = sig;
2974
2975 /* POSIX.1b doesn't mention process groups. */
2976 return kill_proc_info(sig, info, pid);
2977 }
2978
2979 /**
2980 * sys_rt_sigqueueinfo - send signal information to a signal
2981 * @pid: the PID of the thread
2982 * @sig: signal to be sent
2983 * @uinfo: signal info to be sent
2984 */
2985 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2986 siginfo_t __user *, uinfo)
2987 {
2988 siginfo_t info;
2989 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2990 return -EFAULT;
2991 return do_rt_sigqueueinfo(pid, sig, &info);
2992 }
2993
2994 #ifdef CONFIG_COMPAT
2995 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
2996 compat_pid_t, pid,
2997 int, sig,
2998 struct compat_siginfo __user *, uinfo)
2999 {
3000 siginfo_t info = {};
3001 int ret = copy_siginfo_from_user32(&info, uinfo);
3002 if (unlikely(ret))
3003 return ret;
3004 return do_rt_sigqueueinfo(pid, sig, &info);
3005 }
3006 #endif
3007
3008 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3009 {
3010 /* This is only valid for single tasks */
3011 if (pid <= 0 || tgid <= 0)
3012 return -EINVAL;
3013
3014 /* Not even root can pretend to send signals from the kernel.
3015 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3016 */
3017 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3018 (task_pid_vnr(current) != pid))
3019 return -EPERM;
3020
3021 info->si_signo = sig;
3022
3023 return do_send_specific(tgid, pid, sig, info);
3024 }
3025
3026 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3027 siginfo_t __user *, uinfo)
3028 {
3029 siginfo_t info;
3030
3031 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3032 return -EFAULT;
3033
3034 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3035 }
3036
3037 #ifdef CONFIG_COMPAT
3038 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3039 compat_pid_t, tgid,
3040 compat_pid_t, pid,
3041 int, sig,
3042 struct compat_siginfo __user *, uinfo)
3043 {
3044 siginfo_t info = {};
3045
3046 if (copy_siginfo_from_user32(&info, uinfo))
3047 return -EFAULT;
3048 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3049 }
3050 #endif
3051
3052 /*
3053 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3054 */
3055 void kernel_sigaction(int sig, __sighandler_t action)
3056 {
3057 spin_lock_irq(&current->sighand->siglock);
3058 current->sighand->action[sig - 1].sa.sa_handler = action;
3059 if (action == SIG_IGN) {
3060 sigset_t mask;
3061
3062 sigemptyset(&mask);
3063 sigaddset(&mask, sig);
3064
3065 flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3066 flush_sigqueue_mask(&mask, &current->pending);
3067 recalc_sigpending();
3068 }
3069 spin_unlock_irq(&current->sighand->siglock);
3070 }
3071 EXPORT_SYMBOL(kernel_sigaction);
3072
3073 void __weak sigaction_compat_abi(struct k_sigaction *act,
3074 struct k_sigaction *oact)
3075 {
3076 }
3077
3078 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3079 {
3080 struct task_struct *p = current, *t;
3081 struct k_sigaction *k;
3082 sigset_t mask;
3083
3084 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3085 return -EINVAL;
3086
3087 k = &p->sighand->action[sig-1];
3088
3089 spin_lock_irq(&p->sighand->siglock);
3090 if (oact)
3091 *oact = *k;
3092
3093 sigaction_compat_abi(act, oact);
3094
3095 if (act) {
3096 sigdelsetmask(&act->sa.sa_mask,
3097 sigmask(SIGKILL) | sigmask(SIGSTOP));
3098 *k = *act;
3099 /*
3100 * POSIX 3.3.1.3:
3101 * "Setting a signal action to SIG_IGN for a signal that is
3102 * pending shall cause the pending signal to be discarded,
3103 * whether or not it is blocked."
3104 *
3105 * "Setting a signal action to SIG_DFL for a signal that is
3106 * pending and whose default action is to ignore the signal
3107 * (for example, SIGCHLD), shall cause the pending signal to
3108 * be discarded, whether or not it is blocked"
3109 */
3110 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3111 sigemptyset(&mask);
3112 sigaddset(&mask, sig);
3113 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3114 for_each_thread(p, t)
3115 flush_sigqueue_mask(&mask, &t->pending);
3116 }
3117 }
3118
3119 spin_unlock_irq(&p->sighand->siglock);
3120 return 0;
3121 }
3122
3123 static int
3124 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3125 {
3126 stack_t oss;
3127 int error;
3128
3129 oss.ss_sp = (void __user *) current->sas_ss_sp;
3130 oss.ss_size = current->sas_ss_size;
3131 oss.ss_flags = sas_ss_flags(sp) |
3132 (current->sas_ss_flags & SS_FLAG_BITS);
3133
3134 if (uss) {
3135 void __user *ss_sp;
3136 size_t ss_size;
3137 unsigned ss_flags;
3138 int ss_mode;
3139
3140 error = -EFAULT;
3141 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3142 goto out;
3143 error = __get_user(ss_sp, &uss->ss_sp) |
3144 __get_user(ss_flags, &uss->ss_flags) |
3145 __get_user(ss_size, &uss->ss_size);
3146 if (error)
3147 goto out;
3148
3149 error = -EPERM;
3150 if (on_sig_stack(sp))
3151 goto out;
3152
3153 ss_mode = ss_flags & ~SS_FLAG_BITS;
3154 error = -EINVAL;
3155 if (ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3156 ss_mode != 0)
3157 goto out;
3158
3159 if (ss_mode == SS_DISABLE) {
3160 ss_size = 0;
3161 ss_sp = NULL;
3162 } else {
3163 error = -ENOMEM;
3164 if (ss_size < MINSIGSTKSZ)
3165 goto out;
3166 }
3167
3168 current->sas_ss_sp = (unsigned long) ss_sp;
3169 current->sas_ss_size = ss_size;
3170 current->sas_ss_flags = ss_flags;
3171 }
3172
3173 error = 0;
3174 if (uoss) {
3175 error = -EFAULT;
3176 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3177 goto out;
3178 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3179 __put_user(oss.ss_size, &uoss->ss_size) |
3180 __put_user(oss.ss_flags, &uoss->ss_flags);
3181 }
3182
3183 out:
3184 return error;
3185 }
3186 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3187 {
3188 return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3189 }
3190
3191 int restore_altstack(const stack_t __user *uss)
3192 {
3193 int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3194 /* squash all but EFAULT for now */
3195 return err == -EFAULT ? err : 0;
3196 }
3197
3198 int __save_altstack(stack_t __user *uss, unsigned long sp)
3199 {
3200 struct task_struct *t = current;
3201 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3202 __put_user(t->sas_ss_flags, &uss->ss_flags) |
3203 __put_user(t->sas_ss_size, &uss->ss_size);
3204 if (err)
3205 return err;
3206 if (t->sas_ss_flags & SS_AUTODISARM)
3207 sas_ss_reset(t);
3208 return 0;
3209 }
3210
3211 #ifdef CONFIG_COMPAT
3212 COMPAT_SYSCALL_DEFINE2(sigaltstack,
3213 const compat_stack_t __user *, uss_ptr,
3214 compat_stack_t __user *, uoss_ptr)
3215 {
3216 stack_t uss, uoss;
3217 int ret;
3218 mm_segment_t seg;
3219
3220 if (uss_ptr) {
3221 compat_stack_t uss32;
3222
3223 memset(&uss, 0, sizeof(stack_t));
3224 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3225 return -EFAULT;
3226 uss.ss_sp = compat_ptr(uss32.ss_sp);
3227 uss.ss_flags = uss32.ss_flags;
3228 uss.ss_size = uss32.ss_size;
3229 }
3230 seg = get_fs();
3231 set_fs(KERNEL_DS);
3232 ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3233 (stack_t __force __user *) &uoss,
3234 compat_user_stack_pointer());
3235 set_fs(seg);
3236 if (ret >= 0 && uoss_ptr) {
3237 if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3238 __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3239 __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3240 __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3241 ret = -EFAULT;
3242 }
3243 return ret;
3244 }
3245
3246 int compat_restore_altstack(const compat_stack_t __user *uss)
3247 {
3248 int err = compat_sys_sigaltstack(uss, NULL);
3249 /* squash all but -EFAULT for now */
3250 return err == -EFAULT ? err : 0;
3251 }
3252
3253 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3254 {
3255 int err;
3256 struct task_struct *t = current;
3257 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
3258 &uss->ss_sp) |
3259 __put_user(t->sas_ss_flags, &uss->ss_flags) |
3260 __put_user(t->sas_ss_size, &uss->ss_size);
3261 if (err)
3262 return err;
3263 if (t->sas_ss_flags & SS_AUTODISARM)
3264 sas_ss_reset(t);
3265 return 0;
3266 }
3267 #endif
3268
3269 #ifdef __ARCH_WANT_SYS_SIGPENDING
3270
3271 /**
3272 * sys_sigpending - examine pending signals
3273 * @set: where mask of pending signal is returned
3274 */
3275 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3276 {
3277 return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t));
3278 }
3279
3280 #endif
3281
3282 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
3283 /**
3284 * sys_sigprocmask - examine and change blocked signals
3285 * @how: whether to add, remove, or set signals
3286 * @nset: signals to add or remove (if non-null)
3287 * @oset: previous value of signal mask if non-null
3288 *
3289 * Some platforms have their own version with special arguments;
3290 * others support only sys_rt_sigprocmask.
3291 */
3292
3293 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3294 old_sigset_t __user *, oset)
3295 {
3296 old_sigset_t old_set, new_set;
3297 sigset_t new_blocked;
3298
3299 old_set = current->blocked.sig[0];
3300
3301 if (nset) {
3302 if (copy_from_user(&new_set, nset, sizeof(*nset)))
3303 return -EFAULT;
3304
3305 new_blocked = current->blocked;
3306
3307 switch (how) {
3308 case SIG_BLOCK:
3309 sigaddsetmask(&new_blocked, new_set);
3310 break;
3311 case SIG_UNBLOCK:
3312 sigdelsetmask(&new_blocked, new_set);
3313 break;
3314 case SIG_SETMASK:
3315 new_blocked.sig[0] = new_set;
3316 break;
3317 default:
3318 return -EINVAL;
3319 }
3320
3321 set_current_blocked(&new_blocked);
3322 }
3323
3324 if (oset) {
3325 if (copy_to_user(oset, &old_set, sizeof(*oset)))
3326 return -EFAULT;
3327 }
3328
3329 return 0;
3330 }
3331 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3332
3333 #ifndef CONFIG_ODD_RT_SIGACTION
3334 /**
3335 * sys_rt_sigaction - alter an action taken by a process
3336 * @sig: signal to be sent
3337 * @act: new sigaction
3338 * @oact: used to save the previous sigaction
3339 * @sigsetsize: size of sigset_t type
3340 */
3341 SYSCALL_DEFINE4(rt_sigaction, int, sig,
3342 const struct sigaction __user *, act,
3343 struct sigaction __user *, oact,
3344 size_t, sigsetsize)
3345 {
3346 struct k_sigaction new_sa, old_sa;
3347 int ret = -EINVAL;
3348
3349 /* XXX: Don't preclude handling different sized sigset_t's. */
3350 if (sigsetsize != sizeof(sigset_t))
3351 goto out;
3352
3353 if (act) {
3354 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3355 return -EFAULT;
3356 }
3357
3358 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3359
3360 if (!ret && oact) {
3361 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3362 return -EFAULT;
3363 }
3364 out:
3365 return ret;
3366 }
3367 #ifdef CONFIG_COMPAT
3368 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3369 const struct compat_sigaction __user *, act,
3370 struct compat_sigaction __user *, oact,
3371 compat_size_t, sigsetsize)
3372 {
3373 struct k_sigaction new_ka, old_ka;
3374 compat_sigset_t mask;
3375 #ifdef __ARCH_HAS_SA_RESTORER
3376 compat_uptr_t restorer;
3377 #endif
3378 int ret;
3379
3380 /* XXX: Don't preclude handling different sized sigset_t's. */
3381 if (sigsetsize != sizeof(compat_sigset_t))
3382 return -EINVAL;
3383
3384 if (act) {
3385 compat_uptr_t handler;
3386 ret = get_user(handler, &act->sa_handler);
3387 new_ka.sa.sa_handler = compat_ptr(handler);
3388 #ifdef __ARCH_HAS_SA_RESTORER
3389 ret |= get_user(restorer, &act->sa_restorer);
3390 new_ka.sa.sa_restorer = compat_ptr(restorer);
3391 #endif
3392 ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3393 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3394 if (ret)
3395 return -EFAULT;
3396 sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3397 }
3398
3399 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3400 if (!ret && oact) {
3401 sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3402 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3403 &oact->sa_handler);
3404 ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3405 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3406 #ifdef __ARCH_HAS_SA_RESTORER
3407 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3408 &oact->sa_restorer);
3409 #endif
3410 }
3411 return ret;
3412 }
3413 #endif
3414 #endif /* !CONFIG_ODD_RT_SIGACTION */
3415
3416 #ifdef CONFIG_OLD_SIGACTION
3417 SYSCALL_DEFINE3(sigaction, int, sig,
3418 const struct old_sigaction __user *, act,
3419 struct old_sigaction __user *, oact)
3420 {
3421 struct k_sigaction new_ka, old_ka;
3422 int ret;
3423
3424 if (act) {
3425 old_sigset_t mask;
3426 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3427 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3428 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3429 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3430 __get_user(mask, &act->sa_mask))
3431 return -EFAULT;
3432 #ifdef __ARCH_HAS_KA_RESTORER
3433 new_ka.ka_restorer = NULL;
3434 #endif
3435 siginitset(&new_ka.sa.sa_mask, mask);
3436 }
3437
3438 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3439
3440 if (!ret && oact) {
3441 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3442 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3443 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3444 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3445 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3446 return -EFAULT;
3447 }
3448
3449 return ret;
3450 }
3451 #endif
3452 #ifdef CONFIG_COMPAT_OLD_SIGACTION
3453 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3454 const struct compat_old_sigaction __user *, act,
3455 struct compat_old_sigaction __user *, oact)
3456 {
3457 struct k_sigaction new_ka, old_ka;
3458 int ret;
3459 compat_old_sigset_t mask;
3460 compat_uptr_t handler, restorer;
3461
3462 if (act) {
3463 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3464 __get_user(handler, &act->sa_handler) ||
3465 __get_user(restorer, &act->sa_restorer) ||
3466 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3467 __get_user(mask, &act->sa_mask))
3468 return -EFAULT;
3469
3470 #ifdef __ARCH_HAS_KA_RESTORER
3471 new_ka.ka_restorer = NULL;
3472 #endif
3473 new_ka.sa.sa_handler = compat_ptr(handler);
3474 new_ka.sa.sa_restorer = compat_ptr(restorer);
3475 siginitset(&new_ka.sa.sa_mask, mask);
3476 }
3477
3478 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3479
3480 if (!ret && oact) {
3481 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3482 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3483 &oact->sa_handler) ||
3484 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3485 &oact->sa_restorer) ||
3486 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3487 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3488 return -EFAULT;
3489 }
3490 return ret;
3491 }
3492 #endif
3493
3494 #ifdef CONFIG_SGETMASK_SYSCALL
3495
3496 /*
3497 * For backwards compatibility. Functionality superseded by sigprocmask.
3498 */
3499 SYSCALL_DEFINE0(sgetmask)
3500 {
3501 /* SMP safe */
3502 return current->blocked.sig[0];
3503 }
3504
3505 SYSCALL_DEFINE1(ssetmask, int, newmask)
3506 {
3507 int old = current->blocked.sig[0];
3508 sigset_t newset;
3509
3510 siginitset(&newset, newmask);
3511 set_current_blocked(&newset);
3512
3513 return old;
3514 }
3515 #endif /* CONFIG_SGETMASK_SYSCALL */
3516
3517 #ifdef __ARCH_WANT_SYS_SIGNAL
3518 /*
3519 * For backwards compatibility. Functionality superseded by sigaction.
3520 */
3521 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3522 {
3523 struct k_sigaction new_sa, old_sa;
3524 int ret;
3525
3526 new_sa.sa.sa_handler = handler;
3527 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3528 sigemptyset(&new_sa.sa.sa_mask);
3529
3530 ret = do_sigaction(sig, &new_sa, &old_sa);
3531
3532 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3533 }
3534 #endif /* __ARCH_WANT_SYS_SIGNAL */
3535
3536 #ifdef __ARCH_WANT_SYS_PAUSE
3537
3538 SYSCALL_DEFINE0(pause)
3539 {
3540 while (!signal_pending(current)) {
3541 __set_current_state(TASK_INTERRUPTIBLE);
3542 schedule();
3543 }
3544 return -ERESTARTNOHAND;
3545 }
3546
3547 #endif
3548
3549 static int sigsuspend(sigset_t *set)
3550 {
3551 current->saved_sigmask = current->blocked;
3552 set_current_blocked(set);
3553
3554 while (!signal_pending(current)) {
3555 __set_current_state(TASK_INTERRUPTIBLE);
3556 schedule();
3557 }
3558 set_restore_sigmask();
3559 return -ERESTARTNOHAND;
3560 }
3561
3562 /**
3563 * sys_rt_sigsuspend - replace the signal mask for a value with the
3564 * @unewset value until a signal is received
3565 * @unewset: new signal mask value
3566 * @sigsetsize: size of sigset_t type
3567 */
3568 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3569 {
3570 sigset_t newset;
3571
3572 /* XXX: Don't preclude handling different sized sigset_t's. */
3573 if (sigsetsize != sizeof(sigset_t))
3574 return -EINVAL;
3575
3576 if (copy_from_user(&newset, unewset, sizeof(newset)))
3577 return -EFAULT;
3578 return sigsuspend(&newset);
3579 }
3580
3581 #ifdef CONFIG_COMPAT
3582 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3583 {
3584 #ifdef __BIG_ENDIAN
3585 sigset_t newset;
3586 compat_sigset_t newset32;
3587
3588 /* XXX: Don't preclude handling different sized sigset_t's. */
3589 if (sigsetsize != sizeof(sigset_t))
3590 return -EINVAL;
3591
3592 if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3593 return -EFAULT;
3594 sigset_from_compat(&newset, &newset32);
3595 return sigsuspend(&newset);
3596 #else
3597 /* on little-endian bitmaps don't care about granularity */
3598 return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3599 #endif
3600 }
3601 #endif
3602
3603 #ifdef CONFIG_OLD_SIGSUSPEND
3604 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3605 {
3606 sigset_t blocked;
3607 siginitset(&blocked, mask);
3608 return sigsuspend(&blocked);
3609 }
3610 #endif
3611 #ifdef CONFIG_OLD_SIGSUSPEND3
3612 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3613 {
3614 sigset_t blocked;
3615 siginitset(&blocked, mask);
3616 return sigsuspend(&blocked);
3617 }
3618 #endif
3619
3620 __weak const char *arch_vma_name(struct vm_area_struct *vma)
3621 {
3622 return NULL;
3623 }
3624
3625 void __init signals_init(void)
3626 {
3627 /* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
3628 BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
3629 != offsetof(struct siginfo, _sifields._pad));
3630
3631 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3632 }
3633
3634 #ifdef CONFIG_KGDB_KDB
3635 #include <linux/kdb.h>
3636 /*
3637 * kdb_send_sig_info - Allows kdb to send signals without exposing
3638 * signal internals. This function checks if the required locks are
3639 * available before calling the main signal code, to avoid kdb
3640 * deadlocks.
3641 */
3642 void
3643 kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3644 {
3645 static struct task_struct *kdb_prev_t;
3646 int sig, new_t;
3647 if (!spin_trylock(&t->sighand->siglock)) {
3648 kdb_printf("Can't do kill command now.\n"
3649 "The sigmask lock is held somewhere else in "
3650 "kernel, try again later\n");
3651 return;
3652 }
3653 spin_unlock(&t->sighand->siglock);
3654 new_t = kdb_prev_t != t;
3655 kdb_prev_t = t;
3656 if (t->state != TASK_RUNNING && new_t) {
3657 kdb_printf("Process is not RUNNING, sending a signal from "
3658 "kdb risks deadlock\n"
3659 "on the run queue locks. "
3660 "The signal has _not_ been sent.\n"
3661 "Reissue the kill command if you want to risk "
3662 "the deadlock.\n");
3663 return;
3664 }
3665 sig = info->si_signo;
3666 if (send_sig_info(sig, info, t))
3667 kdb_printf("Fail to deliver Signal %d to process %d.\n",
3668 sig, t->pid);
3669 else
3670 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3671 }
3672 #endif /* CONFIG_KGDB_KDB */