]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/signal.c
Merge branch 'next' into for-linus
[mirror_ubuntu-bionic-kernel.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/tracehook.h>
26 #include <linux/capability.h>
27 #include <linux/freezer.h>
28 #include <linux/pid_namespace.h>
29 #include <linux/nsproxy.h>
30 #include <trace/sched.h>
31
32 #include <asm/param.h>
33 #include <asm/uaccess.h>
34 #include <asm/unistd.h>
35 #include <asm/siginfo.h>
36 #include "audit.h" /* audit_signal_info() */
37
38 /*
39 * SLAB caches for signal bits.
40 */
41
42 static struct kmem_cache *sigqueue_cachep;
43
44 static void __user *sig_handler(struct task_struct *t, int sig)
45 {
46 return t->sighand->action[sig - 1].sa.sa_handler;
47 }
48
49 static int sig_handler_ignored(void __user *handler, int sig)
50 {
51 /* Is it explicitly or implicitly ignored? */
52 return handler == SIG_IGN ||
53 (handler == SIG_DFL && sig_kernel_ignore(sig));
54 }
55
56 static int sig_ignored(struct task_struct *t, int sig)
57 {
58 void __user *handler;
59
60 /*
61 * Blocked signals are never ignored, since the
62 * signal handler may change by the time it is
63 * unblocked.
64 */
65 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
66 return 0;
67
68 handler = sig_handler(t, sig);
69 if (!sig_handler_ignored(handler, sig))
70 return 0;
71
72 /*
73 * Tracers may want to know about even ignored signals.
74 */
75 return !tracehook_consider_ignored_signal(t, sig, handler);
76 }
77
78 /*
79 * Re-calculate pending state from the set of locally pending
80 * signals, globally pending signals, and blocked signals.
81 */
82 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
83 {
84 unsigned long ready;
85 long i;
86
87 switch (_NSIG_WORDS) {
88 default:
89 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
90 ready |= signal->sig[i] &~ blocked->sig[i];
91 break;
92
93 case 4: ready = signal->sig[3] &~ blocked->sig[3];
94 ready |= signal->sig[2] &~ blocked->sig[2];
95 ready |= signal->sig[1] &~ blocked->sig[1];
96 ready |= signal->sig[0] &~ blocked->sig[0];
97 break;
98
99 case 2: ready = signal->sig[1] &~ blocked->sig[1];
100 ready |= signal->sig[0] &~ blocked->sig[0];
101 break;
102
103 case 1: ready = signal->sig[0] &~ blocked->sig[0];
104 }
105 return ready != 0;
106 }
107
108 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
109
110 static int recalc_sigpending_tsk(struct task_struct *t)
111 {
112 if (t->signal->group_stop_count > 0 ||
113 PENDING(&t->pending, &t->blocked) ||
114 PENDING(&t->signal->shared_pending, &t->blocked)) {
115 set_tsk_thread_flag(t, TIF_SIGPENDING);
116 return 1;
117 }
118 /*
119 * We must never clear the flag in another thread, or in current
120 * when it's possible the current syscall is returning -ERESTART*.
121 * So we don't clear it here, and only callers who know they should do.
122 */
123 return 0;
124 }
125
126 /*
127 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
128 * This is superfluous when called on current, the wakeup is a harmless no-op.
129 */
130 void recalc_sigpending_and_wake(struct task_struct *t)
131 {
132 if (recalc_sigpending_tsk(t))
133 signal_wake_up(t, 0);
134 }
135
136 void recalc_sigpending(void)
137 {
138 if (unlikely(tracehook_force_sigpending()))
139 set_thread_flag(TIF_SIGPENDING);
140 else if (!recalc_sigpending_tsk(current) && !freezing(current))
141 clear_thread_flag(TIF_SIGPENDING);
142
143 }
144
145 /* Given the mask, find the first available signal that should be serviced. */
146
147 int next_signal(struct sigpending *pending, sigset_t *mask)
148 {
149 unsigned long i, *s, *m, x;
150 int sig = 0;
151
152 s = pending->signal.sig;
153 m = mask->sig;
154 switch (_NSIG_WORDS) {
155 default:
156 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
157 if ((x = *s &~ *m) != 0) {
158 sig = ffz(~x) + i*_NSIG_BPW + 1;
159 break;
160 }
161 break;
162
163 case 2: if ((x = s[0] &~ m[0]) != 0)
164 sig = 1;
165 else if ((x = s[1] &~ m[1]) != 0)
166 sig = _NSIG_BPW + 1;
167 else
168 break;
169 sig += ffz(~x);
170 break;
171
172 case 1: if ((x = *s &~ *m) != 0)
173 sig = ffz(~x) + 1;
174 break;
175 }
176
177 return sig;
178 }
179
180 /*
181 * allocate a new signal queue record
182 * - this may be called without locks if and only if t == current, otherwise an
183 * appopriate lock must be held to stop the target task from exiting
184 */
185 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
186 int override_rlimit)
187 {
188 struct sigqueue *q = NULL;
189 struct user_struct *user;
190
191 /*
192 * We won't get problems with the target's UID changing under us
193 * because changing it requires RCU be used, and if t != current, the
194 * caller must be holding the RCU readlock (by way of a spinlock) and
195 * we use RCU protection here
196 */
197 user = get_uid(__task_cred(t)->user);
198 atomic_inc(&user->sigpending);
199 if (override_rlimit ||
200 atomic_read(&user->sigpending) <=
201 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
202 q = kmem_cache_alloc(sigqueue_cachep, flags);
203 if (unlikely(q == NULL)) {
204 atomic_dec(&user->sigpending);
205 free_uid(user);
206 } else {
207 INIT_LIST_HEAD(&q->list);
208 q->flags = 0;
209 q->user = user;
210 }
211
212 return q;
213 }
214
215 static void __sigqueue_free(struct sigqueue *q)
216 {
217 if (q->flags & SIGQUEUE_PREALLOC)
218 return;
219 atomic_dec(&q->user->sigpending);
220 free_uid(q->user);
221 kmem_cache_free(sigqueue_cachep, q);
222 }
223
224 void flush_sigqueue(struct sigpending *queue)
225 {
226 struct sigqueue *q;
227
228 sigemptyset(&queue->signal);
229 while (!list_empty(&queue->list)) {
230 q = list_entry(queue->list.next, struct sigqueue , list);
231 list_del_init(&q->list);
232 __sigqueue_free(q);
233 }
234 }
235
236 /*
237 * Flush all pending signals for a task.
238 */
239 void flush_signals(struct task_struct *t)
240 {
241 unsigned long flags;
242
243 spin_lock_irqsave(&t->sighand->siglock, flags);
244 clear_tsk_thread_flag(t, TIF_SIGPENDING);
245 flush_sigqueue(&t->pending);
246 flush_sigqueue(&t->signal->shared_pending);
247 spin_unlock_irqrestore(&t->sighand->siglock, flags);
248 }
249
250 static void __flush_itimer_signals(struct sigpending *pending)
251 {
252 sigset_t signal, retain;
253 struct sigqueue *q, *n;
254
255 signal = pending->signal;
256 sigemptyset(&retain);
257
258 list_for_each_entry_safe(q, n, &pending->list, list) {
259 int sig = q->info.si_signo;
260
261 if (likely(q->info.si_code != SI_TIMER)) {
262 sigaddset(&retain, sig);
263 } else {
264 sigdelset(&signal, sig);
265 list_del_init(&q->list);
266 __sigqueue_free(q);
267 }
268 }
269
270 sigorsets(&pending->signal, &signal, &retain);
271 }
272
273 void flush_itimer_signals(void)
274 {
275 struct task_struct *tsk = current;
276 unsigned long flags;
277
278 spin_lock_irqsave(&tsk->sighand->siglock, flags);
279 __flush_itimer_signals(&tsk->pending);
280 __flush_itimer_signals(&tsk->signal->shared_pending);
281 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
282 }
283
284 void ignore_signals(struct task_struct *t)
285 {
286 int i;
287
288 for (i = 0; i < _NSIG; ++i)
289 t->sighand->action[i].sa.sa_handler = SIG_IGN;
290
291 flush_signals(t);
292 }
293
294 /*
295 * Flush all handlers for a task.
296 */
297
298 void
299 flush_signal_handlers(struct task_struct *t, int force_default)
300 {
301 int i;
302 struct k_sigaction *ka = &t->sighand->action[0];
303 for (i = _NSIG ; i != 0 ; i--) {
304 if (force_default || ka->sa.sa_handler != SIG_IGN)
305 ka->sa.sa_handler = SIG_DFL;
306 ka->sa.sa_flags = 0;
307 sigemptyset(&ka->sa.sa_mask);
308 ka++;
309 }
310 }
311
312 int unhandled_signal(struct task_struct *tsk, int sig)
313 {
314 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
315 if (is_global_init(tsk))
316 return 1;
317 if (handler != SIG_IGN && handler != SIG_DFL)
318 return 0;
319 return !tracehook_consider_fatal_signal(tsk, sig, handler);
320 }
321
322
323 /* Notify the system that a driver wants to block all signals for this
324 * process, and wants to be notified if any signals at all were to be
325 * sent/acted upon. If the notifier routine returns non-zero, then the
326 * signal will be acted upon after all. If the notifier routine returns 0,
327 * then then signal will be blocked. Only one block per process is
328 * allowed. priv is a pointer to private data that the notifier routine
329 * can use to determine if the signal should be blocked or not. */
330
331 void
332 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
333 {
334 unsigned long flags;
335
336 spin_lock_irqsave(&current->sighand->siglock, flags);
337 current->notifier_mask = mask;
338 current->notifier_data = priv;
339 current->notifier = notifier;
340 spin_unlock_irqrestore(&current->sighand->siglock, flags);
341 }
342
343 /* Notify the system that blocking has ended. */
344
345 void
346 unblock_all_signals(void)
347 {
348 unsigned long flags;
349
350 spin_lock_irqsave(&current->sighand->siglock, flags);
351 current->notifier = NULL;
352 current->notifier_data = NULL;
353 recalc_sigpending();
354 spin_unlock_irqrestore(&current->sighand->siglock, flags);
355 }
356
357 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
358 {
359 struct sigqueue *q, *first = NULL;
360
361 /*
362 * Collect the siginfo appropriate to this signal. Check if
363 * there is another siginfo for the same signal.
364 */
365 list_for_each_entry(q, &list->list, list) {
366 if (q->info.si_signo == sig) {
367 if (first)
368 goto still_pending;
369 first = q;
370 }
371 }
372
373 sigdelset(&list->signal, sig);
374
375 if (first) {
376 still_pending:
377 list_del_init(&first->list);
378 copy_siginfo(info, &first->info);
379 __sigqueue_free(first);
380 } else {
381 /* Ok, it wasn't in the queue. This must be
382 a fast-pathed signal or we must have been
383 out of queue space. So zero out the info.
384 */
385 info->si_signo = sig;
386 info->si_errno = 0;
387 info->si_code = 0;
388 info->si_pid = 0;
389 info->si_uid = 0;
390 }
391 }
392
393 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
394 siginfo_t *info)
395 {
396 int sig = next_signal(pending, mask);
397
398 if (sig) {
399 if (current->notifier) {
400 if (sigismember(current->notifier_mask, sig)) {
401 if (!(current->notifier)(current->notifier_data)) {
402 clear_thread_flag(TIF_SIGPENDING);
403 return 0;
404 }
405 }
406 }
407
408 collect_signal(sig, pending, info);
409 }
410
411 return sig;
412 }
413
414 /*
415 * Dequeue a signal and return the element to the caller, which is
416 * expected to free it.
417 *
418 * All callers have to hold the siglock.
419 */
420 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
421 {
422 int signr;
423
424 /* We only dequeue private signals from ourselves, we don't let
425 * signalfd steal them
426 */
427 signr = __dequeue_signal(&tsk->pending, mask, info);
428 if (!signr) {
429 signr = __dequeue_signal(&tsk->signal->shared_pending,
430 mask, info);
431 /*
432 * itimer signal ?
433 *
434 * itimers are process shared and we restart periodic
435 * itimers in the signal delivery path to prevent DoS
436 * attacks in the high resolution timer case. This is
437 * compliant with the old way of self restarting
438 * itimers, as the SIGALRM is a legacy signal and only
439 * queued once. Changing the restart behaviour to
440 * restart the timer in the signal dequeue path is
441 * reducing the timer noise on heavy loaded !highres
442 * systems too.
443 */
444 if (unlikely(signr == SIGALRM)) {
445 struct hrtimer *tmr = &tsk->signal->real_timer;
446
447 if (!hrtimer_is_queued(tmr) &&
448 tsk->signal->it_real_incr.tv64 != 0) {
449 hrtimer_forward(tmr, tmr->base->get_time(),
450 tsk->signal->it_real_incr);
451 hrtimer_restart(tmr);
452 }
453 }
454 }
455
456 recalc_sigpending();
457 if (!signr)
458 return 0;
459
460 if (unlikely(sig_kernel_stop(signr))) {
461 /*
462 * Set a marker that we have dequeued a stop signal. Our
463 * caller might release the siglock and then the pending
464 * stop signal it is about to process is no longer in the
465 * pending bitmasks, but must still be cleared by a SIGCONT
466 * (and overruled by a SIGKILL). So those cases clear this
467 * shared flag after we've set it. Note that this flag may
468 * remain set after the signal we return is ignored or
469 * handled. That doesn't matter because its only purpose
470 * is to alert stop-signal processing code when another
471 * processor has come along and cleared the flag.
472 */
473 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
474 }
475 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
476 /*
477 * Release the siglock to ensure proper locking order
478 * of timer locks outside of siglocks. Note, we leave
479 * irqs disabled here, since the posix-timers code is
480 * about to disable them again anyway.
481 */
482 spin_unlock(&tsk->sighand->siglock);
483 do_schedule_next_timer(info);
484 spin_lock(&tsk->sighand->siglock);
485 }
486 return signr;
487 }
488
489 /*
490 * Tell a process that it has a new active signal..
491 *
492 * NOTE! we rely on the previous spin_lock to
493 * lock interrupts for us! We can only be called with
494 * "siglock" held, and the local interrupt must
495 * have been disabled when that got acquired!
496 *
497 * No need to set need_resched since signal event passing
498 * goes through ->blocked
499 */
500 void signal_wake_up(struct task_struct *t, int resume)
501 {
502 unsigned int mask;
503
504 set_tsk_thread_flag(t, TIF_SIGPENDING);
505
506 /*
507 * For SIGKILL, we want to wake it up in the stopped/traced/killable
508 * case. We don't check t->state here because there is a race with it
509 * executing another processor and just now entering stopped state.
510 * By using wake_up_state, we ensure the process will wake up and
511 * handle its death signal.
512 */
513 mask = TASK_INTERRUPTIBLE;
514 if (resume)
515 mask |= TASK_WAKEKILL;
516 if (!wake_up_state(t, mask))
517 kick_process(t);
518 }
519
520 /*
521 * Remove signals in mask from the pending set and queue.
522 * Returns 1 if any signals were found.
523 *
524 * All callers must be holding the siglock.
525 *
526 * This version takes a sigset mask and looks at all signals,
527 * not just those in the first mask word.
528 */
529 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
530 {
531 struct sigqueue *q, *n;
532 sigset_t m;
533
534 sigandsets(&m, mask, &s->signal);
535 if (sigisemptyset(&m))
536 return 0;
537
538 signandsets(&s->signal, &s->signal, mask);
539 list_for_each_entry_safe(q, n, &s->list, list) {
540 if (sigismember(mask, q->info.si_signo)) {
541 list_del_init(&q->list);
542 __sigqueue_free(q);
543 }
544 }
545 return 1;
546 }
547 /*
548 * Remove signals in mask from the pending set and queue.
549 * Returns 1 if any signals were found.
550 *
551 * All callers must be holding the siglock.
552 */
553 static int rm_from_queue(unsigned long mask, struct sigpending *s)
554 {
555 struct sigqueue *q, *n;
556
557 if (!sigtestsetmask(&s->signal, mask))
558 return 0;
559
560 sigdelsetmask(&s->signal, mask);
561 list_for_each_entry_safe(q, n, &s->list, list) {
562 if (q->info.si_signo < SIGRTMIN &&
563 (mask & sigmask(q->info.si_signo))) {
564 list_del_init(&q->list);
565 __sigqueue_free(q);
566 }
567 }
568 return 1;
569 }
570
571 /*
572 * Bad permissions for sending the signal
573 * - the caller must hold at least the RCU read lock
574 */
575 static int check_kill_permission(int sig, struct siginfo *info,
576 struct task_struct *t)
577 {
578 const struct cred *cred = current_cred(), *tcred;
579 struct pid *sid;
580 int error;
581
582 if (!valid_signal(sig))
583 return -EINVAL;
584
585 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
586 return 0;
587
588 error = audit_signal_info(sig, t); /* Let audit system see the signal */
589 if (error)
590 return error;
591
592 tcred = __task_cred(t);
593 if ((cred->euid ^ tcred->suid) &&
594 (cred->euid ^ tcred->uid) &&
595 (cred->uid ^ tcred->suid) &&
596 (cred->uid ^ tcred->uid) &&
597 !capable(CAP_KILL)) {
598 switch (sig) {
599 case SIGCONT:
600 sid = task_session(t);
601 /*
602 * We don't return the error if sid == NULL. The
603 * task was unhashed, the caller must notice this.
604 */
605 if (!sid || sid == task_session(current))
606 break;
607 default:
608 return -EPERM;
609 }
610 }
611
612 return security_task_kill(t, info, sig, 0);
613 }
614
615 /*
616 * Handle magic process-wide effects of stop/continue signals. Unlike
617 * the signal actions, these happen immediately at signal-generation
618 * time regardless of blocking, ignoring, or handling. This does the
619 * actual continuing for SIGCONT, but not the actual stopping for stop
620 * signals. The process stop is done as a signal action for SIG_DFL.
621 *
622 * Returns true if the signal should be actually delivered, otherwise
623 * it should be dropped.
624 */
625 static int prepare_signal(int sig, struct task_struct *p)
626 {
627 struct signal_struct *signal = p->signal;
628 struct task_struct *t;
629
630 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
631 /*
632 * The process is in the middle of dying, nothing to do.
633 */
634 } else if (sig_kernel_stop(sig)) {
635 /*
636 * This is a stop signal. Remove SIGCONT from all queues.
637 */
638 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
639 t = p;
640 do {
641 rm_from_queue(sigmask(SIGCONT), &t->pending);
642 } while_each_thread(p, t);
643 } else if (sig == SIGCONT) {
644 unsigned int why;
645 /*
646 * Remove all stop signals from all queues,
647 * and wake all threads.
648 */
649 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
650 t = p;
651 do {
652 unsigned int state;
653 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
654 /*
655 * If there is a handler for SIGCONT, we must make
656 * sure that no thread returns to user mode before
657 * we post the signal, in case it was the only
658 * thread eligible to run the signal handler--then
659 * it must not do anything between resuming and
660 * running the handler. With the TIF_SIGPENDING
661 * flag set, the thread will pause and acquire the
662 * siglock that we hold now and until we've queued
663 * the pending signal.
664 *
665 * Wake up the stopped thread _after_ setting
666 * TIF_SIGPENDING
667 */
668 state = __TASK_STOPPED;
669 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
670 set_tsk_thread_flag(t, TIF_SIGPENDING);
671 state |= TASK_INTERRUPTIBLE;
672 }
673 wake_up_state(t, state);
674 } while_each_thread(p, t);
675
676 /*
677 * Notify the parent with CLD_CONTINUED if we were stopped.
678 *
679 * If we were in the middle of a group stop, we pretend it
680 * was already finished, and then continued. Since SIGCHLD
681 * doesn't queue we report only CLD_STOPPED, as if the next
682 * CLD_CONTINUED was dropped.
683 */
684 why = 0;
685 if (signal->flags & SIGNAL_STOP_STOPPED)
686 why |= SIGNAL_CLD_CONTINUED;
687 else if (signal->group_stop_count)
688 why |= SIGNAL_CLD_STOPPED;
689
690 if (why) {
691 /*
692 * The first thread which returns from finish_stop()
693 * will take ->siglock, notice SIGNAL_CLD_MASK, and
694 * notify its parent. See get_signal_to_deliver().
695 */
696 signal->flags = why | SIGNAL_STOP_CONTINUED;
697 signal->group_stop_count = 0;
698 signal->group_exit_code = 0;
699 } else {
700 /*
701 * We are not stopped, but there could be a stop
702 * signal in the middle of being processed after
703 * being removed from the queue. Clear that too.
704 */
705 signal->flags &= ~SIGNAL_STOP_DEQUEUED;
706 }
707 }
708
709 return !sig_ignored(p, sig);
710 }
711
712 /*
713 * Test if P wants to take SIG. After we've checked all threads with this,
714 * it's equivalent to finding no threads not blocking SIG. Any threads not
715 * blocking SIG were ruled out because they are not running and already
716 * have pending signals. Such threads will dequeue from the shared queue
717 * as soon as they're available, so putting the signal on the shared queue
718 * will be equivalent to sending it to one such thread.
719 */
720 static inline int wants_signal(int sig, struct task_struct *p)
721 {
722 if (sigismember(&p->blocked, sig))
723 return 0;
724 if (p->flags & PF_EXITING)
725 return 0;
726 if (sig == SIGKILL)
727 return 1;
728 if (task_is_stopped_or_traced(p))
729 return 0;
730 return task_curr(p) || !signal_pending(p);
731 }
732
733 static void complete_signal(int sig, struct task_struct *p, int group)
734 {
735 struct signal_struct *signal = p->signal;
736 struct task_struct *t;
737
738 /*
739 * Now find a thread we can wake up to take the signal off the queue.
740 *
741 * If the main thread wants the signal, it gets first crack.
742 * Probably the least surprising to the average bear.
743 */
744 if (wants_signal(sig, p))
745 t = p;
746 else if (!group || thread_group_empty(p))
747 /*
748 * There is just one thread and it does not need to be woken.
749 * It will dequeue unblocked signals before it runs again.
750 */
751 return;
752 else {
753 /*
754 * Otherwise try to find a suitable thread.
755 */
756 t = signal->curr_target;
757 while (!wants_signal(sig, t)) {
758 t = next_thread(t);
759 if (t == signal->curr_target)
760 /*
761 * No thread needs to be woken.
762 * Any eligible threads will see
763 * the signal in the queue soon.
764 */
765 return;
766 }
767 signal->curr_target = t;
768 }
769
770 /*
771 * Found a killable thread. If the signal will be fatal,
772 * then start taking the whole group down immediately.
773 */
774 if (sig_fatal(p, sig) &&
775 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
776 !sigismember(&t->real_blocked, sig) &&
777 (sig == SIGKILL ||
778 !tracehook_consider_fatal_signal(t, sig, SIG_DFL))) {
779 /*
780 * This signal will be fatal to the whole group.
781 */
782 if (!sig_kernel_coredump(sig)) {
783 /*
784 * Start a group exit and wake everybody up.
785 * This way we don't have other threads
786 * running and doing things after a slower
787 * thread has the fatal signal pending.
788 */
789 signal->flags = SIGNAL_GROUP_EXIT;
790 signal->group_exit_code = sig;
791 signal->group_stop_count = 0;
792 t = p;
793 do {
794 sigaddset(&t->pending.signal, SIGKILL);
795 signal_wake_up(t, 1);
796 } while_each_thread(p, t);
797 return;
798 }
799 }
800
801 /*
802 * The signal is already in the shared-pending queue.
803 * Tell the chosen thread to wake up and dequeue it.
804 */
805 signal_wake_up(t, sig == SIGKILL);
806 return;
807 }
808
809 static inline int legacy_queue(struct sigpending *signals, int sig)
810 {
811 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
812 }
813
814 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
815 int group)
816 {
817 struct sigpending *pending;
818 struct sigqueue *q;
819
820 trace_sched_signal_send(sig, t);
821
822 assert_spin_locked(&t->sighand->siglock);
823 if (!prepare_signal(sig, t))
824 return 0;
825
826 pending = group ? &t->signal->shared_pending : &t->pending;
827 /*
828 * Short-circuit ignored signals and support queuing
829 * exactly one non-rt signal, so that we can get more
830 * detailed information about the cause of the signal.
831 */
832 if (legacy_queue(pending, sig))
833 return 0;
834 /*
835 * fast-pathed signals for kernel-internal things like SIGSTOP
836 * or SIGKILL.
837 */
838 if (info == SEND_SIG_FORCED)
839 goto out_set;
840
841 /* Real-time signals must be queued if sent by sigqueue, or
842 some other real-time mechanism. It is implementation
843 defined whether kill() does so. We attempt to do so, on
844 the principle of least surprise, but since kill is not
845 allowed to fail with EAGAIN when low on memory we just
846 make sure at least one signal gets delivered and don't
847 pass on the info struct. */
848
849 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
850 (is_si_special(info) ||
851 info->si_code >= 0)));
852 if (q) {
853 list_add_tail(&q->list, &pending->list);
854 switch ((unsigned long) info) {
855 case (unsigned long) SEND_SIG_NOINFO:
856 q->info.si_signo = sig;
857 q->info.si_errno = 0;
858 q->info.si_code = SI_USER;
859 q->info.si_pid = task_pid_vnr(current);
860 q->info.si_uid = current_uid();
861 break;
862 case (unsigned long) SEND_SIG_PRIV:
863 q->info.si_signo = sig;
864 q->info.si_errno = 0;
865 q->info.si_code = SI_KERNEL;
866 q->info.si_pid = 0;
867 q->info.si_uid = 0;
868 break;
869 default:
870 copy_siginfo(&q->info, info);
871 break;
872 }
873 } else if (!is_si_special(info)) {
874 if (sig >= SIGRTMIN && info->si_code != SI_USER)
875 /*
876 * Queue overflow, abort. We may abort if the signal was rt
877 * and sent by user using something other than kill().
878 */
879 return -EAGAIN;
880 }
881
882 out_set:
883 signalfd_notify(t, sig);
884 sigaddset(&pending->signal, sig);
885 complete_signal(sig, t, group);
886 return 0;
887 }
888
889 int print_fatal_signals;
890
891 static void print_fatal_signal(struct pt_regs *regs, int signr)
892 {
893 printk("%s/%d: potentially unexpected fatal signal %d.\n",
894 current->comm, task_pid_nr(current), signr);
895
896 #if defined(__i386__) && !defined(__arch_um__)
897 printk("code at %08lx: ", regs->ip);
898 {
899 int i;
900 for (i = 0; i < 16; i++) {
901 unsigned char insn;
902
903 __get_user(insn, (unsigned char *)(regs->ip + i));
904 printk("%02x ", insn);
905 }
906 }
907 #endif
908 printk("\n");
909 show_regs(regs);
910 }
911
912 static int __init setup_print_fatal_signals(char *str)
913 {
914 get_option (&str, &print_fatal_signals);
915
916 return 1;
917 }
918
919 __setup("print-fatal-signals=", setup_print_fatal_signals);
920
921 int
922 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
923 {
924 return send_signal(sig, info, p, 1);
925 }
926
927 static int
928 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
929 {
930 return send_signal(sig, info, t, 0);
931 }
932
933 /*
934 * Force a signal that the process can't ignore: if necessary
935 * we unblock the signal and change any SIG_IGN to SIG_DFL.
936 *
937 * Note: If we unblock the signal, we always reset it to SIG_DFL,
938 * since we do not want to have a signal handler that was blocked
939 * be invoked when user space had explicitly blocked it.
940 *
941 * We don't want to have recursive SIGSEGV's etc, for example,
942 * that is why we also clear SIGNAL_UNKILLABLE.
943 */
944 int
945 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
946 {
947 unsigned long int flags;
948 int ret, blocked, ignored;
949 struct k_sigaction *action;
950
951 spin_lock_irqsave(&t->sighand->siglock, flags);
952 action = &t->sighand->action[sig-1];
953 ignored = action->sa.sa_handler == SIG_IGN;
954 blocked = sigismember(&t->blocked, sig);
955 if (blocked || ignored) {
956 action->sa.sa_handler = SIG_DFL;
957 if (blocked) {
958 sigdelset(&t->blocked, sig);
959 recalc_sigpending_and_wake(t);
960 }
961 }
962 if (action->sa.sa_handler == SIG_DFL)
963 t->signal->flags &= ~SIGNAL_UNKILLABLE;
964 ret = specific_send_sig_info(sig, info, t);
965 spin_unlock_irqrestore(&t->sighand->siglock, flags);
966
967 return ret;
968 }
969
970 void
971 force_sig_specific(int sig, struct task_struct *t)
972 {
973 force_sig_info(sig, SEND_SIG_FORCED, t);
974 }
975
976 /*
977 * Nuke all other threads in the group.
978 */
979 void zap_other_threads(struct task_struct *p)
980 {
981 struct task_struct *t;
982
983 p->signal->group_stop_count = 0;
984
985 for (t = next_thread(p); t != p; t = next_thread(t)) {
986 /*
987 * Don't bother with already dead threads
988 */
989 if (t->exit_state)
990 continue;
991
992 /* SIGKILL will be handled before any pending SIGSTOP */
993 sigaddset(&t->pending.signal, SIGKILL);
994 signal_wake_up(t, 1);
995 }
996 }
997
998 int __fatal_signal_pending(struct task_struct *tsk)
999 {
1000 return sigismember(&tsk->pending.signal, SIGKILL);
1001 }
1002 EXPORT_SYMBOL(__fatal_signal_pending);
1003
1004 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1005 {
1006 struct sighand_struct *sighand;
1007
1008 rcu_read_lock();
1009 for (;;) {
1010 sighand = rcu_dereference(tsk->sighand);
1011 if (unlikely(sighand == NULL))
1012 break;
1013
1014 spin_lock_irqsave(&sighand->siglock, *flags);
1015 if (likely(sighand == tsk->sighand))
1016 break;
1017 spin_unlock_irqrestore(&sighand->siglock, *flags);
1018 }
1019 rcu_read_unlock();
1020
1021 return sighand;
1022 }
1023
1024 /*
1025 * send signal info to all the members of a group
1026 * - the caller must hold the RCU read lock at least
1027 */
1028 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1029 {
1030 unsigned long flags;
1031 int ret;
1032
1033 ret = check_kill_permission(sig, info, p);
1034
1035 if (!ret && sig) {
1036 ret = -ESRCH;
1037 if (lock_task_sighand(p, &flags)) {
1038 ret = __group_send_sig_info(sig, info, p);
1039 unlock_task_sighand(p, &flags);
1040 }
1041 }
1042
1043 return ret;
1044 }
1045
1046 /*
1047 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1048 * control characters do (^C, ^Z etc)
1049 * - the caller must hold at least a readlock on tasklist_lock
1050 */
1051 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1052 {
1053 struct task_struct *p = NULL;
1054 int retval, success;
1055
1056 success = 0;
1057 retval = -ESRCH;
1058 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1059 int err = group_send_sig_info(sig, info, p);
1060 success |= !err;
1061 retval = err;
1062 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1063 return success ? 0 : retval;
1064 }
1065
1066 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1067 {
1068 int error = -ESRCH;
1069 struct task_struct *p;
1070
1071 rcu_read_lock();
1072 retry:
1073 p = pid_task(pid, PIDTYPE_PID);
1074 if (p) {
1075 error = group_send_sig_info(sig, info, p);
1076 if (unlikely(error == -ESRCH))
1077 /*
1078 * The task was unhashed in between, try again.
1079 * If it is dead, pid_task() will return NULL,
1080 * if we race with de_thread() it will find the
1081 * new leader.
1082 */
1083 goto retry;
1084 }
1085 rcu_read_unlock();
1086
1087 return error;
1088 }
1089
1090 int
1091 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1092 {
1093 int error;
1094 rcu_read_lock();
1095 error = kill_pid_info(sig, info, find_vpid(pid));
1096 rcu_read_unlock();
1097 return error;
1098 }
1099
1100 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1101 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1102 uid_t uid, uid_t euid, u32 secid)
1103 {
1104 int ret = -EINVAL;
1105 struct task_struct *p;
1106 const struct cred *pcred;
1107
1108 if (!valid_signal(sig))
1109 return ret;
1110
1111 read_lock(&tasklist_lock);
1112 p = pid_task(pid, PIDTYPE_PID);
1113 if (!p) {
1114 ret = -ESRCH;
1115 goto out_unlock;
1116 }
1117 pcred = __task_cred(p);
1118 if ((info == SEND_SIG_NOINFO ||
1119 (!is_si_special(info) && SI_FROMUSER(info))) &&
1120 euid != pcred->suid && euid != pcred->uid &&
1121 uid != pcred->suid && uid != pcred->uid) {
1122 ret = -EPERM;
1123 goto out_unlock;
1124 }
1125 ret = security_task_kill(p, info, sig, secid);
1126 if (ret)
1127 goto out_unlock;
1128 if (sig && p->sighand) {
1129 unsigned long flags;
1130 spin_lock_irqsave(&p->sighand->siglock, flags);
1131 ret = __group_send_sig_info(sig, info, p);
1132 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1133 }
1134 out_unlock:
1135 read_unlock(&tasklist_lock);
1136 return ret;
1137 }
1138 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1139
1140 /*
1141 * kill_something_info() interprets pid in interesting ways just like kill(2).
1142 *
1143 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1144 * is probably wrong. Should make it like BSD or SYSV.
1145 */
1146
1147 static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1148 {
1149 int ret;
1150
1151 if (pid > 0) {
1152 rcu_read_lock();
1153 ret = kill_pid_info(sig, info, find_vpid(pid));
1154 rcu_read_unlock();
1155 return ret;
1156 }
1157
1158 read_lock(&tasklist_lock);
1159 if (pid != -1) {
1160 ret = __kill_pgrp_info(sig, info,
1161 pid ? find_vpid(-pid) : task_pgrp(current));
1162 } else {
1163 int retval = 0, count = 0;
1164 struct task_struct * p;
1165
1166 for_each_process(p) {
1167 if (task_pid_vnr(p) > 1 &&
1168 !same_thread_group(p, current)) {
1169 int err = group_send_sig_info(sig, info, p);
1170 ++count;
1171 if (err != -EPERM)
1172 retval = err;
1173 }
1174 }
1175 ret = count ? retval : -ESRCH;
1176 }
1177 read_unlock(&tasklist_lock);
1178
1179 return ret;
1180 }
1181
1182 /*
1183 * These are for backward compatibility with the rest of the kernel source.
1184 */
1185
1186 /*
1187 * The caller must ensure the task can't exit.
1188 */
1189 int
1190 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1191 {
1192 int ret;
1193 unsigned long flags;
1194
1195 /*
1196 * Make sure legacy kernel users don't send in bad values
1197 * (normal paths check this in check_kill_permission).
1198 */
1199 if (!valid_signal(sig))
1200 return -EINVAL;
1201
1202 spin_lock_irqsave(&p->sighand->siglock, flags);
1203 ret = specific_send_sig_info(sig, info, p);
1204 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1205 return ret;
1206 }
1207
1208 #define __si_special(priv) \
1209 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1210
1211 int
1212 send_sig(int sig, struct task_struct *p, int priv)
1213 {
1214 return send_sig_info(sig, __si_special(priv), p);
1215 }
1216
1217 void
1218 force_sig(int sig, struct task_struct *p)
1219 {
1220 force_sig_info(sig, SEND_SIG_PRIV, p);
1221 }
1222
1223 /*
1224 * When things go south during signal handling, we
1225 * will force a SIGSEGV. And if the signal that caused
1226 * the problem was already a SIGSEGV, we'll want to
1227 * make sure we don't even try to deliver the signal..
1228 */
1229 int
1230 force_sigsegv(int sig, struct task_struct *p)
1231 {
1232 if (sig == SIGSEGV) {
1233 unsigned long flags;
1234 spin_lock_irqsave(&p->sighand->siglock, flags);
1235 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1236 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1237 }
1238 force_sig(SIGSEGV, p);
1239 return 0;
1240 }
1241
1242 int kill_pgrp(struct pid *pid, int sig, int priv)
1243 {
1244 int ret;
1245
1246 read_lock(&tasklist_lock);
1247 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1248 read_unlock(&tasklist_lock);
1249
1250 return ret;
1251 }
1252 EXPORT_SYMBOL(kill_pgrp);
1253
1254 int kill_pid(struct pid *pid, int sig, int priv)
1255 {
1256 return kill_pid_info(sig, __si_special(priv), pid);
1257 }
1258 EXPORT_SYMBOL(kill_pid);
1259
1260 /*
1261 * These functions support sending signals using preallocated sigqueue
1262 * structures. This is needed "because realtime applications cannot
1263 * afford to lose notifications of asynchronous events, like timer
1264 * expirations or I/O completions". In the case of Posix Timers
1265 * we allocate the sigqueue structure from the timer_create. If this
1266 * allocation fails we are able to report the failure to the application
1267 * with an EAGAIN error.
1268 */
1269
1270 struct sigqueue *sigqueue_alloc(void)
1271 {
1272 struct sigqueue *q;
1273
1274 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1275 q->flags |= SIGQUEUE_PREALLOC;
1276 return(q);
1277 }
1278
1279 void sigqueue_free(struct sigqueue *q)
1280 {
1281 unsigned long flags;
1282 spinlock_t *lock = &current->sighand->siglock;
1283
1284 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1285 /*
1286 * We must hold ->siglock while testing q->list
1287 * to serialize with collect_signal() or with
1288 * __exit_signal()->flush_sigqueue().
1289 */
1290 spin_lock_irqsave(lock, flags);
1291 q->flags &= ~SIGQUEUE_PREALLOC;
1292 /*
1293 * If it is queued it will be freed when dequeued,
1294 * like the "regular" sigqueue.
1295 */
1296 if (!list_empty(&q->list))
1297 q = NULL;
1298 spin_unlock_irqrestore(lock, flags);
1299
1300 if (q)
1301 __sigqueue_free(q);
1302 }
1303
1304 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1305 {
1306 int sig = q->info.si_signo;
1307 struct sigpending *pending;
1308 unsigned long flags;
1309 int ret;
1310
1311 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1312
1313 ret = -1;
1314 if (!likely(lock_task_sighand(t, &flags)))
1315 goto ret;
1316
1317 ret = 1; /* the signal is ignored */
1318 if (!prepare_signal(sig, t))
1319 goto out;
1320
1321 ret = 0;
1322 if (unlikely(!list_empty(&q->list))) {
1323 /*
1324 * If an SI_TIMER entry is already queue just increment
1325 * the overrun count.
1326 */
1327 BUG_ON(q->info.si_code != SI_TIMER);
1328 q->info.si_overrun++;
1329 goto out;
1330 }
1331 q->info.si_overrun = 0;
1332
1333 signalfd_notify(t, sig);
1334 pending = group ? &t->signal->shared_pending : &t->pending;
1335 list_add_tail(&q->list, &pending->list);
1336 sigaddset(&pending->signal, sig);
1337 complete_signal(sig, t, group);
1338 out:
1339 unlock_task_sighand(t, &flags);
1340 ret:
1341 return ret;
1342 }
1343
1344 /*
1345 * Wake up any threads in the parent blocked in wait* syscalls.
1346 */
1347 static inline void __wake_up_parent(struct task_struct *p,
1348 struct task_struct *parent)
1349 {
1350 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1351 }
1352
1353 /*
1354 * Let a parent know about the death of a child.
1355 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1356 *
1357 * Returns -1 if our parent ignored us and so we've switched to
1358 * self-reaping, or else @sig.
1359 */
1360 int do_notify_parent(struct task_struct *tsk, int sig)
1361 {
1362 struct siginfo info;
1363 unsigned long flags;
1364 struct sighand_struct *psig;
1365 struct task_cputime cputime;
1366 int ret = sig;
1367
1368 BUG_ON(sig == -1);
1369
1370 /* do_notify_parent_cldstop should have been called instead. */
1371 BUG_ON(task_is_stopped_or_traced(tsk));
1372
1373 BUG_ON(!tsk->ptrace &&
1374 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1375
1376 info.si_signo = sig;
1377 info.si_errno = 0;
1378 /*
1379 * we are under tasklist_lock here so our parent is tied to
1380 * us and cannot exit and release its namespace.
1381 *
1382 * the only it can is to switch its nsproxy with sys_unshare,
1383 * bu uncharing pid namespaces is not allowed, so we'll always
1384 * see relevant namespace
1385 *
1386 * write_lock() currently calls preempt_disable() which is the
1387 * same as rcu_read_lock(), but according to Oleg, this is not
1388 * correct to rely on this
1389 */
1390 rcu_read_lock();
1391 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1392 info.si_uid = __task_cred(tsk)->uid;
1393 rcu_read_unlock();
1394
1395 thread_group_cputime(tsk, &cputime);
1396 info.si_utime = cputime_to_jiffies(cputime.utime);
1397 info.si_stime = cputime_to_jiffies(cputime.stime);
1398
1399 info.si_status = tsk->exit_code & 0x7f;
1400 if (tsk->exit_code & 0x80)
1401 info.si_code = CLD_DUMPED;
1402 else if (tsk->exit_code & 0x7f)
1403 info.si_code = CLD_KILLED;
1404 else {
1405 info.si_code = CLD_EXITED;
1406 info.si_status = tsk->exit_code >> 8;
1407 }
1408
1409 psig = tsk->parent->sighand;
1410 spin_lock_irqsave(&psig->siglock, flags);
1411 if (!tsk->ptrace && sig == SIGCHLD &&
1412 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1413 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1414 /*
1415 * We are exiting and our parent doesn't care. POSIX.1
1416 * defines special semantics for setting SIGCHLD to SIG_IGN
1417 * or setting the SA_NOCLDWAIT flag: we should be reaped
1418 * automatically and not left for our parent's wait4 call.
1419 * Rather than having the parent do it as a magic kind of
1420 * signal handler, we just set this to tell do_exit that we
1421 * can be cleaned up without becoming a zombie. Note that
1422 * we still call __wake_up_parent in this case, because a
1423 * blocked sys_wait4 might now return -ECHILD.
1424 *
1425 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1426 * is implementation-defined: we do (if you don't want
1427 * it, just use SIG_IGN instead).
1428 */
1429 ret = tsk->exit_signal = -1;
1430 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1431 sig = -1;
1432 }
1433 if (valid_signal(sig) && sig > 0)
1434 __group_send_sig_info(sig, &info, tsk->parent);
1435 __wake_up_parent(tsk, tsk->parent);
1436 spin_unlock_irqrestore(&psig->siglock, flags);
1437
1438 return ret;
1439 }
1440
1441 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1442 {
1443 struct siginfo info;
1444 unsigned long flags;
1445 struct task_struct *parent;
1446 struct sighand_struct *sighand;
1447
1448 if (tsk->ptrace & PT_PTRACED)
1449 parent = tsk->parent;
1450 else {
1451 tsk = tsk->group_leader;
1452 parent = tsk->real_parent;
1453 }
1454
1455 info.si_signo = SIGCHLD;
1456 info.si_errno = 0;
1457 /*
1458 * see comment in do_notify_parent() abot the following 3 lines
1459 */
1460 rcu_read_lock();
1461 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1462 info.si_uid = __task_cred(tsk)->uid;
1463 rcu_read_unlock();
1464
1465 info.si_utime = cputime_to_clock_t(tsk->utime);
1466 info.si_stime = cputime_to_clock_t(tsk->stime);
1467
1468 info.si_code = why;
1469 switch (why) {
1470 case CLD_CONTINUED:
1471 info.si_status = SIGCONT;
1472 break;
1473 case CLD_STOPPED:
1474 info.si_status = tsk->signal->group_exit_code & 0x7f;
1475 break;
1476 case CLD_TRAPPED:
1477 info.si_status = tsk->exit_code & 0x7f;
1478 break;
1479 default:
1480 BUG();
1481 }
1482
1483 sighand = parent->sighand;
1484 spin_lock_irqsave(&sighand->siglock, flags);
1485 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1486 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1487 __group_send_sig_info(SIGCHLD, &info, parent);
1488 /*
1489 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1490 */
1491 __wake_up_parent(tsk, parent);
1492 spin_unlock_irqrestore(&sighand->siglock, flags);
1493 }
1494
1495 static inline int may_ptrace_stop(void)
1496 {
1497 if (!likely(current->ptrace & PT_PTRACED))
1498 return 0;
1499 /*
1500 * Are we in the middle of do_coredump?
1501 * If so and our tracer is also part of the coredump stopping
1502 * is a deadlock situation, and pointless because our tracer
1503 * is dead so don't allow us to stop.
1504 * If SIGKILL was already sent before the caller unlocked
1505 * ->siglock we must see ->core_state != NULL. Otherwise it
1506 * is safe to enter schedule().
1507 */
1508 if (unlikely(current->mm->core_state) &&
1509 unlikely(current->mm == current->parent->mm))
1510 return 0;
1511
1512 return 1;
1513 }
1514
1515 /*
1516 * Return nonzero if there is a SIGKILL that should be waking us up.
1517 * Called with the siglock held.
1518 */
1519 static int sigkill_pending(struct task_struct *tsk)
1520 {
1521 return sigismember(&tsk->pending.signal, SIGKILL) ||
1522 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1523 }
1524
1525 /*
1526 * This must be called with current->sighand->siglock held.
1527 *
1528 * This should be the path for all ptrace stops.
1529 * We always set current->last_siginfo while stopped here.
1530 * That makes it a way to test a stopped process for
1531 * being ptrace-stopped vs being job-control-stopped.
1532 *
1533 * If we actually decide not to stop at all because the tracer
1534 * is gone, we keep current->exit_code unless clear_code.
1535 */
1536 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1537 {
1538 if (arch_ptrace_stop_needed(exit_code, info)) {
1539 /*
1540 * The arch code has something special to do before a
1541 * ptrace stop. This is allowed to block, e.g. for faults
1542 * on user stack pages. We can't keep the siglock while
1543 * calling arch_ptrace_stop, so we must release it now.
1544 * To preserve proper semantics, we must do this before
1545 * any signal bookkeeping like checking group_stop_count.
1546 * Meanwhile, a SIGKILL could come in before we retake the
1547 * siglock. That must prevent us from sleeping in TASK_TRACED.
1548 * So after regaining the lock, we must check for SIGKILL.
1549 */
1550 spin_unlock_irq(&current->sighand->siglock);
1551 arch_ptrace_stop(exit_code, info);
1552 spin_lock_irq(&current->sighand->siglock);
1553 if (sigkill_pending(current))
1554 return;
1555 }
1556
1557 /*
1558 * If there is a group stop in progress,
1559 * we must participate in the bookkeeping.
1560 */
1561 if (current->signal->group_stop_count > 0)
1562 --current->signal->group_stop_count;
1563
1564 current->last_siginfo = info;
1565 current->exit_code = exit_code;
1566
1567 /* Let the debugger run. */
1568 __set_current_state(TASK_TRACED);
1569 spin_unlock_irq(&current->sighand->siglock);
1570 read_lock(&tasklist_lock);
1571 if (may_ptrace_stop()) {
1572 do_notify_parent_cldstop(current, CLD_TRAPPED);
1573 read_unlock(&tasklist_lock);
1574 schedule();
1575 } else {
1576 /*
1577 * By the time we got the lock, our tracer went away.
1578 * Don't drop the lock yet, another tracer may come.
1579 */
1580 __set_current_state(TASK_RUNNING);
1581 if (clear_code)
1582 current->exit_code = 0;
1583 read_unlock(&tasklist_lock);
1584 }
1585
1586 /*
1587 * While in TASK_TRACED, we were considered "frozen enough".
1588 * Now that we woke up, it's crucial if we're supposed to be
1589 * frozen that we freeze now before running anything substantial.
1590 */
1591 try_to_freeze();
1592
1593 /*
1594 * We are back. Now reacquire the siglock before touching
1595 * last_siginfo, so that we are sure to have synchronized with
1596 * any signal-sending on another CPU that wants to examine it.
1597 */
1598 spin_lock_irq(&current->sighand->siglock);
1599 current->last_siginfo = NULL;
1600
1601 /*
1602 * Queued signals ignored us while we were stopped for tracing.
1603 * So check for any that we should take before resuming user mode.
1604 * This sets TIF_SIGPENDING, but never clears it.
1605 */
1606 recalc_sigpending_tsk(current);
1607 }
1608
1609 void ptrace_notify(int exit_code)
1610 {
1611 siginfo_t info;
1612
1613 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1614
1615 memset(&info, 0, sizeof info);
1616 info.si_signo = SIGTRAP;
1617 info.si_code = exit_code;
1618 info.si_pid = task_pid_vnr(current);
1619 info.si_uid = current_uid();
1620
1621 /* Let the debugger run. */
1622 spin_lock_irq(&current->sighand->siglock);
1623 ptrace_stop(exit_code, 1, &info);
1624 spin_unlock_irq(&current->sighand->siglock);
1625 }
1626
1627 static void
1628 finish_stop(int stop_count)
1629 {
1630 /*
1631 * If there are no other threads in the group, or if there is
1632 * a group stop in progress and we are the last to stop,
1633 * report to the parent. When ptraced, every thread reports itself.
1634 */
1635 if (tracehook_notify_jctl(stop_count == 0, CLD_STOPPED)) {
1636 read_lock(&tasklist_lock);
1637 do_notify_parent_cldstop(current, CLD_STOPPED);
1638 read_unlock(&tasklist_lock);
1639 }
1640
1641 do {
1642 schedule();
1643 } while (try_to_freeze());
1644 /*
1645 * Now we don't run again until continued.
1646 */
1647 current->exit_code = 0;
1648 }
1649
1650 /*
1651 * This performs the stopping for SIGSTOP and other stop signals.
1652 * We have to stop all threads in the thread group.
1653 * Returns nonzero if we've actually stopped and released the siglock.
1654 * Returns zero if we didn't stop and still hold the siglock.
1655 */
1656 static int do_signal_stop(int signr)
1657 {
1658 struct signal_struct *sig = current->signal;
1659 int stop_count;
1660
1661 if (sig->group_stop_count > 0) {
1662 /*
1663 * There is a group stop in progress. We don't need to
1664 * start another one.
1665 */
1666 stop_count = --sig->group_stop_count;
1667 } else {
1668 struct task_struct *t;
1669
1670 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1671 unlikely(signal_group_exit(sig)))
1672 return 0;
1673 /*
1674 * There is no group stop already in progress.
1675 * We must initiate one now.
1676 */
1677 sig->group_exit_code = signr;
1678
1679 stop_count = 0;
1680 for (t = next_thread(current); t != current; t = next_thread(t))
1681 /*
1682 * Setting state to TASK_STOPPED for a group
1683 * stop is always done with the siglock held,
1684 * so this check has no races.
1685 */
1686 if (!(t->flags & PF_EXITING) &&
1687 !task_is_stopped_or_traced(t)) {
1688 stop_count++;
1689 signal_wake_up(t, 0);
1690 }
1691 sig->group_stop_count = stop_count;
1692 }
1693
1694 if (stop_count == 0)
1695 sig->flags = SIGNAL_STOP_STOPPED;
1696 current->exit_code = sig->group_exit_code;
1697 __set_current_state(TASK_STOPPED);
1698
1699 spin_unlock_irq(&current->sighand->siglock);
1700 finish_stop(stop_count);
1701 return 1;
1702 }
1703
1704 static int ptrace_signal(int signr, siginfo_t *info,
1705 struct pt_regs *regs, void *cookie)
1706 {
1707 if (!(current->ptrace & PT_PTRACED))
1708 return signr;
1709
1710 ptrace_signal_deliver(regs, cookie);
1711
1712 /* Let the debugger run. */
1713 ptrace_stop(signr, 0, info);
1714
1715 /* We're back. Did the debugger cancel the sig? */
1716 signr = current->exit_code;
1717 if (signr == 0)
1718 return signr;
1719
1720 current->exit_code = 0;
1721
1722 /* Update the siginfo structure if the signal has
1723 changed. If the debugger wanted something
1724 specific in the siginfo structure then it should
1725 have updated *info via PTRACE_SETSIGINFO. */
1726 if (signr != info->si_signo) {
1727 info->si_signo = signr;
1728 info->si_errno = 0;
1729 info->si_code = SI_USER;
1730 info->si_pid = task_pid_vnr(current->parent);
1731 info->si_uid = task_uid(current->parent);
1732 }
1733
1734 /* If the (new) signal is now blocked, requeue it. */
1735 if (sigismember(&current->blocked, signr)) {
1736 specific_send_sig_info(signr, info, current);
1737 signr = 0;
1738 }
1739
1740 return signr;
1741 }
1742
1743 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1744 struct pt_regs *regs, void *cookie)
1745 {
1746 struct sighand_struct *sighand = current->sighand;
1747 struct signal_struct *signal = current->signal;
1748 int signr;
1749
1750 relock:
1751 /*
1752 * We'll jump back here after any time we were stopped in TASK_STOPPED.
1753 * While in TASK_STOPPED, we were considered "frozen enough".
1754 * Now that we woke up, it's crucial if we're supposed to be
1755 * frozen that we freeze now before running anything substantial.
1756 */
1757 try_to_freeze();
1758
1759 spin_lock_irq(&sighand->siglock);
1760 /*
1761 * Every stopped thread goes here after wakeup. Check to see if
1762 * we should notify the parent, prepare_signal(SIGCONT) encodes
1763 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
1764 */
1765 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
1766 int why = (signal->flags & SIGNAL_STOP_CONTINUED)
1767 ? CLD_CONTINUED : CLD_STOPPED;
1768 signal->flags &= ~SIGNAL_CLD_MASK;
1769 spin_unlock_irq(&sighand->siglock);
1770
1771 if (unlikely(!tracehook_notify_jctl(1, why)))
1772 goto relock;
1773
1774 read_lock(&tasklist_lock);
1775 do_notify_parent_cldstop(current->group_leader, why);
1776 read_unlock(&tasklist_lock);
1777 goto relock;
1778 }
1779
1780 for (;;) {
1781 struct k_sigaction *ka;
1782
1783 if (unlikely(signal->group_stop_count > 0) &&
1784 do_signal_stop(0))
1785 goto relock;
1786
1787 /*
1788 * Tracing can induce an artifical signal and choose sigaction.
1789 * The return value in @signr determines the default action,
1790 * but @info->si_signo is the signal number we will report.
1791 */
1792 signr = tracehook_get_signal(current, regs, info, return_ka);
1793 if (unlikely(signr < 0))
1794 goto relock;
1795 if (unlikely(signr != 0))
1796 ka = return_ka;
1797 else {
1798 signr = dequeue_signal(current, &current->blocked,
1799 info);
1800
1801 if (!signr)
1802 break; /* will return 0 */
1803
1804 if (signr != SIGKILL) {
1805 signr = ptrace_signal(signr, info,
1806 regs, cookie);
1807 if (!signr)
1808 continue;
1809 }
1810
1811 ka = &sighand->action[signr-1];
1812 }
1813
1814 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1815 continue;
1816 if (ka->sa.sa_handler != SIG_DFL) {
1817 /* Run the handler. */
1818 *return_ka = *ka;
1819
1820 if (ka->sa.sa_flags & SA_ONESHOT)
1821 ka->sa.sa_handler = SIG_DFL;
1822
1823 break; /* will return non-zero "signr" value */
1824 }
1825
1826 /*
1827 * Now we are doing the default action for this signal.
1828 */
1829 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1830 continue;
1831
1832 /*
1833 * Global init gets no signals it doesn't want.
1834 */
1835 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
1836 !signal_group_exit(signal))
1837 continue;
1838
1839 if (sig_kernel_stop(signr)) {
1840 /*
1841 * The default action is to stop all threads in
1842 * the thread group. The job control signals
1843 * do nothing in an orphaned pgrp, but SIGSTOP
1844 * always works. Note that siglock needs to be
1845 * dropped during the call to is_orphaned_pgrp()
1846 * because of lock ordering with tasklist_lock.
1847 * This allows an intervening SIGCONT to be posted.
1848 * We need to check for that and bail out if necessary.
1849 */
1850 if (signr != SIGSTOP) {
1851 spin_unlock_irq(&sighand->siglock);
1852
1853 /* signals can be posted during this window */
1854
1855 if (is_current_pgrp_orphaned())
1856 goto relock;
1857
1858 spin_lock_irq(&sighand->siglock);
1859 }
1860
1861 if (likely(do_signal_stop(info->si_signo))) {
1862 /* It released the siglock. */
1863 goto relock;
1864 }
1865
1866 /*
1867 * We didn't actually stop, due to a race
1868 * with SIGCONT or something like that.
1869 */
1870 continue;
1871 }
1872
1873 spin_unlock_irq(&sighand->siglock);
1874
1875 /*
1876 * Anything else is fatal, maybe with a core dump.
1877 */
1878 current->flags |= PF_SIGNALED;
1879
1880 if (sig_kernel_coredump(signr)) {
1881 if (print_fatal_signals)
1882 print_fatal_signal(regs, info->si_signo);
1883 /*
1884 * If it was able to dump core, this kills all
1885 * other threads in the group and synchronizes with
1886 * their demise. If we lost the race with another
1887 * thread getting here, it set group_exit_code
1888 * first and our do_group_exit call below will use
1889 * that value and ignore the one we pass it.
1890 */
1891 do_coredump(info->si_signo, info->si_signo, regs);
1892 }
1893
1894 /*
1895 * Death signals, no core dump.
1896 */
1897 do_group_exit(info->si_signo);
1898 /* NOTREACHED */
1899 }
1900 spin_unlock_irq(&sighand->siglock);
1901 return signr;
1902 }
1903
1904 void exit_signals(struct task_struct *tsk)
1905 {
1906 int group_stop = 0;
1907 struct task_struct *t;
1908
1909 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
1910 tsk->flags |= PF_EXITING;
1911 return;
1912 }
1913
1914 spin_lock_irq(&tsk->sighand->siglock);
1915 /*
1916 * From now this task is not visible for group-wide signals,
1917 * see wants_signal(), do_signal_stop().
1918 */
1919 tsk->flags |= PF_EXITING;
1920 if (!signal_pending(tsk))
1921 goto out;
1922
1923 /* It could be that __group_complete_signal() choose us to
1924 * notify about group-wide signal. Another thread should be
1925 * woken now to take the signal since we will not.
1926 */
1927 for (t = tsk; (t = next_thread(t)) != tsk; )
1928 if (!signal_pending(t) && !(t->flags & PF_EXITING))
1929 recalc_sigpending_and_wake(t);
1930
1931 if (unlikely(tsk->signal->group_stop_count) &&
1932 !--tsk->signal->group_stop_count) {
1933 tsk->signal->flags = SIGNAL_STOP_STOPPED;
1934 group_stop = 1;
1935 }
1936 out:
1937 spin_unlock_irq(&tsk->sighand->siglock);
1938
1939 if (unlikely(group_stop) && tracehook_notify_jctl(1, CLD_STOPPED)) {
1940 read_lock(&tasklist_lock);
1941 do_notify_parent_cldstop(tsk, CLD_STOPPED);
1942 read_unlock(&tasklist_lock);
1943 }
1944 }
1945
1946 EXPORT_SYMBOL(recalc_sigpending);
1947 EXPORT_SYMBOL_GPL(dequeue_signal);
1948 EXPORT_SYMBOL(flush_signals);
1949 EXPORT_SYMBOL(force_sig);
1950 EXPORT_SYMBOL(send_sig);
1951 EXPORT_SYMBOL(send_sig_info);
1952 EXPORT_SYMBOL(sigprocmask);
1953 EXPORT_SYMBOL(block_all_signals);
1954 EXPORT_SYMBOL(unblock_all_signals);
1955
1956
1957 /*
1958 * System call entry points.
1959 */
1960
1961 asmlinkage long sys_restart_syscall(void)
1962 {
1963 struct restart_block *restart = &current_thread_info()->restart_block;
1964 return restart->fn(restart);
1965 }
1966
1967 long do_no_restart_syscall(struct restart_block *param)
1968 {
1969 return -EINTR;
1970 }
1971
1972 /*
1973 * We don't need to get the kernel lock - this is all local to this
1974 * particular thread.. (and that's good, because this is _heavily_
1975 * used by various programs)
1976 */
1977
1978 /*
1979 * This is also useful for kernel threads that want to temporarily
1980 * (or permanently) block certain signals.
1981 *
1982 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1983 * interface happily blocks "unblockable" signals like SIGKILL
1984 * and friends.
1985 */
1986 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1987 {
1988 int error;
1989
1990 spin_lock_irq(&current->sighand->siglock);
1991 if (oldset)
1992 *oldset = current->blocked;
1993
1994 error = 0;
1995 switch (how) {
1996 case SIG_BLOCK:
1997 sigorsets(&current->blocked, &current->blocked, set);
1998 break;
1999 case SIG_UNBLOCK:
2000 signandsets(&current->blocked, &current->blocked, set);
2001 break;
2002 case SIG_SETMASK:
2003 current->blocked = *set;
2004 break;
2005 default:
2006 error = -EINVAL;
2007 }
2008 recalc_sigpending();
2009 spin_unlock_irq(&current->sighand->siglock);
2010
2011 return error;
2012 }
2013
2014 asmlinkage long
2015 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2016 {
2017 int error = -EINVAL;
2018 sigset_t old_set, new_set;
2019
2020 /* XXX: Don't preclude handling different sized sigset_t's. */
2021 if (sigsetsize != sizeof(sigset_t))
2022 goto out;
2023
2024 if (set) {
2025 error = -EFAULT;
2026 if (copy_from_user(&new_set, set, sizeof(*set)))
2027 goto out;
2028 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2029
2030 error = sigprocmask(how, &new_set, &old_set);
2031 if (error)
2032 goto out;
2033 if (oset)
2034 goto set_old;
2035 } else if (oset) {
2036 spin_lock_irq(&current->sighand->siglock);
2037 old_set = current->blocked;
2038 spin_unlock_irq(&current->sighand->siglock);
2039
2040 set_old:
2041 error = -EFAULT;
2042 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2043 goto out;
2044 }
2045 error = 0;
2046 out:
2047 return error;
2048 }
2049
2050 long do_sigpending(void __user *set, unsigned long sigsetsize)
2051 {
2052 long error = -EINVAL;
2053 sigset_t pending;
2054
2055 if (sigsetsize > sizeof(sigset_t))
2056 goto out;
2057
2058 spin_lock_irq(&current->sighand->siglock);
2059 sigorsets(&pending, &current->pending.signal,
2060 &current->signal->shared_pending.signal);
2061 spin_unlock_irq(&current->sighand->siglock);
2062
2063 /* Outside the lock because only this thread touches it. */
2064 sigandsets(&pending, &current->blocked, &pending);
2065
2066 error = -EFAULT;
2067 if (!copy_to_user(set, &pending, sigsetsize))
2068 error = 0;
2069
2070 out:
2071 return error;
2072 }
2073
2074 asmlinkage long
2075 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2076 {
2077 return do_sigpending(set, sigsetsize);
2078 }
2079
2080 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2081
2082 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2083 {
2084 int err;
2085
2086 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2087 return -EFAULT;
2088 if (from->si_code < 0)
2089 return __copy_to_user(to, from, sizeof(siginfo_t))
2090 ? -EFAULT : 0;
2091 /*
2092 * If you change siginfo_t structure, please be sure
2093 * this code is fixed accordingly.
2094 * Please remember to update the signalfd_copyinfo() function
2095 * inside fs/signalfd.c too, in case siginfo_t changes.
2096 * It should never copy any pad contained in the structure
2097 * to avoid security leaks, but must copy the generic
2098 * 3 ints plus the relevant union member.
2099 */
2100 err = __put_user(from->si_signo, &to->si_signo);
2101 err |= __put_user(from->si_errno, &to->si_errno);
2102 err |= __put_user((short)from->si_code, &to->si_code);
2103 switch (from->si_code & __SI_MASK) {
2104 case __SI_KILL:
2105 err |= __put_user(from->si_pid, &to->si_pid);
2106 err |= __put_user(from->si_uid, &to->si_uid);
2107 break;
2108 case __SI_TIMER:
2109 err |= __put_user(from->si_tid, &to->si_tid);
2110 err |= __put_user(from->si_overrun, &to->si_overrun);
2111 err |= __put_user(from->si_ptr, &to->si_ptr);
2112 break;
2113 case __SI_POLL:
2114 err |= __put_user(from->si_band, &to->si_band);
2115 err |= __put_user(from->si_fd, &to->si_fd);
2116 break;
2117 case __SI_FAULT:
2118 err |= __put_user(from->si_addr, &to->si_addr);
2119 #ifdef __ARCH_SI_TRAPNO
2120 err |= __put_user(from->si_trapno, &to->si_trapno);
2121 #endif
2122 break;
2123 case __SI_CHLD:
2124 err |= __put_user(from->si_pid, &to->si_pid);
2125 err |= __put_user(from->si_uid, &to->si_uid);
2126 err |= __put_user(from->si_status, &to->si_status);
2127 err |= __put_user(from->si_utime, &to->si_utime);
2128 err |= __put_user(from->si_stime, &to->si_stime);
2129 break;
2130 case __SI_RT: /* This is not generated by the kernel as of now. */
2131 case __SI_MESGQ: /* But this is */
2132 err |= __put_user(from->si_pid, &to->si_pid);
2133 err |= __put_user(from->si_uid, &to->si_uid);
2134 err |= __put_user(from->si_ptr, &to->si_ptr);
2135 break;
2136 default: /* this is just in case for now ... */
2137 err |= __put_user(from->si_pid, &to->si_pid);
2138 err |= __put_user(from->si_uid, &to->si_uid);
2139 break;
2140 }
2141 return err;
2142 }
2143
2144 #endif
2145
2146 asmlinkage long
2147 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2148 siginfo_t __user *uinfo,
2149 const struct timespec __user *uts,
2150 size_t sigsetsize)
2151 {
2152 int ret, sig;
2153 sigset_t these;
2154 struct timespec ts;
2155 siginfo_t info;
2156 long timeout = 0;
2157
2158 /* XXX: Don't preclude handling different sized sigset_t's. */
2159 if (sigsetsize != sizeof(sigset_t))
2160 return -EINVAL;
2161
2162 if (copy_from_user(&these, uthese, sizeof(these)))
2163 return -EFAULT;
2164
2165 /*
2166 * Invert the set of allowed signals to get those we
2167 * want to block.
2168 */
2169 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2170 signotset(&these);
2171
2172 if (uts) {
2173 if (copy_from_user(&ts, uts, sizeof(ts)))
2174 return -EFAULT;
2175 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2176 || ts.tv_sec < 0)
2177 return -EINVAL;
2178 }
2179
2180 spin_lock_irq(&current->sighand->siglock);
2181 sig = dequeue_signal(current, &these, &info);
2182 if (!sig) {
2183 timeout = MAX_SCHEDULE_TIMEOUT;
2184 if (uts)
2185 timeout = (timespec_to_jiffies(&ts)
2186 + (ts.tv_sec || ts.tv_nsec));
2187
2188 if (timeout) {
2189 /* None ready -- temporarily unblock those we're
2190 * interested while we are sleeping in so that we'll
2191 * be awakened when they arrive. */
2192 current->real_blocked = current->blocked;
2193 sigandsets(&current->blocked, &current->blocked, &these);
2194 recalc_sigpending();
2195 spin_unlock_irq(&current->sighand->siglock);
2196
2197 timeout = schedule_timeout_interruptible(timeout);
2198
2199 spin_lock_irq(&current->sighand->siglock);
2200 sig = dequeue_signal(current, &these, &info);
2201 current->blocked = current->real_blocked;
2202 siginitset(&current->real_blocked, 0);
2203 recalc_sigpending();
2204 }
2205 }
2206 spin_unlock_irq(&current->sighand->siglock);
2207
2208 if (sig) {
2209 ret = sig;
2210 if (uinfo) {
2211 if (copy_siginfo_to_user(uinfo, &info))
2212 ret = -EFAULT;
2213 }
2214 } else {
2215 ret = -EAGAIN;
2216 if (timeout)
2217 ret = -EINTR;
2218 }
2219
2220 return ret;
2221 }
2222
2223 asmlinkage long
2224 sys_kill(pid_t pid, int sig)
2225 {
2226 struct siginfo info;
2227
2228 info.si_signo = sig;
2229 info.si_errno = 0;
2230 info.si_code = SI_USER;
2231 info.si_pid = task_tgid_vnr(current);
2232 info.si_uid = current_uid();
2233
2234 return kill_something_info(sig, &info, pid);
2235 }
2236
2237 static int do_tkill(pid_t tgid, pid_t pid, int sig)
2238 {
2239 int error;
2240 struct siginfo info;
2241 struct task_struct *p;
2242 unsigned long flags;
2243
2244 error = -ESRCH;
2245 info.si_signo = sig;
2246 info.si_errno = 0;
2247 info.si_code = SI_TKILL;
2248 info.si_pid = task_tgid_vnr(current);
2249 info.si_uid = current_uid();
2250
2251 rcu_read_lock();
2252 p = find_task_by_vpid(pid);
2253 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2254 error = check_kill_permission(sig, &info, p);
2255 /*
2256 * The null signal is a permissions and process existence
2257 * probe. No signal is actually delivered.
2258 *
2259 * If lock_task_sighand() fails we pretend the task dies
2260 * after receiving the signal. The window is tiny, and the
2261 * signal is private anyway.
2262 */
2263 if (!error && sig && lock_task_sighand(p, &flags)) {
2264 error = specific_send_sig_info(sig, &info, p);
2265 unlock_task_sighand(p, &flags);
2266 }
2267 }
2268 rcu_read_unlock();
2269
2270 return error;
2271 }
2272
2273 /**
2274 * sys_tgkill - send signal to one specific thread
2275 * @tgid: the thread group ID of the thread
2276 * @pid: the PID of the thread
2277 * @sig: signal to be sent
2278 *
2279 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2280 * exists but it's not belonging to the target process anymore. This
2281 * method solves the problem of threads exiting and PIDs getting reused.
2282 */
2283 asmlinkage long sys_tgkill(pid_t tgid, pid_t pid, int sig)
2284 {
2285 /* This is only valid for single tasks */
2286 if (pid <= 0 || tgid <= 0)
2287 return -EINVAL;
2288
2289 return do_tkill(tgid, pid, sig);
2290 }
2291
2292 /*
2293 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2294 */
2295 asmlinkage long
2296 sys_tkill(pid_t pid, int sig)
2297 {
2298 /* This is only valid for single tasks */
2299 if (pid <= 0)
2300 return -EINVAL;
2301
2302 return do_tkill(0, pid, sig);
2303 }
2304
2305 asmlinkage long
2306 sys_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t __user *uinfo)
2307 {
2308 siginfo_t info;
2309
2310 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2311 return -EFAULT;
2312
2313 /* Not even root can pretend to send signals from the kernel.
2314 Nor can they impersonate a kill(), which adds source info. */
2315 if (info.si_code >= 0)
2316 return -EPERM;
2317 info.si_signo = sig;
2318
2319 /* POSIX.1b doesn't mention process groups. */
2320 return kill_proc_info(sig, &info, pid);
2321 }
2322
2323 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2324 {
2325 struct task_struct *t = current;
2326 struct k_sigaction *k;
2327 sigset_t mask;
2328
2329 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2330 return -EINVAL;
2331
2332 k = &t->sighand->action[sig-1];
2333
2334 spin_lock_irq(&current->sighand->siglock);
2335 if (oact)
2336 *oact = *k;
2337
2338 if (act) {
2339 sigdelsetmask(&act->sa.sa_mask,
2340 sigmask(SIGKILL) | sigmask(SIGSTOP));
2341 *k = *act;
2342 /*
2343 * POSIX 3.3.1.3:
2344 * "Setting a signal action to SIG_IGN for a signal that is
2345 * pending shall cause the pending signal to be discarded,
2346 * whether or not it is blocked."
2347 *
2348 * "Setting a signal action to SIG_DFL for a signal that is
2349 * pending and whose default action is to ignore the signal
2350 * (for example, SIGCHLD), shall cause the pending signal to
2351 * be discarded, whether or not it is blocked"
2352 */
2353 if (sig_handler_ignored(sig_handler(t, sig), sig)) {
2354 sigemptyset(&mask);
2355 sigaddset(&mask, sig);
2356 rm_from_queue_full(&mask, &t->signal->shared_pending);
2357 do {
2358 rm_from_queue_full(&mask, &t->pending);
2359 t = next_thread(t);
2360 } while (t != current);
2361 }
2362 }
2363
2364 spin_unlock_irq(&current->sighand->siglock);
2365 return 0;
2366 }
2367
2368 int
2369 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2370 {
2371 stack_t oss;
2372 int error;
2373
2374 if (uoss) {
2375 oss.ss_sp = (void __user *) current->sas_ss_sp;
2376 oss.ss_size = current->sas_ss_size;
2377 oss.ss_flags = sas_ss_flags(sp);
2378 }
2379
2380 if (uss) {
2381 void __user *ss_sp;
2382 size_t ss_size;
2383 int ss_flags;
2384
2385 error = -EFAULT;
2386 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2387 || __get_user(ss_sp, &uss->ss_sp)
2388 || __get_user(ss_flags, &uss->ss_flags)
2389 || __get_user(ss_size, &uss->ss_size))
2390 goto out;
2391
2392 error = -EPERM;
2393 if (on_sig_stack(sp))
2394 goto out;
2395
2396 error = -EINVAL;
2397 /*
2398 *
2399 * Note - this code used to test ss_flags incorrectly
2400 * old code may have been written using ss_flags==0
2401 * to mean ss_flags==SS_ONSTACK (as this was the only
2402 * way that worked) - this fix preserves that older
2403 * mechanism
2404 */
2405 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2406 goto out;
2407
2408 if (ss_flags == SS_DISABLE) {
2409 ss_size = 0;
2410 ss_sp = NULL;
2411 } else {
2412 error = -ENOMEM;
2413 if (ss_size < MINSIGSTKSZ)
2414 goto out;
2415 }
2416
2417 current->sas_ss_sp = (unsigned long) ss_sp;
2418 current->sas_ss_size = ss_size;
2419 }
2420
2421 if (uoss) {
2422 error = -EFAULT;
2423 if (copy_to_user(uoss, &oss, sizeof(oss)))
2424 goto out;
2425 }
2426
2427 error = 0;
2428 out:
2429 return error;
2430 }
2431
2432 #ifdef __ARCH_WANT_SYS_SIGPENDING
2433
2434 asmlinkage long
2435 sys_sigpending(old_sigset_t __user *set)
2436 {
2437 return do_sigpending(set, sizeof(*set));
2438 }
2439
2440 #endif
2441
2442 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2443 /* Some platforms have their own version with special arguments others
2444 support only sys_rt_sigprocmask. */
2445
2446 asmlinkage long
2447 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2448 {
2449 int error;
2450 old_sigset_t old_set, new_set;
2451
2452 if (set) {
2453 error = -EFAULT;
2454 if (copy_from_user(&new_set, set, sizeof(*set)))
2455 goto out;
2456 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2457
2458 spin_lock_irq(&current->sighand->siglock);
2459 old_set = current->blocked.sig[0];
2460
2461 error = 0;
2462 switch (how) {
2463 default:
2464 error = -EINVAL;
2465 break;
2466 case SIG_BLOCK:
2467 sigaddsetmask(&current->blocked, new_set);
2468 break;
2469 case SIG_UNBLOCK:
2470 sigdelsetmask(&current->blocked, new_set);
2471 break;
2472 case SIG_SETMASK:
2473 current->blocked.sig[0] = new_set;
2474 break;
2475 }
2476
2477 recalc_sigpending();
2478 spin_unlock_irq(&current->sighand->siglock);
2479 if (error)
2480 goto out;
2481 if (oset)
2482 goto set_old;
2483 } else if (oset) {
2484 old_set = current->blocked.sig[0];
2485 set_old:
2486 error = -EFAULT;
2487 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2488 goto out;
2489 }
2490 error = 0;
2491 out:
2492 return error;
2493 }
2494 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2495
2496 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2497 asmlinkage long
2498 sys_rt_sigaction(int sig,
2499 const struct sigaction __user *act,
2500 struct sigaction __user *oact,
2501 size_t sigsetsize)
2502 {
2503 struct k_sigaction new_sa, old_sa;
2504 int ret = -EINVAL;
2505
2506 /* XXX: Don't preclude handling different sized sigset_t's. */
2507 if (sigsetsize != sizeof(sigset_t))
2508 goto out;
2509
2510 if (act) {
2511 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2512 return -EFAULT;
2513 }
2514
2515 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2516
2517 if (!ret && oact) {
2518 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2519 return -EFAULT;
2520 }
2521 out:
2522 return ret;
2523 }
2524 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2525
2526 #ifdef __ARCH_WANT_SYS_SGETMASK
2527
2528 /*
2529 * For backwards compatibility. Functionality superseded by sigprocmask.
2530 */
2531 asmlinkage long
2532 sys_sgetmask(void)
2533 {
2534 /* SMP safe */
2535 return current->blocked.sig[0];
2536 }
2537
2538 asmlinkage long
2539 sys_ssetmask(int newmask)
2540 {
2541 int old;
2542
2543 spin_lock_irq(&current->sighand->siglock);
2544 old = current->blocked.sig[0];
2545
2546 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2547 sigmask(SIGSTOP)));
2548 recalc_sigpending();
2549 spin_unlock_irq(&current->sighand->siglock);
2550
2551 return old;
2552 }
2553 #endif /* __ARCH_WANT_SGETMASK */
2554
2555 #ifdef __ARCH_WANT_SYS_SIGNAL
2556 /*
2557 * For backwards compatibility. Functionality superseded by sigaction.
2558 */
2559 asmlinkage unsigned long
2560 sys_signal(int sig, __sighandler_t handler)
2561 {
2562 struct k_sigaction new_sa, old_sa;
2563 int ret;
2564
2565 new_sa.sa.sa_handler = handler;
2566 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2567 sigemptyset(&new_sa.sa.sa_mask);
2568
2569 ret = do_sigaction(sig, &new_sa, &old_sa);
2570
2571 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2572 }
2573 #endif /* __ARCH_WANT_SYS_SIGNAL */
2574
2575 #ifdef __ARCH_WANT_SYS_PAUSE
2576
2577 asmlinkage long
2578 sys_pause(void)
2579 {
2580 current->state = TASK_INTERRUPTIBLE;
2581 schedule();
2582 return -ERESTARTNOHAND;
2583 }
2584
2585 #endif
2586
2587 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2588 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2589 {
2590 sigset_t newset;
2591
2592 /* XXX: Don't preclude handling different sized sigset_t's. */
2593 if (sigsetsize != sizeof(sigset_t))
2594 return -EINVAL;
2595
2596 if (copy_from_user(&newset, unewset, sizeof(newset)))
2597 return -EFAULT;
2598 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2599
2600 spin_lock_irq(&current->sighand->siglock);
2601 current->saved_sigmask = current->blocked;
2602 current->blocked = newset;
2603 recalc_sigpending();
2604 spin_unlock_irq(&current->sighand->siglock);
2605
2606 current->state = TASK_INTERRUPTIBLE;
2607 schedule();
2608 set_restore_sigmask();
2609 return -ERESTARTNOHAND;
2610 }
2611 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2612
2613 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2614 {
2615 return NULL;
2616 }
2617
2618 void __init signals_init(void)
2619 {
2620 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2621 }