]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/signal.c
signal: Implement force_fatal_sig
[mirror_ubuntu-jammy-kernel.git] / kernel / signal.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/signal.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 *
9 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
10 * Changes to use preallocated sigqueue structures
11 * to allow signals to be sent reliably.
12 */
13
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sched/cputime.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/proc_fs.h>
26 #include <linux/tty.h>
27 #include <linux/binfmts.h>
28 #include <linux/coredump.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/ptrace.h>
32 #include <linux/signal.h>
33 #include <linux/signalfd.h>
34 #include <linux/ratelimit.h>
35 #include <linux/tracehook.h>
36 #include <linux/capability.h>
37 #include <linux/freezer.h>
38 #include <linux/pid_namespace.h>
39 #include <linux/nsproxy.h>
40 #include <linux/user_namespace.h>
41 #include <linux/uprobes.h>
42 #include <linux/compat.h>
43 #include <linux/cn_proc.h>
44 #include <linux/compiler.h>
45 #include <linux/posix-timers.h>
46 #include <linux/cgroup.h>
47 #include <linux/audit.h>
48
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/signal.h>
51
52 #include <asm/param.h>
53 #include <linux/uaccess.h>
54 #include <asm/unistd.h>
55 #include <asm/siginfo.h>
56 #include <asm/cacheflush.h>
57 #include <asm/syscall.h> /* for syscall_get_* */
58
59 /*
60 * SLAB caches for signal bits.
61 */
62
63 static struct kmem_cache *sigqueue_cachep;
64
65 int print_fatal_signals __read_mostly;
66
67 static void __user *sig_handler(struct task_struct *t, int sig)
68 {
69 return t->sighand->action[sig - 1].sa.sa_handler;
70 }
71
72 static inline bool sig_handler_ignored(void __user *handler, int sig)
73 {
74 /* Is it explicitly or implicitly ignored? */
75 return handler == SIG_IGN ||
76 (handler == SIG_DFL && sig_kernel_ignore(sig));
77 }
78
79 static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
80 {
81 void __user *handler;
82
83 handler = sig_handler(t, sig);
84
85 /* SIGKILL and SIGSTOP may not be sent to the global init */
86 if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
87 return true;
88
89 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
90 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
91 return true;
92
93 /* Only allow kernel generated signals to this kthread */
94 if (unlikely((t->flags & PF_KTHREAD) &&
95 (handler == SIG_KTHREAD_KERNEL) && !force))
96 return true;
97
98 return sig_handler_ignored(handler, sig);
99 }
100
101 static bool sig_ignored(struct task_struct *t, int sig, bool force)
102 {
103 /*
104 * Blocked signals are never ignored, since the
105 * signal handler may change by the time it is
106 * unblocked.
107 */
108 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
109 return false;
110
111 /*
112 * Tracers may want to know about even ignored signal unless it
113 * is SIGKILL which can't be reported anyway but can be ignored
114 * by SIGNAL_UNKILLABLE task.
115 */
116 if (t->ptrace && sig != SIGKILL)
117 return false;
118
119 return sig_task_ignored(t, sig, force);
120 }
121
122 /*
123 * Re-calculate pending state from the set of locally pending
124 * signals, globally pending signals, and blocked signals.
125 */
126 static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
127 {
128 unsigned long ready;
129 long i;
130
131 switch (_NSIG_WORDS) {
132 default:
133 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
134 ready |= signal->sig[i] &~ blocked->sig[i];
135 break;
136
137 case 4: ready = signal->sig[3] &~ blocked->sig[3];
138 ready |= signal->sig[2] &~ blocked->sig[2];
139 ready |= signal->sig[1] &~ blocked->sig[1];
140 ready |= signal->sig[0] &~ blocked->sig[0];
141 break;
142
143 case 2: ready = signal->sig[1] &~ blocked->sig[1];
144 ready |= signal->sig[0] &~ blocked->sig[0];
145 break;
146
147 case 1: ready = signal->sig[0] &~ blocked->sig[0];
148 }
149 return ready != 0;
150 }
151
152 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
153
154 static bool recalc_sigpending_tsk(struct task_struct *t)
155 {
156 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
157 PENDING(&t->pending, &t->blocked) ||
158 PENDING(&t->signal->shared_pending, &t->blocked) ||
159 cgroup_task_frozen(t)) {
160 set_tsk_thread_flag(t, TIF_SIGPENDING);
161 return true;
162 }
163
164 /*
165 * We must never clear the flag in another thread, or in current
166 * when it's possible the current syscall is returning -ERESTART*.
167 * So we don't clear it here, and only callers who know they should do.
168 */
169 return false;
170 }
171
172 /*
173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
174 * This is superfluous when called on current, the wakeup is a harmless no-op.
175 */
176 void recalc_sigpending_and_wake(struct task_struct *t)
177 {
178 if (recalc_sigpending_tsk(t))
179 signal_wake_up(t, 0);
180 }
181
182 void recalc_sigpending(void)
183 {
184 if (!recalc_sigpending_tsk(current) && !freezing(current))
185 clear_thread_flag(TIF_SIGPENDING);
186
187 }
188 EXPORT_SYMBOL(recalc_sigpending);
189
190 void calculate_sigpending(void)
191 {
192 /* Have any signals or users of TIF_SIGPENDING been delayed
193 * until after fork?
194 */
195 spin_lock_irq(&current->sighand->siglock);
196 set_tsk_thread_flag(current, TIF_SIGPENDING);
197 recalc_sigpending();
198 spin_unlock_irq(&current->sighand->siglock);
199 }
200
201 /* Given the mask, find the first available signal that should be serviced. */
202
203 #define SYNCHRONOUS_MASK \
204 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
205 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
206
207 int next_signal(struct sigpending *pending, sigset_t *mask)
208 {
209 unsigned long i, *s, *m, x;
210 int sig = 0;
211
212 s = pending->signal.sig;
213 m = mask->sig;
214
215 /*
216 * Handle the first word specially: it contains the
217 * synchronous signals that need to be dequeued first.
218 */
219 x = *s &~ *m;
220 if (x) {
221 if (x & SYNCHRONOUS_MASK)
222 x &= SYNCHRONOUS_MASK;
223 sig = ffz(~x) + 1;
224 return sig;
225 }
226
227 switch (_NSIG_WORDS) {
228 default:
229 for (i = 1; i < _NSIG_WORDS; ++i) {
230 x = *++s &~ *++m;
231 if (!x)
232 continue;
233 sig = ffz(~x) + i*_NSIG_BPW + 1;
234 break;
235 }
236 break;
237
238 case 2:
239 x = s[1] &~ m[1];
240 if (!x)
241 break;
242 sig = ffz(~x) + _NSIG_BPW + 1;
243 break;
244
245 case 1:
246 /* Nothing to do */
247 break;
248 }
249
250 return sig;
251 }
252
253 static inline void print_dropped_signal(int sig)
254 {
255 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
256
257 if (!print_fatal_signals)
258 return;
259
260 if (!__ratelimit(&ratelimit_state))
261 return;
262
263 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
264 current->comm, current->pid, sig);
265 }
266
267 /**
268 * task_set_jobctl_pending - set jobctl pending bits
269 * @task: target task
270 * @mask: pending bits to set
271 *
272 * Clear @mask from @task->jobctl. @mask must be subset of
273 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
274 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
275 * cleared. If @task is already being killed or exiting, this function
276 * becomes noop.
277 *
278 * CONTEXT:
279 * Must be called with @task->sighand->siglock held.
280 *
281 * RETURNS:
282 * %true if @mask is set, %false if made noop because @task was dying.
283 */
284 bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
285 {
286 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
287 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
288 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
289
290 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
291 return false;
292
293 if (mask & JOBCTL_STOP_SIGMASK)
294 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
295
296 task->jobctl |= mask;
297 return true;
298 }
299
300 /**
301 * task_clear_jobctl_trapping - clear jobctl trapping bit
302 * @task: target task
303 *
304 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
305 * Clear it and wake up the ptracer. Note that we don't need any further
306 * locking. @task->siglock guarantees that @task->parent points to the
307 * ptracer.
308 *
309 * CONTEXT:
310 * Must be called with @task->sighand->siglock held.
311 */
312 void task_clear_jobctl_trapping(struct task_struct *task)
313 {
314 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
315 task->jobctl &= ~JOBCTL_TRAPPING;
316 smp_mb(); /* advised by wake_up_bit() */
317 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
318 }
319 }
320
321 /**
322 * task_clear_jobctl_pending - clear jobctl pending bits
323 * @task: target task
324 * @mask: pending bits to clear
325 *
326 * Clear @mask from @task->jobctl. @mask must be subset of
327 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
328 * STOP bits are cleared together.
329 *
330 * If clearing of @mask leaves no stop or trap pending, this function calls
331 * task_clear_jobctl_trapping().
332 *
333 * CONTEXT:
334 * Must be called with @task->sighand->siglock held.
335 */
336 void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
337 {
338 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
339
340 if (mask & JOBCTL_STOP_PENDING)
341 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
342
343 task->jobctl &= ~mask;
344
345 if (!(task->jobctl & JOBCTL_PENDING_MASK))
346 task_clear_jobctl_trapping(task);
347 }
348
349 /**
350 * task_participate_group_stop - participate in a group stop
351 * @task: task participating in a group stop
352 *
353 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
354 * Group stop states are cleared and the group stop count is consumed if
355 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
356 * stop, the appropriate `SIGNAL_*` flags are set.
357 *
358 * CONTEXT:
359 * Must be called with @task->sighand->siglock held.
360 *
361 * RETURNS:
362 * %true if group stop completion should be notified to the parent, %false
363 * otherwise.
364 */
365 static bool task_participate_group_stop(struct task_struct *task)
366 {
367 struct signal_struct *sig = task->signal;
368 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
369
370 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
371
372 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
373
374 if (!consume)
375 return false;
376
377 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
378 sig->group_stop_count--;
379
380 /*
381 * Tell the caller to notify completion iff we are entering into a
382 * fresh group stop. Read comment in do_signal_stop() for details.
383 */
384 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
385 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
386 return true;
387 }
388 return false;
389 }
390
391 void task_join_group_stop(struct task_struct *task)
392 {
393 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
394 struct signal_struct *sig = current->signal;
395
396 if (sig->group_stop_count) {
397 sig->group_stop_count++;
398 mask |= JOBCTL_STOP_CONSUME;
399 } else if (!(sig->flags & SIGNAL_STOP_STOPPED))
400 return;
401
402 /* Have the new thread join an on-going signal group stop */
403 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
404 }
405
406 /*
407 * allocate a new signal queue record
408 * - this may be called without locks if and only if t == current, otherwise an
409 * appropriate lock must be held to stop the target task from exiting
410 */
411 static struct sigqueue *
412 __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
413 int override_rlimit, const unsigned int sigqueue_flags)
414 {
415 struct sigqueue *q = NULL;
416 struct ucounts *ucounts = NULL;
417 long sigpending;
418
419 /*
420 * Protect access to @t credentials. This can go away when all
421 * callers hold rcu read lock.
422 *
423 * NOTE! A pending signal will hold on to the user refcount,
424 * and we get/put the refcount only when the sigpending count
425 * changes from/to zero.
426 */
427 rcu_read_lock();
428 ucounts = task_ucounts(t);
429 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
430 rcu_read_unlock();
431 if (!sigpending)
432 return NULL;
433
434 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
435 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
436 } else {
437 print_dropped_signal(sig);
438 }
439
440 if (unlikely(q == NULL)) {
441 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
442 } else {
443 INIT_LIST_HEAD(&q->list);
444 q->flags = sigqueue_flags;
445 q->ucounts = ucounts;
446 }
447 return q;
448 }
449
450 static void __sigqueue_free(struct sigqueue *q)
451 {
452 if (q->flags & SIGQUEUE_PREALLOC)
453 return;
454 if (q->ucounts) {
455 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
456 q->ucounts = NULL;
457 }
458 kmem_cache_free(sigqueue_cachep, q);
459 }
460
461 void flush_sigqueue(struct sigpending *queue)
462 {
463 struct sigqueue *q;
464
465 sigemptyset(&queue->signal);
466 while (!list_empty(&queue->list)) {
467 q = list_entry(queue->list.next, struct sigqueue , list);
468 list_del_init(&q->list);
469 __sigqueue_free(q);
470 }
471 }
472
473 /*
474 * Flush all pending signals for this kthread.
475 */
476 void flush_signals(struct task_struct *t)
477 {
478 unsigned long flags;
479
480 spin_lock_irqsave(&t->sighand->siglock, flags);
481 clear_tsk_thread_flag(t, TIF_SIGPENDING);
482 flush_sigqueue(&t->pending);
483 flush_sigqueue(&t->signal->shared_pending);
484 spin_unlock_irqrestore(&t->sighand->siglock, flags);
485 }
486 EXPORT_SYMBOL(flush_signals);
487
488 #ifdef CONFIG_POSIX_TIMERS
489 static void __flush_itimer_signals(struct sigpending *pending)
490 {
491 sigset_t signal, retain;
492 struct sigqueue *q, *n;
493
494 signal = pending->signal;
495 sigemptyset(&retain);
496
497 list_for_each_entry_safe(q, n, &pending->list, list) {
498 int sig = q->info.si_signo;
499
500 if (likely(q->info.si_code != SI_TIMER)) {
501 sigaddset(&retain, sig);
502 } else {
503 sigdelset(&signal, sig);
504 list_del_init(&q->list);
505 __sigqueue_free(q);
506 }
507 }
508
509 sigorsets(&pending->signal, &signal, &retain);
510 }
511
512 void flush_itimer_signals(void)
513 {
514 struct task_struct *tsk = current;
515 unsigned long flags;
516
517 spin_lock_irqsave(&tsk->sighand->siglock, flags);
518 __flush_itimer_signals(&tsk->pending);
519 __flush_itimer_signals(&tsk->signal->shared_pending);
520 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
521 }
522 #endif
523
524 void ignore_signals(struct task_struct *t)
525 {
526 int i;
527
528 for (i = 0; i < _NSIG; ++i)
529 t->sighand->action[i].sa.sa_handler = SIG_IGN;
530
531 flush_signals(t);
532 }
533
534 /*
535 * Flush all handlers for a task.
536 */
537
538 void
539 flush_signal_handlers(struct task_struct *t, int force_default)
540 {
541 int i;
542 struct k_sigaction *ka = &t->sighand->action[0];
543 for (i = _NSIG ; i != 0 ; i--) {
544 if (force_default || ka->sa.sa_handler != SIG_IGN)
545 ka->sa.sa_handler = SIG_DFL;
546 ka->sa.sa_flags = 0;
547 #ifdef __ARCH_HAS_SA_RESTORER
548 ka->sa.sa_restorer = NULL;
549 #endif
550 sigemptyset(&ka->sa.sa_mask);
551 ka++;
552 }
553 }
554
555 bool unhandled_signal(struct task_struct *tsk, int sig)
556 {
557 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
558 if (is_global_init(tsk))
559 return true;
560
561 if (handler != SIG_IGN && handler != SIG_DFL)
562 return false;
563
564 /* if ptraced, let the tracer determine */
565 return !tsk->ptrace;
566 }
567
568 static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
569 bool *resched_timer)
570 {
571 struct sigqueue *q, *first = NULL;
572
573 /*
574 * Collect the siginfo appropriate to this signal. Check if
575 * there is another siginfo for the same signal.
576 */
577 list_for_each_entry(q, &list->list, list) {
578 if (q->info.si_signo == sig) {
579 if (first)
580 goto still_pending;
581 first = q;
582 }
583 }
584
585 sigdelset(&list->signal, sig);
586
587 if (first) {
588 still_pending:
589 list_del_init(&first->list);
590 copy_siginfo(info, &first->info);
591
592 *resched_timer =
593 (first->flags & SIGQUEUE_PREALLOC) &&
594 (info->si_code == SI_TIMER) &&
595 (info->si_sys_private);
596
597 __sigqueue_free(first);
598 } else {
599 /*
600 * Ok, it wasn't in the queue. This must be
601 * a fast-pathed signal or we must have been
602 * out of queue space. So zero out the info.
603 */
604 clear_siginfo(info);
605 info->si_signo = sig;
606 info->si_errno = 0;
607 info->si_code = SI_USER;
608 info->si_pid = 0;
609 info->si_uid = 0;
610 }
611 }
612
613 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
614 kernel_siginfo_t *info, bool *resched_timer)
615 {
616 int sig = next_signal(pending, mask);
617
618 if (sig)
619 collect_signal(sig, pending, info, resched_timer);
620 return sig;
621 }
622
623 /*
624 * Dequeue a signal and return the element to the caller, which is
625 * expected to free it.
626 *
627 * All callers have to hold the siglock.
628 */
629 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
630 {
631 bool resched_timer = false;
632 int signr;
633
634 /* We only dequeue private signals from ourselves, we don't let
635 * signalfd steal them
636 */
637 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
638 if (!signr) {
639 signr = __dequeue_signal(&tsk->signal->shared_pending,
640 mask, info, &resched_timer);
641 #ifdef CONFIG_POSIX_TIMERS
642 /*
643 * itimer signal ?
644 *
645 * itimers are process shared and we restart periodic
646 * itimers in the signal delivery path to prevent DoS
647 * attacks in the high resolution timer case. This is
648 * compliant with the old way of self-restarting
649 * itimers, as the SIGALRM is a legacy signal and only
650 * queued once. Changing the restart behaviour to
651 * restart the timer in the signal dequeue path is
652 * reducing the timer noise on heavy loaded !highres
653 * systems too.
654 */
655 if (unlikely(signr == SIGALRM)) {
656 struct hrtimer *tmr = &tsk->signal->real_timer;
657
658 if (!hrtimer_is_queued(tmr) &&
659 tsk->signal->it_real_incr != 0) {
660 hrtimer_forward(tmr, tmr->base->get_time(),
661 tsk->signal->it_real_incr);
662 hrtimer_restart(tmr);
663 }
664 }
665 #endif
666 }
667
668 recalc_sigpending();
669 if (!signr)
670 return 0;
671
672 if (unlikely(sig_kernel_stop(signr))) {
673 /*
674 * Set a marker that we have dequeued a stop signal. Our
675 * caller might release the siglock and then the pending
676 * stop signal it is about to process is no longer in the
677 * pending bitmasks, but must still be cleared by a SIGCONT
678 * (and overruled by a SIGKILL). So those cases clear this
679 * shared flag after we've set it. Note that this flag may
680 * remain set after the signal we return is ignored or
681 * handled. That doesn't matter because its only purpose
682 * is to alert stop-signal processing code when another
683 * processor has come along and cleared the flag.
684 */
685 current->jobctl |= JOBCTL_STOP_DEQUEUED;
686 }
687 #ifdef CONFIG_POSIX_TIMERS
688 if (resched_timer) {
689 /*
690 * Release the siglock to ensure proper locking order
691 * of timer locks outside of siglocks. Note, we leave
692 * irqs disabled here, since the posix-timers code is
693 * about to disable them again anyway.
694 */
695 spin_unlock(&tsk->sighand->siglock);
696 posixtimer_rearm(info);
697 spin_lock(&tsk->sighand->siglock);
698
699 /* Don't expose the si_sys_private value to userspace */
700 info->si_sys_private = 0;
701 }
702 #endif
703 return signr;
704 }
705 EXPORT_SYMBOL_GPL(dequeue_signal);
706
707 static int dequeue_synchronous_signal(kernel_siginfo_t *info)
708 {
709 struct task_struct *tsk = current;
710 struct sigpending *pending = &tsk->pending;
711 struct sigqueue *q, *sync = NULL;
712
713 /*
714 * Might a synchronous signal be in the queue?
715 */
716 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
717 return 0;
718
719 /*
720 * Return the first synchronous signal in the queue.
721 */
722 list_for_each_entry(q, &pending->list, list) {
723 /* Synchronous signals have a positive si_code */
724 if ((q->info.si_code > SI_USER) &&
725 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
726 sync = q;
727 goto next;
728 }
729 }
730 return 0;
731 next:
732 /*
733 * Check if there is another siginfo for the same signal.
734 */
735 list_for_each_entry_continue(q, &pending->list, list) {
736 if (q->info.si_signo == sync->info.si_signo)
737 goto still_pending;
738 }
739
740 sigdelset(&pending->signal, sync->info.si_signo);
741 recalc_sigpending();
742 still_pending:
743 list_del_init(&sync->list);
744 copy_siginfo(info, &sync->info);
745 __sigqueue_free(sync);
746 return info->si_signo;
747 }
748
749 /*
750 * Tell a process that it has a new active signal..
751 *
752 * NOTE! we rely on the previous spin_lock to
753 * lock interrupts for us! We can only be called with
754 * "siglock" held, and the local interrupt must
755 * have been disabled when that got acquired!
756 *
757 * No need to set need_resched since signal event passing
758 * goes through ->blocked
759 */
760 void signal_wake_up_state(struct task_struct *t, unsigned int state)
761 {
762 set_tsk_thread_flag(t, TIF_SIGPENDING);
763 /*
764 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
765 * case. We don't check t->state here because there is a race with it
766 * executing another processor and just now entering stopped state.
767 * By using wake_up_state, we ensure the process will wake up and
768 * handle its death signal.
769 */
770 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
771 kick_process(t);
772 }
773
774 /*
775 * Remove signals in mask from the pending set and queue.
776 * Returns 1 if any signals were found.
777 *
778 * All callers must be holding the siglock.
779 */
780 static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
781 {
782 struct sigqueue *q, *n;
783 sigset_t m;
784
785 sigandsets(&m, mask, &s->signal);
786 if (sigisemptyset(&m))
787 return;
788
789 sigandnsets(&s->signal, &s->signal, mask);
790 list_for_each_entry_safe(q, n, &s->list, list) {
791 if (sigismember(mask, q->info.si_signo)) {
792 list_del_init(&q->list);
793 __sigqueue_free(q);
794 }
795 }
796 }
797
798 static inline int is_si_special(const struct kernel_siginfo *info)
799 {
800 return info <= SEND_SIG_PRIV;
801 }
802
803 static inline bool si_fromuser(const struct kernel_siginfo *info)
804 {
805 return info == SEND_SIG_NOINFO ||
806 (!is_si_special(info) && SI_FROMUSER(info));
807 }
808
809 /*
810 * called with RCU read lock from check_kill_permission()
811 */
812 static bool kill_ok_by_cred(struct task_struct *t)
813 {
814 const struct cred *cred = current_cred();
815 const struct cred *tcred = __task_cred(t);
816
817 return uid_eq(cred->euid, tcred->suid) ||
818 uid_eq(cred->euid, tcred->uid) ||
819 uid_eq(cred->uid, tcred->suid) ||
820 uid_eq(cred->uid, tcred->uid) ||
821 ns_capable(tcred->user_ns, CAP_KILL);
822 }
823
824 /*
825 * Bad permissions for sending the signal
826 * - the caller must hold the RCU read lock
827 */
828 static int check_kill_permission(int sig, struct kernel_siginfo *info,
829 struct task_struct *t)
830 {
831 struct pid *sid;
832 int error;
833
834 if (!valid_signal(sig))
835 return -EINVAL;
836
837 if (!si_fromuser(info))
838 return 0;
839
840 error = audit_signal_info(sig, t); /* Let audit system see the signal */
841 if (error)
842 return error;
843
844 if (!same_thread_group(current, t) &&
845 !kill_ok_by_cred(t)) {
846 switch (sig) {
847 case SIGCONT:
848 sid = task_session(t);
849 /*
850 * We don't return the error if sid == NULL. The
851 * task was unhashed, the caller must notice this.
852 */
853 if (!sid || sid == task_session(current))
854 break;
855 fallthrough;
856 default:
857 return -EPERM;
858 }
859 }
860
861 return security_task_kill(t, info, sig, NULL);
862 }
863
864 /**
865 * ptrace_trap_notify - schedule trap to notify ptracer
866 * @t: tracee wanting to notify tracer
867 *
868 * This function schedules sticky ptrace trap which is cleared on the next
869 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
870 * ptracer.
871 *
872 * If @t is running, STOP trap will be taken. If trapped for STOP and
873 * ptracer is listening for events, tracee is woken up so that it can
874 * re-trap for the new event. If trapped otherwise, STOP trap will be
875 * eventually taken without returning to userland after the existing traps
876 * are finished by PTRACE_CONT.
877 *
878 * CONTEXT:
879 * Must be called with @task->sighand->siglock held.
880 */
881 static void ptrace_trap_notify(struct task_struct *t)
882 {
883 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
884 assert_spin_locked(&t->sighand->siglock);
885
886 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
887 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
888 }
889
890 /*
891 * Handle magic process-wide effects of stop/continue signals. Unlike
892 * the signal actions, these happen immediately at signal-generation
893 * time regardless of blocking, ignoring, or handling. This does the
894 * actual continuing for SIGCONT, but not the actual stopping for stop
895 * signals. The process stop is done as a signal action for SIG_DFL.
896 *
897 * Returns true if the signal should be actually delivered, otherwise
898 * it should be dropped.
899 */
900 static bool prepare_signal(int sig, struct task_struct *p, bool force)
901 {
902 struct signal_struct *signal = p->signal;
903 struct task_struct *t;
904 sigset_t flush;
905
906 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
907 if (!(signal->flags & SIGNAL_GROUP_EXIT))
908 return sig == SIGKILL;
909 /*
910 * The process is in the middle of dying, nothing to do.
911 */
912 } else if (sig_kernel_stop(sig)) {
913 /*
914 * This is a stop signal. Remove SIGCONT from all queues.
915 */
916 siginitset(&flush, sigmask(SIGCONT));
917 flush_sigqueue_mask(&flush, &signal->shared_pending);
918 for_each_thread(p, t)
919 flush_sigqueue_mask(&flush, &t->pending);
920 } else if (sig == SIGCONT) {
921 unsigned int why;
922 /*
923 * Remove all stop signals from all queues, wake all threads.
924 */
925 siginitset(&flush, SIG_KERNEL_STOP_MASK);
926 flush_sigqueue_mask(&flush, &signal->shared_pending);
927 for_each_thread(p, t) {
928 flush_sigqueue_mask(&flush, &t->pending);
929 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
930 if (likely(!(t->ptrace & PT_SEIZED)))
931 wake_up_state(t, __TASK_STOPPED);
932 else
933 ptrace_trap_notify(t);
934 }
935
936 /*
937 * Notify the parent with CLD_CONTINUED if we were stopped.
938 *
939 * If we were in the middle of a group stop, we pretend it
940 * was already finished, and then continued. Since SIGCHLD
941 * doesn't queue we report only CLD_STOPPED, as if the next
942 * CLD_CONTINUED was dropped.
943 */
944 why = 0;
945 if (signal->flags & SIGNAL_STOP_STOPPED)
946 why |= SIGNAL_CLD_CONTINUED;
947 else if (signal->group_stop_count)
948 why |= SIGNAL_CLD_STOPPED;
949
950 if (why) {
951 /*
952 * The first thread which returns from do_signal_stop()
953 * will take ->siglock, notice SIGNAL_CLD_MASK, and
954 * notify its parent. See get_signal().
955 */
956 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
957 signal->group_stop_count = 0;
958 signal->group_exit_code = 0;
959 }
960 }
961
962 return !sig_ignored(p, sig, force);
963 }
964
965 /*
966 * Test if P wants to take SIG. After we've checked all threads with this,
967 * it's equivalent to finding no threads not blocking SIG. Any threads not
968 * blocking SIG were ruled out because they are not running and already
969 * have pending signals. Such threads will dequeue from the shared queue
970 * as soon as they're available, so putting the signal on the shared queue
971 * will be equivalent to sending it to one such thread.
972 */
973 static inline bool wants_signal(int sig, struct task_struct *p)
974 {
975 if (sigismember(&p->blocked, sig))
976 return false;
977
978 if (p->flags & PF_EXITING)
979 return false;
980
981 if (sig == SIGKILL)
982 return true;
983
984 if (task_is_stopped_or_traced(p))
985 return false;
986
987 return task_curr(p) || !task_sigpending(p);
988 }
989
990 static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
991 {
992 struct signal_struct *signal = p->signal;
993 struct task_struct *t;
994
995 /*
996 * Now find a thread we can wake up to take the signal off the queue.
997 *
998 * If the main thread wants the signal, it gets first crack.
999 * Probably the least surprising to the average bear.
1000 */
1001 if (wants_signal(sig, p))
1002 t = p;
1003 else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1004 /*
1005 * There is just one thread and it does not need to be woken.
1006 * It will dequeue unblocked signals before it runs again.
1007 */
1008 return;
1009 else {
1010 /*
1011 * Otherwise try to find a suitable thread.
1012 */
1013 t = signal->curr_target;
1014 while (!wants_signal(sig, t)) {
1015 t = next_thread(t);
1016 if (t == signal->curr_target)
1017 /*
1018 * No thread needs to be woken.
1019 * Any eligible threads will see
1020 * the signal in the queue soon.
1021 */
1022 return;
1023 }
1024 signal->curr_target = t;
1025 }
1026
1027 /*
1028 * Found a killable thread. If the signal will be fatal,
1029 * then start taking the whole group down immediately.
1030 */
1031 if (sig_fatal(p, sig) &&
1032 !(signal->flags & SIGNAL_GROUP_EXIT) &&
1033 !sigismember(&t->real_blocked, sig) &&
1034 (sig == SIGKILL || !p->ptrace)) {
1035 /*
1036 * This signal will be fatal to the whole group.
1037 */
1038 if (!sig_kernel_coredump(sig)) {
1039 /*
1040 * Start a group exit and wake everybody up.
1041 * This way we don't have other threads
1042 * running and doing things after a slower
1043 * thread has the fatal signal pending.
1044 */
1045 signal->flags = SIGNAL_GROUP_EXIT;
1046 signal->group_exit_code = sig;
1047 signal->group_stop_count = 0;
1048 t = p;
1049 do {
1050 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1051 sigaddset(&t->pending.signal, SIGKILL);
1052 signal_wake_up(t, 1);
1053 } while_each_thread(p, t);
1054 return;
1055 }
1056 }
1057
1058 /*
1059 * The signal is already in the shared-pending queue.
1060 * Tell the chosen thread to wake up and dequeue it.
1061 */
1062 signal_wake_up(t, sig == SIGKILL);
1063 return;
1064 }
1065
1066 static inline bool legacy_queue(struct sigpending *signals, int sig)
1067 {
1068 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1069 }
1070
1071 static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1072 enum pid_type type, bool force)
1073 {
1074 struct sigpending *pending;
1075 struct sigqueue *q;
1076 int override_rlimit;
1077 int ret = 0, result;
1078
1079 assert_spin_locked(&t->sighand->siglock);
1080
1081 result = TRACE_SIGNAL_IGNORED;
1082 if (!prepare_signal(sig, t, force))
1083 goto ret;
1084
1085 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1086 /*
1087 * Short-circuit ignored signals and support queuing
1088 * exactly one non-rt signal, so that we can get more
1089 * detailed information about the cause of the signal.
1090 */
1091 result = TRACE_SIGNAL_ALREADY_PENDING;
1092 if (legacy_queue(pending, sig))
1093 goto ret;
1094
1095 result = TRACE_SIGNAL_DELIVERED;
1096 /*
1097 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1098 */
1099 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1100 goto out_set;
1101
1102 /*
1103 * Real-time signals must be queued if sent by sigqueue, or
1104 * some other real-time mechanism. It is implementation
1105 * defined whether kill() does so. We attempt to do so, on
1106 * the principle of least surprise, but since kill is not
1107 * allowed to fail with EAGAIN when low on memory we just
1108 * make sure at least one signal gets delivered and don't
1109 * pass on the info struct.
1110 */
1111 if (sig < SIGRTMIN)
1112 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1113 else
1114 override_rlimit = 0;
1115
1116 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1117
1118 if (q) {
1119 list_add_tail(&q->list, &pending->list);
1120 switch ((unsigned long) info) {
1121 case (unsigned long) SEND_SIG_NOINFO:
1122 clear_siginfo(&q->info);
1123 q->info.si_signo = sig;
1124 q->info.si_errno = 0;
1125 q->info.si_code = SI_USER;
1126 q->info.si_pid = task_tgid_nr_ns(current,
1127 task_active_pid_ns(t));
1128 rcu_read_lock();
1129 q->info.si_uid =
1130 from_kuid_munged(task_cred_xxx(t, user_ns),
1131 current_uid());
1132 rcu_read_unlock();
1133 break;
1134 case (unsigned long) SEND_SIG_PRIV:
1135 clear_siginfo(&q->info);
1136 q->info.si_signo = sig;
1137 q->info.si_errno = 0;
1138 q->info.si_code = SI_KERNEL;
1139 q->info.si_pid = 0;
1140 q->info.si_uid = 0;
1141 break;
1142 default:
1143 copy_siginfo(&q->info, info);
1144 break;
1145 }
1146 } else if (!is_si_special(info) &&
1147 sig >= SIGRTMIN && info->si_code != SI_USER) {
1148 /*
1149 * Queue overflow, abort. We may abort if the
1150 * signal was rt and sent by user using something
1151 * other than kill().
1152 */
1153 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1154 ret = -EAGAIN;
1155 goto ret;
1156 } else {
1157 /*
1158 * This is a silent loss of information. We still
1159 * send the signal, but the *info bits are lost.
1160 */
1161 result = TRACE_SIGNAL_LOSE_INFO;
1162 }
1163
1164 out_set:
1165 signalfd_notify(t, sig);
1166 sigaddset(&pending->signal, sig);
1167
1168 /* Let multiprocess signals appear after on-going forks */
1169 if (type > PIDTYPE_TGID) {
1170 struct multiprocess_signals *delayed;
1171 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1172 sigset_t *signal = &delayed->signal;
1173 /* Can't queue both a stop and a continue signal */
1174 if (sig == SIGCONT)
1175 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1176 else if (sig_kernel_stop(sig))
1177 sigdelset(signal, SIGCONT);
1178 sigaddset(signal, sig);
1179 }
1180 }
1181
1182 complete_signal(sig, t, type);
1183 ret:
1184 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1185 return ret;
1186 }
1187
1188 static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1189 {
1190 bool ret = false;
1191 switch (siginfo_layout(info->si_signo, info->si_code)) {
1192 case SIL_KILL:
1193 case SIL_CHLD:
1194 case SIL_RT:
1195 ret = true;
1196 break;
1197 case SIL_TIMER:
1198 case SIL_POLL:
1199 case SIL_FAULT:
1200 case SIL_FAULT_TRAPNO:
1201 case SIL_FAULT_MCEERR:
1202 case SIL_FAULT_BNDERR:
1203 case SIL_FAULT_PKUERR:
1204 case SIL_FAULT_PERF_EVENT:
1205 case SIL_SYS:
1206 ret = false;
1207 break;
1208 }
1209 return ret;
1210 }
1211
1212 static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1213 enum pid_type type)
1214 {
1215 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1216 bool force = false;
1217
1218 if (info == SEND_SIG_NOINFO) {
1219 /* Force if sent from an ancestor pid namespace */
1220 force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1221 } else if (info == SEND_SIG_PRIV) {
1222 /* Don't ignore kernel generated signals */
1223 force = true;
1224 } else if (has_si_pid_and_uid(info)) {
1225 /* SIGKILL and SIGSTOP is special or has ids */
1226 struct user_namespace *t_user_ns;
1227
1228 rcu_read_lock();
1229 t_user_ns = task_cred_xxx(t, user_ns);
1230 if (current_user_ns() != t_user_ns) {
1231 kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1232 info->si_uid = from_kuid_munged(t_user_ns, uid);
1233 }
1234 rcu_read_unlock();
1235
1236 /* A kernel generated signal? */
1237 force = (info->si_code == SI_KERNEL);
1238
1239 /* From an ancestor pid namespace? */
1240 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1241 info->si_pid = 0;
1242 force = true;
1243 }
1244 }
1245 return __send_signal(sig, info, t, type, force);
1246 }
1247
1248 static void print_fatal_signal(int signr)
1249 {
1250 struct pt_regs *regs = signal_pt_regs();
1251 pr_info("potentially unexpected fatal signal %d.\n", signr);
1252
1253 #if defined(__i386__) && !defined(__arch_um__)
1254 pr_info("code at %08lx: ", regs->ip);
1255 {
1256 int i;
1257 for (i = 0; i < 16; i++) {
1258 unsigned char insn;
1259
1260 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1261 break;
1262 pr_cont("%02x ", insn);
1263 }
1264 }
1265 pr_cont("\n");
1266 #endif
1267 preempt_disable();
1268 show_regs(regs);
1269 preempt_enable();
1270 }
1271
1272 static int __init setup_print_fatal_signals(char *str)
1273 {
1274 get_option (&str, &print_fatal_signals);
1275
1276 return 1;
1277 }
1278
1279 __setup("print-fatal-signals=", setup_print_fatal_signals);
1280
1281 int
1282 __group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1283 {
1284 return send_signal(sig, info, p, PIDTYPE_TGID);
1285 }
1286
1287 int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1288 enum pid_type type)
1289 {
1290 unsigned long flags;
1291 int ret = -ESRCH;
1292
1293 if (lock_task_sighand(p, &flags)) {
1294 ret = send_signal(sig, info, p, type);
1295 unlock_task_sighand(p, &flags);
1296 }
1297
1298 return ret;
1299 }
1300
1301 /*
1302 * Force a signal that the process can't ignore: if necessary
1303 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1304 *
1305 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1306 * since we do not want to have a signal handler that was blocked
1307 * be invoked when user space had explicitly blocked it.
1308 *
1309 * We don't want to have recursive SIGSEGV's etc, for example,
1310 * that is why we also clear SIGNAL_UNKILLABLE.
1311 */
1312 static int
1313 force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t, bool sigdfl)
1314 {
1315 unsigned long int flags;
1316 int ret, blocked, ignored;
1317 struct k_sigaction *action;
1318 int sig = info->si_signo;
1319
1320 spin_lock_irqsave(&t->sighand->siglock, flags);
1321 action = &t->sighand->action[sig-1];
1322 ignored = action->sa.sa_handler == SIG_IGN;
1323 blocked = sigismember(&t->blocked, sig);
1324 if (blocked || ignored || sigdfl) {
1325 action->sa.sa_handler = SIG_DFL;
1326 action->sa.sa_flags |= SA_IMMUTABLE;
1327 if (blocked) {
1328 sigdelset(&t->blocked, sig);
1329 recalc_sigpending_and_wake(t);
1330 }
1331 }
1332 /*
1333 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1334 * debugging to leave init killable.
1335 */
1336 if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1337 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1338 ret = send_signal(sig, info, t, PIDTYPE_PID);
1339 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1340
1341 return ret;
1342 }
1343
1344 int force_sig_info(struct kernel_siginfo *info)
1345 {
1346 return force_sig_info_to_task(info, current, false);
1347 }
1348
1349 /*
1350 * Nuke all other threads in the group.
1351 */
1352 int zap_other_threads(struct task_struct *p)
1353 {
1354 struct task_struct *t = p;
1355 int count = 0;
1356
1357 p->signal->group_stop_count = 0;
1358
1359 while_each_thread(p, t) {
1360 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1361 count++;
1362
1363 /* Don't bother with already dead threads */
1364 if (t->exit_state)
1365 continue;
1366 sigaddset(&t->pending.signal, SIGKILL);
1367 signal_wake_up(t, 1);
1368 }
1369
1370 return count;
1371 }
1372
1373 struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1374 unsigned long *flags)
1375 {
1376 struct sighand_struct *sighand;
1377
1378 rcu_read_lock();
1379 for (;;) {
1380 sighand = rcu_dereference(tsk->sighand);
1381 if (unlikely(sighand == NULL))
1382 break;
1383
1384 /*
1385 * This sighand can be already freed and even reused, but
1386 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1387 * initializes ->siglock: this slab can't go away, it has
1388 * the same object type, ->siglock can't be reinitialized.
1389 *
1390 * We need to ensure that tsk->sighand is still the same
1391 * after we take the lock, we can race with de_thread() or
1392 * __exit_signal(). In the latter case the next iteration
1393 * must see ->sighand == NULL.
1394 */
1395 spin_lock_irqsave(&sighand->siglock, *flags);
1396 if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1397 break;
1398 spin_unlock_irqrestore(&sighand->siglock, *flags);
1399 }
1400 rcu_read_unlock();
1401
1402 return sighand;
1403 }
1404
1405 #ifdef CONFIG_LOCKDEP
1406 void lockdep_assert_task_sighand_held(struct task_struct *task)
1407 {
1408 struct sighand_struct *sighand;
1409
1410 rcu_read_lock();
1411 sighand = rcu_dereference(task->sighand);
1412 if (sighand)
1413 lockdep_assert_held(&sighand->siglock);
1414 else
1415 WARN_ON_ONCE(1);
1416 rcu_read_unlock();
1417 }
1418 #endif
1419
1420 /*
1421 * send signal info to all the members of a group
1422 */
1423 int group_send_sig_info(int sig, struct kernel_siginfo *info,
1424 struct task_struct *p, enum pid_type type)
1425 {
1426 int ret;
1427
1428 rcu_read_lock();
1429 ret = check_kill_permission(sig, info, p);
1430 rcu_read_unlock();
1431
1432 if (!ret && sig)
1433 ret = do_send_sig_info(sig, info, p, type);
1434
1435 return ret;
1436 }
1437
1438 /*
1439 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1440 * control characters do (^C, ^Z etc)
1441 * - the caller must hold at least a readlock on tasklist_lock
1442 */
1443 int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1444 {
1445 struct task_struct *p = NULL;
1446 int retval, success;
1447
1448 success = 0;
1449 retval = -ESRCH;
1450 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1451 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1452 success |= !err;
1453 retval = err;
1454 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1455 return success ? 0 : retval;
1456 }
1457
1458 int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1459 {
1460 int error = -ESRCH;
1461 struct task_struct *p;
1462
1463 for (;;) {
1464 rcu_read_lock();
1465 p = pid_task(pid, PIDTYPE_PID);
1466 if (p)
1467 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1468 rcu_read_unlock();
1469 if (likely(!p || error != -ESRCH))
1470 return error;
1471
1472 /*
1473 * The task was unhashed in between, try again. If it
1474 * is dead, pid_task() will return NULL, if we race with
1475 * de_thread() it will find the new leader.
1476 */
1477 }
1478 }
1479
1480 static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1481 {
1482 int error;
1483 rcu_read_lock();
1484 error = kill_pid_info(sig, info, find_vpid(pid));
1485 rcu_read_unlock();
1486 return error;
1487 }
1488
1489 static inline bool kill_as_cred_perm(const struct cred *cred,
1490 struct task_struct *target)
1491 {
1492 const struct cred *pcred = __task_cred(target);
1493
1494 return uid_eq(cred->euid, pcred->suid) ||
1495 uid_eq(cred->euid, pcred->uid) ||
1496 uid_eq(cred->uid, pcred->suid) ||
1497 uid_eq(cred->uid, pcred->uid);
1498 }
1499
1500 /*
1501 * The usb asyncio usage of siginfo is wrong. The glibc support
1502 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1503 * AKA after the generic fields:
1504 * kernel_pid_t si_pid;
1505 * kernel_uid32_t si_uid;
1506 * sigval_t si_value;
1507 *
1508 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1509 * after the generic fields is:
1510 * void __user *si_addr;
1511 *
1512 * This is a practical problem when there is a 64bit big endian kernel
1513 * and a 32bit userspace. As the 32bit address will encoded in the low
1514 * 32bits of the pointer. Those low 32bits will be stored at higher
1515 * address than appear in a 32 bit pointer. So userspace will not
1516 * see the address it was expecting for it's completions.
1517 *
1518 * There is nothing in the encoding that can allow
1519 * copy_siginfo_to_user32 to detect this confusion of formats, so
1520 * handle this by requiring the caller of kill_pid_usb_asyncio to
1521 * notice when this situration takes place and to store the 32bit
1522 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1523 * parameter.
1524 */
1525 int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1526 struct pid *pid, const struct cred *cred)
1527 {
1528 struct kernel_siginfo info;
1529 struct task_struct *p;
1530 unsigned long flags;
1531 int ret = -EINVAL;
1532
1533 if (!valid_signal(sig))
1534 return ret;
1535
1536 clear_siginfo(&info);
1537 info.si_signo = sig;
1538 info.si_errno = errno;
1539 info.si_code = SI_ASYNCIO;
1540 *((sigval_t *)&info.si_pid) = addr;
1541
1542 rcu_read_lock();
1543 p = pid_task(pid, PIDTYPE_PID);
1544 if (!p) {
1545 ret = -ESRCH;
1546 goto out_unlock;
1547 }
1548 if (!kill_as_cred_perm(cred, p)) {
1549 ret = -EPERM;
1550 goto out_unlock;
1551 }
1552 ret = security_task_kill(p, &info, sig, cred);
1553 if (ret)
1554 goto out_unlock;
1555
1556 if (sig) {
1557 if (lock_task_sighand(p, &flags)) {
1558 ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1559 unlock_task_sighand(p, &flags);
1560 } else
1561 ret = -ESRCH;
1562 }
1563 out_unlock:
1564 rcu_read_unlock();
1565 return ret;
1566 }
1567 EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1568
1569 /*
1570 * kill_something_info() interprets pid in interesting ways just like kill(2).
1571 *
1572 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1573 * is probably wrong. Should make it like BSD or SYSV.
1574 */
1575
1576 static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1577 {
1578 int ret;
1579
1580 if (pid > 0)
1581 return kill_proc_info(sig, info, pid);
1582
1583 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1584 if (pid == INT_MIN)
1585 return -ESRCH;
1586
1587 read_lock(&tasklist_lock);
1588 if (pid != -1) {
1589 ret = __kill_pgrp_info(sig, info,
1590 pid ? find_vpid(-pid) : task_pgrp(current));
1591 } else {
1592 int retval = 0, count = 0;
1593 struct task_struct * p;
1594
1595 for_each_process(p) {
1596 if (task_pid_vnr(p) > 1 &&
1597 !same_thread_group(p, current)) {
1598 int err = group_send_sig_info(sig, info, p,
1599 PIDTYPE_MAX);
1600 ++count;
1601 if (err != -EPERM)
1602 retval = err;
1603 }
1604 }
1605 ret = count ? retval : -ESRCH;
1606 }
1607 read_unlock(&tasklist_lock);
1608
1609 return ret;
1610 }
1611
1612 /*
1613 * These are for backward compatibility with the rest of the kernel source.
1614 */
1615
1616 int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1617 {
1618 /*
1619 * Make sure legacy kernel users don't send in bad values
1620 * (normal paths check this in check_kill_permission).
1621 */
1622 if (!valid_signal(sig))
1623 return -EINVAL;
1624
1625 return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1626 }
1627 EXPORT_SYMBOL(send_sig_info);
1628
1629 #define __si_special(priv) \
1630 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1631
1632 int
1633 send_sig(int sig, struct task_struct *p, int priv)
1634 {
1635 return send_sig_info(sig, __si_special(priv), p);
1636 }
1637 EXPORT_SYMBOL(send_sig);
1638
1639 void force_sig(int sig)
1640 {
1641 struct kernel_siginfo info;
1642
1643 clear_siginfo(&info);
1644 info.si_signo = sig;
1645 info.si_errno = 0;
1646 info.si_code = SI_KERNEL;
1647 info.si_pid = 0;
1648 info.si_uid = 0;
1649 force_sig_info(&info);
1650 }
1651 EXPORT_SYMBOL(force_sig);
1652
1653 void force_fatal_sig(int sig)
1654 {
1655 struct kernel_siginfo info;
1656
1657 clear_siginfo(&info);
1658 info.si_signo = sig;
1659 info.si_errno = 0;
1660 info.si_code = SI_KERNEL;
1661 info.si_pid = 0;
1662 info.si_uid = 0;
1663 force_sig_info_to_task(&info, current, true);
1664 }
1665
1666 /*
1667 * When things go south during signal handling, we
1668 * will force a SIGSEGV. And if the signal that caused
1669 * the problem was already a SIGSEGV, we'll want to
1670 * make sure we don't even try to deliver the signal..
1671 */
1672 void force_sigsegv(int sig)
1673 {
1674 if (sig == SIGSEGV)
1675 force_fatal_sig(SIGSEGV);
1676 else
1677 force_sig(SIGSEGV);
1678 }
1679
1680 int force_sig_fault_to_task(int sig, int code, void __user *addr
1681 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1682 , struct task_struct *t)
1683 {
1684 struct kernel_siginfo info;
1685
1686 clear_siginfo(&info);
1687 info.si_signo = sig;
1688 info.si_errno = 0;
1689 info.si_code = code;
1690 info.si_addr = addr;
1691 #ifdef __ia64__
1692 info.si_imm = imm;
1693 info.si_flags = flags;
1694 info.si_isr = isr;
1695 #endif
1696 return force_sig_info_to_task(&info, t, false);
1697 }
1698
1699 int force_sig_fault(int sig, int code, void __user *addr
1700 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1701 {
1702 return force_sig_fault_to_task(sig, code, addr
1703 ___ARCH_SI_IA64(imm, flags, isr), current);
1704 }
1705
1706 int send_sig_fault(int sig, int code, void __user *addr
1707 ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1708 , struct task_struct *t)
1709 {
1710 struct kernel_siginfo info;
1711
1712 clear_siginfo(&info);
1713 info.si_signo = sig;
1714 info.si_errno = 0;
1715 info.si_code = code;
1716 info.si_addr = addr;
1717 #ifdef __ia64__
1718 info.si_imm = imm;
1719 info.si_flags = flags;
1720 info.si_isr = isr;
1721 #endif
1722 return send_sig_info(info.si_signo, &info, t);
1723 }
1724
1725 int force_sig_mceerr(int code, void __user *addr, short lsb)
1726 {
1727 struct kernel_siginfo info;
1728
1729 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1730 clear_siginfo(&info);
1731 info.si_signo = SIGBUS;
1732 info.si_errno = 0;
1733 info.si_code = code;
1734 info.si_addr = addr;
1735 info.si_addr_lsb = lsb;
1736 return force_sig_info(&info);
1737 }
1738
1739 int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1740 {
1741 struct kernel_siginfo info;
1742
1743 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1744 clear_siginfo(&info);
1745 info.si_signo = SIGBUS;
1746 info.si_errno = 0;
1747 info.si_code = code;
1748 info.si_addr = addr;
1749 info.si_addr_lsb = lsb;
1750 return send_sig_info(info.si_signo, &info, t);
1751 }
1752 EXPORT_SYMBOL(send_sig_mceerr);
1753
1754 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1755 {
1756 struct kernel_siginfo info;
1757
1758 clear_siginfo(&info);
1759 info.si_signo = SIGSEGV;
1760 info.si_errno = 0;
1761 info.si_code = SEGV_BNDERR;
1762 info.si_addr = addr;
1763 info.si_lower = lower;
1764 info.si_upper = upper;
1765 return force_sig_info(&info);
1766 }
1767
1768 #ifdef SEGV_PKUERR
1769 int force_sig_pkuerr(void __user *addr, u32 pkey)
1770 {
1771 struct kernel_siginfo info;
1772
1773 clear_siginfo(&info);
1774 info.si_signo = SIGSEGV;
1775 info.si_errno = 0;
1776 info.si_code = SEGV_PKUERR;
1777 info.si_addr = addr;
1778 info.si_pkey = pkey;
1779 return force_sig_info(&info);
1780 }
1781 #endif
1782
1783 int force_sig_perf(void __user *addr, u32 type, u64 sig_data)
1784 {
1785 struct kernel_siginfo info;
1786
1787 clear_siginfo(&info);
1788 info.si_signo = SIGTRAP;
1789 info.si_errno = 0;
1790 info.si_code = TRAP_PERF;
1791 info.si_addr = addr;
1792 info.si_perf_data = sig_data;
1793 info.si_perf_type = type;
1794
1795 return force_sig_info(&info);
1796 }
1797
1798 /**
1799 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1800 * @syscall: syscall number to send to userland
1801 * @reason: filter-supplied reason code to send to userland (via si_errno)
1802 *
1803 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1804 */
1805 int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1806 {
1807 struct kernel_siginfo info;
1808
1809 clear_siginfo(&info);
1810 info.si_signo = SIGSYS;
1811 info.si_code = SYS_SECCOMP;
1812 info.si_call_addr = (void __user *)KSTK_EIP(current);
1813 info.si_errno = reason;
1814 info.si_arch = syscall_get_arch(current);
1815 info.si_syscall = syscall;
1816 return force_sig_info_to_task(&info, current, force_coredump);
1817 }
1818
1819 /* For the crazy architectures that include trap information in
1820 * the errno field, instead of an actual errno value.
1821 */
1822 int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1823 {
1824 struct kernel_siginfo info;
1825
1826 clear_siginfo(&info);
1827 info.si_signo = SIGTRAP;
1828 info.si_errno = errno;
1829 info.si_code = TRAP_HWBKPT;
1830 info.si_addr = addr;
1831 return force_sig_info(&info);
1832 }
1833
1834 /* For the rare architectures that include trap information using
1835 * si_trapno.
1836 */
1837 int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1838 {
1839 struct kernel_siginfo info;
1840
1841 clear_siginfo(&info);
1842 info.si_signo = sig;
1843 info.si_errno = 0;
1844 info.si_code = code;
1845 info.si_addr = addr;
1846 info.si_trapno = trapno;
1847 return force_sig_info(&info);
1848 }
1849
1850 /* For the rare architectures that include trap information using
1851 * si_trapno.
1852 */
1853 int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1854 struct task_struct *t)
1855 {
1856 struct kernel_siginfo info;
1857
1858 clear_siginfo(&info);
1859 info.si_signo = sig;
1860 info.si_errno = 0;
1861 info.si_code = code;
1862 info.si_addr = addr;
1863 info.si_trapno = trapno;
1864 return send_sig_info(info.si_signo, &info, t);
1865 }
1866
1867 int kill_pgrp(struct pid *pid, int sig, int priv)
1868 {
1869 int ret;
1870
1871 read_lock(&tasklist_lock);
1872 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1873 read_unlock(&tasklist_lock);
1874
1875 return ret;
1876 }
1877 EXPORT_SYMBOL(kill_pgrp);
1878
1879 int kill_pid(struct pid *pid, int sig, int priv)
1880 {
1881 return kill_pid_info(sig, __si_special(priv), pid);
1882 }
1883 EXPORT_SYMBOL(kill_pid);
1884
1885 /*
1886 * These functions support sending signals using preallocated sigqueue
1887 * structures. This is needed "because realtime applications cannot
1888 * afford to lose notifications of asynchronous events, like timer
1889 * expirations or I/O completions". In the case of POSIX Timers
1890 * we allocate the sigqueue structure from the timer_create. If this
1891 * allocation fails we are able to report the failure to the application
1892 * with an EAGAIN error.
1893 */
1894 struct sigqueue *sigqueue_alloc(void)
1895 {
1896 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1897 }
1898
1899 void sigqueue_free(struct sigqueue *q)
1900 {
1901 unsigned long flags;
1902 spinlock_t *lock = &current->sighand->siglock;
1903
1904 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1905 /*
1906 * We must hold ->siglock while testing q->list
1907 * to serialize with collect_signal() or with
1908 * __exit_signal()->flush_sigqueue().
1909 */
1910 spin_lock_irqsave(lock, flags);
1911 q->flags &= ~SIGQUEUE_PREALLOC;
1912 /*
1913 * If it is queued it will be freed when dequeued,
1914 * like the "regular" sigqueue.
1915 */
1916 if (!list_empty(&q->list))
1917 q = NULL;
1918 spin_unlock_irqrestore(lock, flags);
1919
1920 if (q)
1921 __sigqueue_free(q);
1922 }
1923
1924 int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1925 {
1926 int sig = q->info.si_signo;
1927 struct sigpending *pending;
1928 struct task_struct *t;
1929 unsigned long flags;
1930 int ret, result;
1931
1932 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1933
1934 ret = -1;
1935 rcu_read_lock();
1936 t = pid_task(pid, type);
1937 if (!t || !likely(lock_task_sighand(t, &flags)))
1938 goto ret;
1939
1940 ret = 1; /* the signal is ignored */
1941 result = TRACE_SIGNAL_IGNORED;
1942 if (!prepare_signal(sig, t, false))
1943 goto out;
1944
1945 ret = 0;
1946 if (unlikely(!list_empty(&q->list))) {
1947 /*
1948 * If an SI_TIMER entry is already queue just increment
1949 * the overrun count.
1950 */
1951 BUG_ON(q->info.si_code != SI_TIMER);
1952 q->info.si_overrun++;
1953 result = TRACE_SIGNAL_ALREADY_PENDING;
1954 goto out;
1955 }
1956 q->info.si_overrun = 0;
1957
1958 signalfd_notify(t, sig);
1959 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1960 list_add_tail(&q->list, &pending->list);
1961 sigaddset(&pending->signal, sig);
1962 complete_signal(sig, t, type);
1963 result = TRACE_SIGNAL_DELIVERED;
1964 out:
1965 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1966 unlock_task_sighand(t, &flags);
1967 ret:
1968 rcu_read_unlock();
1969 return ret;
1970 }
1971
1972 static void do_notify_pidfd(struct task_struct *task)
1973 {
1974 struct pid *pid;
1975
1976 WARN_ON(task->exit_state == 0);
1977 pid = task_pid(task);
1978 wake_up_all(&pid->wait_pidfd);
1979 }
1980
1981 /*
1982 * Let a parent know about the death of a child.
1983 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1984 *
1985 * Returns true if our parent ignored us and so we've switched to
1986 * self-reaping.
1987 */
1988 bool do_notify_parent(struct task_struct *tsk, int sig)
1989 {
1990 struct kernel_siginfo info;
1991 unsigned long flags;
1992 struct sighand_struct *psig;
1993 bool autoreap = false;
1994 u64 utime, stime;
1995
1996 BUG_ON(sig == -1);
1997
1998 /* do_notify_parent_cldstop should have been called instead. */
1999 BUG_ON(task_is_stopped_or_traced(tsk));
2000
2001 BUG_ON(!tsk->ptrace &&
2002 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2003
2004 /* Wake up all pidfd waiters */
2005 do_notify_pidfd(tsk);
2006
2007 if (sig != SIGCHLD) {
2008 /*
2009 * This is only possible if parent == real_parent.
2010 * Check if it has changed security domain.
2011 */
2012 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2013 sig = SIGCHLD;
2014 }
2015
2016 clear_siginfo(&info);
2017 info.si_signo = sig;
2018 info.si_errno = 0;
2019 /*
2020 * We are under tasklist_lock here so our parent is tied to
2021 * us and cannot change.
2022 *
2023 * task_active_pid_ns will always return the same pid namespace
2024 * until a task passes through release_task.
2025 *
2026 * write_lock() currently calls preempt_disable() which is the
2027 * same as rcu_read_lock(), but according to Oleg, this is not
2028 * correct to rely on this
2029 */
2030 rcu_read_lock();
2031 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2032 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2033 task_uid(tsk));
2034 rcu_read_unlock();
2035
2036 task_cputime(tsk, &utime, &stime);
2037 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2038 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2039
2040 info.si_status = tsk->exit_code & 0x7f;
2041 if (tsk->exit_code & 0x80)
2042 info.si_code = CLD_DUMPED;
2043 else if (tsk->exit_code & 0x7f)
2044 info.si_code = CLD_KILLED;
2045 else {
2046 info.si_code = CLD_EXITED;
2047 info.si_status = tsk->exit_code >> 8;
2048 }
2049
2050 psig = tsk->parent->sighand;
2051 spin_lock_irqsave(&psig->siglock, flags);
2052 if (!tsk->ptrace && sig == SIGCHLD &&
2053 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2054 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2055 /*
2056 * We are exiting and our parent doesn't care. POSIX.1
2057 * defines special semantics for setting SIGCHLD to SIG_IGN
2058 * or setting the SA_NOCLDWAIT flag: we should be reaped
2059 * automatically and not left for our parent's wait4 call.
2060 * Rather than having the parent do it as a magic kind of
2061 * signal handler, we just set this to tell do_exit that we
2062 * can be cleaned up without becoming a zombie. Note that
2063 * we still call __wake_up_parent in this case, because a
2064 * blocked sys_wait4 might now return -ECHILD.
2065 *
2066 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2067 * is implementation-defined: we do (if you don't want
2068 * it, just use SIG_IGN instead).
2069 */
2070 autoreap = true;
2071 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2072 sig = 0;
2073 }
2074 /*
2075 * Send with __send_signal as si_pid and si_uid are in the
2076 * parent's namespaces.
2077 */
2078 if (valid_signal(sig) && sig)
2079 __send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2080 __wake_up_parent(tsk, tsk->parent);
2081 spin_unlock_irqrestore(&psig->siglock, flags);
2082
2083 return autoreap;
2084 }
2085
2086 /**
2087 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2088 * @tsk: task reporting the state change
2089 * @for_ptracer: the notification is for ptracer
2090 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2091 *
2092 * Notify @tsk's parent that the stopped/continued state has changed. If
2093 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2094 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2095 *
2096 * CONTEXT:
2097 * Must be called with tasklist_lock at least read locked.
2098 */
2099 static void do_notify_parent_cldstop(struct task_struct *tsk,
2100 bool for_ptracer, int why)
2101 {
2102 struct kernel_siginfo info;
2103 unsigned long flags;
2104 struct task_struct *parent;
2105 struct sighand_struct *sighand;
2106 u64 utime, stime;
2107
2108 if (for_ptracer) {
2109 parent = tsk->parent;
2110 } else {
2111 tsk = tsk->group_leader;
2112 parent = tsk->real_parent;
2113 }
2114
2115 clear_siginfo(&info);
2116 info.si_signo = SIGCHLD;
2117 info.si_errno = 0;
2118 /*
2119 * see comment in do_notify_parent() about the following 4 lines
2120 */
2121 rcu_read_lock();
2122 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2123 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2124 rcu_read_unlock();
2125
2126 task_cputime(tsk, &utime, &stime);
2127 info.si_utime = nsec_to_clock_t(utime);
2128 info.si_stime = nsec_to_clock_t(stime);
2129
2130 info.si_code = why;
2131 switch (why) {
2132 case CLD_CONTINUED:
2133 info.si_status = SIGCONT;
2134 break;
2135 case CLD_STOPPED:
2136 info.si_status = tsk->signal->group_exit_code & 0x7f;
2137 break;
2138 case CLD_TRAPPED:
2139 info.si_status = tsk->exit_code & 0x7f;
2140 break;
2141 default:
2142 BUG();
2143 }
2144
2145 sighand = parent->sighand;
2146 spin_lock_irqsave(&sighand->siglock, flags);
2147 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2148 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2149 __group_send_sig_info(SIGCHLD, &info, parent);
2150 /*
2151 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2152 */
2153 __wake_up_parent(tsk, parent);
2154 spin_unlock_irqrestore(&sighand->siglock, flags);
2155 }
2156
2157 static inline bool may_ptrace_stop(void)
2158 {
2159 if (!likely(current->ptrace))
2160 return false;
2161 /*
2162 * Are we in the middle of do_coredump?
2163 * If so and our tracer is also part of the coredump stopping
2164 * is a deadlock situation, and pointless because our tracer
2165 * is dead so don't allow us to stop.
2166 * If SIGKILL was already sent before the caller unlocked
2167 * ->siglock we must see ->core_state != NULL. Otherwise it
2168 * is safe to enter schedule().
2169 *
2170 * This is almost outdated, a task with the pending SIGKILL can't
2171 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2172 * after SIGKILL was already dequeued.
2173 */
2174 if (unlikely(current->mm->core_state) &&
2175 unlikely(current->mm == current->parent->mm))
2176 return false;
2177
2178 return true;
2179 }
2180
2181
2182 /*
2183 * This must be called with current->sighand->siglock held.
2184 *
2185 * This should be the path for all ptrace stops.
2186 * We always set current->last_siginfo while stopped here.
2187 * That makes it a way to test a stopped process for
2188 * being ptrace-stopped vs being job-control-stopped.
2189 *
2190 * If we actually decide not to stop at all because the tracer
2191 * is gone, we keep current->exit_code unless clear_code.
2192 */
2193 static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2194 __releases(&current->sighand->siglock)
2195 __acquires(&current->sighand->siglock)
2196 {
2197 bool gstop_done = false;
2198
2199 if (arch_ptrace_stop_needed(exit_code, info)) {
2200 /*
2201 * The arch code has something special to do before a
2202 * ptrace stop. This is allowed to block, e.g. for faults
2203 * on user stack pages. We can't keep the siglock while
2204 * calling arch_ptrace_stop, so we must release it now.
2205 * To preserve proper semantics, we must do this before
2206 * any signal bookkeeping like checking group_stop_count.
2207 */
2208 spin_unlock_irq(&current->sighand->siglock);
2209 arch_ptrace_stop(exit_code, info);
2210 spin_lock_irq(&current->sighand->siglock);
2211 }
2212
2213 /*
2214 * schedule() will not sleep if there is a pending signal that
2215 * can awaken the task.
2216 */
2217 set_special_state(TASK_TRACED);
2218
2219 /*
2220 * We're committing to trapping. TRACED should be visible before
2221 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2222 * Also, transition to TRACED and updates to ->jobctl should be
2223 * atomic with respect to siglock and should be done after the arch
2224 * hook as siglock is released and regrabbed across it.
2225 *
2226 * TRACER TRACEE
2227 *
2228 * ptrace_attach()
2229 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
2230 * do_wait()
2231 * set_current_state() smp_wmb();
2232 * ptrace_do_wait()
2233 * wait_task_stopped()
2234 * task_stopped_code()
2235 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
2236 */
2237 smp_wmb();
2238
2239 current->last_siginfo = info;
2240 current->exit_code = exit_code;
2241
2242 /*
2243 * If @why is CLD_STOPPED, we're trapping to participate in a group
2244 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
2245 * across siglock relocks since INTERRUPT was scheduled, PENDING
2246 * could be clear now. We act as if SIGCONT is received after
2247 * TASK_TRACED is entered - ignore it.
2248 */
2249 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2250 gstop_done = task_participate_group_stop(current);
2251
2252 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2253 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2254 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2255 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2256
2257 /* entering a trap, clear TRAPPING */
2258 task_clear_jobctl_trapping(current);
2259
2260 spin_unlock_irq(&current->sighand->siglock);
2261 read_lock(&tasklist_lock);
2262 if (may_ptrace_stop()) {
2263 /*
2264 * Notify parents of the stop.
2265 *
2266 * While ptraced, there are two parents - the ptracer and
2267 * the real_parent of the group_leader. The ptracer should
2268 * know about every stop while the real parent is only
2269 * interested in the completion of group stop. The states
2270 * for the two don't interact with each other. Notify
2271 * separately unless they're gonna be duplicates.
2272 */
2273 do_notify_parent_cldstop(current, true, why);
2274 if (gstop_done && ptrace_reparented(current))
2275 do_notify_parent_cldstop(current, false, why);
2276
2277 /*
2278 * Don't want to allow preemption here, because
2279 * sys_ptrace() needs this task to be inactive.
2280 *
2281 * XXX: implement read_unlock_no_resched().
2282 */
2283 preempt_disable();
2284 read_unlock(&tasklist_lock);
2285 cgroup_enter_frozen();
2286 preempt_enable_no_resched();
2287 freezable_schedule();
2288 cgroup_leave_frozen(true);
2289 } else {
2290 /*
2291 * By the time we got the lock, our tracer went away.
2292 * Don't drop the lock yet, another tracer may come.
2293 *
2294 * If @gstop_done, the ptracer went away between group stop
2295 * completion and here. During detach, it would have set
2296 * JOBCTL_STOP_PENDING on us and we'll re-enter
2297 * TASK_STOPPED in do_signal_stop() on return, so notifying
2298 * the real parent of the group stop completion is enough.
2299 */
2300 if (gstop_done)
2301 do_notify_parent_cldstop(current, false, why);
2302
2303 /* tasklist protects us from ptrace_freeze_traced() */
2304 __set_current_state(TASK_RUNNING);
2305 if (clear_code)
2306 current->exit_code = 0;
2307 read_unlock(&tasklist_lock);
2308 }
2309
2310 /*
2311 * We are back. Now reacquire the siglock before touching
2312 * last_siginfo, so that we are sure to have synchronized with
2313 * any signal-sending on another CPU that wants to examine it.
2314 */
2315 spin_lock_irq(&current->sighand->siglock);
2316 current->last_siginfo = NULL;
2317
2318 /* LISTENING can be set only during STOP traps, clear it */
2319 current->jobctl &= ~JOBCTL_LISTENING;
2320
2321 /*
2322 * Queued signals ignored us while we were stopped for tracing.
2323 * So check for any that we should take before resuming user mode.
2324 * This sets TIF_SIGPENDING, but never clears it.
2325 */
2326 recalc_sigpending_tsk(current);
2327 }
2328
2329 static void ptrace_do_notify(int signr, int exit_code, int why)
2330 {
2331 kernel_siginfo_t info;
2332
2333 clear_siginfo(&info);
2334 info.si_signo = signr;
2335 info.si_code = exit_code;
2336 info.si_pid = task_pid_vnr(current);
2337 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2338
2339 /* Let the debugger run. */
2340 ptrace_stop(exit_code, why, 1, &info);
2341 }
2342
2343 void ptrace_notify(int exit_code)
2344 {
2345 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2346 if (unlikely(current->task_works))
2347 task_work_run();
2348
2349 spin_lock_irq(&current->sighand->siglock);
2350 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2351 spin_unlock_irq(&current->sighand->siglock);
2352 }
2353
2354 /**
2355 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2356 * @signr: signr causing group stop if initiating
2357 *
2358 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2359 * and participate in it. If already set, participate in the existing
2360 * group stop. If participated in a group stop (and thus slept), %true is
2361 * returned with siglock released.
2362 *
2363 * If ptraced, this function doesn't handle stop itself. Instead,
2364 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2365 * untouched. The caller must ensure that INTERRUPT trap handling takes
2366 * places afterwards.
2367 *
2368 * CONTEXT:
2369 * Must be called with @current->sighand->siglock held, which is released
2370 * on %true return.
2371 *
2372 * RETURNS:
2373 * %false if group stop is already cancelled or ptrace trap is scheduled.
2374 * %true if participated in group stop.
2375 */
2376 static bool do_signal_stop(int signr)
2377 __releases(&current->sighand->siglock)
2378 {
2379 struct signal_struct *sig = current->signal;
2380
2381 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2382 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2383 struct task_struct *t;
2384
2385 /* signr will be recorded in task->jobctl for retries */
2386 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2387
2388 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2389 unlikely(signal_group_exit(sig)))
2390 return false;
2391 /*
2392 * There is no group stop already in progress. We must
2393 * initiate one now.
2394 *
2395 * While ptraced, a task may be resumed while group stop is
2396 * still in effect and then receive a stop signal and
2397 * initiate another group stop. This deviates from the
2398 * usual behavior as two consecutive stop signals can't
2399 * cause two group stops when !ptraced. That is why we
2400 * also check !task_is_stopped(t) below.
2401 *
2402 * The condition can be distinguished by testing whether
2403 * SIGNAL_STOP_STOPPED is already set. Don't generate
2404 * group_exit_code in such case.
2405 *
2406 * This is not necessary for SIGNAL_STOP_CONTINUED because
2407 * an intervening stop signal is required to cause two
2408 * continued events regardless of ptrace.
2409 */
2410 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2411 sig->group_exit_code = signr;
2412
2413 sig->group_stop_count = 0;
2414
2415 if (task_set_jobctl_pending(current, signr | gstop))
2416 sig->group_stop_count++;
2417
2418 t = current;
2419 while_each_thread(current, t) {
2420 /*
2421 * Setting state to TASK_STOPPED for a group
2422 * stop is always done with the siglock held,
2423 * so this check has no races.
2424 */
2425 if (!task_is_stopped(t) &&
2426 task_set_jobctl_pending(t, signr | gstop)) {
2427 sig->group_stop_count++;
2428 if (likely(!(t->ptrace & PT_SEIZED)))
2429 signal_wake_up(t, 0);
2430 else
2431 ptrace_trap_notify(t);
2432 }
2433 }
2434 }
2435
2436 if (likely(!current->ptrace)) {
2437 int notify = 0;
2438
2439 /*
2440 * If there are no other threads in the group, or if there
2441 * is a group stop in progress and we are the last to stop,
2442 * report to the parent.
2443 */
2444 if (task_participate_group_stop(current))
2445 notify = CLD_STOPPED;
2446
2447 set_special_state(TASK_STOPPED);
2448 spin_unlock_irq(&current->sighand->siglock);
2449
2450 /*
2451 * Notify the parent of the group stop completion. Because
2452 * we're not holding either the siglock or tasklist_lock
2453 * here, ptracer may attach inbetween; however, this is for
2454 * group stop and should always be delivered to the real
2455 * parent of the group leader. The new ptracer will get
2456 * its notification when this task transitions into
2457 * TASK_TRACED.
2458 */
2459 if (notify) {
2460 read_lock(&tasklist_lock);
2461 do_notify_parent_cldstop(current, false, notify);
2462 read_unlock(&tasklist_lock);
2463 }
2464
2465 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2466 cgroup_enter_frozen();
2467 freezable_schedule();
2468 return true;
2469 } else {
2470 /*
2471 * While ptraced, group stop is handled by STOP trap.
2472 * Schedule it and let the caller deal with it.
2473 */
2474 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2475 return false;
2476 }
2477 }
2478
2479 /**
2480 * do_jobctl_trap - take care of ptrace jobctl traps
2481 *
2482 * When PT_SEIZED, it's used for both group stop and explicit
2483 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2484 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2485 * the stop signal; otherwise, %SIGTRAP.
2486 *
2487 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2488 * number as exit_code and no siginfo.
2489 *
2490 * CONTEXT:
2491 * Must be called with @current->sighand->siglock held, which may be
2492 * released and re-acquired before returning with intervening sleep.
2493 */
2494 static void do_jobctl_trap(void)
2495 {
2496 struct signal_struct *signal = current->signal;
2497 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2498
2499 if (current->ptrace & PT_SEIZED) {
2500 if (!signal->group_stop_count &&
2501 !(signal->flags & SIGNAL_STOP_STOPPED))
2502 signr = SIGTRAP;
2503 WARN_ON_ONCE(!signr);
2504 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2505 CLD_STOPPED);
2506 } else {
2507 WARN_ON_ONCE(!signr);
2508 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2509 current->exit_code = 0;
2510 }
2511 }
2512
2513 /**
2514 * do_freezer_trap - handle the freezer jobctl trap
2515 *
2516 * Puts the task into frozen state, if only the task is not about to quit.
2517 * In this case it drops JOBCTL_TRAP_FREEZE.
2518 *
2519 * CONTEXT:
2520 * Must be called with @current->sighand->siglock held,
2521 * which is always released before returning.
2522 */
2523 static void do_freezer_trap(void)
2524 __releases(&current->sighand->siglock)
2525 {
2526 /*
2527 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2528 * let's make another loop to give it a chance to be handled.
2529 * In any case, we'll return back.
2530 */
2531 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2532 JOBCTL_TRAP_FREEZE) {
2533 spin_unlock_irq(&current->sighand->siglock);
2534 return;
2535 }
2536
2537 /*
2538 * Now we're sure that there is no pending fatal signal and no
2539 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2540 * immediately (if there is a non-fatal signal pending), and
2541 * put the task into sleep.
2542 */
2543 __set_current_state(TASK_INTERRUPTIBLE);
2544 clear_thread_flag(TIF_SIGPENDING);
2545 spin_unlock_irq(&current->sighand->siglock);
2546 cgroup_enter_frozen();
2547 freezable_schedule();
2548 }
2549
2550 static int ptrace_signal(int signr, kernel_siginfo_t *info)
2551 {
2552 /*
2553 * We do not check sig_kernel_stop(signr) but set this marker
2554 * unconditionally because we do not know whether debugger will
2555 * change signr. This flag has no meaning unless we are going
2556 * to stop after return from ptrace_stop(). In this case it will
2557 * be checked in do_signal_stop(), we should only stop if it was
2558 * not cleared by SIGCONT while we were sleeping. See also the
2559 * comment in dequeue_signal().
2560 */
2561 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2562 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2563
2564 /* We're back. Did the debugger cancel the sig? */
2565 signr = current->exit_code;
2566 if (signr == 0)
2567 return signr;
2568
2569 current->exit_code = 0;
2570
2571 /*
2572 * Update the siginfo structure if the signal has
2573 * changed. If the debugger wanted something
2574 * specific in the siginfo structure then it should
2575 * have updated *info via PTRACE_SETSIGINFO.
2576 */
2577 if (signr != info->si_signo) {
2578 clear_siginfo(info);
2579 info->si_signo = signr;
2580 info->si_errno = 0;
2581 info->si_code = SI_USER;
2582 rcu_read_lock();
2583 info->si_pid = task_pid_vnr(current->parent);
2584 info->si_uid = from_kuid_munged(current_user_ns(),
2585 task_uid(current->parent));
2586 rcu_read_unlock();
2587 }
2588
2589 /* If the (new) signal is now blocked, requeue it. */
2590 if (sigismember(&current->blocked, signr)) {
2591 send_signal(signr, info, current, PIDTYPE_PID);
2592 signr = 0;
2593 }
2594
2595 return signr;
2596 }
2597
2598 static void hide_si_addr_tag_bits(struct ksignal *ksig)
2599 {
2600 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2601 case SIL_FAULT:
2602 case SIL_FAULT_TRAPNO:
2603 case SIL_FAULT_MCEERR:
2604 case SIL_FAULT_BNDERR:
2605 case SIL_FAULT_PKUERR:
2606 case SIL_FAULT_PERF_EVENT:
2607 ksig->info.si_addr = arch_untagged_si_addr(
2608 ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2609 break;
2610 case SIL_KILL:
2611 case SIL_TIMER:
2612 case SIL_POLL:
2613 case SIL_CHLD:
2614 case SIL_RT:
2615 case SIL_SYS:
2616 break;
2617 }
2618 }
2619
2620 bool get_signal(struct ksignal *ksig)
2621 {
2622 struct sighand_struct *sighand = current->sighand;
2623 struct signal_struct *signal = current->signal;
2624 int signr;
2625
2626 if (unlikely(current->task_works))
2627 task_work_run();
2628
2629 /*
2630 * For non-generic architectures, check for TIF_NOTIFY_SIGNAL so
2631 * that the arch handlers don't all have to do it. If we get here
2632 * without TIF_SIGPENDING, just exit after running signal work.
2633 */
2634 if (!IS_ENABLED(CONFIG_GENERIC_ENTRY)) {
2635 if (test_thread_flag(TIF_NOTIFY_SIGNAL))
2636 tracehook_notify_signal();
2637 if (!task_sigpending(current))
2638 return false;
2639 }
2640
2641 if (unlikely(uprobe_deny_signal()))
2642 return false;
2643
2644 /*
2645 * Do this once, we can't return to user-mode if freezing() == T.
2646 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2647 * thus do not need another check after return.
2648 */
2649 try_to_freeze();
2650
2651 relock:
2652 spin_lock_irq(&sighand->siglock);
2653
2654 /*
2655 * Every stopped thread goes here after wakeup. Check to see if
2656 * we should notify the parent, prepare_signal(SIGCONT) encodes
2657 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2658 */
2659 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2660 int why;
2661
2662 if (signal->flags & SIGNAL_CLD_CONTINUED)
2663 why = CLD_CONTINUED;
2664 else
2665 why = CLD_STOPPED;
2666
2667 signal->flags &= ~SIGNAL_CLD_MASK;
2668
2669 spin_unlock_irq(&sighand->siglock);
2670
2671 /*
2672 * Notify the parent that we're continuing. This event is
2673 * always per-process and doesn't make whole lot of sense
2674 * for ptracers, who shouldn't consume the state via
2675 * wait(2) either, but, for backward compatibility, notify
2676 * the ptracer of the group leader too unless it's gonna be
2677 * a duplicate.
2678 */
2679 read_lock(&tasklist_lock);
2680 do_notify_parent_cldstop(current, false, why);
2681
2682 if (ptrace_reparented(current->group_leader))
2683 do_notify_parent_cldstop(current->group_leader,
2684 true, why);
2685 read_unlock(&tasklist_lock);
2686
2687 goto relock;
2688 }
2689
2690 /* Has this task already been marked for death? */
2691 if (signal_group_exit(signal)) {
2692 ksig->info.si_signo = signr = SIGKILL;
2693 sigdelset(&current->pending.signal, SIGKILL);
2694 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2695 &sighand->action[SIGKILL - 1]);
2696 recalc_sigpending();
2697 goto fatal;
2698 }
2699
2700 for (;;) {
2701 struct k_sigaction *ka;
2702
2703 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2704 do_signal_stop(0))
2705 goto relock;
2706
2707 if (unlikely(current->jobctl &
2708 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2709 if (current->jobctl & JOBCTL_TRAP_MASK) {
2710 do_jobctl_trap();
2711 spin_unlock_irq(&sighand->siglock);
2712 } else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2713 do_freezer_trap();
2714
2715 goto relock;
2716 }
2717
2718 /*
2719 * If the task is leaving the frozen state, let's update
2720 * cgroup counters and reset the frozen bit.
2721 */
2722 if (unlikely(cgroup_task_frozen(current))) {
2723 spin_unlock_irq(&sighand->siglock);
2724 cgroup_leave_frozen(false);
2725 goto relock;
2726 }
2727
2728 /*
2729 * Signals generated by the execution of an instruction
2730 * need to be delivered before any other pending signals
2731 * so that the instruction pointer in the signal stack
2732 * frame points to the faulting instruction.
2733 */
2734 signr = dequeue_synchronous_signal(&ksig->info);
2735 if (!signr)
2736 signr = dequeue_signal(current, &current->blocked, &ksig->info);
2737
2738 if (!signr)
2739 break; /* will return 0 */
2740
2741 if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2742 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2743 signr = ptrace_signal(signr, &ksig->info);
2744 if (!signr)
2745 continue;
2746 }
2747
2748 ka = &sighand->action[signr-1];
2749
2750 /* Trace actually delivered signals. */
2751 trace_signal_deliver(signr, &ksig->info, ka);
2752
2753 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2754 continue;
2755 if (ka->sa.sa_handler != SIG_DFL) {
2756 /* Run the handler. */
2757 ksig->ka = *ka;
2758
2759 if (ka->sa.sa_flags & SA_ONESHOT)
2760 ka->sa.sa_handler = SIG_DFL;
2761
2762 break; /* will return non-zero "signr" value */
2763 }
2764
2765 /*
2766 * Now we are doing the default action for this signal.
2767 */
2768 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2769 continue;
2770
2771 /*
2772 * Global init gets no signals it doesn't want.
2773 * Container-init gets no signals it doesn't want from same
2774 * container.
2775 *
2776 * Note that if global/container-init sees a sig_kernel_only()
2777 * signal here, the signal must have been generated internally
2778 * or must have come from an ancestor namespace. In either
2779 * case, the signal cannot be dropped.
2780 */
2781 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2782 !sig_kernel_only(signr))
2783 continue;
2784
2785 if (sig_kernel_stop(signr)) {
2786 /*
2787 * The default action is to stop all threads in
2788 * the thread group. The job control signals
2789 * do nothing in an orphaned pgrp, but SIGSTOP
2790 * always works. Note that siglock needs to be
2791 * dropped during the call to is_orphaned_pgrp()
2792 * because of lock ordering with tasklist_lock.
2793 * This allows an intervening SIGCONT to be posted.
2794 * We need to check for that and bail out if necessary.
2795 */
2796 if (signr != SIGSTOP) {
2797 spin_unlock_irq(&sighand->siglock);
2798
2799 /* signals can be posted during this window */
2800
2801 if (is_current_pgrp_orphaned())
2802 goto relock;
2803
2804 spin_lock_irq(&sighand->siglock);
2805 }
2806
2807 if (likely(do_signal_stop(ksig->info.si_signo))) {
2808 /* It released the siglock. */
2809 goto relock;
2810 }
2811
2812 /*
2813 * We didn't actually stop, due to a race
2814 * with SIGCONT or something like that.
2815 */
2816 continue;
2817 }
2818
2819 fatal:
2820 spin_unlock_irq(&sighand->siglock);
2821 if (unlikely(cgroup_task_frozen(current)))
2822 cgroup_leave_frozen(true);
2823
2824 /*
2825 * Anything else is fatal, maybe with a core dump.
2826 */
2827 current->flags |= PF_SIGNALED;
2828
2829 if (sig_kernel_coredump(signr)) {
2830 if (print_fatal_signals)
2831 print_fatal_signal(ksig->info.si_signo);
2832 proc_coredump_connector(current);
2833 /*
2834 * If it was able to dump core, this kills all
2835 * other threads in the group and synchronizes with
2836 * their demise. If we lost the race with another
2837 * thread getting here, it set group_exit_code
2838 * first and our do_group_exit call below will use
2839 * that value and ignore the one we pass it.
2840 */
2841 do_coredump(&ksig->info);
2842 }
2843
2844 /*
2845 * PF_IO_WORKER threads will catch and exit on fatal signals
2846 * themselves. They have cleanup that must be performed, so
2847 * we cannot call do_exit() on their behalf.
2848 */
2849 if (current->flags & PF_IO_WORKER)
2850 goto out;
2851
2852 /*
2853 * Death signals, no core dump.
2854 */
2855 do_group_exit(ksig->info.si_signo);
2856 /* NOTREACHED */
2857 }
2858 spin_unlock_irq(&sighand->siglock);
2859 out:
2860 ksig->sig = signr;
2861
2862 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2863 hide_si_addr_tag_bits(ksig);
2864
2865 return ksig->sig > 0;
2866 }
2867
2868 /**
2869 * signal_delivered -
2870 * @ksig: kernel signal struct
2871 * @stepping: nonzero if debugger single-step or block-step in use
2872 *
2873 * This function should be called when a signal has successfully been
2874 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2875 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2876 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2877 */
2878 static void signal_delivered(struct ksignal *ksig, int stepping)
2879 {
2880 sigset_t blocked;
2881
2882 /* A signal was successfully delivered, and the
2883 saved sigmask was stored on the signal frame,
2884 and will be restored by sigreturn. So we can
2885 simply clear the restore sigmask flag. */
2886 clear_restore_sigmask();
2887
2888 sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2889 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2890 sigaddset(&blocked, ksig->sig);
2891 set_current_blocked(&blocked);
2892 if (current->sas_ss_flags & SS_AUTODISARM)
2893 sas_ss_reset(current);
2894 tracehook_signal_handler(stepping);
2895 }
2896
2897 void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2898 {
2899 if (failed)
2900 force_sigsegv(ksig->sig);
2901 else
2902 signal_delivered(ksig, stepping);
2903 }
2904
2905 /*
2906 * It could be that complete_signal() picked us to notify about the
2907 * group-wide signal. Other threads should be notified now to take
2908 * the shared signals in @which since we will not.
2909 */
2910 static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2911 {
2912 sigset_t retarget;
2913 struct task_struct *t;
2914
2915 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2916 if (sigisemptyset(&retarget))
2917 return;
2918
2919 t = tsk;
2920 while_each_thread(tsk, t) {
2921 if (t->flags & PF_EXITING)
2922 continue;
2923
2924 if (!has_pending_signals(&retarget, &t->blocked))
2925 continue;
2926 /* Remove the signals this thread can handle. */
2927 sigandsets(&retarget, &retarget, &t->blocked);
2928
2929 if (!task_sigpending(t))
2930 signal_wake_up(t, 0);
2931
2932 if (sigisemptyset(&retarget))
2933 break;
2934 }
2935 }
2936
2937 void exit_signals(struct task_struct *tsk)
2938 {
2939 int group_stop = 0;
2940 sigset_t unblocked;
2941
2942 /*
2943 * @tsk is about to have PF_EXITING set - lock out users which
2944 * expect stable threadgroup.
2945 */
2946 cgroup_threadgroup_change_begin(tsk);
2947
2948 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2949 tsk->flags |= PF_EXITING;
2950 cgroup_threadgroup_change_end(tsk);
2951 return;
2952 }
2953
2954 spin_lock_irq(&tsk->sighand->siglock);
2955 /*
2956 * From now this task is not visible for group-wide signals,
2957 * see wants_signal(), do_signal_stop().
2958 */
2959 tsk->flags |= PF_EXITING;
2960
2961 cgroup_threadgroup_change_end(tsk);
2962
2963 if (!task_sigpending(tsk))
2964 goto out;
2965
2966 unblocked = tsk->blocked;
2967 signotset(&unblocked);
2968 retarget_shared_pending(tsk, &unblocked);
2969
2970 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2971 task_participate_group_stop(tsk))
2972 group_stop = CLD_STOPPED;
2973 out:
2974 spin_unlock_irq(&tsk->sighand->siglock);
2975
2976 /*
2977 * If group stop has completed, deliver the notification. This
2978 * should always go to the real parent of the group leader.
2979 */
2980 if (unlikely(group_stop)) {
2981 read_lock(&tasklist_lock);
2982 do_notify_parent_cldstop(tsk, false, group_stop);
2983 read_unlock(&tasklist_lock);
2984 }
2985 }
2986
2987 /*
2988 * System call entry points.
2989 */
2990
2991 /**
2992 * sys_restart_syscall - restart a system call
2993 */
2994 SYSCALL_DEFINE0(restart_syscall)
2995 {
2996 struct restart_block *restart = &current->restart_block;
2997 return restart->fn(restart);
2998 }
2999
3000 long do_no_restart_syscall(struct restart_block *param)
3001 {
3002 return -EINTR;
3003 }
3004
3005 static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3006 {
3007 if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3008 sigset_t newblocked;
3009 /* A set of now blocked but previously unblocked signals. */
3010 sigandnsets(&newblocked, newset, &current->blocked);
3011 retarget_shared_pending(tsk, &newblocked);
3012 }
3013 tsk->blocked = *newset;
3014 recalc_sigpending();
3015 }
3016
3017 /**
3018 * set_current_blocked - change current->blocked mask
3019 * @newset: new mask
3020 *
3021 * It is wrong to change ->blocked directly, this helper should be used
3022 * to ensure the process can't miss a shared signal we are going to block.
3023 */
3024 void set_current_blocked(sigset_t *newset)
3025 {
3026 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3027 __set_current_blocked(newset);
3028 }
3029
3030 void __set_current_blocked(const sigset_t *newset)
3031 {
3032 struct task_struct *tsk = current;
3033
3034 /*
3035 * In case the signal mask hasn't changed, there is nothing we need
3036 * to do. The current->blocked shouldn't be modified by other task.
3037 */
3038 if (sigequalsets(&tsk->blocked, newset))
3039 return;
3040
3041 spin_lock_irq(&tsk->sighand->siglock);
3042 __set_task_blocked(tsk, newset);
3043 spin_unlock_irq(&tsk->sighand->siglock);
3044 }
3045
3046 /*
3047 * This is also useful for kernel threads that want to temporarily
3048 * (or permanently) block certain signals.
3049 *
3050 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3051 * interface happily blocks "unblockable" signals like SIGKILL
3052 * and friends.
3053 */
3054 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3055 {
3056 struct task_struct *tsk = current;
3057 sigset_t newset;
3058
3059 /* Lockless, only current can change ->blocked, never from irq */
3060 if (oldset)
3061 *oldset = tsk->blocked;
3062
3063 switch (how) {
3064 case SIG_BLOCK:
3065 sigorsets(&newset, &tsk->blocked, set);
3066 break;
3067 case SIG_UNBLOCK:
3068 sigandnsets(&newset, &tsk->blocked, set);
3069 break;
3070 case SIG_SETMASK:
3071 newset = *set;
3072 break;
3073 default:
3074 return -EINVAL;
3075 }
3076
3077 __set_current_blocked(&newset);
3078 return 0;
3079 }
3080 EXPORT_SYMBOL(sigprocmask);
3081
3082 /*
3083 * The api helps set app-provided sigmasks.
3084 *
3085 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3086 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3087 *
3088 * Note that it does set_restore_sigmask() in advance, so it must be always
3089 * paired with restore_saved_sigmask_unless() before return from syscall.
3090 */
3091 int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3092 {
3093 sigset_t kmask;
3094
3095 if (!umask)
3096 return 0;
3097 if (sigsetsize != sizeof(sigset_t))
3098 return -EINVAL;
3099 if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3100 return -EFAULT;
3101
3102 set_restore_sigmask();
3103 current->saved_sigmask = current->blocked;
3104 set_current_blocked(&kmask);
3105
3106 return 0;
3107 }
3108
3109 #ifdef CONFIG_COMPAT
3110 int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3111 size_t sigsetsize)
3112 {
3113 sigset_t kmask;
3114
3115 if (!umask)
3116 return 0;
3117 if (sigsetsize != sizeof(compat_sigset_t))
3118 return -EINVAL;
3119 if (get_compat_sigset(&kmask, umask))
3120 return -EFAULT;
3121
3122 set_restore_sigmask();
3123 current->saved_sigmask = current->blocked;
3124 set_current_blocked(&kmask);
3125
3126 return 0;
3127 }
3128 #endif
3129
3130 /**
3131 * sys_rt_sigprocmask - change the list of currently blocked signals
3132 * @how: whether to add, remove, or set signals
3133 * @nset: stores pending signals
3134 * @oset: previous value of signal mask if non-null
3135 * @sigsetsize: size of sigset_t type
3136 */
3137 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3138 sigset_t __user *, oset, size_t, sigsetsize)
3139 {
3140 sigset_t old_set, new_set;
3141 int error;
3142
3143 /* XXX: Don't preclude handling different sized sigset_t's. */
3144 if (sigsetsize != sizeof(sigset_t))
3145 return -EINVAL;
3146
3147 old_set = current->blocked;
3148
3149 if (nset) {
3150 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3151 return -EFAULT;
3152 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3153
3154 error = sigprocmask(how, &new_set, NULL);
3155 if (error)
3156 return error;
3157 }
3158
3159 if (oset) {
3160 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3161 return -EFAULT;
3162 }
3163
3164 return 0;
3165 }
3166
3167 #ifdef CONFIG_COMPAT
3168 COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3169 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3170 {
3171 sigset_t old_set = current->blocked;
3172
3173 /* XXX: Don't preclude handling different sized sigset_t's. */
3174 if (sigsetsize != sizeof(sigset_t))
3175 return -EINVAL;
3176
3177 if (nset) {
3178 sigset_t new_set;
3179 int error;
3180 if (get_compat_sigset(&new_set, nset))
3181 return -EFAULT;
3182 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3183
3184 error = sigprocmask(how, &new_set, NULL);
3185 if (error)
3186 return error;
3187 }
3188 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3189 }
3190 #endif
3191
3192 static void do_sigpending(sigset_t *set)
3193 {
3194 spin_lock_irq(&current->sighand->siglock);
3195 sigorsets(set, &current->pending.signal,
3196 &current->signal->shared_pending.signal);
3197 spin_unlock_irq(&current->sighand->siglock);
3198
3199 /* Outside the lock because only this thread touches it. */
3200 sigandsets(set, &current->blocked, set);
3201 }
3202
3203 /**
3204 * sys_rt_sigpending - examine a pending signal that has been raised
3205 * while blocked
3206 * @uset: stores pending signals
3207 * @sigsetsize: size of sigset_t type or larger
3208 */
3209 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3210 {
3211 sigset_t set;
3212
3213 if (sigsetsize > sizeof(*uset))
3214 return -EINVAL;
3215
3216 do_sigpending(&set);
3217
3218 if (copy_to_user(uset, &set, sigsetsize))
3219 return -EFAULT;
3220
3221 return 0;
3222 }
3223
3224 #ifdef CONFIG_COMPAT
3225 COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3226 compat_size_t, sigsetsize)
3227 {
3228 sigset_t set;
3229
3230 if (sigsetsize > sizeof(*uset))
3231 return -EINVAL;
3232
3233 do_sigpending(&set);
3234
3235 return put_compat_sigset(uset, &set, sigsetsize);
3236 }
3237 #endif
3238
3239 static const struct {
3240 unsigned char limit, layout;
3241 } sig_sicodes[] = {
3242 [SIGILL] = { NSIGILL, SIL_FAULT },
3243 [SIGFPE] = { NSIGFPE, SIL_FAULT },
3244 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3245 [SIGBUS] = { NSIGBUS, SIL_FAULT },
3246 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3247 #if defined(SIGEMT)
3248 [SIGEMT] = { NSIGEMT, SIL_FAULT },
3249 #endif
3250 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3251 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
3252 [SIGSYS] = { NSIGSYS, SIL_SYS },
3253 };
3254
3255 static bool known_siginfo_layout(unsigned sig, int si_code)
3256 {
3257 if (si_code == SI_KERNEL)
3258 return true;
3259 else if ((si_code > SI_USER)) {
3260 if (sig_specific_sicodes(sig)) {
3261 if (si_code <= sig_sicodes[sig].limit)
3262 return true;
3263 }
3264 else if (si_code <= NSIGPOLL)
3265 return true;
3266 }
3267 else if (si_code >= SI_DETHREAD)
3268 return true;
3269 else if (si_code == SI_ASYNCNL)
3270 return true;
3271 return false;
3272 }
3273
3274 enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3275 {
3276 enum siginfo_layout layout = SIL_KILL;
3277 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3278 if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3279 (si_code <= sig_sicodes[sig].limit)) {
3280 layout = sig_sicodes[sig].layout;
3281 /* Handle the exceptions */
3282 if ((sig == SIGBUS) &&
3283 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3284 layout = SIL_FAULT_MCEERR;
3285 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3286 layout = SIL_FAULT_BNDERR;
3287 #ifdef SEGV_PKUERR
3288 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3289 layout = SIL_FAULT_PKUERR;
3290 #endif
3291 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3292 layout = SIL_FAULT_PERF_EVENT;
3293 else if (IS_ENABLED(CONFIG_SPARC) &&
3294 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3295 layout = SIL_FAULT_TRAPNO;
3296 else if (IS_ENABLED(CONFIG_ALPHA) &&
3297 ((sig == SIGFPE) ||
3298 ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3299 layout = SIL_FAULT_TRAPNO;
3300 }
3301 else if (si_code <= NSIGPOLL)
3302 layout = SIL_POLL;
3303 } else {
3304 if (si_code == SI_TIMER)
3305 layout = SIL_TIMER;
3306 else if (si_code == SI_SIGIO)
3307 layout = SIL_POLL;
3308 else if (si_code < 0)
3309 layout = SIL_RT;
3310 }
3311 return layout;
3312 }
3313
3314 static inline char __user *si_expansion(const siginfo_t __user *info)
3315 {
3316 return ((char __user *)info) + sizeof(struct kernel_siginfo);
3317 }
3318
3319 int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3320 {
3321 char __user *expansion = si_expansion(to);
3322 if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3323 return -EFAULT;
3324 if (clear_user(expansion, SI_EXPANSION_SIZE))
3325 return -EFAULT;
3326 return 0;
3327 }
3328
3329 static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3330 const siginfo_t __user *from)
3331 {
3332 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3333 char __user *expansion = si_expansion(from);
3334 char buf[SI_EXPANSION_SIZE];
3335 int i;
3336 /*
3337 * An unknown si_code might need more than
3338 * sizeof(struct kernel_siginfo) bytes. Verify all of the
3339 * extra bytes are 0. This guarantees copy_siginfo_to_user
3340 * will return this data to userspace exactly.
3341 */
3342 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3343 return -EFAULT;
3344 for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3345 if (buf[i] != 0)
3346 return -E2BIG;
3347 }
3348 }
3349 return 0;
3350 }
3351
3352 static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3353 const siginfo_t __user *from)
3354 {
3355 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3356 return -EFAULT;
3357 to->si_signo = signo;
3358 return post_copy_siginfo_from_user(to, from);
3359 }
3360
3361 int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3362 {
3363 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3364 return -EFAULT;
3365 return post_copy_siginfo_from_user(to, from);
3366 }
3367
3368 #ifdef CONFIG_COMPAT
3369 /**
3370 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3371 * @to: compat siginfo destination
3372 * @from: kernel siginfo source
3373 *
3374 * Note: This function does not work properly for the SIGCHLD on x32, but
3375 * fortunately it doesn't have to. The only valid callers for this function are
3376 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3377 * The latter does not care because SIGCHLD will never cause a coredump.
3378 */
3379 void copy_siginfo_to_external32(struct compat_siginfo *to,
3380 const struct kernel_siginfo *from)
3381 {
3382 memset(to, 0, sizeof(*to));
3383
3384 to->si_signo = from->si_signo;
3385 to->si_errno = from->si_errno;
3386 to->si_code = from->si_code;
3387 switch(siginfo_layout(from->si_signo, from->si_code)) {
3388 case SIL_KILL:
3389 to->si_pid = from->si_pid;
3390 to->si_uid = from->si_uid;
3391 break;
3392 case SIL_TIMER:
3393 to->si_tid = from->si_tid;
3394 to->si_overrun = from->si_overrun;
3395 to->si_int = from->si_int;
3396 break;
3397 case SIL_POLL:
3398 to->si_band = from->si_band;
3399 to->si_fd = from->si_fd;
3400 break;
3401 case SIL_FAULT:
3402 to->si_addr = ptr_to_compat(from->si_addr);
3403 break;
3404 case SIL_FAULT_TRAPNO:
3405 to->si_addr = ptr_to_compat(from->si_addr);
3406 to->si_trapno = from->si_trapno;
3407 break;
3408 case SIL_FAULT_MCEERR:
3409 to->si_addr = ptr_to_compat(from->si_addr);
3410 to->si_addr_lsb = from->si_addr_lsb;
3411 break;
3412 case SIL_FAULT_BNDERR:
3413 to->si_addr = ptr_to_compat(from->si_addr);
3414 to->si_lower = ptr_to_compat(from->si_lower);
3415 to->si_upper = ptr_to_compat(from->si_upper);
3416 break;
3417 case SIL_FAULT_PKUERR:
3418 to->si_addr = ptr_to_compat(from->si_addr);
3419 to->si_pkey = from->si_pkey;
3420 break;
3421 case SIL_FAULT_PERF_EVENT:
3422 to->si_addr = ptr_to_compat(from->si_addr);
3423 to->si_perf_data = from->si_perf_data;
3424 to->si_perf_type = from->si_perf_type;
3425 break;
3426 case SIL_CHLD:
3427 to->si_pid = from->si_pid;
3428 to->si_uid = from->si_uid;
3429 to->si_status = from->si_status;
3430 to->si_utime = from->si_utime;
3431 to->si_stime = from->si_stime;
3432 break;
3433 case SIL_RT:
3434 to->si_pid = from->si_pid;
3435 to->si_uid = from->si_uid;
3436 to->si_int = from->si_int;
3437 break;
3438 case SIL_SYS:
3439 to->si_call_addr = ptr_to_compat(from->si_call_addr);
3440 to->si_syscall = from->si_syscall;
3441 to->si_arch = from->si_arch;
3442 break;
3443 }
3444 }
3445
3446 int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3447 const struct kernel_siginfo *from)
3448 {
3449 struct compat_siginfo new;
3450
3451 copy_siginfo_to_external32(&new, from);
3452 if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3453 return -EFAULT;
3454 return 0;
3455 }
3456
3457 static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3458 const struct compat_siginfo *from)
3459 {
3460 clear_siginfo(to);
3461 to->si_signo = from->si_signo;
3462 to->si_errno = from->si_errno;
3463 to->si_code = from->si_code;
3464 switch(siginfo_layout(from->si_signo, from->si_code)) {
3465 case SIL_KILL:
3466 to->si_pid = from->si_pid;
3467 to->si_uid = from->si_uid;
3468 break;
3469 case SIL_TIMER:
3470 to->si_tid = from->si_tid;
3471 to->si_overrun = from->si_overrun;
3472 to->si_int = from->si_int;
3473 break;
3474 case SIL_POLL:
3475 to->si_band = from->si_band;
3476 to->si_fd = from->si_fd;
3477 break;
3478 case SIL_FAULT:
3479 to->si_addr = compat_ptr(from->si_addr);
3480 break;
3481 case SIL_FAULT_TRAPNO:
3482 to->si_addr = compat_ptr(from->si_addr);
3483 to->si_trapno = from->si_trapno;
3484 break;
3485 case SIL_FAULT_MCEERR:
3486 to->si_addr = compat_ptr(from->si_addr);
3487 to->si_addr_lsb = from->si_addr_lsb;
3488 break;
3489 case SIL_FAULT_BNDERR:
3490 to->si_addr = compat_ptr(from->si_addr);
3491 to->si_lower = compat_ptr(from->si_lower);
3492 to->si_upper = compat_ptr(from->si_upper);
3493 break;
3494 case SIL_FAULT_PKUERR:
3495 to->si_addr = compat_ptr(from->si_addr);
3496 to->si_pkey = from->si_pkey;
3497 break;
3498 case SIL_FAULT_PERF_EVENT:
3499 to->si_addr = compat_ptr(from->si_addr);
3500 to->si_perf_data = from->si_perf_data;
3501 to->si_perf_type = from->si_perf_type;
3502 break;
3503 case SIL_CHLD:
3504 to->si_pid = from->si_pid;
3505 to->si_uid = from->si_uid;
3506 to->si_status = from->si_status;
3507 #ifdef CONFIG_X86_X32_ABI
3508 if (in_x32_syscall()) {
3509 to->si_utime = from->_sifields._sigchld_x32._utime;
3510 to->si_stime = from->_sifields._sigchld_x32._stime;
3511 } else
3512 #endif
3513 {
3514 to->si_utime = from->si_utime;
3515 to->si_stime = from->si_stime;
3516 }
3517 break;
3518 case SIL_RT:
3519 to->si_pid = from->si_pid;
3520 to->si_uid = from->si_uid;
3521 to->si_int = from->si_int;
3522 break;
3523 case SIL_SYS:
3524 to->si_call_addr = compat_ptr(from->si_call_addr);
3525 to->si_syscall = from->si_syscall;
3526 to->si_arch = from->si_arch;
3527 break;
3528 }
3529 return 0;
3530 }
3531
3532 static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3533 const struct compat_siginfo __user *ufrom)
3534 {
3535 struct compat_siginfo from;
3536
3537 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3538 return -EFAULT;
3539
3540 from.si_signo = signo;
3541 return post_copy_siginfo_from_user32(to, &from);
3542 }
3543
3544 int copy_siginfo_from_user32(struct kernel_siginfo *to,
3545 const struct compat_siginfo __user *ufrom)
3546 {
3547 struct compat_siginfo from;
3548
3549 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3550 return -EFAULT;
3551
3552 return post_copy_siginfo_from_user32(to, &from);
3553 }
3554 #endif /* CONFIG_COMPAT */
3555
3556 /**
3557 * do_sigtimedwait - wait for queued signals specified in @which
3558 * @which: queued signals to wait for
3559 * @info: if non-null, the signal's siginfo is returned here
3560 * @ts: upper bound on process time suspension
3561 */
3562 static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3563 const struct timespec64 *ts)
3564 {
3565 ktime_t *to = NULL, timeout = KTIME_MAX;
3566 struct task_struct *tsk = current;
3567 sigset_t mask = *which;
3568 int sig, ret = 0;
3569
3570 if (ts) {
3571 if (!timespec64_valid(ts))
3572 return -EINVAL;
3573 timeout = timespec64_to_ktime(*ts);
3574 to = &timeout;
3575 }
3576
3577 /*
3578 * Invert the set of allowed signals to get those we want to block.
3579 */
3580 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3581 signotset(&mask);
3582
3583 spin_lock_irq(&tsk->sighand->siglock);
3584 sig = dequeue_signal(tsk, &mask, info);
3585 if (!sig && timeout) {
3586 /*
3587 * None ready, temporarily unblock those we're interested
3588 * while we are sleeping in so that we'll be awakened when
3589 * they arrive. Unblocking is always fine, we can avoid
3590 * set_current_blocked().
3591 */
3592 tsk->real_blocked = tsk->blocked;
3593 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3594 recalc_sigpending();
3595 spin_unlock_irq(&tsk->sighand->siglock);
3596
3597 __set_current_state(TASK_INTERRUPTIBLE);
3598 ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3599 HRTIMER_MODE_REL);
3600 spin_lock_irq(&tsk->sighand->siglock);
3601 __set_task_blocked(tsk, &tsk->real_blocked);
3602 sigemptyset(&tsk->real_blocked);
3603 sig = dequeue_signal(tsk, &mask, info);
3604 }
3605 spin_unlock_irq(&tsk->sighand->siglock);
3606
3607 if (sig)
3608 return sig;
3609 return ret ? -EINTR : -EAGAIN;
3610 }
3611
3612 /**
3613 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3614 * in @uthese
3615 * @uthese: queued signals to wait for
3616 * @uinfo: if non-null, the signal's siginfo is returned here
3617 * @uts: upper bound on process time suspension
3618 * @sigsetsize: size of sigset_t type
3619 */
3620 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3621 siginfo_t __user *, uinfo,
3622 const struct __kernel_timespec __user *, uts,
3623 size_t, sigsetsize)
3624 {
3625 sigset_t these;
3626 struct timespec64 ts;
3627 kernel_siginfo_t info;
3628 int ret;
3629
3630 /* XXX: Don't preclude handling different sized sigset_t's. */
3631 if (sigsetsize != sizeof(sigset_t))
3632 return -EINVAL;
3633
3634 if (copy_from_user(&these, uthese, sizeof(these)))
3635 return -EFAULT;
3636
3637 if (uts) {
3638 if (get_timespec64(&ts, uts))
3639 return -EFAULT;
3640 }
3641
3642 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3643
3644 if (ret > 0 && uinfo) {
3645 if (copy_siginfo_to_user(uinfo, &info))
3646 ret = -EFAULT;
3647 }
3648
3649 return ret;
3650 }
3651
3652 #ifdef CONFIG_COMPAT_32BIT_TIME
3653 SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3654 siginfo_t __user *, uinfo,
3655 const struct old_timespec32 __user *, uts,
3656 size_t, sigsetsize)
3657 {
3658 sigset_t these;
3659 struct timespec64 ts;
3660 kernel_siginfo_t info;
3661 int ret;
3662
3663 if (sigsetsize != sizeof(sigset_t))
3664 return -EINVAL;
3665
3666 if (copy_from_user(&these, uthese, sizeof(these)))
3667 return -EFAULT;
3668
3669 if (uts) {
3670 if (get_old_timespec32(&ts, uts))
3671 return -EFAULT;
3672 }
3673
3674 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3675
3676 if (ret > 0 && uinfo) {
3677 if (copy_siginfo_to_user(uinfo, &info))
3678 ret = -EFAULT;
3679 }
3680
3681 return ret;
3682 }
3683 #endif
3684
3685 #ifdef CONFIG_COMPAT
3686 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3687 struct compat_siginfo __user *, uinfo,
3688 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3689 {
3690 sigset_t s;
3691 struct timespec64 t;
3692 kernel_siginfo_t info;
3693 long ret;
3694
3695 if (sigsetsize != sizeof(sigset_t))
3696 return -EINVAL;
3697
3698 if (get_compat_sigset(&s, uthese))
3699 return -EFAULT;
3700
3701 if (uts) {
3702 if (get_timespec64(&t, uts))
3703 return -EFAULT;
3704 }
3705
3706 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3707
3708 if (ret > 0 && uinfo) {
3709 if (copy_siginfo_to_user32(uinfo, &info))
3710 ret = -EFAULT;
3711 }
3712
3713 return ret;
3714 }
3715
3716 #ifdef CONFIG_COMPAT_32BIT_TIME
3717 COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3718 struct compat_siginfo __user *, uinfo,
3719 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3720 {
3721 sigset_t s;
3722 struct timespec64 t;
3723 kernel_siginfo_t info;
3724 long ret;
3725
3726 if (sigsetsize != sizeof(sigset_t))
3727 return -EINVAL;
3728
3729 if (get_compat_sigset(&s, uthese))
3730 return -EFAULT;
3731
3732 if (uts) {
3733 if (get_old_timespec32(&t, uts))
3734 return -EFAULT;
3735 }
3736
3737 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3738
3739 if (ret > 0 && uinfo) {
3740 if (copy_siginfo_to_user32(uinfo, &info))
3741 ret = -EFAULT;
3742 }
3743
3744 return ret;
3745 }
3746 #endif
3747 #endif
3748
3749 static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3750 {
3751 clear_siginfo(info);
3752 info->si_signo = sig;
3753 info->si_errno = 0;
3754 info->si_code = SI_USER;
3755 info->si_pid = task_tgid_vnr(current);
3756 info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3757 }
3758
3759 /**
3760 * sys_kill - send a signal to a process
3761 * @pid: the PID of the process
3762 * @sig: signal to be sent
3763 */
3764 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3765 {
3766 struct kernel_siginfo info;
3767
3768 prepare_kill_siginfo(sig, &info);
3769
3770 return kill_something_info(sig, &info, pid);
3771 }
3772
3773 /*
3774 * Verify that the signaler and signalee either are in the same pid namespace
3775 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3776 * namespace.
3777 */
3778 static bool access_pidfd_pidns(struct pid *pid)
3779 {
3780 struct pid_namespace *active = task_active_pid_ns(current);
3781 struct pid_namespace *p = ns_of_pid(pid);
3782
3783 for (;;) {
3784 if (!p)
3785 return false;
3786 if (p == active)
3787 break;
3788 p = p->parent;
3789 }
3790
3791 return true;
3792 }
3793
3794 static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3795 siginfo_t __user *info)
3796 {
3797 #ifdef CONFIG_COMPAT
3798 /*
3799 * Avoid hooking up compat syscalls and instead handle necessary
3800 * conversions here. Note, this is a stop-gap measure and should not be
3801 * considered a generic solution.
3802 */
3803 if (in_compat_syscall())
3804 return copy_siginfo_from_user32(
3805 kinfo, (struct compat_siginfo __user *)info);
3806 #endif
3807 return copy_siginfo_from_user(kinfo, info);
3808 }
3809
3810 static struct pid *pidfd_to_pid(const struct file *file)
3811 {
3812 struct pid *pid;
3813
3814 pid = pidfd_pid(file);
3815 if (!IS_ERR(pid))
3816 return pid;
3817
3818 return tgid_pidfd_to_pid(file);
3819 }
3820
3821 /**
3822 * sys_pidfd_send_signal - Signal a process through a pidfd
3823 * @pidfd: file descriptor of the process
3824 * @sig: signal to send
3825 * @info: signal info
3826 * @flags: future flags
3827 *
3828 * The syscall currently only signals via PIDTYPE_PID which covers
3829 * kill(<positive-pid>, <signal>. It does not signal threads or process
3830 * groups.
3831 * In order to extend the syscall to threads and process groups the @flags
3832 * argument should be used. In essence, the @flags argument will determine
3833 * what is signaled and not the file descriptor itself. Put in other words,
3834 * grouping is a property of the flags argument not a property of the file
3835 * descriptor.
3836 *
3837 * Return: 0 on success, negative errno on failure
3838 */
3839 SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3840 siginfo_t __user *, info, unsigned int, flags)
3841 {
3842 int ret;
3843 struct fd f;
3844 struct pid *pid;
3845 kernel_siginfo_t kinfo;
3846
3847 /* Enforce flags be set to 0 until we add an extension. */
3848 if (flags)
3849 return -EINVAL;
3850
3851 f = fdget(pidfd);
3852 if (!f.file)
3853 return -EBADF;
3854
3855 /* Is this a pidfd? */
3856 pid = pidfd_to_pid(f.file);
3857 if (IS_ERR(pid)) {
3858 ret = PTR_ERR(pid);
3859 goto err;
3860 }
3861
3862 ret = -EINVAL;
3863 if (!access_pidfd_pidns(pid))
3864 goto err;
3865
3866 if (info) {
3867 ret = copy_siginfo_from_user_any(&kinfo, info);
3868 if (unlikely(ret))
3869 goto err;
3870
3871 ret = -EINVAL;
3872 if (unlikely(sig != kinfo.si_signo))
3873 goto err;
3874
3875 /* Only allow sending arbitrary signals to yourself. */
3876 ret = -EPERM;
3877 if ((task_pid(current) != pid) &&
3878 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3879 goto err;
3880 } else {
3881 prepare_kill_siginfo(sig, &kinfo);
3882 }
3883
3884 ret = kill_pid_info(sig, &kinfo, pid);
3885
3886 err:
3887 fdput(f);
3888 return ret;
3889 }
3890
3891 static int
3892 do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3893 {
3894 struct task_struct *p;
3895 int error = -ESRCH;
3896
3897 rcu_read_lock();
3898 p = find_task_by_vpid(pid);
3899 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3900 error = check_kill_permission(sig, info, p);
3901 /*
3902 * The null signal is a permissions and process existence
3903 * probe. No signal is actually delivered.
3904 */
3905 if (!error && sig) {
3906 error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3907 /*
3908 * If lock_task_sighand() failed we pretend the task
3909 * dies after receiving the signal. The window is tiny,
3910 * and the signal is private anyway.
3911 */
3912 if (unlikely(error == -ESRCH))
3913 error = 0;
3914 }
3915 }
3916 rcu_read_unlock();
3917
3918 return error;
3919 }
3920
3921 static int do_tkill(pid_t tgid, pid_t pid, int sig)
3922 {
3923 struct kernel_siginfo info;
3924
3925 clear_siginfo(&info);
3926 info.si_signo = sig;
3927 info.si_errno = 0;
3928 info.si_code = SI_TKILL;
3929 info.si_pid = task_tgid_vnr(current);
3930 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3931
3932 return do_send_specific(tgid, pid, sig, &info);
3933 }
3934
3935 /**
3936 * sys_tgkill - send signal to one specific thread
3937 * @tgid: the thread group ID of the thread
3938 * @pid: the PID of the thread
3939 * @sig: signal to be sent
3940 *
3941 * This syscall also checks the @tgid and returns -ESRCH even if the PID
3942 * exists but it's not belonging to the target process anymore. This
3943 * method solves the problem of threads exiting and PIDs getting reused.
3944 */
3945 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3946 {
3947 /* This is only valid for single tasks */
3948 if (pid <= 0 || tgid <= 0)
3949 return -EINVAL;
3950
3951 return do_tkill(tgid, pid, sig);
3952 }
3953
3954 /**
3955 * sys_tkill - send signal to one specific task
3956 * @pid: the PID of the task
3957 * @sig: signal to be sent
3958 *
3959 * Send a signal to only one task, even if it's a CLONE_THREAD task.
3960 */
3961 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3962 {
3963 /* This is only valid for single tasks */
3964 if (pid <= 0)
3965 return -EINVAL;
3966
3967 return do_tkill(0, pid, sig);
3968 }
3969
3970 static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3971 {
3972 /* Not even root can pretend to send signals from the kernel.
3973 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3974 */
3975 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3976 (task_pid_vnr(current) != pid))
3977 return -EPERM;
3978
3979 /* POSIX.1b doesn't mention process groups. */
3980 return kill_proc_info(sig, info, pid);
3981 }
3982
3983 /**
3984 * sys_rt_sigqueueinfo - send signal information to a signal
3985 * @pid: the PID of the thread
3986 * @sig: signal to be sent
3987 * @uinfo: signal info to be sent
3988 */
3989 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3990 siginfo_t __user *, uinfo)
3991 {
3992 kernel_siginfo_t info;
3993 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3994 if (unlikely(ret))
3995 return ret;
3996 return do_rt_sigqueueinfo(pid, sig, &info);
3997 }
3998
3999 #ifdef CONFIG_COMPAT
4000 COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4001 compat_pid_t, pid,
4002 int, sig,
4003 struct compat_siginfo __user *, uinfo)
4004 {
4005 kernel_siginfo_t info;
4006 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4007 if (unlikely(ret))
4008 return ret;
4009 return do_rt_sigqueueinfo(pid, sig, &info);
4010 }
4011 #endif
4012
4013 static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4014 {
4015 /* This is only valid for single tasks */
4016 if (pid <= 0 || tgid <= 0)
4017 return -EINVAL;
4018
4019 /* Not even root can pretend to send signals from the kernel.
4020 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4021 */
4022 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4023 (task_pid_vnr(current) != pid))
4024 return -EPERM;
4025
4026 return do_send_specific(tgid, pid, sig, info);
4027 }
4028
4029 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4030 siginfo_t __user *, uinfo)
4031 {
4032 kernel_siginfo_t info;
4033 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4034 if (unlikely(ret))
4035 return ret;
4036 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4037 }
4038
4039 #ifdef CONFIG_COMPAT
4040 COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4041 compat_pid_t, tgid,
4042 compat_pid_t, pid,
4043 int, sig,
4044 struct compat_siginfo __user *, uinfo)
4045 {
4046 kernel_siginfo_t info;
4047 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4048 if (unlikely(ret))
4049 return ret;
4050 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4051 }
4052 #endif
4053
4054 /*
4055 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4056 */
4057 void kernel_sigaction(int sig, __sighandler_t action)
4058 {
4059 spin_lock_irq(&current->sighand->siglock);
4060 current->sighand->action[sig - 1].sa.sa_handler = action;
4061 if (action == SIG_IGN) {
4062 sigset_t mask;
4063
4064 sigemptyset(&mask);
4065 sigaddset(&mask, sig);
4066
4067 flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4068 flush_sigqueue_mask(&mask, &current->pending);
4069 recalc_sigpending();
4070 }
4071 spin_unlock_irq(&current->sighand->siglock);
4072 }
4073 EXPORT_SYMBOL(kernel_sigaction);
4074
4075 void __weak sigaction_compat_abi(struct k_sigaction *act,
4076 struct k_sigaction *oact)
4077 {
4078 }
4079
4080 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4081 {
4082 struct task_struct *p = current, *t;
4083 struct k_sigaction *k;
4084 sigset_t mask;
4085
4086 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4087 return -EINVAL;
4088
4089 k = &p->sighand->action[sig-1];
4090
4091 spin_lock_irq(&p->sighand->siglock);
4092 if (k->sa.sa_flags & SA_IMMUTABLE) {
4093 spin_unlock_irq(&p->sighand->siglock);
4094 return -EINVAL;
4095 }
4096 if (oact)
4097 *oact = *k;
4098
4099 /*
4100 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4101 * e.g. by having an architecture use the bit in their uapi.
4102 */
4103 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4104
4105 /*
4106 * Clear unknown flag bits in order to allow userspace to detect missing
4107 * support for flag bits and to allow the kernel to use non-uapi bits
4108 * internally.
4109 */
4110 if (act)
4111 act->sa.sa_flags &= UAPI_SA_FLAGS;
4112 if (oact)
4113 oact->sa.sa_flags &= UAPI_SA_FLAGS;
4114
4115 sigaction_compat_abi(act, oact);
4116
4117 if (act) {
4118 sigdelsetmask(&act->sa.sa_mask,
4119 sigmask(SIGKILL) | sigmask(SIGSTOP));
4120 *k = *act;
4121 /*
4122 * POSIX 3.3.1.3:
4123 * "Setting a signal action to SIG_IGN for a signal that is
4124 * pending shall cause the pending signal to be discarded,
4125 * whether or not it is blocked."
4126 *
4127 * "Setting a signal action to SIG_DFL for a signal that is
4128 * pending and whose default action is to ignore the signal
4129 * (for example, SIGCHLD), shall cause the pending signal to
4130 * be discarded, whether or not it is blocked"
4131 */
4132 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4133 sigemptyset(&mask);
4134 sigaddset(&mask, sig);
4135 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4136 for_each_thread(p, t)
4137 flush_sigqueue_mask(&mask, &t->pending);
4138 }
4139 }
4140
4141 spin_unlock_irq(&p->sighand->siglock);
4142 return 0;
4143 }
4144
4145 static int
4146 do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4147 size_t min_ss_size)
4148 {
4149 struct task_struct *t = current;
4150
4151 if (oss) {
4152 memset(oss, 0, sizeof(stack_t));
4153 oss->ss_sp = (void __user *) t->sas_ss_sp;
4154 oss->ss_size = t->sas_ss_size;
4155 oss->ss_flags = sas_ss_flags(sp) |
4156 (current->sas_ss_flags & SS_FLAG_BITS);
4157 }
4158
4159 if (ss) {
4160 void __user *ss_sp = ss->ss_sp;
4161 size_t ss_size = ss->ss_size;
4162 unsigned ss_flags = ss->ss_flags;
4163 int ss_mode;
4164
4165 if (unlikely(on_sig_stack(sp)))
4166 return -EPERM;
4167
4168 ss_mode = ss_flags & ~SS_FLAG_BITS;
4169 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4170 ss_mode != 0))
4171 return -EINVAL;
4172
4173 if (ss_mode == SS_DISABLE) {
4174 ss_size = 0;
4175 ss_sp = NULL;
4176 } else {
4177 if (unlikely(ss_size < min_ss_size))
4178 return -ENOMEM;
4179 }
4180
4181 t->sas_ss_sp = (unsigned long) ss_sp;
4182 t->sas_ss_size = ss_size;
4183 t->sas_ss_flags = ss_flags;
4184 }
4185 return 0;
4186 }
4187
4188 SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4189 {
4190 stack_t new, old;
4191 int err;
4192 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4193 return -EFAULT;
4194 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4195 current_user_stack_pointer(),
4196 MINSIGSTKSZ);
4197 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4198 err = -EFAULT;
4199 return err;
4200 }
4201
4202 int restore_altstack(const stack_t __user *uss)
4203 {
4204 stack_t new;
4205 if (copy_from_user(&new, uss, sizeof(stack_t)))
4206 return -EFAULT;
4207 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4208 MINSIGSTKSZ);
4209 /* squash all but EFAULT for now */
4210 return 0;
4211 }
4212
4213 int __save_altstack(stack_t __user *uss, unsigned long sp)
4214 {
4215 struct task_struct *t = current;
4216 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4217 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4218 __put_user(t->sas_ss_size, &uss->ss_size);
4219 return err;
4220 }
4221
4222 #ifdef CONFIG_COMPAT
4223 static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4224 compat_stack_t __user *uoss_ptr)
4225 {
4226 stack_t uss, uoss;
4227 int ret;
4228
4229 if (uss_ptr) {
4230 compat_stack_t uss32;
4231 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4232 return -EFAULT;
4233 uss.ss_sp = compat_ptr(uss32.ss_sp);
4234 uss.ss_flags = uss32.ss_flags;
4235 uss.ss_size = uss32.ss_size;
4236 }
4237 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4238 compat_user_stack_pointer(),
4239 COMPAT_MINSIGSTKSZ);
4240 if (ret >= 0 && uoss_ptr) {
4241 compat_stack_t old;
4242 memset(&old, 0, sizeof(old));
4243 old.ss_sp = ptr_to_compat(uoss.ss_sp);
4244 old.ss_flags = uoss.ss_flags;
4245 old.ss_size = uoss.ss_size;
4246 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4247 ret = -EFAULT;
4248 }
4249 return ret;
4250 }
4251
4252 COMPAT_SYSCALL_DEFINE2(sigaltstack,
4253 const compat_stack_t __user *, uss_ptr,
4254 compat_stack_t __user *, uoss_ptr)
4255 {
4256 return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4257 }
4258
4259 int compat_restore_altstack(const compat_stack_t __user *uss)
4260 {
4261 int err = do_compat_sigaltstack(uss, NULL);
4262 /* squash all but -EFAULT for now */
4263 return err == -EFAULT ? err : 0;
4264 }
4265
4266 int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4267 {
4268 int err;
4269 struct task_struct *t = current;
4270 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4271 &uss->ss_sp) |
4272 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4273 __put_user(t->sas_ss_size, &uss->ss_size);
4274 return err;
4275 }
4276 #endif
4277
4278 #ifdef __ARCH_WANT_SYS_SIGPENDING
4279
4280 /**
4281 * sys_sigpending - examine pending signals
4282 * @uset: where mask of pending signal is returned
4283 */
4284 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4285 {
4286 sigset_t set;
4287
4288 if (sizeof(old_sigset_t) > sizeof(*uset))
4289 return -EINVAL;
4290
4291 do_sigpending(&set);
4292
4293 if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4294 return -EFAULT;
4295
4296 return 0;
4297 }
4298
4299 #ifdef CONFIG_COMPAT
4300 COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4301 {
4302 sigset_t set;
4303
4304 do_sigpending(&set);
4305
4306 return put_user(set.sig[0], set32);
4307 }
4308 #endif
4309
4310 #endif
4311
4312 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
4313 /**
4314 * sys_sigprocmask - examine and change blocked signals
4315 * @how: whether to add, remove, or set signals
4316 * @nset: signals to add or remove (if non-null)
4317 * @oset: previous value of signal mask if non-null
4318 *
4319 * Some platforms have their own version with special arguments;
4320 * others support only sys_rt_sigprocmask.
4321 */
4322
4323 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4324 old_sigset_t __user *, oset)
4325 {
4326 old_sigset_t old_set, new_set;
4327 sigset_t new_blocked;
4328
4329 old_set = current->blocked.sig[0];
4330
4331 if (nset) {
4332 if (copy_from_user(&new_set, nset, sizeof(*nset)))
4333 return -EFAULT;
4334
4335 new_blocked = current->blocked;
4336
4337 switch (how) {
4338 case SIG_BLOCK:
4339 sigaddsetmask(&new_blocked, new_set);
4340 break;
4341 case SIG_UNBLOCK:
4342 sigdelsetmask(&new_blocked, new_set);
4343 break;
4344 case SIG_SETMASK:
4345 new_blocked.sig[0] = new_set;
4346 break;
4347 default:
4348 return -EINVAL;
4349 }
4350
4351 set_current_blocked(&new_blocked);
4352 }
4353
4354 if (oset) {
4355 if (copy_to_user(oset, &old_set, sizeof(*oset)))
4356 return -EFAULT;
4357 }
4358
4359 return 0;
4360 }
4361 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4362
4363 #ifndef CONFIG_ODD_RT_SIGACTION
4364 /**
4365 * sys_rt_sigaction - alter an action taken by a process
4366 * @sig: signal to be sent
4367 * @act: new sigaction
4368 * @oact: used to save the previous sigaction
4369 * @sigsetsize: size of sigset_t type
4370 */
4371 SYSCALL_DEFINE4(rt_sigaction, int, sig,
4372 const struct sigaction __user *, act,
4373 struct sigaction __user *, oact,
4374 size_t, sigsetsize)
4375 {
4376 struct k_sigaction new_sa, old_sa;
4377 int ret;
4378
4379 /* XXX: Don't preclude handling different sized sigset_t's. */
4380 if (sigsetsize != sizeof(sigset_t))
4381 return -EINVAL;
4382
4383 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4384 return -EFAULT;
4385
4386 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4387 if (ret)
4388 return ret;
4389
4390 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4391 return -EFAULT;
4392
4393 return 0;
4394 }
4395 #ifdef CONFIG_COMPAT
4396 COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4397 const struct compat_sigaction __user *, act,
4398 struct compat_sigaction __user *, oact,
4399 compat_size_t, sigsetsize)
4400 {
4401 struct k_sigaction new_ka, old_ka;
4402 #ifdef __ARCH_HAS_SA_RESTORER
4403 compat_uptr_t restorer;
4404 #endif
4405 int ret;
4406
4407 /* XXX: Don't preclude handling different sized sigset_t's. */
4408 if (sigsetsize != sizeof(compat_sigset_t))
4409 return -EINVAL;
4410
4411 if (act) {
4412 compat_uptr_t handler;
4413 ret = get_user(handler, &act->sa_handler);
4414 new_ka.sa.sa_handler = compat_ptr(handler);
4415 #ifdef __ARCH_HAS_SA_RESTORER
4416 ret |= get_user(restorer, &act->sa_restorer);
4417 new_ka.sa.sa_restorer = compat_ptr(restorer);
4418 #endif
4419 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4420 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4421 if (ret)
4422 return -EFAULT;
4423 }
4424
4425 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4426 if (!ret && oact) {
4427 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4428 &oact->sa_handler);
4429 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4430 sizeof(oact->sa_mask));
4431 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4432 #ifdef __ARCH_HAS_SA_RESTORER
4433 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4434 &oact->sa_restorer);
4435 #endif
4436 }
4437 return ret;
4438 }
4439 #endif
4440 #endif /* !CONFIG_ODD_RT_SIGACTION */
4441
4442 #ifdef CONFIG_OLD_SIGACTION
4443 SYSCALL_DEFINE3(sigaction, int, sig,
4444 const struct old_sigaction __user *, act,
4445 struct old_sigaction __user *, oact)
4446 {
4447 struct k_sigaction new_ka, old_ka;
4448 int ret;
4449
4450 if (act) {
4451 old_sigset_t mask;
4452 if (!access_ok(act, sizeof(*act)) ||
4453 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4454 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4455 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4456 __get_user(mask, &act->sa_mask))
4457 return -EFAULT;
4458 #ifdef __ARCH_HAS_KA_RESTORER
4459 new_ka.ka_restorer = NULL;
4460 #endif
4461 siginitset(&new_ka.sa.sa_mask, mask);
4462 }
4463
4464 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4465
4466 if (!ret && oact) {
4467 if (!access_ok(oact, sizeof(*oact)) ||
4468 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4469 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4470 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4471 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4472 return -EFAULT;
4473 }
4474
4475 return ret;
4476 }
4477 #endif
4478 #ifdef CONFIG_COMPAT_OLD_SIGACTION
4479 COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4480 const struct compat_old_sigaction __user *, act,
4481 struct compat_old_sigaction __user *, oact)
4482 {
4483 struct k_sigaction new_ka, old_ka;
4484 int ret;
4485 compat_old_sigset_t mask;
4486 compat_uptr_t handler, restorer;
4487
4488 if (act) {
4489 if (!access_ok(act, sizeof(*act)) ||
4490 __get_user(handler, &act->sa_handler) ||
4491 __get_user(restorer, &act->sa_restorer) ||
4492 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4493 __get_user(mask, &act->sa_mask))
4494 return -EFAULT;
4495
4496 #ifdef __ARCH_HAS_KA_RESTORER
4497 new_ka.ka_restorer = NULL;
4498 #endif
4499 new_ka.sa.sa_handler = compat_ptr(handler);
4500 new_ka.sa.sa_restorer = compat_ptr(restorer);
4501 siginitset(&new_ka.sa.sa_mask, mask);
4502 }
4503
4504 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4505
4506 if (!ret && oact) {
4507 if (!access_ok(oact, sizeof(*oact)) ||
4508 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4509 &oact->sa_handler) ||
4510 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4511 &oact->sa_restorer) ||
4512 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4513 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4514 return -EFAULT;
4515 }
4516 return ret;
4517 }
4518 #endif
4519
4520 #ifdef CONFIG_SGETMASK_SYSCALL
4521
4522 /*
4523 * For backwards compatibility. Functionality superseded by sigprocmask.
4524 */
4525 SYSCALL_DEFINE0(sgetmask)
4526 {
4527 /* SMP safe */
4528 return current->blocked.sig[0];
4529 }
4530
4531 SYSCALL_DEFINE1(ssetmask, int, newmask)
4532 {
4533 int old = current->blocked.sig[0];
4534 sigset_t newset;
4535
4536 siginitset(&newset, newmask);
4537 set_current_blocked(&newset);
4538
4539 return old;
4540 }
4541 #endif /* CONFIG_SGETMASK_SYSCALL */
4542
4543 #ifdef __ARCH_WANT_SYS_SIGNAL
4544 /*
4545 * For backwards compatibility. Functionality superseded by sigaction.
4546 */
4547 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4548 {
4549 struct k_sigaction new_sa, old_sa;
4550 int ret;
4551
4552 new_sa.sa.sa_handler = handler;
4553 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4554 sigemptyset(&new_sa.sa.sa_mask);
4555
4556 ret = do_sigaction(sig, &new_sa, &old_sa);
4557
4558 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4559 }
4560 #endif /* __ARCH_WANT_SYS_SIGNAL */
4561
4562 #ifdef __ARCH_WANT_SYS_PAUSE
4563
4564 SYSCALL_DEFINE0(pause)
4565 {
4566 while (!signal_pending(current)) {
4567 __set_current_state(TASK_INTERRUPTIBLE);
4568 schedule();
4569 }
4570 return -ERESTARTNOHAND;
4571 }
4572
4573 #endif
4574
4575 static int sigsuspend(sigset_t *set)
4576 {
4577 current->saved_sigmask = current->blocked;
4578 set_current_blocked(set);
4579
4580 while (!signal_pending(current)) {
4581 __set_current_state(TASK_INTERRUPTIBLE);
4582 schedule();
4583 }
4584 set_restore_sigmask();
4585 return -ERESTARTNOHAND;
4586 }
4587
4588 /**
4589 * sys_rt_sigsuspend - replace the signal mask for a value with the
4590 * @unewset value until a signal is received
4591 * @unewset: new signal mask value
4592 * @sigsetsize: size of sigset_t type
4593 */
4594 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4595 {
4596 sigset_t newset;
4597
4598 /* XXX: Don't preclude handling different sized sigset_t's. */
4599 if (sigsetsize != sizeof(sigset_t))
4600 return -EINVAL;
4601
4602 if (copy_from_user(&newset, unewset, sizeof(newset)))
4603 return -EFAULT;
4604 return sigsuspend(&newset);
4605 }
4606
4607 #ifdef CONFIG_COMPAT
4608 COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4609 {
4610 sigset_t newset;
4611
4612 /* XXX: Don't preclude handling different sized sigset_t's. */
4613 if (sigsetsize != sizeof(sigset_t))
4614 return -EINVAL;
4615
4616 if (get_compat_sigset(&newset, unewset))
4617 return -EFAULT;
4618 return sigsuspend(&newset);
4619 }
4620 #endif
4621
4622 #ifdef CONFIG_OLD_SIGSUSPEND
4623 SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4624 {
4625 sigset_t blocked;
4626 siginitset(&blocked, mask);
4627 return sigsuspend(&blocked);
4628 }
4629 #endif
4630 #ifdef CONFIG_OLD_SIGSUSPEND3
4631 SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4632 {
4633 sigset_t blocked;
4634 siginitset(&blocked, mask);
4635 return sigsuspend(&blocked);
4636 }
4637 #endif
4638
4639 __weak const char *arch_vma_name(struct vm_area_struct *vma)
4640 {
4641 return NULL;
4642 }
4643
4644 static inline void siginfo_buildtime_checks(void)
4645 {
4646 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4647
4648 /* Verify the offsets in the two siginfos match */
4649 #define CHECK_OFFSET(field) \
4650 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4651
4652 /* kill */
4653 CHECK_OFFSET(si_pid);
4654 CHECK_OFFSET(si_uid);
4655
4656 /* timer */
4657 CHECK_OFFSET(si_tid);
4658 CHECK_OFFSET(si_overrun);
4659 CHECK_OFFSET(si_value);
4660
4661 /* rt */
4662 CHECK_OFFSET(si_pid);
4663 CHECK_OFFSET(si_uid);
4664 CHECK_OFFSET(si_value);
4665
4666 /* sigchld */
4667 CHECK_OFFSET(si_pid);
4668 CHECK_OFFSET(si_uid);
4669 CHECK_OFFSET(si_status);
4670 CHECK_OFFSET(si_utime);
4671 CHECK_OFFSET(si_stime);
4672
4673 /* sigfault */
4674 CHECK_OFFSET(si_addr);
4675 CHECK_OFFSET(si_trapno);
4676 CHECK_OFFSET(si_addr_lsb);
4677 CHECK_OFFSET(si_lower);
4678 CHECK_OFFSET(si_upper);
4679 CHECK_OFFSET(si_pkey);
4680 CHECK_OFFSET(si_perf_data);
4681 CHECK_OFFSET(si_perf_type);
4682
4683 /* sigpoll */
4684 CHECK_OFFSET(si_band);
4685 CHECK_OFFSET(si_fd);
4686
4687 /* sigsys */
4688 CHECK_OFFSET(si_call_addr);
4689 CHECK_OFFSET(si_syscall);
4690 CHECK_OFFSET(si_arch);
4691 #undef CHECK_OFFSET
4692
4693 /* usb asyncio */
4694 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4695 offsetof(struct siginfo, si_addr));
4696 if (sizeof(int) == sizeof(void __user *)) {
4697 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4698 sizeof(void __user *));
4699 } else {
4700 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4701 sizeof_field(struct siginfo, si_uid)) !=
4702 sizeof(void __user *));
4703 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4704 offsetof(struct siginfo, si_uid));
4705 }
4706 #ifdef CONFIG_COMPAT
4707 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4708 offsetof(struct compat_siginfo, si_addr));
4709 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4710 sizeof(compat_uptr_t));
4711 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4712 sizeof_field(struct siginfo, si_pid));
4713 #endif
4714 }
4715
4716 void __init signals_init(void)
4717 {
4718 siginfo_buildtime_checks();
4719
4720 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4721 }
4722
4723 #ifdef CONFIG_KGDB_KDB
4724 #include <linux/kdb.h>
4725 /*
4726 * kdb_send_sig - Allows kdb to send signals without exposing
4727 * signal internals. This function checks if the required locks are
4728 * available before calling the main signal code, to avoid kdb
4729 * deadlocks.
4730 */
4731 void kdb_send_sig(struct task_struct *t, int sig)
4732 {
4733 static struct task_struct *kdb_prev_t;
4734 int new_t, ret;
4735 if (!spin_trylock(&t->sighand->siglock)) {
4736 kdb_printf("Can't do kill command now.\n"
4737 "The sigmask lock is held somewhere else in "
4738 "kernel, try again later\n");
4739 return;
4740 }
4741 new_t = kdb_prev_t != t;
4742 kdb_prev_t = t;
4743 if (!task_is_running(t) && new_t) {
4744 spin_unlock(&t->sighand->siglock);
4745 kdb_printf("Process is not RUNNING, sending a signal from "
4746 "kdb risks deadlock\n"
4747 "on the run queue locks. "
4748 "The signal has _not_ been sent.\n"
4749 "Reissue the kill command if you want to risk "
4750 "the deadlock.\n");
4751 return;
4752 }
4753 ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4754 spin_unlock(&t->sighand->siglock);
4755 if (ret)
4756 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4757 sig, t->pid);
4758 else
4759 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4760 }
4761 #endif /* CONFIG_KGDB_KDB */