]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - kernel/smpboot.c
tools build: Use $(shell ) instead of `` to get embedded libperl's ccopts
[mirror_ubuntu-focal-kernel.git] / kernel / smpboot.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Common SMP CPU bringup/teardown functions
4 */
5 #include <linux/cpu.h>
6 #include <linux/err.h>
7 #include <linux/smp.h>
8 #include <linux/delay.h>
9 #include <linux/init.h>
10 #include <linux/list.h>
11 #include <linux/slab.h>
12 #include <linux/sched.h>
13 #include <linux/sched/task.h>
14 #include <linux/export.h>
15 #include <linux/percpu.h>
16 #include <linux/kthread.h>
17 #include <linux/smpboot.h>
18
19 #include "smpboot.h"
20
21 #ifdef CONFIG_SMP
22
23 #ifdef CONFIG_GENERIC_SMP_IDLE_THREAD
24 /*
25 * For the hotplug case we keep the task structs around and reuse
26 * them.
27 */
28 static DEFINE_PER_CPU(struct task_struct *, idle_threads);
29
30 struct task_struct *idle_thread_get(unsigned int cpu)
31 {
32 struct task_struct *tsk = per_cpu(idle_threads, cpu);
33
34 if (!tsk)
35 return ERR_PTR(-ENOMEM);
36 init_idle(tsk, cpu);
37 return tsk;
38 }
39
40 void __init idle_thread_set_boot_cpu(void)
41 {
42 per_cpu(idle_threads, smp_processor_id()) = current;
43 }
44
45 /**
46 * idle_init - Initialize the idle thread for a cpu
47 * @cpu: The cpu for which the idle thread should be initialized
48 *
49 * Creates the thread if it does not exist.
50 */
51 static inline void idle_init(unsigned int cpu)
52 {
53 struct task_struct *tsk = per_cpu(idle_threads, cpu);
54
55 if (!tsk) {
56 tsk = fork_idle(cpu);
57 if (IS_ERR(tsk))
58 pr_err("SMP: fork_idle() failed for CPU %u\n", cpu);
59 else
60 per_cpu(idle_threads, cpu) = tsk;
61 }
62 }
63
64 /**
65 * idle_threads_init - Initialize idle threads for all cpus
66 */
67 void __init idle_threads_init(void)
68 {
69 unsigned int cpu, boot_cpu;
70
71 boot_cpu = smp_processor_id();
72
73 for_each_possible_cpu(cpu) {
74 if (cpu != boot_cpu)
75 idle_init(cpu);
76 }
77 }
78 #endif
79
80 #endif /* #ifdef CONFIG_SMP */
81
82 static LIST_HEAD(hotplug_threads);
83 static DEFINE_MUTEX(smpboot_threads_lock);
84
85 struct smpboot_thread_data {
86 unsigned int cpu;
87 unsigned int status;
88 struct smp_hotplug_thread *ht;
89 };
90
91 enum {
92 HP_THREAD_NONE = 0,
93 HP_THREAD_ACTIVE,
94 HP_THREAD_PARKED,
95 };
96
97 /**
98 * smpboot_thread_fn - percpu hotplug thread loop function
99 * @data: thread data pointer
100 *
101 * Checks for thread stop and park conditions. Calls the necessary
102 * setup, cleanup, park and unpark functions for the registered
103 * thread.
104 *
105 * Returns 1 when the thread should exit, 0 otherwise.
106 */
107 static int smpboot_thread_fn(void *data)
108 {
109 struct smpboot_thread_data *td = data;
110 struct smp_hotplug_thread *ht = td->ht;
111
112 while (1) {
113 set_current_state(TASK_INTERRUPTIBLE);
114 preempt_disable();
115 if (kthread_should_stop()) {
116 __set_current_state(TASK_RUNNING);
117 preempt_enable();
118 /* cleanup must mirror setup */
119 if (ht->cleanup && td->status != HP_THREAD_NONE)
120 ht->cleanup(td->cpu, cpu_online(td->cpu));
121 kfree(td);
122 return 0;
123 }
124
125 if (kthread_should_park()) {
126 __set_current_state(TASK_RUNNING);
127 preempt_enable();
128 if (ht->park && td->status == HP_THREAD_ACTIVE) {
129 BUG_ON(td->cpu != smp_processor_id());
130 ht->park(td->cpu);
131 td->status = HP_THREAD_PARKED;
132 }
133 kthread_parkme();
134 /* We might have been woken for stop */
135 continue;
136 }
137
138 BUG_ON(td->cpu != smp_processor_id());
139
140 /* Check for state change setup */
141 switch (td->status) {
142 case HP_THREAD_NONE:
143 __set_current_state(TASK_RUNNING);
144 preempt_enable();
145 if (ht->setup)
146 ht->setup(td->cpu);
147 td->status = HP_THREAD_ACTIVE;
148 continue;
149
150 case HP_THREAD_PARKED:
151 __set_current_state(TASK_RUNNING);
152 preempt_enable();
153 if (ht->unpark)
154 ht->unpark(td->cpu);
155 td->status = HP_THREAD_ACTIVE;
156 continue;
157 }
158
159 if (!ht->thread_should_run(td->cpu)) {
160 preempt_enable_no_resched();
161 schedule();
162 } else {
163 __set_current_state(TASK_RUNNING);
164 preempt_enable();
165 ht->thread_fn(td->cpu);
166 }
167 }
168 }
169
170 static int
171 __smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
172 {
173 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
174 struct smpboot_thread_data *td;
175
176 if (tsk)
177 return 0;
178
179 td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu));
180 if (!td)
181 return -ENOMEM;
182 td->cpu = cpu;
183 td->ht = ht;
184
185 tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu,
186 ht->thread_comm);
187 if (IS_ERR(tsk)) {
188 kfree(td);
189 return PTR_ERR(tsk);
190 }
191 kthread_set_per_cpu(tsk, cpu);
192 /*
193 * Park the thread so that it could start right on the CPU
194 * when it is available.
195 */
196 kthread_park(tsk);
197 get_task_struct(tsk);
198 *per_cpu_ptr(ht->store, cpu) = tsk;
199 if (ht->create) {
200 /*
201 * Make sure that the task has actually scheduled out
202 * into park position, before calling the create
203 * callback. At least the migration thread callback
204 * requires that the task is off the runqueue.
205 */
206 if (!wait_task_inactive(tsk, TASK_PARKED))
207 WARN_ON(1);
208 else
209 ht->create(cpu);
210 }
211 return 0;
212 }
213
214 int smpboot_create_threads(unsigned int cpu)
215 {
216 struct smp_hotplug_thread *cur;
217 int ret = 0;
218
219 mutex_lock(&smpboot_threads_lock);
220 list_for_each_entry(cur, &hotplug_threads, list) {
221 ret = __smpboot_create_thread(cur, cpu);
222 if (ret)
223 break;
224 }
225 mutex_unlock(&smpboot_threads_lock);
226 return ret;
227 }
228
229 static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
230 {
231 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
232
233 if (!ht->selfparking)
234 kthread_unpark(tsk);
235 }
236
237 int smpboot_unpark_threads(unsigned int cpu)
238 {
239 struct smp_hotplug_thread *cur;
240
241 mutex_lock(&smpboot_threads_lock);
242 list_for_each_entry(cur, &hotplug_threads, list)
243 smpboot_unpark_thread(cur, cpu);
244 mutex_unlock(&smpboot_threads_lock);
245 return 0;
246 }
247
248 static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
249 {
250 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
251
252 if (tsk && !ht->selfparking)
253 kthread_park(tsk);
254 }
255
256 int smpboot_park_threads(unsigned int cpu)
257 {
258 struct smp_hotplug_thread *cur;
259
260 mutex_lock(&smpboot_threads_lock);
261 list_for_each_entry_reverse(cur, &hotplug_threads, list)
262 smpboot_park_thread(cur, cpu);
263 mutex_unlock(&smpboot_threads_lock);
264 return 0;
265 }
266
267 static void smpboot_destroy_threads(struct smp_hotplug_thread *ht)
268 {
269 unsigned int cpu;
270
271 /* We need to destroy also the parked threads of offline cpus */
272 for_each_possible_cpu(cpu) {
273 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
274
275 if (tsk) {
276 kthread_stop(tsk);
277 put_task_struct(tsk);
278 *per_cpu_ptr(ht->store, cpu) = NULL;
279 }
280 }
281 }
282
283 /**
284 * smpboot_register_percpu_thread - Register a per_cpu thread related
285 * to hotplug
286 * @plug_thread: Hotplug thread descriptor
287 *
288 * Creates and starts the threads on all online cpus.
289 */
290 int smpboot_register_percpu_thread(struct smp_hotplug_thread *plug_thread)
291 {
292 unsigned int cpu;
293 int ret = 0;
294
295 get_online_cpus();
296 mutex_lock(&smpboot_threads_lock);
297 for_each_online_cpu(cpu) {
298 ret = __smpboot_create_thread(plug_thread, cpu);
299 if (ret) {
300 smpboot_destroy_threads(plug_thread);
301 goto out;
302 }
303 smpboot_unpark_thread(plug_thread, cpu);
304 }
305 list_add(&plug_thread->list, &hotplug_threads);
306 out:
307 mutex_unlock(&smpboot_threads_lock);
308 put_online_cpus();
309 return ret;
310 }
311 EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread);
312
313 /**
314 * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug
315 * @plug_thread: Hotplug thread descriptor
316 *
317 * Stops all threads on all possible cpus.
318 */
319 void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)
320 {
321 get_online_cpus();
322 mutex_lock(&smpboot_threads_lock);
323 list_del(&plug_thread->list);
324 smpboot_destroy_threads(plug_thread);
325 mutex_unlock(&smpboot_threads_lock);
326 put_online_cpus();
327 }
328 EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread);
329
330 static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD);
331
332 /*
333 * Called to poll specified CPU's state, for example, when waiting for
334 * a CPU to come online.
335 */
336 int cpu_report_state(int cpu)
337 {
338 return atomic_read(&per_cpu(cpu_hotplug_state, cpu));
339 }
340
341 /*
342 * If CPU has died properly, set its state to CPU_UP_PREPARE and
343 * return success. Otherwise, return -EBUSY if the CPU died after
344 * cpu_wait_death() timed out. And yet otherwise again, return -EAGAIN
345 * if cpu_wait_death() timed out and the CPU still hasn't gotten around
346 * to dying. In the latter two cases, the CPU might not be set up
347 * properly, but it is up to the arch-specific code to decide.
348 * Finally, -EIO indicates an unanticipated problem.
349 *
350 * Note that it is permissible to omit this call entirely, as is
351 * done in architectures that do no CPU-hotplug error checking.
352 */
353 int cpu_check_up_prepare(int cpu)
354 {
355 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
356 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
357 return 0;
358 }
359
360 switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) {
361
362 case CPU_POST_DEAD:
363
364 /* The CPU died properly, so just start it up again. */
365 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
366 return 0;
367
368 case CPU_DEAD_FROZEN:
369
370 /*
371 * Timeout during CPU death, so let caller know.
372 * The outgoing CPU completed its processing, but after
373 * cpu_wait_death() timed out and reported the error. The
374 * caller is free to proceed, in which case the state
375 * will be reset properly by cpu_set_state_online().
376 * Proceeding despite this -EBUSY return makes sense
377 * for systems where the outgoing CPUs take themselves
378 * offline, with no post-death manipulation required from
379 * a surviving CPU.
380 */
381 return -EBUSY;
382
383 case CPU_BROKEN:
384
385 /*
386 * The most likely reason we got here is that there was
387 * a timeout during CPU death, and the outgoing CPU never
388 * did complete its processing. This could happen on
389 * a virtualized system if the outgoing VCPU gets preempted
390 * for more than five seconds, and the user attempts to
391 * immediately online that same CPU. Trying again later
392 * might return -EBUSY above, hence -EAGAIN.
393 */
394 return -EAGAIN;
395
396 default:
397
398 /* Should not happen. Famous last words. */
399 return -EIO;
400 }
401 }
402
403 /*
404 * Mark the specified CPU online.
405 *
406 * Note that it is permissible to omit this call entirely, as is
407 * done in architectures that do no CPU-hotplug error checking.
408 */
409 void cpu_set_state_online(int cpu)
410 {
411 (void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE);
412 }
413
414 #ifdef CONFIG_HOTPLUG_CPU
415
416 /*
417 * Wait for the specified CPU to exit the idle loop and die.
418 */
419 bool cpu_wait_death(unsigned int cpu, int seconds)
420 {
421 int jf_left = seconds * HZ;
422 int oldstate;
423 bool ret = true;
424 int sleep_jf = 1;
425
426 might_sleep();
427
428 /* The outgoing CPU will normally get done quite quickly. */
429 if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD)
430 goto update_state;
431 udelay(5);
432
433 /* But if the outgoing CPU dawdles, wait increasingly long times. */
434 while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) {
435 schedule_timeout_uninterruptible(sleep_jf);
436 jf_left -= sleep_jf;
437 if (jf_left <= 0)
438 break;
439 sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10);
440 }
441 update_state:
442 oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
443 if (oldstate == CPU_DEAD) {
444 /* Outgoing CPU died normally, update state. */
445 smp_mb(); /* atomic_read() before update. */
446 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD);
447 } else {
448 /* Outgoing CPU still hasn't died, set state accordingly. */
449 if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
450 oldstate, CPU_BROKEN) != oldstate)
451 goto update_state;
452 ret = false;
453 }
454 return ret;
455 }
456
457 /*
458 * Called by the outgoing CPU to report its successful death. Return
459 * false if this report follows the surviving CPU's timing out.
460 *
461 * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU
462 * timed out. This approach allows architectures to omit calls to
463 * cpu_check_up_prepare() and cpu_set_state_online() without defeating
464 * the next cpu_wait_death()'s polling loop.
465 */
466 bool cpu_report_death(void)
467 {
468 int oldstate;
469 int newstate;
470 int cpu = smp_processor_id();
471
472 do {
473 oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
474 if (oldstate != CPU_BROKEN)
475 newstate = CPU_DEAD;
476 else
477 newstate = CPU_DEAD_FROZEN;
478 } while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
479 oldstate, newstate) != oldstate);
480 return newstate == CPU_DEAD;
481 }
482
483 #endif /* #ifdef CONFIG_HOTPLUG_CPU */