]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/smpboot.c
Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[mirror_ubuntu-bionic-kernel.git] / kernel / smpboot.c
1 /*
2 * Common SMP CPU bringup/teardown functions
3 */
4 #include <linux/cpu.h>
5 #include <linux/err.h>
6 #include <linux/smp.h>
7 #include <linux/delay.h>
8 #include <linux/init.h>
9 #include <linux/list.h>
10 #include <linux/slab.h>
11 #include <linux/sched.h>
12 #include <linux/export.h>
13 #include <linux/percpu.h>
14 #include <linux/kthread.h>
15 #include <linux/smpboot.h>
16
17 #include "smpboot.h"
18
19 #ifdef CONFIG_SMP
20
21 #ifdef CONFIG_GENERIC_SMP_IDLE_THREAD
22 /*
23 * For the hotplug case we keep the task structs around and reuse
24 * them.
25 */
26 static DEFINE_PER_CPU(struct task_struct *, idle_threads);
27
28 struct task_struct *idle_thread_get(unsigned int cpu)
29 {
30 struct task_struct *tsk = per_cpu(idle_threads, cpu);
31
32 if (!tsk)
33 return ERR_PTR(-ENOMEM);
34 init_idle(tsk, cpu);
35 return tsk;
36 }
37
38 void __init idle_thread_set_boot_cpu(void)
39 {
40 per_cpu(idle_threads, smp_processor_id()) = current;
41 }
42
43 /**
44 * idle_init - Initialize the idle thread for a cpu
45 * @cpu: The cpu for which the idle thread should be initialized
46 *
47 * Creates the thread if it does not exist.
48 */
49 static inline void idle_init(unsigned int cpu)
50 {
51 struct task_struct *tsk = per_cpu(idle_threads, cpu);
52
53 if (!tsk) {
54 tsk = fork_idle(cpu);
55 if (IS_ERR(tsk))
56 pr_err("SMP: fork_idle() failed for CPU %u\n", cpu);
57 else
58 per_cpu(idle_threads, cpu) = tsk;
59 }
60 }
61
62 /**
63 * idle_threads_init - Initialize idle threads for all cpus
64 */
65 void __init idle_threads_init(void)
66 {
67 unsigned int cpu, boot_cpu;
68
69 boot_cpu = smp_processor_id();
70
71 for_each_possible_cpu(cpu) {
72 if (cpu != boot_cpu)
73 idle_init(cpu);
74 }
75 }
76 #endif
77
78 #endif /* #ifdef CONFIG_SMP */
79
80 static LIST_HEAD(hotplug_threads);
81 static DEFINE_MUTEX(smpboot_threads_lock);
82
83 struct smpboot_thread_data {
84 unsigned int cpu;
85 unsigned int status;
86 struct smp_hotplug_thread *ht;
87 };
88
89 enum {
90 HP_THREAD_NONE = 0,
91 HP_THREAD_ACTIVE,
92 HP_THREAD_PARKED,
93 };
94
95 /**
96 * smpboot_thread_fn - percpu hotplug thread loop function
97 * @data: thread data pointer
98 *
99 * Checks for thread stop and park conditions. Calls the necessary
100 * setup, cleanup, park and unpark functions for the registered
101 * thread.
102 *
103 * Returns 1 when the thread should exit, 0 otherwise.
104 */
105 static int smpboot_thread_fn(void *data)
106 {
107 struct smpboot_thread_data *td = data;
108 struct smp_hotplug_thread *ht = td->ht;
109
110 while (1) {
111 set_current_state(TASK_INTERRUPTIBLE);
112 preempt_disable();
113 if (kthread_should_stop()) {
114 __set_current_state(TASK_RUNNING);
115 preempt_enable();
116 if (ht->cleanup)
117 ht->cleanup(td->cpu, cpu_online(td->cpu));
118 kfree(td);
119 return 0;
120 }
121
122 if (kthread_should_park()) {
123 __set_current_state(TASK_RUNNING);
124 preempt_enable();
125 if (ht->park && td->status == HP_THREAD_ACTIVE) {
126 BUG_ON(td->cpu != smp_processor_id());
127 ht->park(td->cpu);
128 td->status = HP_THREAD_PARKED;
129 }
130 kthread_parkme();
131 /* We might have been woken for stop */
132 continue;
133 }
134
135 BUG_ON(td->cpu != smp_processor_id());
136
137 /* Check for state change setup */
138 switch (td->status) {
139 case HP_THREAD_NONE:
140 __set_current_state(TASK_RUNNING);
141 preempt_enable();
142 if (ht->setup)
143 ht->setup(td->cpu);
144 td->status = HP_THREAD_ACTIVE;
145 continue;
146
147 case HP_THREAD_PARKED:
148 __set_current_state(TASK_RUNNING);
149 preempt_enable();
150 if (ht->unpark)
151 ht->unpark(td->cpu);
152 td->status = HP_THREAD_ACTIVE;
153 continue;
154 }
155
156 if (!ht->thread_should_run(td->cpu)) {
157 preempt_enable_no_resched();
158 schedule();
159 } else {
160 __set_current_state(TASK_RUNNING);
161 preempt_enable();
162 ht->thread_fn(td->cpu);
163 }
164 }
165 }
166
167 static int
168 __smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
169 {
170 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
171 struct smpboot_thread_data *td;
172
173 if (tsk)
174 return 0;
175
176 td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu));
177 if (!td)
178 return -ENOMEM;
179 td->cpu = cpu;
180 td->ht = ht;
181
182 tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu,
183 ht->thread_comm);
184 if (IS_ERR(tsk)) {
185 kfree(td);
186 return PTR_ERR(tsk);
187 }
188 get_task_struct(tsk);
189 *per_cpu_ptr(ht->store, cpu) = tsk;
190 if (ht->create) {
191 /*
192 * Make sure that the task has actually scheduled out
193 * into park position, before calling the create
194 * callback. At least the migration thread callback
195 * requires that the task is off the runqueue.
196 */
197 if (!wait_task_inactive(tsk, TASK_PARKED))
198 WARN_ON(1);
199 else
200 ht->create(cpu);
201 }
202 return 0;
203 }
204
205 int smpboot_create_threads(unsigned int cpu)
206 {
207 struct smp_hotplug_thread *cur;
208 int ret = 0;
209
210 mutex_lock(&smpboot_threads_lock);
211 list_for_each_entry(cur, &hotplug_threads, list) {
212 ret = __smpboot_create_thread(cur, cpu);
213 if (ret)
214 break;
215 }
216 mutex_unlock(&smpboot_threads_lock);
217 return ret;
218 }
219
220 static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
221 {
222 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
223
224 if (ht->pre_unpark)
225 ht->pre_unpark(cpu);
226 kthread_unpark(tsk);
227 }
228
229 void smpboot_unpark_threads(unsigned int cpu)
230 {
231 struct smp_hotplug_thread *cur;
232
233 mutex_lock(&smpboot_threads_lock);
234 list_for_each_entry(cur, &hotplug_threads, list)
235 smpboot_unpark_thread(cur, cpu);
236 mutex_unlock(&smpboot_threads_lock);
237 }
238
239 static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
240 {
241 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
242
243 if (tsk && !ht->selfparking)
244 kthread_park(tsk);
245 }
246
247 void smpboot_park_threads(unsigned int cpu)
248 {
249 struct smp_hotplug_thread *cur;
250
251 mutex_lock(&smpboot_threads_lock);
252 list_for_each_entry_reverse(cur, &hotplug_threads, list)
253 smpboot_park_thread(cur, cpu);
254 mutex_unlock(&smpboot_threads_lock);
255 }
256
257 static void smpboot_destroy_threads(struct smp_hotplug_thread *ht)
258 {
259 unsigned int cpu;
260
261 /* We need to destroy also the parked threads of offline cpus */
262 for_each_possible_cpu(cpu) {
263 struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
264
265 if (tsk) {
266 kthread_stop(tsk);
267 put_task_struct(tsk);
268 *per_cpu_ptr(ht->store, cpu) = NULL;
269 }
270 }
271 }
272
273 /**
274 * smpboot_register_percpu_thread - Register a per_cpu thread related to hotplug
275 * @plug_thread: Hotplug thread descriptor
276 *
277 * Creates and starts the threads on all online cpus.
278 */
279 int smpboot_register_percpu_thread(struct smp_hotplug_thread *plug_thread)
280 {
281 unsigned int cpu;
282 int ret = 0;
283
284 get_online_cpus();
285 mutex_lock(&smpboot_threads_lock);
286 for_each_online_cpu(cpu) {
287 ret = __smpboot_create_thread(plug_thread, cpu);
288 if (ret) {
289 smpboot_destroy_threads(plug_thread);
290 goto out;
291 }
292 smpboot_unpark_thread(plug_thread, cpu);
293 }
294 list_add(&plug_thread->list, &hotplug_threads);
295 out:
296 mutex_unlock(&smpboot_threads_lock);
297 put_online_cpus();
298 return ret;
299 }
300 EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread);
301
302 /**
303 * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug
304 * @plug_thread: Hotplug thread descriptor
305 *
306 * Stops all threads on all possible cpus.
307 */
308 void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)
309 {
310 get_online_cpus();
311 mutex_lock(&smpboot_threads_lock);
312 list_del(&plug_thread->list);
313 smpboot_destroy_threads(plug_thread);
314 mutex_unlock(&smpboot_threads_lock);
315 put_online_cpus();
316 }
317 EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread);
318
319 static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD);
320
321 /*
322 * Called to poll specified CPU's state, for example, when waiting for
323 * a CPU to come online.
324 */
325 int cpu_report_state(int cpu)
326 {
327 return atomic_read(&per_cpu(cpu_hotplug_state, cpu));
328 }
329
330 /*
331 * If CPU has died properly, set its state to CPU_UP_PREPARE and
332 * return success. Otherwise, return -EBUSY if the CPU died after
333 * cpu_wait_death() timed out. And yet otherwise again, return -EAGAIN
334 * if cpu_wait_death() timed out and the CPU still hasn't gotten around
335 * to dying. In the latter two cases, the CPU might not be set up
336 * properly, but it is up to the arch-specific code to decide.
337 * Finally, -EIO indicates an unanticipated problem.
338 *
339 * Note that it is permissible to omit this call entirely, as is
340 * done in architectures that do no CPU-hotplug error checking.
341 */
342 int cpu_check_up_prepare(int cpu)
343 {
344 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
345 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
346 return 0;
347 }
348
349 switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) {
350
351 case CPU_POST_DEAD:
352
353 /* The CPU died properly, so just start it up again. */
354 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
355 return 0;
356
357 case CPU_DEAD_FROZEN:
358
359 /*
360 * Timeout during CPU death, so let caller know.
361 * The outgoing CPU completed its processing, but after
362 * cpu_wait_death() timed out and reported the error. The
363 * caller is free to proceed, in which case the state
364 * will be reset properly by cpu_set_state_online().
365 * Proceeding despite this -EBUSY return makes sense
366 * for systems where the outgoing CPUs take themselves
367 * offline, with no post-death manipulation required from
368 * a surviving CPU.
369 */
370 return -EBUSY;
371
372 case CPU_BROKEN:
373
374 /*
375 * The most likely reason we got here is that there was
376 * a timeout during CPU death, and the outgoing CPU never
377 * did complete its processing. This could happen on
378 * a virtualized system if the outgoing VCPU gets preempted
379 * for more than five seconds, and the user attempts to
380 * immediately online that same CPU. Trying again later
381 * might return -EBUSY above, hence -EAGAIN.
382 */
383 return -EAGAIN;
384
385 default:
386
387 /* Should not happen. Famous last words. */
388 return -EIO;
389 }
390 }
391
392 /*
393 * Mark the specified CPU online.
394 *
395 * Note that it is permissible to omit this call entirely, as is
396 * done in architectures that do no CPU-hotplug error checking.
397 */
398 void cpu_set_state_online(int cpu)
399 {
400 (void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE);
401 }
402
403 #ifdef CONFIG_HOTPLUG_CPU
404
405 /*
406 * Wait for the specified CPU to exit the idle loop and die.
407 */
408 bool cpu_wait_death(unsigned int cpu, int seconds)
409 {
410 int jf_left = seconds * HZ;
411 int oldstate;
412 bool ret = true;
413 int sleep_jf = 1;
414
415 might_sleep();
416
417 /* The outgoing CPU will normally get done quite quickly. */
418 if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD)
419 goto update_state;
420 udelay(5);
421
422 /* But if the outgoing CPU dawdles, wait increasingly long times. */
423 while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) {
424 schedule_timeout_uninterruptible(sleep_jf);
425 jf_left -= sleep_jf;
426 if (jf_left <= 0)
427 break;
428 sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10);
429 }
430 update_state:
431 oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
432 if (oldstate == CPU_DEAD) {
433 /* Outgoing CPU died normally, update state. */
434 smp_mb(); /* atomic_read() before update. */
435 atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD);
436 } else {
437 /* Outgoing CPU still hasn't died, set state accordingly. */
438 if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
439 oldstate, CPU_BROKEN) != oldstate)
440 goto update_state;
441 ret = false;
442 }
443 return ret;
444 }
445
446 /*
447 * Called by the outgoing CPU to report its successful death. Return
448 * false if this report follows the surviving CPU's timing out.
449 *
450 * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU
451 * timed out. This approach allows architectures to omit calls to
452 * cpu_check_up_prepare() and cpu_set_state_online() without defeating
453 * the next cpu_wait_death()'s polling loop.
454 */
455 bool cpu_report_death(void)
456 {
457 int oldstate;
458 int newstate;
459 int cpu = smp_processor_id();
460
461 do {
462 oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
463 if (oldstate != CPU_BROKEN)
464 newstate = CPU_DEAD;
465 else
466 newstate = CPU_DEAD_FROZEN;
467 } while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
468 oldstate, newstate) != oldstate);
469 return newstate == CPU_DEAD;
470 }
471
472 #endif /* #ifdef CONFIG_HOTPLUG_CPU */