]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/softirq.c
Merge branch 'fixes' of git://git.linaro.org/people/rmk/linux-arm
[mirror_ubuntu-bionic-kernel.git] / kernel / softirq.c
1 /*
2 * linux/kernel/softirq.c
3 *
4 * Copyright (C) 1992 Linus Torvalds
5 *
6 * Distribute under GPLv2.
7 *
8 * Rewritten. Old one was good in 2.2, but in 2.3 it was immoral. --ANK (990903)
9 *
10 * Remote softirq infrastructure is by Jens Axboe.
11 */
12
13 #include <linux/export.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/interrupt.h>
16 #include <linux/init.h>
17 #include <linux/mm.h>
18 #include <linux/notifier.h>
19 #include <linux/percpu.h>
20 #include <linux/cpu.h>
21 #include <linux/freezer.h>
22 #include <linux/kthread.h>
23 #include <linux/rcupdate.h>
24 #include <linux/ftrace.h>
25 #include <linux/smp.h>
26 #include <linux/smpboot.h>
27 #include <linux/tick.h>
28
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/irq.h>
31
32 #include <asm/irq.h>
33 /*
34 - No shared variables, all the data are CPU local.
35 - If a softirq needs serialization, let it serialize itself
36 by its own spinlocks.
37 - Even if softirq is serialized, only local cpu is marked for
38 execution. Hence, we get something sort of weak cpu binding.
39 Though it is still not clear, will it result in better locality
40 or will not.
41
42 Examples:
43 - NET RX softirq. It is multithreaded and does not require
44 any global serialization.
45 - NET TX softirq. It kicks software netdevice queues, hence
46 it is logically serialized per device, but this serialization
47 is invisible to common code.
48 - Tasklets: serialized wrt itself.
49 */
50
51 #ifndef __ARCH_IRQ_STAT
52 irq_cpustat_t irq_stat[NR_CPUS] ____cacheline_aligned;
53 EXPORT_SYMBOL(irq_stat);
54 #endif
55
56 static struct softirq_action softirq_vec[NR_SOFTIRQS] __cacheline_aligned_in_smp;
57
58 DEFINE_PER_CPU(struct task_struct *, ksoftirqd);
59
60 char *softirq_to_name[NR_SOFTIRQS] = {
61 "HI", "TIMER", "NET_TX", "NET_RX", "BLOCK", "BLOCK_IOPOLL",
62 "TASKLET", "SCHED", "HRTIMER", "RCU"
63 };
64
65 /*
66 * we cannot loop indefinitely here to avoid userspace starvation,
67 * but we also don't want to introduce a worst case 1/HZ latency
68 * to the pending events, so lets the scheduler to balance
69 * the softirq load for us.
70 */
71 static void wakeup_softirqd(void)
72 {
73 /* Interrupts are disabled: no need to stop preemption */
74 struct task_struct *tsk = __this_cpu_read(ksoftirqd);
75
76 if (tsk && tsk->state != TASK_RUNNING)
77 wake_up_process(tsk);
78 }
79
80 /*
81 * preempt_count and SOFTIRQ_OFFSET usage:
82 * - preempt_count is changed by SOFTIRQ_OFFSET on entering or leaving
83 * softirq processing.
84 * - preempt_count is changed by SOFTIRQ_DISABLE_OFFSET (= 2 * SOFTIRQ_OFFSET)
85 * on local_bh_disable or local_bh_enable.
86 * This lets us distinguish between whether we are currently processing
87 * softirq and whether we just have bh disabled.
88 */
89
90 /*
91 * This one is for softirq.c-internal use,
92 * where hardirqs are disabled legitimately:
93 */
94 #ifdef CONFIG_TRACE_IRQFLAGS
95 static void __local_bh_disable(unsigned long ip, unsigned int cnt)
96 {
97 unsigned long flags;
98
99 WARN_ON_ONCE(in_irq());
100
101 raw_local_irq_save(flags);
102 /*
103 * The preempt tracer hooks into add_preempt_count and will break
104 * lockdep because it calls back into lockdep after SOFTIRQ_OFFSET
105 * is set and before current->softirq_enabled is cleared.
106 * We must manually increment preempt_count here and manually
107 * call the trace_preempt_off later.
108 */
109 preempt_count() += cnt;
110 /*
111 * Were softirqs turned off above:
112 */
113 if (softirq_count() == cnt)
114 trace_softirqs_off(ip);
115 raw_local_irq_restore(flags);
116
117 if (preempt_count() == cnt)
118 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
119 }
120 #else /* !CONFIG_TRACE_IRQFLAGS */
121 static inline void __local_bh_disable(unsigned long ip, unsigned int cnt)
122 {
123 add_preempt_count(cnt);
124 barrier();
125 }
126 #endif /* CONFIG_TRACE_IRQFLAGS */
127
128 void local_bh_disable(void)
129 {
130 __local_bh_disable(_RET_IP_, SOFTIRQ_DISABLE_OFFSET);
131 }
132
133 EXPORT_SYMBOL(local_bh_disable);
134
135 static void __local_bh_enable(unsigned int cnt)
136 {
137 WARN_ON_ONCE(in_irq());
138 WARN_ON_ONCE(!irqs_disabled());
139
140 if (softirq_count() == cnt)
141 trace_softirqs_on(_RET_IP_);
142 sub_preempt_count(cnt);
143 }
144
145 /*
146 * Special-case - softirqs can safely be enabled in
147 * cond_resched_softirq(), or by __do_softirq(),
148 * without processing still-pending softirqs:
149 */
150 void _local_bh_enable(void)
151 {
152 __local_bh_enable(SOFTIRQ_DISABLE_OFFSET);
153 }
154
155 EXPORT_SYMBOL(_local_bh_enable);
156
157 static inline void _local_bh_enable_ip(unsigned long ip)
158 {
159 WARN_ON_ONCE(in_irq() || irqs_disabled());
160 #ifdef CONFIG_TRACE_IRQFLAGS
161 local_irq_disable();
162 #endif
163 /*
164 * Are softirqs going to be turned on now:
165 */
166 if (softirq_count() == SOFTIRQ_DISABLE_OFFSET)
167 trace_softirqs_on(ip);
168 /*
169 * Keep preemption disabled until we are done with
170 * softirq processing:
171 */
172 sub_preempt_count(SOFTIRQ_DISABLE_OFFSET - 1);
173
174 if (unlikely(!in_interrupt() && local_softirq_pending()))
175 do_softirq();
176
177 dec_preempt_count();
178 #ifdef CONFIG_TRACE_IRQFLAGS
179 local_irq_enable();
180 #endif
181 preempt_check_resched();
182 }
183
184 void local_bh_enable(void)
185 {
186 _local_bh_enable_ip(_RET_IP_);
187 }
188 EXPORT_SYMBOL(local_bh_enable);
189
190 void local_bh_enable_ip(unsigned long ip)
191 {
192 _local_bh_enable_ip(ip);
193 }
194 EXPORT_SYMBOL(local_bh_enable_ip);
195
196 /*
197 * We restart softirq processing for at most MAX_SOFTIRQ_RESTART times,
198 * but break the loop if need_resched() is set or after 2 ms.
199 * The MAX_SOFTIRQ_TIME provides a nice upper bound in most cases, but in
200 * certain cases, such as stop_machine(), jiffies may cease to
201 * increment and so we need the MAX_SOFTIRQ_RESTART limit as
202 * well to make sure we eventually return from this method.
203 *
204 * These limits have been established via experimentation.
205 * The two things to balance is latency against fairness -
206 * we want to handle softirqs as soon as possible, but they
207 * should not be able to lock up the box.
208 */
209 #define MAX_SOFTIRQ_TIME msecs_to_jiffies(2)
210 #define MAX_SOFTIRQ_RESTART 10
211
212 asmlinkage void __do_softirq(void)
213 {
214 struct softirq_action *h;
215 __u32 pending;
216 unsigned long end = jiffies + MAX_SOFTIRQ_TIME;
217 int cpu;
218 unsigned long old_flags = current->flags;
219 int max_restart = MAX_SOFTIRQ_RESTART;
220
221 /*
222 * Mask out PF_MEMALLOC s current task context is borrowed for the
223 * softirq. A softirq handled such as network RX might set PF_MEMALLOC
224 * again if the socket is related to swap
225 */
226 current->flags &= ~PF_MEMALLOC;
227
228 pending = local_softirq_pending();
229 account_irq_enter_time(current);
230
231 __local_bh_disable(_RET_IP_, SOFTIRQ_OFFSET);
232 lockdep_softirq_enter();
233
234 cpu = smp_processor_id();
235 restart:
236 /* Reset the pending bitmask before enabling irqs */
237 set_softirq_pending(0);
238
239 local_irq_enable();
240
241 h = softirq_vec;
242
243 do {
244 if (pending & 1) {
245 unsigned int vec_nr = h - softirq_vec;
246 int prev_count = preempt_count();
247
248 kstat_incr_softirqs_this_cpu(vec_nr);
249
250 trace_softirq_entry(vec_nr);
251 h->action(h);
252 trace_softirq_exit(vec_nr);
253 if (unlikely(prev_count != preempt_count())) {
254 printk(KERN_ERR "huh, entered softirq %u %s %p"
255 "with preempt_count %08x,"
256 " exited with %08x?\n", vec_nr,
257 softirq_to_name[vec_nr], h->action,
258 prev_count, preempt_count());
259 preempt_count() = prev_count;
260 }
261
262 rcu_bh_qs(cpu);
263 }
264 h++;
265 pending >>= 1;
266 } while (pending);
267
268 local_irq_disable();
269
270 pending = local_softirq_pending();
271 if (pending) {
272 if (time_before(jiffies, end) && !need_resched() &&
273 --max_restart)
274 goto restart;
275
276 wakeup_softirqd();
277 }
278
279 lockdep_softirq_exit();
280
281 account_irq_exit_time(current);
282 __local_bh_enable(SOFTIRQ_OFFSET);
283 tsk_restore_flags(current, old_flags, PF_MEMALLOC);
284 }
285
286 #ifndef __ARCH_HAS_DO_SOFTIRQ
287
288 asmlinkage void do_softirq(void)
289 {
290 __u32 pending;
291 unsigned long flags;
292
293 if (in_interrupt())
294 return;
295
296 local_irq_save(flags);
297
298 pending = local_softirq_pending();
299
300 if (pending)
301 __do_softirq();
302
303 local_irq_restore(flags);
304 }
305
306 #endif
307
308 /*
309 * Enter an interrupt context.
310 */
311 void irq_enter(void)
312 {
313 int cpu = smp_processor_id();
314
315 rcu_irq_enter();
316 if (is_idle_task(current) && !in_interrupt()) {
317 /*
318 * Prevent raise_softirq from needlessly waking up ksoftirqd
319 * here, as softirq will be serviced on return from interrupt.
320 */
321 local_bh_disable();
322 tick_check_idle(cpu);
323 _local_bh_enable();
324 }
325
326 __irq_enter();
327 }
328
329 static inline void invoke_softirq(void)
330 {
331 if (!force_irqthreads) {
332 /*
333 * We can safely execute softirq on the current stack if
334 * it is the irq stack, because it should be near empty
335 * at this stage. But we have no way to know if the arch
336 * calls irq_exit() on the irq stack. So call softirq
337 * in its own stack to prevent from any overrun on top
338 * of a potentially deep task stack.
339 */
340 do_softirq();
341 } else {
342 wakeup_softirqd();
343 }
344 }
345
346 static inline void tick_irq_exit(void)
347 {
348 #ifdef CONFIG_NO_HZ_COMMON
349 int cpu = smp_processor_id();
350
351 /* Make sure that timer wheel updates are propagated */
352 if ((idle_cpu(cpu) && !need_resched()) || tick_nohz_full_cpu(cpu)) {
353 if (!in_interrupt())
354 tick_nohz_irq_exit();
355 }
356 #endif
357 }
358
359 /*
360 * Exit an interrupt context. Process softirqs if needed and possible:
361 */
362 void irq_exit(void)
363 {
364 #ifndef __ARCH_IRQ_EXIT_IRQS_DISABLED
365 local_irq_disable();
366 #else
367 WARN_ON_ONCE(!irqs_disabled());
368 #endif
369
370 account_irq_exit_time(current);
371 trace_hardirq_exit();
372 sub_preempt_count(HARDIRQ_OFFSET);
373 if (!in_interrupt() && local_softirq_pending())
374 invoke_softirq();
375
376 tick_irq_exit();
377 rcu_irq_exit();
378 }
379
380 /*
381 * This function must run with irqs disabled!
382 */
383 inline void raise_softirq_irqoff(unsigned int nr)
384 {
385 __raise_softirq_irqoff(nr);
386
387 /*
388 * If we're in an interrupt or softirq, we're done
389 * (this also catches softirq-disabled code). We will
390 * actually run the softirq once we return from
391 * the irq or softirq.
392 *
393 * Otherwise we wake up ksoftirqd to make sure we
394 * schedule the softirq soon.
395 */
396 if (!in_interrupt())
397 wakeup_softirqd();
398 }
399
400 void raise_softirq(unsigned int nr)
401 {
402 unsigned long flags;
403
404 local_irq_save(flags);
405 raise_softirq_irqoff(nr);
406 local_irq_restore(flags);
407 }
408
409 void __raise_softirq_irqoff(unsigned int nr)
410 {
411 trace_softirq_raise(nr);
412 or_softirq_pending(1UL << nr);
413 }
414
415 void open_softirq(int nr, void (*action)(struct softirq_action *))
416 {
417 softirq_vec[nr].action = action;
418 }
419
420 /*
421 * Tasklets
422 */
423 struct tasklet_head
424 {
425 struct tasklet_struct *head;
426 struct tasklet_struct **tail;
427 };
428
429 static DEFINE_PER_CPU(struct tasklet_head, tasklet_vec);
430 static DEFINE_PER_CPU(struct tasklet_head, tasklet_hi_vec);
431
432 void __tasklet_schedule(struct tasklet_struct *t)
433 {
434 unsigned long flags;
435
436 local_irq_save(flags);
437 t->next = NULL;
438 *__this_cpu_read(tasklet_vec.tail) = t;
439 __this_cpu_write(tasklet_vec.tail, &(t->next));
440 raise_softirq_irqoff(TASKLET_SOFTIRQ);
441 local_irq_restore(flags);
442 }
443
444 EXPORT_SYMBOL(__tasklet_schedule);
445
446 void __tasklet_hi_schedule(struct tasklet_struct *t)
447 {
448 unsigned long flags;
449
450 local_irq_save(flags);
451 t->next = NULL;
452 *__this_cpu_read(tasklet_hi_vec.tail) = t;
453 __this_cpu_write(tasklet_hi_vec.tail, &(t->next));
454 raise_softirq_irqoff(HI_SOFTIRQ);
455 local_irq_restore(flags);
456 }
457
458 EXPORT_SYMBOL(__tasklet_hi_schedule);
459
460 void __tasklet_hi_schedule_first(struct tasklet_struct *t)
461 {
462 BUG_ON(!irqs_disabled());
463
464 t->next = __this_cpu_read(tasklet_hi_vec.head);
465 __this_cpu_write(tasklet_hi_vec.head, t);
466 __raise_softirq_irqoff(HI_SOFTIRQ);
467 }
468
469 EXPORT_SYMBOL(__tasklet_hi_schedule_first);
470
471 static void tasklet_action(struct softirq_action *a)
472 {
473 struct tasklet_struct *list;
474
475 local_irq_disable();
476 list = __this_cpu_read(tasklet_vec.head);
477 __this_cpu_write(tasklet_vec.head, NULL);
478 __this_cpu_write(tasklet_vec.tail, &__get_cpu_var(tasklet_vec).head);
479 local_irq_enable();
480
481 while (list) {
482 struct tasklet_struct *t = list;
483
484 list = list->next;
485
486 if (tasklet_trylock(t)) {
487 if (!atomic_read(&t->count)) {
488 if (!test_and_clear_bit(TASKLET_STATE_SCHED, &t->state))
489 BUG();
490 t->func(t->data);
491 tasklet_unlock(t);
492 continue;
493 }
494 tasklet_unlock(t);
495 }
496
497 local_irq_disable();
498 t->next = NULL;
499 *__this_cpu_read(tasklet_vec.tail) = t;
500 __this_cpu_write(tasklet_vec.tail, &(t->next));
501 __raise_softirq_irqoff(TASKLET_SOFTIRQ);
502 local_irq_enable();
503 }
504 }
505
506 static void tasklet_hi_action(struct softirq_action *a)
507 {
508 struct tasklet_struct *list;
509
510 local_irq_disable();
511 list = __this_cpu_read(tasklet_hi_vec.head);
512 __this_cpu_write(tasklet_hi_vec.head, NULL);
513 __this_cpu_write(tasklet_hi_vec.tail, &__get_cpu_var(tasklet_hi_vec).head);
514 local_irq_enable();
515
516 while (list) {
517 struct tasklet_struct *t = list;
518
519 list = list->next;
520
521 if (tasklet_trylock(t)) {
522 if (!atomic_read(&t->count)) {
523 if (!test_and_clear_bit(TASKLET_STATE_SCHED, &t->state))
524 BUG();
525 t->func(t->data);
526 tasklet_unlock(t);
527 continue;
528 }
529 tasklet_unlock(t);
530 }
531
532 local_irq_disable();
533 t->next = NULL;
534 *__this_cpu_read(tasklet_hi_vec.tail) = t;
535 __this_cpu_write(tasklet_hi_vec.tail, &(t->next));
536 __raise_softirq_irqoff(HI_SOFTIRQ);
537 local_irq_enable();
538 }
539 }
540
541
542 void tasklet_init(struct tasklet_struct *t,
543 void (*func)(unsigned long), unsigned long data)
544 {
545 t->next = NULL;
546 t->state = 0;
547 atomic_set(&t->count, 0);
548 t->func = func;
549 t->data = data;
550 }
551
552 EXPORT_SYMBOL(tasklet_init);
553
554 void tasklet_kill(struct tasklet_struct *t)
555 {
556 if (in_interrupt())
557 printk("Attempt to kill tasklet from interrupt\n");
558
559 while (test_and_set_bit(TASKLET_STATE_SCHED, &t->state)) {
560 do {
561 yield();
562 } while (test_bit(TASKLET_STATE_SCHED, &t->state));
563 }
564 tasklet_unlock_wait(t);
565 clear_bit(TASKLET_STATE_SCHED, &t->state);
566 }
567
568 EXPORT_SYMBOL(tasklet_kill);
569
570 /*
571 * tasklet_hrtimer
572 */
573
574 /*
575 * The trampoline is called when the hrtimer expires. It schedules a tasklet
576 * to run __tasklet_hrtimer_trampoline() which in turn will call the intended
577 * hrtimer callback, but from softirq context.
578 */
579 static enum hrtimer_restart __hrtimer_tasklet_trampoline(struct hrtimer *timer)
580 {
581 struct tasklet_hrtimer *ttimer =
582 container_of(timer, struct tasklet_hrtimer, timer);
583
584 tasklet_hi_schedule(&ttimer->tasklet);
585 return HRTIMER_NORESTART;
586 }
587
588 /*
589 * Helper function which calls the hrtimer callback from
590 * tasklet/softirq context
591 */
592 static void __tasklet_hrtimer_trampoline(unsigned long data)
593 {
594 struct tasklet_hrtimer *ttimer = (void *)data;
595 enum hrtimer_restart restart;
596
597 restart = ttimer->function(&ttimer->timer);
598 if (restart != HRTIMER_NORESTART)
599 hrtimer_restart(&ttimer->timer);
600 }
601
602 /**
603 * tasklet_hrtimer_init - Init a tasklet/hrtimer combo for softirq callbacks
604 * @ttimer: tasklet_hrtimer which is initialized
605 * @function: hrtimer callback function which gets called from softirq context
606 * @which_clock: clock id (CLOCK_MONOTONIC/CLOCK_REALTIME)
607 * @mode: hrtimer mode (HRTIMER_MODE_ABS/HRTIMER_MODE_REL)
608 */
609 void tasklet_hrtimer_init(struct tasklet_hrtimer *ttimer,
610 enum hrtimer_restart (*function)(struct hrtimer *),
611 clockid_t which_clock, enum hrtimer_mode mode)
612 {
613 hrtimer_init(&ttimer->timer, which_clock, mode);
614 ttimer->timer.function = __hrtimer_tasklet_trampoline;
615 tasklet_init(&ttimer->tasklet, __tasklet_hrtimer_trampoline,
616 (unsigned long)ttimer);
617 ttimer->function = function;
618 }
619 EXPORT_SYMBOL_GPL(tasklet_hrtimer_init);
620
621 /*
622 * Remote softirq bits
623 */
624
625 DEFINE_PER_CPU(struct list_head [NR_SOFTIRQS], softirq_work_list);
626 EXPORT_PER_CPU_SYMBOL(softirq_work_list);
627
628 static void __local_trigger(struct call_single_data *cp, int softirq)
629 {
630 struct list_head *head = &__get_cpu_var(softirq_work_list[softirq]);
631
632 list_add_tail(&cp->list, head);
633
634 /* Trigger the softirq only if the list was previously empty. */
635 if (head->next == &cp->list)
636 raise_softirq_irqoff(softirq);
637 }
638
639 #ifdef CONFIG_USE_GENERIC_SMP_HELPERS
640 static void remote_softirq_receive(void *data)
641 {
642 struct call_single_data *cp = data;
643 unsigned long flags;
644 int softirq;
645
646 softirq = *(int *)cp->info;
647 local_irq_save(flags);
648 __local_trigger(cp, softirq);
649 local_irq_restore(flags);
650 }
651
652 static int __try_remote_softirq(struct call_single_data *cp, int cpu, int softirq)
653 {
654 if (cpu_online(cpu)) {
655 cp->func = remote_softirq_receive;
656 cp->info = &softirq;
657 cp->flags = 0;
658
659 __smp_call_function_single(cpu, cp, 0);
660 return 0;
661 }
662 return 1;
663 }
664 #else /* CONFIG_USE_GENERIC_SMP_HELPERS */
665 static int __try_remote_softirq(struct call_single_data *cp, int cpu, int softirq)
666 {
667 return 1;
668 }
669 #endif
670
671 /**
672 * __send_remote_softirq - try to schedule softirq work on a remote cpu
673 * @cp: private SMP call function data area
674 * @cpu: the remote cpu
675 * @this_cpu: the currently executing cpu
676 * @softirq: the softirq for the work
677 *
678 * Attempt to schedule softirq work on a remote cpu. If this cannot be
679 * done, the work is instead queued up on the local cpu.
680 *
681 * Interrupts must be disabled.
682 */
683 void __send_remote_softirq(struct call_single_data *cp, int cpu, int this_cpu, int softirq)
684 {
685 if (cpu == this_cpu || __try_remote_softirq(cp, cpu, softirq))
686 __local_trigger(cp, softirq);
687 }
688 EXPORT_SYMBOL(__send_remote_softirq);
689
690 /**
691 * send_remote_softirq - try to schedule softirq work on a remote cpu
692 * @cp: private SMP call function data area
693 * @cpu: the remote cpu
694 * @softirq: the softirq for the work
695 *
696 * Like __send_remote_softirq except that disabling interrupts and
697 * computing the current cpu is done for the caller.
698 */
699 void send_remote_softirq(struct call_single_data *cp, int cpu, int softirq)
700 {
701 unsigned long flags;
702 int this_cpu;
703
704 local_irq_save(flags);
705 this_cpu = smp_processor_id();
706 __send_remote_softirq(cp, cpu, this_cpu, softirq);
707 local_irq_restore(flags);
708 }
709 EXPORT_SYMBOL(send_remote_softirq);
710
711 static int remote_softirq_cpu_notify(struct notifier_block *self,
712 unsigned long action, void *hcpu)
713 {
714 /*
715 * If a CPU goes away, splice its entries to the current CPU
716 * and trigger a run of the softirq
717 */
718 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
719 int cpu = (unsigned long) hcpu;
720 int i;
721
722 local_irq_disable();
723 for (i = 0; i < NR_SOFTIRQS; i++) {
724 struct list_head *head = &per_cpu(softirq_work_list[i], cpu);
725 struct list_head *local_head;
726
727 if (list_empty(head))
728 continue;
729
730 local_head = &__get_cpu_var(softirq_work_list[i]);
731 list_splice_init(head, local_head);
732 raise_softirq_irqoff(i);
733 }
734 local_irq_enable();
735 }
736
737 return NOTIFY_OK;
738 }
739
740 static struct notifier_block remote_softirq_cpu_notifier = {
741 .notifier_call = remote_softirq_cpu_notify,
742 };
743
744 void __init softirq_init(void)
745 {
746 int cpu;
747
748 for_each_possible_cpu(cpu) {
749 int i;
750
751 per_cpu(tasklet_vec, cpu).tail =
752 &per_cpu(tasklet_vec, cpu).head;
753 per_cpu(tasklet_hi_vec, cpu).tail =
754 &per_cpu(tasklet_hi_vec, cpu).head;
755 for (i = 0; i < NR_SOFTIRQS; i++)
756 INIT_LIST_HEAD(&per_cpu(softirq_work_list[i], cpu));
757 }
758
759 register_hotcpu_notifier(&remote_softirq_cpu_notifier);
760
761 open_softirq(TASKLET_SOFTIRQ, tasklet_action);
762 open_softirq(HI_SOFTIRQ, tasklet_hi_action);
763 }
764
765 static int ksoftirqd_should_run(unsigned int cpu)
766 {
767 return local_softirq_pending();
768 }
769
770 static void run_ksoftirqd(unsigned int cpu)
771 {
772 local_irq_disable();
773 if (local_softirq_pending()) {
774 __do_softirq();
775 rcu_note_context_switch(cpu);
776 local_irq_enable();
777 cond_resched();
778 return;
779 }
780 local_irq_enable();
781 }
782
783 #ifdef CONFIG_HOTPLUG_CPU
784 /*
785 * tasklet_kill_immediate is called to remove a tasklet which can already be
786 * scheduled for execution on @cpu.
787 *
788 * Unlike tasklet_kill, this function removes the tasklet
789 * _immediately_, even if the tasklet is in TASKLET_STATE_SCHED state.
790 *
791 * When this function is called, @cpu must be in the CPU_DEAD state.
792 */
793 void tasklet_kill_immediate(struct tasklet_struct *t, unsigned int cpu)
794 {
795 struct tasklet_struct **i;
796
797 BUG_ON(cpu_online(cpu));
798 BUG_ON(test_bit(TASKLET_STATE_RUN, &t->state));
799
800 if (!test_bit(TASKLET_STATE_SCHED, &t->state))
801 return;
802
803 /* CPU is dead, so no lock needed. */
804 for (i = &per_cpu(tasklet_vec, cpu).head; *i; i = &(*i)->next) {
805 if (*i == t) {
806 *i = t->next;
807 /* If this was the tail element, move the tail ptr */
808 if (*i == NULL)
809 per_cpu(tasklet_vec, cpu).tail = i;
810 return;
811 }
812 }
813 BUG();
814 }
815
816 static void takeover_tasklets(unsigned int cpu)
817 {
818 /* CPU is dead, so no lock needed. */
819 local_irq_disable();
820
821 /* Find end, append list for that CPU. */
822 if (&per_cpu(tasklet_vec, cpu).head != per_cpu(tasklet_vec, cpu).tail) {
823 *__this_cpu_read(tasklet_vec.tail) = per_cpu(tasklet_vec, cpu).head;
824 this_cpu_write(tasklet_vec.tail, per_cpu(tasklet_vec, cpu).tail);
825 per_cpu(tasklet_vec, cpu).head = NULL;
826 per_cpu(tasklet_vec, cpu).tail = &per_cpu(tasklet_vec, cpu).head;
827 }
828 raise_softirq_irqoff(TASKLET_SOFTIRQ);
829
830 if (&per_cpu(tasklet_hi_vec, cpu).head != per_cpu(tasklet_hi_vec, cpu).tail) {
831 *__this_cpu_read(tasklet_hi_vec.tail) = per_cpu(tasklet_hi_vec, cpu).head;
832 __this_cpu_write(tasklet_hi_vec.tail, per_cpu(tasklet_hi_vec, cpu).tail);
833 per_cpu(tasklet_hi_vec, cpu).head = NULL;
834 per_cpu(tasklet_hi_vec, cpu).tail = &per_cpu(tasklet_hi_vec, cpu).head;
835 }
836 raise_softirq_irqoff(HI_SOFTIRQ);
837
838 local_irq_enable();
839 }
840 #endif /* CONFIG_HOTPLUG_CPU */
841
842 static int cpu_callback(struct notifier_block *nfb,
843 unsigned long action,
844 void *hcpu)
845 {
846 switch (action) {
847 #ifdef CONFIG_HOTPLUG_CPU
848 case CPU_DEAD:
849 case CPU_DEAD_FROZEN:
850 takeover_tasklets((unsigned long)hcpu);
851 break;
852 #endif /* CONFIG_HOTPLUG_CPU */
853 }
854 return NOTIFY_OK;
855 }
856
857 static struct notifier_block cpu_nfb = {
858 .notifier_call = cpu_callback
859 };
860
861 static struct smp_hotplug_thread softirq_threads = {
862 .store = &ksoftirqd,
863 .thread_should_run = ksoftirqd_should_run,
864 .thread_fn = run_ksoftirqd,
865 .thread_comm = "ksoftirqd/%u",
866 };
867
868 static __init int spawn_ksoftirqd(void)
869 {
870 register_cpu_notifier(&cpu_nfb);
871
872 BUG_ON(smpboot_register_percpu_thread(&softirq_threads));
873
874 return 0;
875 }
876 early_initcall(spawn_ksoftirqd);
877
878 /*
879 * [ These __weak aliases are kept in a separate compilation unit, so that
880 * GCC does not inline them incorrectly. ]
881 */
882
883 int __init __weak early_irq_init(void)
884 {
885 return 0;
886 }
887
888 int __init __weak arch_probe_nr_irqs(void)
889 {
890 return NR_IRQS_LEGACY;
891 }
892
893 int __init __weak arch_early_irq_init(void)
894 {
895 return 0;
896 }