]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/stop_machine.c
68b73c40040835cc5a3ab97f876416548800fa67
[mirror_ubuntu-zesty-kernel.git] / kernel / stop_machine.c
1 /*
2 * kernel/stop_machine.c
3 *
4 * Copyright (C) 2008, 2005 IBM Corporation.
5 * Copyright (C) 2008, 2005 Rusty Russell rusty@rustcorp.com.au
6 * Copyright (C) 2010 SUSE Linux Products GmbH
7 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
8 *
9 * This file is released under the GPLv2 and any later version.
10 */
11 #include <linux/completion.h>
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kthread.h>
15 #include <linux/export.h>
16 #include <linux/percpu.h>
17 #include <linux/sched.h>
18 #include <linux/stop_machine.h>
19 #include <linux/interrupt.h>
20 #include <linux/kallsyms.h>
21 #include <linux/smpboot.h>
22 #include <linux/atomic.h>
23 #include <linux/lglock.h>
24
25 /*
26 * Structure to determine completion condition and record errors. May
27 * be shared by works on different cpus.
28 */
29 struct cpu_stop_done {
30 atomic_t nr_todo; /* nr left to execute */
31 bool executed; /* actually executed? */
32 int ret; /* collected return value */
33 struct completion completion; /* fired if nr_todo reaches 0 */
34 };
35
36 /* the actual stopper, one per every possible cpu, enabled on online cpus */
37 struct cpu_stopper {
38 struct task_struct *thread;
39
40 spinlock_t lock;
41 bool enabled; /* is this stopper enabled? */
42 struct list_head works; /* list of pending works */
43
44 struct cpu_stop_work stop_work; /* for stop_cpus */
45 };
46
47 static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
48 static bool stop_machine_initialized = false;
49
50 /*
51 * Avoids a race between stop_two_cpus and global stop_cpus, where
52 * the stoppers could get queued up in reverse order, leading to
53 * system deadlock. Using an lglock means stop_two_cpus remains
54 * relatively cheap.
55 */
56 DEFINE_STATIC_LGLOCK(stop_cpus_lock);
57
58 static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
59 {
60 memset(done, 0, sizeof(*done));
61 atomic_set(&done->nr_todo, nr_todo);
62 init_completion(&done->completion);
63 }
64
65 /* signal completion unless @done is NULL */
66 static void cpu_stop_signal_done(struct cpu_stop_done *done, bool executed)
67 {
68 if (done) {
69 if (executed)
70 done->executed = true;
71 if (atomic_dec_and_test(&done->nr_todo))
72 complete(&done->completion);
73 }
74 }
75
76 static void __cpu_stop_queue_work(struct cpu_stopper *stopper,
77 struct cpu_stop_work *work)
78 {
79 list_add_tail(&work->list, &stopper->works);
80 wake_up_process(stopper->thread);
81 }
82
83 /* queue @work to @stopper. if offline, @work is completed immediately */
84 static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
85 {
86 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
87 unsigned long flags;
88 bool enabled;
89
90 spin_lock_irqsave(&stopper->lock, flags);
91 enabled = stopper->enabled;
92 if (enabled)
93 __cpu_stop_queue_work(stopper, work);
94 else
95 cpu_stop_signal_done(work->done, false);
96 spin_unlock_irqrestore(&stopper->lock, flags);
97
98 return enabled;
99 }
100
101 /**
102 * stop_one_cpu - stop a cpu
103 * @cpu: cpu to stop
104 * @fn: function to execute
105 * @arg: argument to @fn
106 *
107 * Execute @fn(@arg) on @cpu. @fn is run in a process context with
108 * the highest priority preempting any task on the cpu and
109 * monopolizing it. This function returns after the execution is
110 * complete.
111 *
112 * This function doesn't guarantee @cpu stays online till @fn
113 * completes. If @cpu goes down in the middle, execution may happen
114 * partially or fully on different cpus. @fn should either be ready
115 * for that or the caller should ensure that @cpu stays online until
116 * this function completes.
117 *
118 * CONTEXT:
119 * Might sleep.
120 *
121 * RETURNS:
122 * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
123 * otherwise, the return value of @fn.
124 */
125 int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
126 {
127 struct cpu_stop_done done;
128 struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
129
130 cpu_stop_init_done(&done, 1);
131 if (!cpu_stop_queue_work(cpu, &work))
132 return -ENOENT;
133 wait_for_completion(&done.completion);
134 WARN_ON(!done.executed);
135 return done.ret;
136 }
137
138 /* This controls the threads on each CPU. */
139 enum multi_stop_state {
140 /* Dummy starting state for thread. */
141 MULTI_STOP_NONE,
142 /* Awaiting everyone to be scheduled. */
143 MULTI_STOP_PREPARE,
144 /* Disable interrupts. */
145 MULTI_STOP_DISABLE_IRQ,
146 /* Run the function */
147 MULTI_STOP_RUN,
148 /* Exit */
149 MULTI_STOP_EXIT,
150 };
151
152 struct multi_stop_data {
153 cpu_stop_fn_t fn;
154 void *data;
155 /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
156 unsigned int num_threads;
157 const struct cpumask *active_cpus;
158
159 enum multi_stop_state state;
160 atomic_t thread_ack;
161 };
162
163 static void set_state(struct multi_stop_data *msdata,
164 enum multi_stop_state newstate)
165 {
166 /* Reset ack counter. */
167 atomic_set(&msdata->thread_ack, msdata->num_threads);
168 smp_wmb();
169 msdata->state = newstate;
170 }
171
172 /* Last one to ack a state moves to the next state. */
173 static void ack_state(struct multi_stop_data *msdata)
174 {
175 if (atomic_dec_and_test(&msdata->thread_ack))
176 set_state(msdata, msdata->state + 1);
177 }
178
179 /* This is the cpu_stop function which stops the CPU. */
180 static int multi_cpu_stop(void *data)
181 {
182 struct multi_stop_data *msdata = data;
183 enum multi_stop_state curstate = MULTI_STOP_NONE;
184 int cpu = smp_processor_id(), err = 0;
185 unsigned long flags;
186 bool is_active;
187
188 /*
189 * When called from stop_machine_from_inactive_cpu(), irq might
190 * already be disabled. Save the state and restore it on exit.
191 */
192 local_save_flags(flags);
193
194 if (!msdata->active_cpus)
195 is_active = cpu == cpumask_first(cpu_online_mask);
196 else
197 is_active = cpumask_test_cpu(cpu, msdata->active_cpus);
198
199 /* Simple state machine */
200 do {
201 /* Chill out and ensure we re-read multi_stop_state. */
202 cpu_relax();
203 if (msdata->state != curstate) {
204 curstate = msdata->state;
205 switch (curstate) {
206 case MULTI_STOP_DISABLE_IRQ:
207 local_irq_disable();
208 hard_irq_disable();
209 break;
210 case MULTI_STOP_RUN:
211 if (is_active)
212 err = msdata->fn(msdata->data);
213 break;
214 default:
215 break;
216 }
217 ack_state(msdata);
218 }
219 } while (curstate != MULTI_STOP_EXIT);
220
221 local_irq_restore(flags);
222 return err;
223 }
224
225 static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1,
226 int cpu2, struct cpu_stop_work *work2)
227 {
228 struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1);
229 struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2);
230 int err;
231
232 lg_double_lock(&stop_cpus_lock, cpu1, cpu2);
233 spin_lock_irq(&stopper1->lock);
234 spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING);
235
236 err = -ENOENT;
237 if (!stopper1->enabled || !stopper2->enabled)
238 goto unlock;
239
240 err = 0;
241 __cpu_stop_queue_work(stopper1, work1);
242 __cpu_stop_queue_work(stopper2, work2);
243 unlock:
244 spin_unlock(&stopper2->lock);
245 spin_unlock_irq(&stopper1->lock);
246 lg_double_unlock(&stop_cpus_lock, cpu1, cpu2);
247
248 return err;
249 }
250 /**
251 * stop_two_cpus - stops two cpus
252 * @cpu1: the cpu to stop
253 * @cpu2: the other cpu to stop
254 * @fn: function to execute
255 * @arg: argument to @fn
256 *
257 * Stops both the current and specified CPU and runs @fn on one of them.
258 *
259 * returns when both are completed.
260 */
261 int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
262 {
263 struct cpu_stop_done done;
264 struct cpu_stop_work work1, work2;
265 struct multi_stop_data msdata;
266
267 msdata = (struct multi_stop_data){
268 .fn = fn,
269 .data = arg,
270 .num_threads = 2,
271 .active_cpus = cpumask_of(cpu1),
272 };
273
274 work1 = work2 = (struct cpu_stop_work){
275 .fn = multi_cpu_stop,
276 .arg = &msdata,
277 .done = &done
278 };
279
280 cpu_stop_init_done(&done, 2);
281 set_state(&msdata, MULTI_STOP_PREPARE);
282
283 if (cpu1 > cpu2)
284 swap(cpu1, cpu2);
285 if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2))
286 return -ENOENT;
287
288 wait_for_completion(&done.completion);
289 WARN_ON(!done.executed);
290 return done.ret;
291 }
292
293 /**
294 * stop_one_cpu_nowait - stop a cpu but don't wait for completion
295 * @cpu: cpu to stop
296 * @fn: function to execute
297 * @arg: argument to @fn
298 * @work_buf: pointer to cpu_stop_work structure
299 *
300 * Similar to stop_one_cpu() but doesn't wait for completion. The
301 * caller is responsible for ensuring @work_buf is currently unused
302 * and will remain untouched until stopper starts executing @fn.
303 *
304 * CONTEXT:
305 * Don't care.
306 *
307 * RETURNS:
308 * true if cpu_stop_work was queued successfully and @fn will be called,
309 * false otherwise.
310 */
311 bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
312 struct cpu_stop_work *work_buf)
313 {
314 *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
315 return cpu_stop_queue_work(cpu, work_buf);
316 }
317
318 /* static data for stop_cpus */
319 static DEFINE_MUTEX(stop_cpus_mutex);
320
321 static void queue_stop_cpus_work(const struct cpumask *cpumask,
322 cpu_stop_fn_t fn, void *arg,
323 struct cpu_stop_done *done)
324 {
325 struct cpu_stop_work *work;
326 unsigned int cpu;
327
328 /*
329 * Disable preemption while queueing to avoid getting
330 * preempted by a stopper which might wait for other stoppers
331 * to enter @fn which can lead to deadlock.
332 */
333 lg_global_lock(&stop_cpus_lock);
334 for_each_cpu(cpu, cpumask) {
335 work = &per_cpu(cpu_stopper.stop_work, cpu);
336 work->fn = fn;
337 work->arg = arg;
338 work->done = done;
339 cpu_stop_queue_work(cpu, work);
340 }
341 lg_global_unlock(&stop_cpus_lock);
342 }
343
344 static int __stop_cpus(const struct cpumask *cpumask,
345 cpu_stop_fn_t fn, void *arg)
346 {
347 struct cpu_stop_done done;
348
349 cpu_stop_init_done(&done, cpumask_weight(cpumask));
350 queue_stop_cpus_work(cpumask, fn, arg, &done);
351 wait_for_completion(&done.completion);
352 return done.executed ? done.ret : -ENOENT;
353 }
354
355 /**
356 * stop_cpus - stop multiple cpus
357 * @cpumask: cpus to stop
358 * @fn: function to execute
359 * @arg: argument to @fn
360 *
361 * Execute @fn(@arg) on online cpus in @cpumask. On each target cpu,
362 * @fn is run in a process context with the highest priority
363 * preempting any task on the cpu and monopolizing it. This function
364 * returns after all executions are complete.
365 *
366 * This function doesn't guarantee the cpus in @cpumask stay online
367 * till @fn completes. If some cpus go down in the middle, execution
368 * on the cpu may happen partially or fully on different cpus. @fn
369 * should either be ready for that or the caller should ensure that
370 * the cpus stay online until this function completes.
371 *
372 * All stop_cpus() calls are serialized making it safe for @fn to wait
373 * for all cpus to start executing it.
374 *
375 * CONTEXT:
376 * Might sleep.
377 *
378 * RETURNS:
379 * -ENOENT if @fn(@arg) was not executed at all because all cpus in
380 * @cpumask were offline; otherwise, 0 if all executions of @fn
381 * returned 0, any non zero return value if any returned non zero.
382 */
383 int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
384 {
385 int ret;
386
387 /* static works are used, process one request at a time */
388 mutex_lock(&stop_cpus_mutex);
389 ret = __stop_cpus(cpumask, fn, arg);
390 mutex_unlock(&stop_cpus_mutex);
391 return ret;
392 }
393
394 /**
395 * try_stop_cpus - try to stop multiple cpus
396 * @cpumask: cpus to stop
397 * @fn: function to execute
398 * @arg: argument to @fn
399 *
400 * Identical to stop_cpus() except that it fails with -EAGAIN if
401 * someone else is already using the facility.
402 *
403 * CONTEXT:
404 * Might sleep.
405 *
406 * RETURNS:
407 * -EAGAIN if someone else is already stopping cpus, -ENOENT if
408 * @fn(@arg) was not executed at all because all cpus in @cpumask were
409 * offline; otherwise, 0 if all executions of @fn returned 0, any non
410 * zero return value if any returned non zero.
411 */
412 int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
413 {
414 int ret;
415
416 /* static works are used, process one request at a time */
417 if (!mutex_trylock(&stop_cpus_mutex))
418 return -EAGAIN;
419 ret = __stop_cpus(cpumask, fn, arg);
420 mutex_unlock(&stop_cpus_mutex);
421 return ret;
422 }
423
424 static int cpu_stop_should_run(unsigned int cpu)
425 {
426 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
427 unsigned long flags;
428 int run;
429
430 spin_lock_irqsave(&stopper->lock, flags);
431 run = !list_empty(&stopper->works);
432 spin_unlock_irqrestore(&stopper->lock, flags);
433 return run;
434 }
435
436 static void cpu_stopper_thread(unsigned int cpu)
437 {
438 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
439 struct cpu_stop_work *work;
440 int ret;
441
442 repeat:
443 work = NULL;
444 spin_lock_irq(&stopper->lock);
445 if (!list_empty(&stopper->works)) {
446 work = list_first_entry(&stopper->works,
447 struct cpu_stop_work, list);
448 list_del_init(&work->list);
449 }
450 spin_unlock_irq(&stopper->lock);
451
452 if (work) {
453 cpu_stop_fn_t fn = work->fn;
454 void *arg = work->arg;
455 struct cpu_stop_done *done = work->done;
456 char ksym_buf[KSYM_NAME_LEN] __maybe_unused;
457
458 /* cpu stop callbacks are not allowed to sleep */
459 preempt_disable();
460
461 ret = fn(arg);
462 if (ret && done)
463 done->ret = ret;
464
465 /* restore preemption and check it's still balanced */
466 preempt_enable();
467 WARN_ONCE(preempt_count(),
468 "cpu_stop: %s(%p) leaked preempt count\n",
469 kallsyms_lookup((unsigned long)fn, NULL, NULL, NULL,
470 ksym_buf), arg);
471
472 cpu_stop_signal_done(done, true);
473 goto repeat;
474 }
475 }
476
477 void stop_machine_park(int cpu)
478 {
479 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
480 /*
481 * Lockless. cpu_stopper_thread() will take stopper->lock and flush
482 * the pending works before it parks, until then it is fine to queue
483 * the new works.
484 */
485 stopper->enabled = false;
486 kthread_park(stopper->thread);
487 }
488
489 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
490
491 static void cpu_stop_create(unsigned int cpu)
492 {
493 sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu));
494 }
495
496 static void cpu_stop_park(unsigned int cpu)
497 {
498 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
499
500 WARN_ON(!list_empty(&stopper->works));
501 }
502
503 void stop_machine_unpark(int cpu)
504 {
505 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
506
507 stopper->enabled = true;
508 kthread_unpark(stopper->thread);
509 }
510
511 static struct smp_hotplug_thread cpu_stop_threads = {
512 .store = &cpu_stopper.thread,
513 .thread_should_run = cpu_stop_should_run,
514 .thread_fn = cpu_stopper_thread,
515 .thread_comm = "migration/%u",
516 .create = cpu_stop_create,
517 .park = cpu_stop_park,
518 .selfparking = true,
519 };
520
521 static int __init cpu_stop_init(void)
522 {
523 unsigned int cpu;
524
525 for_each_possible_cpu(cpu) {
526 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
527
528 spin_lock_init(&stopper->lock);
529 INIT_LIST_HEAD(&stopper->works);
530 }
531
532 BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
533 stop_machine_unpark(raw_smp_processor_id());
534 stop_machine_initialized = true;
535 return 0;
536 }
537 early_initcall(cpu_stop_init);
538
539 #ifdef CONFIG_STOP_MACHINE
540
541 static int __stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
542 {
543 struct multi_stop_data msdata = {
544 .fn = fn,
545 .data = data,
546 .num_threads = num_online_cpus(),
547 .active_cpus = cpus,
548 };
549
550 if (!stop_machine_initialized) {
551 /*
552 * Handle the case where stop_machine() is called
553 * early in boot before stop_machine() has been
554 * initialized.
555 */
556 unsigned long flags;
557 int ret;
558
559 WARN_ON_ONCE(msdata.num_threads != 1);
560
561 local_irq_save(flags);
562 hard_irq_disable();
563 ret = (*fn)(data);
564 local_irq_restore(flags);
565
566 return ret;
567 }
568
569 /* Set the initial state and stop all online cpus. */
570 set_state(&msdata, MULTI_STOP_PREPARE);
571 return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
572 }
573
574 int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
575 {
576 int ret;
577
578 /* No CPUs can come up or down during this. */
579 get_online_cpus();
580 ret = __stop_machine(fn, data, cpus);
581 put_online_cpus();
582 return ret;
583 }
584 EXPORT_SYMBOL_GPL(stop_machine);
585
586 /**
587 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
588 * @fn: the function to run
589 * @data: the data ptr for the @fn()
590 * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
591 *
592 * This is identical to stop_machine() but can be called from a CPU which
593 * is not active. The local CPU is in the process of hotplug (so no other
594 * CPU hotplug can start) and not marked active and doesn't have enough
595 * context to sleep.
596 *
597 * This function provides stop_machine() functionality for such state by
598 * using busy-wait for synchronization and executing @fn directly for local
599 * CPU.
600 *
601 * CONTEXT:
602 * Local CPU is inactive. Temporarily stops all active CPUs.
603 *
604 * RETURNS:
605 * 0 if all executions of @fn returned 0, any non zero return value if any
606 * returned non zero.
607 */
608 int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
609 const struct cpumask *cpus)
610 {
611 struct multi_stop_data msdata = { .fn = fn, .data = data,
612 .active_cpus = cpus };
613 struct cpu_stop_done done;
614 int ret;
615
616 /* Local CPU must be inactive and CPU hotplug in progress. */
617 BUG_ON(cpu_active(raw_smp_processor_id()));
618 msdata.num_threads = num_active_cpus() + 1; /* +1 for local */
619
620 /* No proper task established and can't sleep - busy wait for lock. */
621 while (!mutex_trylock(&stop_cpus_mutex))
622 cpu_relax();
623
624 /* Schedule work on other CPUs and execute directly for local CPU */
625 set_state(&msdata, MULTI_STOP_PREPARE);
626 cpu_stop_init_done(&done, num_active_cpus());
627 queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
628 &done);
629 ret = multi_cpu_stop(&msdata);
630
631 /* Busy wait for completion. */
632 while (!completion_done(&done.completion))
633 cpu_relax();
634
635 mutex_unlock(&stop_cpus_mutex);
636 return ret ?: done.ret;
637 }
638
639 #endif /* CONFIG_STOP_MACHINE */