]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/sys.c
[CVE-2009-0029] System call wrappers part 07
[mirror_ubuntu-jammy-kernel.git] / kernel / sys.c
1 /*
2 * linux/kernel/sys.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/smp_lock.h>
12 #include <linux/notifier.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
16 #include <linux/fs.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/ptrace.h>
37
38 #include <linux/compat.h>
39 #include <linux/syscalls.h>
40 #include <linux/kprobes.h>
41 #include <linux/user_namespace.h>
42
43 #include <asm/uaccess.h>
44 #include <asm/io.h>
45 #include <asm/unistd.h>
46
47 #ifndef SET_UNALIGN_CTL
48 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
49 #endif
50 #ifndef GET_UNALIGN_CTL
51 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
52 #endif
53 #ifndef SET_FPEMU_CTL
54 # define SET_FPEMU_CTL(a,b) (-EINVAL)
55 #endif
56 #ifndef GET_FPEMU_CTL
57 # define GET_FPEMU_CTL(a,b) (-EINVAL)
58 #endif
59 #ifndef SET_FPEXC_CTL
60 # define SET_FPEXC_CTL(a,b) (-EINVAL)
61 #endif
62 #ifndef GET_FPEXC_CTL
63 # define GET_FPEXC_CTL(a,b) (-EINVAL)
64 #endif
65 #ifndef GET_ENDIAN
66 # define GET_ENDIAN(a,b) (-EINVAL)
67 #endif
68 #ifndef SET_ENDIAN
69 # define SET_ENDIAN(a,b) (-EINVAL)
70 #endif
71 #ifndef GET_TSC_CTL
72 # define GET_TSC_CTL(a) (-EINVAL)
73 #endif
74 #ifndef SET_TSC_CTL
75 # define SET_TSC_CTL(a) (-EINVAL)
76 #endif
77
78 /*
79 * this is where the system-wide overflow UID and GID are defined, for
80 * architectures that now have 32-bit UID/GID but didn't in the past
81 */
82
83 int overflowuid = DEFAULT_OVERFLOWUID;
84 int overflowgid = DEFAULT_OVERFLOWGID;
85
86 #ifdef CONFIG_UID16
87 EXPORT_SYMBOL(overflowuid);
88 EXPORT_SYMBOL(overflowgid);
89 #endif
90
91 /*
92 * the same as above, but for filesystems which can only store a 16-bit
93 * UID and GID. as such, this is needed on all architectures
94 */
95
96 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
97 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
98
99 EXPORT_SYMBOL(fs_overflowuid);
100 EXPORT_SYMBOL(fs_overflowgid);
101
102 /*
103 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
104 */
105
106 int C_A_D = 1;
107 struct pid *cad_pid;
108 EXPORT_SYMBOL(cad_pid);
109
110 /*
111 * If set, this is used for preparing the system to power off.
112 */
113
114 void (*pm_power_off_prepare)(void);
115
116 /*
117 * set the priority of a task
118 * - the caller must hold the RCU read lock
119 */
120 static int set_one_prio(struct task_struct *p, int niceval, int error)
121 {
122 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
123 int no_nice;
124
125 if (pcred->uid != cred->euid &&
126 pcred->euid != cred->euid && !capable(CAP_SYS_NICE)) {
127 error = -EPERM;
128 goto out;
129 }
130 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
131 error = -EACCES;
132 goto out;
133 }
134 no_nice = security_task_setnice(p, niceval);
135 if (no_nice) {
136 error = no_nice;
137 goto out;
138 }
139 if (error == -ESRCH)
140 error = 0;
141 set_user_nice(p, niceval);
142 out:
143 return error;
144 }
145
146 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
147 {
148 struct task_struct *g, *p;
149 struct user_struct *user;
150 const struct cred *cred = current_cred();
151 int error = -EINVAL;
152 struct pid *pgrp;
153
154 if (which > PRIO_USER || which < PRIO_PROCESS)
155 goto out;
156
157 /* normalize: avoid signed division (rounding problems) */
158 error = -ESRCH;
159 if (niceval < -20)
160 niceval = -20;
161 if (niceval > 19)
162 niceval = 19;
163
164 read_lock(&tasklist_lock);
165 switch (which) {
166 case PRIO_PROCESS:
167 if (who)
168 p = find_task_by_vpid(who);
169 else
170 p = current;
171 if (p)
172 error = set_one_prio(p, niceval, error);
173 break;
174 case PRIO_PGRP:
175 if (who)
176 pgrp = find_vpid(who);
177 else
178 pgrp = task_pgrp(current);
179 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
180 error = set_one_prio(p, niceval, error);
181 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
182 break;
183 case PRIO_USER:
184 user = (struct user_struct *) cred->user;
185 if (!who)
186 who = cred->uid;
187 else if ((who != cred->uid) &&
188 !(user = find_user(who)))
189 goto out_unlock; /* No processes for this user */
190
191 do_each_thread(g, p)
192 if (__task_cred(p)->uid == who)
193 error = set_one_prio(p, niceval, error);
194 while_each_thread(g, p);
195 if (who != cred->uid)
196 free_uid(user); /* For find_user() */
197 break;
198 }
199 out_unlock:
200 read_unlock(&tasklist_lock);
201 out:
202 return error;
203 }
204
205 /*
206 * Ugh. To avoid negative return values, "getpriority()" will
207 * not return the normal nice-value, but a negated value that
208 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
209 * to stay compatible.
210 */
211 SYSCALL_DEFINE2(getpriority, int, which, int, who)
212 {
213 struct task_struct *g, *p;
214 struct user_struct *user;
215 const struct cred *cred = current_cred();
216 long niceval, retval = -ESRCH;
217 struct pid *pgrp;
218
219 if (which > PRIO_USER || which < PRIO_PROCESS)
220 return -EINVAL;
221
222 read_lock(&tasklist_lock);
223 switch (which) {
224 case PRIO_PROCESS:
225 if (who)
226 p = find_task_by_vpid(who);
227 else
228 p = current;
229 if (p) {
230 niceval = 20 - task_nice(p);
231 if (niceval > retval)
232 retval = niceval;
233 }
234 break;
235 case PRIO_PGRP:
236 if (who)
237 pgrp = find_vpid(who);
238 else
239 pgrp = task_pgrp(current);
240 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
241 niceval = 20 - task_nice(p);
242 if (niceval > retval)
243 retval = niceval;
244 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
245 break;
246 case PRIO_USER:
247 user = (struct user_struct *) cred->user;
248 if (!who)
249 who = cred->uid;
250 else if ((who != cred->uid) &&
251 !(user = find_user(who)))
252 goto out_unlock; /* No processes for this user */
253
254 do_each_thread(g, p)
255 if (__task_cred(p)->uid == who) {
256 niceval = 20 - task_nice(p);
257 if (niceval > retval)
258 retval = niceval;
259 }
260 while_each_thread(g, p);
261 if (who != cred->uid)
262 free_uid(user); /* for find_user() */
263 break;
264 }
265 out_unlock:
266 read_unlock(&tasklist_lock);
267
268 return retval;
269 }
270
271 /**
272 * emergency_restart - reboot the system
273 *
274 * Without shutting down any hardware or taking any locks
275 * reboot the system. This is called when we know we are in
276 * trouble so this is our best effort to reboot. This is
277 * safe to call in interrupt context.
278 */
279 void emergency_restart(void)
280 {
281 machine_emergency_restart();
282 }
283 EXPORT_SYMBOL_GPL(emergency_restart);
284
285 void kernel_restart_prepare(char *cmd)
286 {
287 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
288 system_state = SYSTEM_RESTART;
289 device_shutdown();
290 sysdev_shutdown();
291 }
292
293 /**
294 * kernel_restart - reboot the system
295 * @cmd: pointer to buffer containing command to execute for restart
296 * or %NULL
297 *
298 * Shutdown everything and perform a clean reboot.
299 * This is not safe to call in interrupt context.
300 */
301 void kernel_restart(char *cmd)
302 {
303 kernel_restart_prepare(cmd);
304 if (!cmd)
305 printk(KERN_EMERG "Restarting system.\n");
306 else
307 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
308 machine_restart(cmd);
309 }
310 EXPORT_SYMBOL_GPL(kernel_restart);
311
312 static void kernel_shutdown_prepare(enum system_states state)
313 {
314 blocking_notifier_call_chain(&reboot_notifier_list,
315 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
316 system_state = state;
317 device_shutdown();
318 }
319 /**
320 * kernel_halt - halt the system
321 *
322 * Shutdown everything and perform a clean system halt.
323 */
324 void kernel_halt(void)
325 {
326 kernel_shutdown_prepare(SYSTEM_HALT);
327 sysdev_shutdown();
328 printk(KERN_EMERG "System halted.\n");
329 machine_halt();
330 }
331
332 EXPORT_SYMBOL_GPL(kernel_halt);
333
334 /**
335 * kernel_power_off - power_off the system
336 *
337 * Shutdown everything and perform a clean system power_off.
338 */
339 void kernel_power_off(void)
340 {
341 kernel_shutdown_prepare(SYSTEM_POWER_OFF);
342 if (pm_power_off_prepare)
343 pm_power_off_prepare();
344 disable_nonboot_cpus();
345 sysdev_shutdown();
346 printk(KERN_EMERG "Power down.\n");
347 machine_power_off();
348 }
349 EXPORT_SYMBOL_GPL(kernel_power_off);
350 /*
351 * Reboot system call: for obvious reasons only root may call it,
352 * and even root needs to set up some magic numbers in the registers
353 * so that some mistake won't make this reboot the whole machine.
354 * You can also set the meaning of the ctrl-alt-del-key here.
355 *
356 * reboot doesn't sync: do that yourself before calling this.
357 */
358 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
359 void __user *, arg)
360 {
361 char buffer[256];
362
363 /* We only trust the superuser with rebooting the system. */
364 if (!capable(CAP_SYS_BOOT))
365 return -EPERM;
366
367 /* For safety, we require "magic" arguments. */
368 if (magic1 != LINUX_REBOOT_MAGIC1 ||
369 (magic2 != LINUX_REBOOT_MAGIC2 &&
370 magic2 != LINUX_REBOOT_MAGIC2A &&
371 magic2 != LINUX_REBOOT_MAGIC2B &&
372 magic2 != LINUX_REBOOT_MAGIC2C))
373 return -EINVAL;
374
375 /* Instead of trying to make the power_off code look like
376 * halt when pm_power_off is not set do it the easy way.
377 */
378 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
379 cmd = LINUX_REBOOT_CMD_HALT;
380
381 lock_kernel();
382 switch (cmd) {
383 case LINUX_REBOOT_CMD_RESTART:
384 kernel_restart(NULL);
385 break;
386
387 case LINUX_REBOOT_CMD_CAD_ON:
388 C_A_D = 1;
389 break;
390
391 case LINUX_REBOOT_CMD_CAD_OFF:
392 C_A_D = 0;
393 break;
394
395 case LINUX_REBOOT_CMD_HALT:
396 kernel_halt();
397 unlock_kernel();
398 do_exit(0);
399 break;
400
401 case LINUX_REBOOT_CMD_POWER_OFF:
402 kernel_power_off();
403 unlock_kernel();
404 do_exit(0);
405 break;
406
407 case LINUX_REBOOT_CMD_RESTART2:
408 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
409 unlock_kernel();
410 return -EFAULT;
411 }
412 buffer[sizeof(buffer) - 1] = '\0';
413
414 kernel_restart(buffer);
415 break;
416
417 #ifdef CONFIG_KEXEC
418 case LINUX_REBOOT_CMD_KEXEC:
419 {
420 int ret;
421 ret = kernel_kexec();
422 unlock_kernel();
423 return ret;
424 }
425 #endif
426
427 #ifdef CONFIG_HIBERNATION
428 case LINUX_REBOOT_CMD_SW_SUSPEND:
429 {
430 int ret = hibernate();
431 unlock_kernel();
432 return ret;
433 }
434 #endif
435
436 default:
437 unlock_kernel();
438 return -EINVAL;
439 }
440 unlock_kernel();
441 return 0;
442 }
443
444 static void deferred_cad(struct work_struct *dummy)
445 {
446 kernel_restart(NULL);
447 }
448
449 /*
450 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
451 * As it's called within an interrupt, it may NOT sync: the only choice
452 * is whether to reboot at once, or just ignore the ctrl-alt-del.
453 */
454 void ctrl_alt_del(void)
455 {
456 static DECLARE_WORK(cad_work, deferred_cad);
457
458 if (C_A_D)
459 schedule_work(&cad_work);
460 else
461 kill_cad_pid(SIGINT, 1);
462 }
463
464 /*
465 * Unprivileged users may change the real gid to the effective gid
466 * or vice versa. (BSD-style)
467 *
468 * If you set the real gid at all, or set the effective gid to a value not
469 * equal to the real gid, then the saved gid is set to the new effective gid.
470 *
471 * This makes it possible for a setgid program to completely drop its
472 * privileges, which is often a useful assertion to make when you are doing
473 * a security audit over a program.
474 *
475 * The general idea is that a program which uses just setregid() will be
476 * 100% compatible with BSD. A program which uses just setgid() will be
477 * 100% compatible with POSIX with saved IDs.
478 *
479 * SMP: There are not races, the GIDs are checked only by filesystem
480 * operations (as far as semantic preservation is concerned).
481 */
482 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
483 {
484 const struct cred *old;
485 struct cred *new;
486 int retval;
487
488 new = prepare_creds();
489 if (!new)
490 return -ENOMEM;
491 old = current_cred();
492
493 retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
494 if (retval)
495 goto error;
496
497 retval = -EPERM;
498 if (rgid != (gid_t) -1) {
499 if (old->gid == rgid ||
500 old->egid == rgid ||
501 capable(CAP_SETGID))
502 new->gid = rgid;
503 else
504 goto error;
505 }
506 if (egid != (gid_t) -1) {
507 if (old->gid == egid ||
508 old->egid == egid ||
509 old->sgid == egid ||
510 capable(CAP_SETGID))
511 new->egid = egid;
512 else
513 goto error;
514 }
515
516 if (rgid != (gid_t) -1 ||
517 (egid != (gid_t) -1 && egid != old->gid))
518 new->sgid = new->egid;
519 new->fsgid = new->egid;
520
521 return commit_creds(new);
522
523 error:
524 abort_creds(new);
525 return retval;
526 }
527
528 /*
529 * setgid() is implemented like SysV w/ SAVED_IDS
530 *
531 * SMP: Same implicit races as above.
532 */
533 SYSCALL_DEFINE1(setgid, gid_t, gid)
534 {
535 const struct cred *old;
536 struct cred *new;
537 int retval;
538
539 new = prepare_creds();
540 if (!new)
541 return -ENOMEM;
542 old = current_cred();
543
544 retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
545 if (retval)
546 goto error;
547
548 retval = -EPERM;
549 if (capable(CAP_SETGID))
550 new->gid = new->egid = new->sgid = new->fsgid = gid;
551 else if (gid == old->gid || gid == old->sgid)
552 new->egid = new->fsgid = gid;
553 else
554 goto error;
555
556 return commit_creds(new);
557
558 error:
559 abort_creds(new);
560 return retval;
561 }
562
563 /*
564 * change the user struct in a credentials set to match the new UID
565 */
566 static int set_user(struct cred *new)
567 {
568 struct user_struct *new_user;
569
570 new_user = alloc_uid(current_user_ns(), new->uid);
571 if (!new_user)
572 return -EAGAIN;
573
574 if (atomic_read(&new_user->processes) >=
575 current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
576 new_user != INIT_USER) {
577 free_uid(new_user);
578 return -EAGAIN;
579 }
580
581 free_uid(new->user);
582 new->user = new_user;
583 return 0;
584 }
585
586 /*
587 * Unprivileged users may change the real uid to the effective uid
588 * or vice versa. (BSD-style)
589 *
590 * If you set the real uid at all, or set the effective uid to a value not
591 * equal to the real uid, then the saved uid is set to the new effective uid.
592 *
593 * This makes it possible for a setuid program to completely drop its
594 * privileges, which is often a useful assertion to make when you are doing
595 * a security audit over a program.
596 *
597 * The general idea is that a program which uses just setreuid() will be
598 * 100% compatible with BSD. A program which uses just setuid() will be
599 * 100% compatible with POSIX with saved IDs.
600 */
601 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
602 {
603 const struct cred *old;
604 struct cred *new;
605 int retval;
606
607 new = prepare_creds();
608 if (!new)
609 return -ENOMEM;
610 old = current_cred();
611
612 retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
613 if (retval)
614 goto error;
615
616 retval = -EPERM;
617 if (ruid != (uid_t) -1) {
618 new->uid = ruid;
619 if (old->uid != ruid &&
620 old->euid != ruid &&
621 !capable(CAP_SETUID))
622 goto error;
623 }
624
625 if (euid != (uid_t) -1) {
626 new->euid = euid;
627 if (old->uid != euid &&
628 old->euid != euid &&
629 old->suid != euid &&
630 !capable(CAP_SETUID))
631 goto error;
632 }
633
634 retval = -EAGAIN;
635 if (new->uid != old->uid && set_user(new) < 0)
636 goto error;
637
638 if (ruid != (uid_t) -1 ||
639 (euid != (uid_t) -1 && euid != old->uid))
640 new->suid = new->euid;
641 new->fsuid = new->euid;
642
643 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
644 if (retval < 0)
645 goto error;
646
647 return commit_creds(new);
648
649 error:
650 abort_creds(new);
651 return retval;
652 }
653
654 /*
655 * setuid() is implemented like SysV with SAVED_IDS
656 *
657 * Note that SAVED_ID's is deficient in that a setuid root program
658 * like sendmail, for example, cannot set its uid to be a normal
659 * user and then switch back, because if you're root, setuid() sets
660 * the saved uid too. If you don't like this, blame the bright people
661 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
662 * will allow a root program to temporarily drop privileges and be able to
663 * regain them by swapping the real and effective uid.
664 */
665 SYSCALL_DEFINE1(setuid, uid_t, uid)
666 {
667 const struct cred *old;
668 struct cred *new;
669 int retval;
670
671 new = prepare_creds();
672 if (!new)
673 return -ENOMEM;
674 old = current_cred();
675
676 retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
677 if (retval)
678 goto error;
679
680 retval = -EPERM;
681 if (capable(CAP_SETUID)) {
682 new->suid = new->uid = uid;
683 if (uid != old->uid && set_user(new) < 0) {
684 retval = -EAGAIN;
685 goto error;
686 }
687 } else if (uid != old->uid && uid != new->suid) {
688 goto error;
689 }
690
691 new->fsuid = new->euid = uid;
692
693 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
694 if (retval < 0)
695 goto error;
696
697 return commit_creds(new);
698
699 error:
700 abort_creds(new);
701 return retval;
702 }
703
704
705 /*
706 * This function implements a generic ability to update ruid, euid,
707 * and suid. This allows you to implement the 4.4 compatible seteuid().
708 */
709 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
710 {
711 const struct cred *old;
712 struct cred *new;
713 int retval;
714
715 new = prepare_creds();
716 if (!new)
717 return -ENOMEM;
718
719 retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
720 if (retval)
721 goto error;
722 old = current_cred();
723
724 retval = -EPERM;
725 if (!capable(CAP_SETUID)) {
726 if (ruid != (uid_t) -1 && ruid != old->uid &&
727 ruid != old->euid && ruid != old->suid)
728 goto error;
729 if (euid != (uid_t) -1 && euid != old->uid &&
730 euid != old->euid && euid != old->suid)
731 goto error;
732 if (suid != (uid_t) -1 && suid != old->uid &&
733 suid != old->euid && suid != old->suid)
734 goto error;
735 }
736
737 retval = -EAGAIN;
738 if (ruid != (uid_t) -1) {
739 new->uid = ruid;
740 if (ruid != old->uid && set_user(new) < 0)
741 goto error;
742 }
743 if (euid != (uid_t) -1)
744 new->euid = euid;
745 if (suid != (uid_t) -1)
746 new->suid = suid;
747 new->fsuid = new->euid;
748
749 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
750 if (retval < 0)
751 goto error;
752
753 return commit_creds(new);
754
755 error:
756 abort_creds(new);
757 return retval;
758 }
759
760 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
761 {
762 const struct cred *cred = current_cred();
763 int retval;
764
765 if (!(retval = put_user(cred->uid, ruid)) &&
766 !(retval = put_user(cred->euid, euid)))
767 retval = put_user(cred->suid, suid);
768
769 return retval;
770 }
771
772 /*
773 * Same as above, but for rgid, egid, sgid.
774 */
775 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
776 {
777 const struct cred *old;
778 struct cred *new;
779 int retval;
780
781 new = prepare_creds();
782 if (!new)
783 return -ENOMEM;
784 old = current_cred();
785
786 retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
787 if (retval)
788 goto error;
789
790 retval = -EPERM;
791 if (!capable(CAP_SETGID)) {
792 if (rgid != (gid_t) -1 && rgid != old->gid &&
793 rgid != old->egid && rgid != old->sgid)
794 goto error;
795 if (egid != (gid_t) -1 && egid != old->gid &&
796 egid != old->egid && egid != old->sgid)
797 goto error;
798 if (sgid != (gid_t) -1 && sgid != old->gid &&
799 sgid != old->egid && sgid != old->sgid)
800 goto error;
801 }
802
803 if (rgid != (gid_t) -1)
804 new->gid = rgid;
805 if (egid != (gid_t) -1)
806 new->egid = egid;
807 if (sgid != (gid_t) -1)
808 new->sgid = sgid;
809 new->fsgid = new->egid;
810
811 return commit_creds(new);
812
813 error:
814 abort_creds(new);
815 return retval;
816 }
817
818 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
819 {
820 const struct cred *cred = current_cred();
821 int retval;
822
823 if (!(retval = put_user(cred->gid, rgid)) &&
824 !(retval = put_user(cred->egid, egid)))
825 retval = put_user(cred->sgid, sgid);
826
827 return retval;
828 }
829
830
831 /*
832 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
833 * is used for "access()" and for the NFS daemon (letting nfsd stay at
834 * whatever uid it wants to). It normally shadows "euid", except when
835 * explicitly set by setfsuid() or for access..
836 */
837 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
838 {
839 const struct cred *old;
840 struct cred *new;
841 uid_t old_fsuid;
842
843 new = prepare_creds();
844 if (!new)
845 return current_fsuid();
846 old = current_cred();
847 old_fsuid = old->fsuid;
848
849 if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS) < 0)
850 goto error;
851
852 if (uid == old->uid || uid == old->euid ||
853 uid == old->suid || uid == old->fsuid ||
854 capable(CAP_SETUID)) {
855 if (uid != old_fsuid) {
856 new->fsuid = uid;
857 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
858 goto change_okay;
859 }
860 }
861
862 error:
863 abort_creds(new);
864 return old_fsuid;
865
866 change_okay:
867 commit_creds(new);
868 return old_fsuid;
869 }
870
871 /*
872 * Samma på svenska..
873 */
874 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
875 {
876 const struct cred *old;
877 struct cred *new;
878 gid_t old_fsgid;
879
880 new = prepare_creds();
881 if (!new)
882 return current_fsgid();
883 old = current_cred();
884 old_fsgid = old->fsgid;
885
886 if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
887 goto error;
888
889 if (gid == old->gid || gid == old->egid ||
890 gid == old->sgid || gid == old->fsgid ||
891 capable(CAP_SETGID)) {
892 if (gid != old_fsgid) {
893 new->fsgid = gid;
894 goto change_okay;
895 }
896 }
897
898 error:
899 abort_creds(new);
900 return old_fsgid;
901
902 change_okay:
903 commit_creds(new);
904 return old_fsgid;
905 }
906
907 void do_sys_times(struct tms *tms)
908 {
909 struct task_cputime cputime;
910 cputime_t cutime, cstime;
911
912 thread_group_cputime(current, &cputime);
913 spin_lock_irq(&current->sighand->siglock);
914 cutime = current->signal->cutime;
915 cstime = current->signal->cstime;
916 spin_unlock_irq(&current->sighand->siglock);
917 tms->tms_utime = cputime_to_clock_t(cputime.utime);
918 tms->tms_stime = cputime_to_clock_t(cputime.stime);
919 tms->tms_cutime = cputime_to_clock_t(cutime);
920 tms->tms_cstime = cputime_to_clock_t(cstime);
921 }
922
923 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
924 {
925 if (tbuf) {
926 struct tms tmp;
927
928 do_sys_times(&tmp);
929 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
930 return -EFAULT;
931 }
932 force_successful_syscall_return();
933 return (long) jiffies_64_to_clock_t(get_jiffies_64());
934 }
935
936 /*
937 * This needs some heavy checking ...
938 * I just haven't the stomach for it. I also don't fully
939 * understand sessions/pgrp etc. Let somebody who does explain it.
940 *
941 * OK, I think I have the protection semantics right.... this is really
942 * only important on a multi-user system anyway, to make sure one user
943 * can't send a signal to a process owned by another. -TYT, 12/12/91
944 *
945 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
946 * LBT 04.03.94
947 */
948 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
949 {
950 struct task_struct *p;
951 struct task_struct *group_leader = current->group_leader;
952 struct pid *pgrp;
953 int err;
954
955 if (!pid)
956 pid = task_pid_vnr(group_leader);
957 if (!pgid)
958 pgid = pid;
959 if (pgid < 0)
960 return -EINVAL;
961
962 /* From this point forward we keep holding onto the tasklist lock
963 * so that our parent does not change from under us. -DaveM
964 */
965 write_lock_irq(&tasklist_lock);
966
967 err = -ESRCH;
968 p = find_task_by_vpid(pid);
969 if (!p)
970 goto out;
971
972 err = -EINVAL;
973 if (!thread_group_leader(p))
974 goto out;
975
976 if (same_thread_group(p->real_parent, group_leader)) {
977 err = -EPERM;
978 if (task_session(p) != task_session(group_leader))
979 goto out;
980 err = -EACCES;
981 if (p->did_exec)
982 goto out;
983 } else {
984 err = -ESRCH;
985 if (p != group_leader)
986 goto out;
987 }
988
989 err = -EPERM;
990 if (p->signal->leader)
991 goto out;
992
993 pgrp = task_pid(p);
994 if (pgid != pid) {
995 struct task_struct *g;
996
997 pgrp = find_vpid(pgid);
998 g = pid_task(pgrp, PIDTYPE_PGID);
999 if (!g || task_session(g) != task_session(group_leader))
1000 goto out;
1001 }
1002
1003 err = security_task_setpgid(p, pgid);
1004 if (err)
1005 goto out;
1006
1007 if (task_pgrp(p) != pgrp) {
1008 change_pid(p, PIDTYPE_PGID, pgrp);
1009 set_task_pgrp(p, pid_nr(pgrp));
1010 }
1011
1012 err = 0;
1013 out:
1014 /* All paths lead to here, thus we are safe. -DaveM */
1015 write_unlock_irq(&tasklist_lock);
1016 return err;
1017 }
1018
1019 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1020 {
1021 struct task_struct *p;
1022 struct pid *grp;
1023 int retval;
1024
1025 rcu_read_lock();
1026 if (!pid)
1027 grp = task_pgrp(current);
1028 else {
1029 retval = -ESRCH;
1030 p = find_task_by_vpid(pid);
1031 if (!p)
1032 goto out;
1033 grp = task_pgrp(p);
1034 if (!grp)
1035 goto out;
1036
1037 retval = security_task_getpgid(p);
1038 if (retval)
1039 goto out;
1040 }
1041 retval = pid_vnr(grp);
1042 out:
1043 rcu_read_unlock();
1044 return retval;
1045 }
1046
1047 #ifdef __ARCH_WANT_SYS_GETPGRP
1048
1049 SYSCALL_DEFINE0(getpgrp)
1050 {
1051 return sys_getpgid(0);
1052 }
1053
1054 #endif
1055
1056 SYSCALL_DEFINE1(getsid, pid_t, pid)
1057 {
1058 struct task_struct *p;
1059 struct pid *sid;
1060 int retval;
1061
1062 rcu_read_lock();
1063 if (!pid)
1064 sid = task_session(current);
1065 else {
1066 retval = -ESRCH;
1067 p = find_task_by_vpid(pid);
1068 if (!p)
1069 goto out;
1070 sid = task_session(p);
1071 if (!sid)
1072 goto out;
1073
1074 retval = security_task_getsid(p);
1075 if (retval)
1076 goto out;
1077 }
1078 retval = pid_vnr(sid);
1079 out:
1080 rcu_read_unlock();
1081 return retval;
1082 }
1083
1084 SYSCALL_DEFINE0(setsid)
1085 {
1086 struct task_struct *group_leader = current->group_leader;
1087 struct pid *sid = task_pid(group_leader);
1088 pid_t session = pid_vnr(sid);
1089 int err = -EPERM;
1090
1091 write_lock_irq(&tasklist_lock);
1092 /* Fail if I am already a session leader */
1093 if (group_leader->signal->leader)
1094 goto out;
1095
1096 /* Fail if a process group id already exists that equals the
1097 * proposed session id.
1098 */
1099 if (pid_task(sid, PIDTYPE_PGID))
1100 goto out;
1101
1102 group_leader->signal->leader = 1;
1103 __set_special_pids(sid);
1104
1105 proc_clear_tty(group_leader);
1106
1107 err = session;
1108 out:
1109 write_unlock_irq(&tasklist_lock);
1110 return err;
1111 }
1112
1113 /*
1114 * Supplementary group IDs
1115 */
1116
1117 /* init to 2 - one for init_task, one to ensure it is never freed */
1118 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1119
1120 struct group_info *groups_alloc(int gidsetsize)
1121 {
1122 struct group_info *group_info;
1123 int nblocks;
1124 int i;
1125
1126 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1127 /* Make sure we always allocate at least one indirect block pointer */
1128 nblocks = nblocks ? : 1;
1129 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1130 if (!group_info)
1131 return NULL;
1132 group_info->ngroups = gidsetsize;
1133 group_info->nblocks = nblocks;
1134 atomic_set(&group_info->usage, 1);
1135
1136 if (gidsetsize <= NGROUPS_SMALL)
1137 group_info->blocks[0] = group_info->small_block;
1138 else {
1139 for (i = 0; i < nblocks; i++) {
1140 gid_t *b;
1141 b = (void *)__get_free_page(GFP_USER);
1142 if (!b)
1143 goto out_undo_partial_alloc;
1144 group_info->blocks[i] = b;
1145 }
1146 }
1147 return group_info;
1148
1149 out_undo_partial_alloc:
1150 while (--i >= 0) {
1151 free_page((unsigned long)group_info->blocks[i]);
1152 }
1153 kfree(group_info);
1154 return NULL;
1155 }
1156
1157 EXPORT_SYMBOL(groups_alloc);
1158
1159 void groups_free(struct group_info *group_info)
1160 {
1161 if (group_info->blocks[0] != group_info->small_block) {
1162 int i;
1163 for (i = 0; i < group_info->nblocks; i++)
1164 free_page((unsigned long)group_info->blocks[i]);
1165 }
1166 kfree(group_info);
1167 }
1168
1169 EXPORT_SYMBOL(groups_free);
1170
1171 /* export the group_info to a user-space array */
1172 static int groups_to_user(gid_t __user *grouplist,
1173 const struct group_info *group_info)
1174 {
1175 int i;
1176 unsigned int count = group_info->ngroups;
1177
1178 for (i = 0; i < group_info->nblocks; i++) {
1179 unsigned int cp_count = min(NGROUPS_PER_BLOCK, count);
1180 unsigned int len = cp_count * sizeof(*grouplist);
1181
1182 if (copy_to_user(grouplist, group_info->blocks[i], len))
1183 return -EFAULT;
1184
1185 grouplist += NGROUPS_PER_BLOCK;
1186 count -= cp_count;
1187 }
1188 return 0;
1189 }
1190
1191 /* fill a group_info from a user-space array - it must be allocated already */
1192 static int groups_from_user(struct group_info *group_info,
1193 gid_t __user *grouplist)
1194 {
1195 int i;
1196 unsigned int count = group_info->ngroups;
1197
1198 for (i = 0; i < group_info->nblocks; i++) {
1199 unsigned int cp_count = min(NGROUPS_PER_BLOCK, count);
1200 unsigned int len = cp_count * sizeof(*grouplist);
1201
1202 if (copy_from_user(group_info->blocks[i], grouplist, len))
1203 return -EFAULT;
1204
1205 grouplist += NGROUPS_PER_BLOCK;
1206 count -= cp_count;
1207 }
1208 return 0;
1209 }
1210
1211 /* a simple Shell sort */
1212 static void groups_sort(struct group_info *group_info)
1213 {
1214 int base, max, stride;
1215 int gidsetsize = group_info->ngroups;
1216
1217 for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1218 ; /* nothing */
1219 stride /= 3;
1220
1221 while (stride) {
1222 max = gidsetsize - stride;
1223 for (base = 0; base < max; base++) {
1224 int left = base;
1225 int right = left + stride;
1226 gid_t tmp = GROUP_AT(group_info, right);
1227
1228 while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1229 GROUP_AT(group_info, right) =
1230 GROUP_AT(group_info, left);
1231 right = left;
1232 left -= stride;
1233 }
1234 GROUP_AT(group_info, right) = tmp;
1235 }
1236 stride /= 3;
1237 }
1238 }
1239
1240 /* a simple bsearch */
1241 int groups_search(const struct group_info *group_info, gid_t grp)
1242 {
1243 unsigned int left, right;
1244
1245 if (!group_info)
1246 return 0;
1247
1248 left = 0;
1249 right = group_info->ngroups;
1250 while (left < right) {
1251 unsigned int mid = (left+right)/2;
1252 int cmp = grp - GROUP_AT(group_info, mid);
1253 if (cmp > 0)
1254 left = mid + 1;
1255 else if (cmp < 0)
1256 right = mid;
1257 else
1258 return 1;
1259 }
1260 return 0;
1261 }
1262
1263 /**
1264 * set_groups - Change a group subscription in a set of credentials
1265 * @new: The newly prepared set of credentials to alter
1266 * @group_info: The group list to install
1267 *
1268 * Validate a group subscription and, if valid, insert it into a set
1269 * of credentials.
1270 */
1271 int set_groups(struct cred *new, struct group_info *group_info)
1272 {
1273 int retval;
1274
1275 retval = security_task_setgroups(group_info);
1276 if (retval)
1277 return retval;
1278
1279 put_group_info(new->group_info);
1280 groups_sort(group_info);
1281 get_group_info(group_info);
1282 new->group_info = group_info;
1283 return 0;
1284 }
1285
1286 EXPORT_SYMBOL(set_groups);
1287
1288 /**
1289 * set_current_groups - Change current's group subscription
1290 * @group_info: The group list to impose
1291 *
1292 * Validate a group subscription and, if valid, impose it upon current's task
1293 * security record.
1294 */
1295 int set_current_groups(struct group_info *group_info)
1296 {
1297 struct cred *new;
1298 int ret;
1299
1300 new = prepare_creds();
1301 if (!new)
1302 return -ENOMEM;
1303
1304 ret = set_groups(new, group_info);
1305 if (ret < 0) {
1306 abort_creds(new);
1307 return ret;
1308 }
1309
1310 return commit_creds(new);
1311 }
1312
1313 EXPORT_SYMBOL(set_current_groups);
1314
1315 SYSCALL_DEFINE2(getgroups, int, gidsetsize, gid_t __user *, grouplist)
1316 {
1317 const struct cred *cred = current_cred();
1318 int i;
1319
1320 if (gidsetsize < 0)
1321 return -EINVAL;
1322
1323 /* no need to grab task_lock here; it cannot change */
1324 i = cred->group_info->ngroups;
1325 if (gidsetsize) {
1326 if (i > gidsetsize) {
1327 i = -EINVAL;
1328 goto out;
1329 }
1330 if (groups_to_user(grouplist, cred->group_info)) {
1331 i = -EFAULT;
1332 goto out;
1333 }
1334 }
1335 out:
1336 return i;
1337 }
1338
1339 /*
1340 * SMP: Our groups are copy-on-write. We can set them safely
1341 * without another task interfering.
1342 */
1343
1344 SYSCALL_DEFINE2(setgroups, int, gidsetsize, gid_t __user *, grouplist)
1345 {
1346 struct group_info *group_info;
1347 int retval;
1348
1349 if (!capable(CAP_SETGID))
1350 return -EPERM;
1351 if ((unsigned)gidsetsize > NGROUPS_MAX)
1352 return -EINVAL;
1353
1354 group_info = groups_alloc(gidsetsize);
1355 if (!group_info)
1356 return -ENOMEM;
1357 retval = groups_from_user(group_info, grouplist);
1358 if (retval) {
1359 put_group_info(group_info);
1360 return retval;
1361 }
1362
1363 retval = set_current_groups(group_info);
1364 put_group_info(group_info);
1365
1366 return retval;
1367 }
1368
1369 /*
1370 * Check whether we're fsgid/egid or in the supplemental group..
1371 */
1372 int in_group_p(gid_t grp)
1373 {
1374 const struct cred *cred = current_cred();
1375 int retval = 1;
1376
1377 if (grp != cred->fsgid)
1378 retval = groups_search(cred->group_info, grp);
1379 return retval;
1380 }
1381
1382 EXPORT_SYMBOL(in_group_p);
1383
1384 int in_egroup_p(gid_t grp)
1385 {
1386 const struct cred *cred = current_cred();
1387 int retval = 1;
1388
1389 if (grp != cred->egid)
1390 retval = groups_search(cred->group_info, grp);
1391 return retval;
1392 }
1393
1394 EXPORT_SYMBOL(in_egroup_p);
1395
1396 DECLARE_RWSEM(uts_sem);
1397
1398 asmlinkage long sys_newuname(struct new_utsname __user * name)
1399 {
1400 int errno = 0;
1401
1402 down_read(&uts_sem);
1403 if (copy_to_user(name, utsname(), sizeof *name))
1404 errno = -EFAULT;
1405 up_read(&uts_sem);
1406 return errno;
1407 }
1408
1409 asmlinkage long sys_sethostname(char __user *name, int len)
1410 {
1411 int errno;
1412 char tmp[__NEW_UTS_LEN];
1413
1414 if (!capable(CAP_SYS_ADMIN))
1415 return -EPERM;
1416 if (len < 0 || len > __NEW_UTS_LEN)
1417 return -EINVAL;
1418 down_write(&uts_sem);
1419 errno = -EFAULT;
1420 if (!copy_from_user(tmp, name, len)) {
1421 struct new_utsname *u = utsname();
1422
1423 memcpy(u->nodename, tmp, len);
1424 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1425 errno = 0;
1426 }
1427 up_write(&uts_sem);
1428 return errno;
1429 }
1430
1431 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1432
1433 asmlinkage long sys_gethostname(char __user *name, int len)
1434 {
1435 int i, errno;
1436 struct new_utsname *u;
1437
1438 if (len < 0)
1439 return -EINVAL;
1440 down_read(&uts_sem);
1441 u = utsname();
1442 i = 1 + strlen(u->nodename);
1443 if (i > len)
1444 i = len;
1445 errno = 0;
1446 if (copy_to_user(name, u->nodename, i))
1447 errno = -EFAULT;
1448 up_read(&uts_sem);
1449 return errno;
1450 }
1451
1452 #endif
1453
1454 /*
1455 * Only setdomainname; getdomainname can be implemented by calling
1456 * uname()
1457 */
1458 asmlinkage long sys_setdomainname(char __user *name, int len)
1459 {
1460 int errno;
1461 char tmp[__NEW_UTS_LEN];
1462
1463 if (!capable(CAP_SYS_ADMIN))
1464 return -EPERM;
1465 if (len < 0 || len > __NEW_UTS_LEN)
1466 return -EINVAL;
1467
1468 down_write(&uts_sem);
1469 errno = -EFAULT;
1470 if (!copy_from_user(tmp, name, len)) {
1471 struct new_utsname *u = utsname();
1472
1473 memcpy(u->domainname, tmp, len);
1474 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1475 errno = 0;
1476 }
1477 up_write(&uts_sem);
1478 return errno;
1479 }
1480
1481 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1482 {
1483 if (resource >= RLIM_NLIMITS)
1484 return -EINVAL;
1485 else {
1486 struct rlimit value;
1487 task_lock(current->group_leader);
1488 value = current->signal->rlim[resource];
1489 task_unlock(current->group_leader);
1490 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1491 }
1492 }
1493
1494 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1495
1496 /*
1497 * Back compatibility for getrlimit. Needed for some apps.
1498 */
1499
1500 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1501 {
1502 struct rlimit x;
1503 if (resource >= RLIM_NLIMITS)
1504 return -EINVAL;
1505
1506 task_lock(current->group_leader);
1507 x = current->signal->rlim[resource];
1508 task_unlock(current->group_leader);
1509 if (x.rlim_cur > 0x7FFFFFFF)
1510 x.rlim_cur = 0x7FFFFFFF;
1511 if (x.rlim_max > 0x7FFFFFFF)
1512 x.rlim_max = 0x7FFFFFFF;
1513 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1514 }
1515
1516 #endif
1517
1518 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1519 {
1520 struct rlimit new_rlim, *old_rlim;
1521 int retval;
1522
1523 if (resource >= RLIM_NLIMITS)
1524 return -EINVAL;
1525 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1526 return -EFAULT;
1527 old_rlim = current->signal->rlim + resource;
1528 if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1529 !capable(CAP_SYS_RESOURCE))
1530 return -EPERM;
1531
1532 if (resource == RLIMIT_NOFILE) {
1533 if (new_rlim.rlim_max == RLIM_INFINITY)
1534 new_rlim.rlim_max = sysctl_nr_open;
1535 if (new_rlim.rlim_cur == RLIM_INFINITY)
1536 new_rlim.rlim_cur = sysctl_nr_open;
1537 if (new_rlim.rlim_max > sysctl_nr_open)
1538 return -EPERM;
1539 }
1540
1541 if (new_rlim.rlim_cur > new_rlim.rlim_max)
1542 return -EINVAL;
1543
1544 retval = security_task_setrlimit(resource, &new_rlim);
1545 if (retval)
1546 return retval;
1547
1548 if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) {
1549 /*
1550 * The caller is asking for an immediate RLIMIT_CPU
1551 * expiry. But we use the zero value to mean "it was
1552 * never set". So let's cheat and make it one second
1553 * instead
1554 */
1555 new_rlim.rlim_cur = 1;
1556 }
1557
1558 task_lock(current->group_leader);
1559 *old_rlim = new_rlim;
1560 task_unlock(current->group_leader);
1561
1562 if (resource != RLIMIT_CPU)
1563 goto out;
1564
1565 /*
1566 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1567 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1568 * very long-standing error, and fixing it now risks breakage of
1569 * applications, so we live with it
1570 */
1571 if (new_rlim.rlim_cur == RLIM_INFINITY)
1572 goto out;
1573
1574 update_rlimit_cpu(new_rlim.rlim_cur);
1575 out:
1576 return 0;
1577 }
1578
1579 /*
1580 * It would make sense to put struct rusage in the task_struct,
1581 * except that would make the task_struct be *really big*. After
1582 * task_struct gets moved into malloc'ed memory, it would
1583 * make sense to do this. It will make moving the rest of the information
1584 * a lot simpler! (Which we're not doing right now because we're not
1585 * measuring them yet).
1586 *
1587 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1588 * races with threads incrementing their own counters. But since word
1589 * reads are atomic, we either get new values or old values and we don't
1590 * care which for the sums. We always take the siglock to protect reading
1591 * the c* fields from p->signal from races with exit.c updating those
1592 * fields when reaping, so a sample either gets all the additions of a
1593 * given child after it's reaped, or none so this sample is before reaping.
1594 *
1595 * Locking:
1596 * We need to take the siglock for CHILDEREN, SELF and BOTH
1597 * for the cases current multithreaded, non-current single threaded
1598 * non-current multithreaded. Thread traversal is now safe with
1599 * the siglock held.
1600 * Strictly speaking, we donot need to take the siglock if we are current and
1601 * single threaded, as no one else can take our signal_struct away, no one
1602 * else can reap the children to update signal->c* counters, and no one else
1603 * can race with the signal-> fields. If we do not take any lock, the
1604 * signal-> fields could be read out of order while another thread was just
1605 * exiting. So we should place a read memory barrier when we avoid the lock.
1606 * On the writer side, write memory barrier is implied in __exit_signal
1607 * as __exit_signal releases the siglock spinlock after updating the signal->
1608 * fields. But we don't do this yet to keep things simple.
1609 *
1610 */
1611
1612 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1613 {
1614 r->ru_nvcsw += t->nvcsw;
1615 r->ru_nivcsw += t->nivcsw;
1616 r->ru_minflt += t->min_flt;
1617 r->ru_majflt += t->maj_flt;
1618 r->ru_inblock += task_io_get_inblock(t);
1619 r->ru_oublock += task_io_get_oublock(t);
1620 }
1621
1622 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1623 {
1624 struct task_struct *t;
1625 unsigned long flags;
1626 cputime_t utime, stime;
1627 struct task_cputime cputime;
1628
1629 memset((char *) r, 0, sizeof *r);
1630 utime = stime = cputime_zero;
1631
1632 if (who == RUSAGE_THREAD) {
1633 utime = task_utime(current);
1634 stime = task_stime(current);
1635 accumulate_thread_rusage(p, r);
1636 goto out;
1637 }
1638
1639 if (!lock_task_sighand(p, &flags))
1640 return;
1641
1642 switch (who) {
1643 case RUSAGE_BOTH:
1644 case RUSAGE_CHILDREN:
1645 utime = p->signal->cutime;
1646 stime = p->signal->cstime;
1647 r->ru_nvcsw = p->signal->cnvcsw;
1648 r->ru_nivcsw = p->signal->cnivcsw;
1649 r->ru_minflt = p->signal->cmin_flt;
1650 r->ru_majflt = p->signal->cmaj_flt;
1651 r->ru_inblock = p->signal->cinblock;
1652 r->ru_oublock = p->signal->coublock;
1653
1654 if (who == RUSAGE_CHILDREN)
1655 break;
1656
1657 case RUSAGE_SELF:
1658 thread_group_cputime(p, &cputime);
1659 utime = cputime_add(utime, cputime.utime);
1660 stime = cputime_add(stime, cputime.stime);
1661 r->ru_nvcsw += p->signal->nvcsw;
1662 r->ru_nivcsw += p->signal->nivcsw;
1663 r->ru_minflt += p->signal->min_flt;
1664 r->ru_majflt += p->signal->maj_flt;
1665 r->ru_inblock += p->signal->inblock;
1666 r->ru_oublock += p->signal->oublock;
1667 t = p;
1668 do {
1669 accumulate_thread_rusage(t, r);
1670 t = next_thread(t);
1671 } while (t != p);
1672 break;
1673
1674 default:
1675 BUG();
1676 }
1677 unlock_task_sighand(p, &flags);
1678
1679 out:
1680 cputime_to_timeval(utime, &r->ru_utime);
1681 cputime_to_timeval(stime, &r->ru_stime);
1682 }
1683
1684 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1685 {
1686 struct rusage r;
1687 k_getrusage(p, who, &r);
1688 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1689 }
1690
1691 asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
1692 {
1693 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1694 who != RUSAGE_THREAD)
1695 return -EINVAL;
1696 return getrusage(current, who, ru);
1697 }
1698
1699 asmlinkage long sys_umask(int mask)
1700 {
1701 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1702 return mask;
1703 }
1704
1705 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
1706 unsigned long arg4, unsigned long arg5)
1707 {
1708 struct task_struct *me = current;
1709 unsigned char comm[sizeof(me->comm)];
1710 long error;
1711
1712 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1713 if (error != -ENOSYS)
1714 return error;
1715
1716 error = 0;
1717 switch (option) {
1718 case PR_SET_PDEATHSIG:
1719 if (!valid_signal(arg2)) {
1720 error = -EINVAL;
1721 break;
1722 }
1723 me->pdeath_signal = arg2;
1724 error = 0;
1725 break;
1726 case PR_GET_PDEATHSIG:
1727 error = put_user(me->pdeath_signal, (int __user *)arg2);
1728 break;
1729 case PR_GET_DUMPABLE:
1730 error = get_dumpable(me->mm);
1731 break;
1732 case PR_SET_DUMPABLE:
1733 if (arg2 < 0 || arg2 > 1) {
1734 error = -EINVAL;
1735 break;
1736 }
1737 set_dumpable(me->mm, arg2);
1738 error = 0;
1739 break;
1740
1741 case PR_SET_UNALIGN:
1742 error = SET_UNALIGN_CTL(me, arg2);
1743 break;
1744 case PR_GET_UNALIGN:
1745 error = GET_UNALIGN_CTL(me, arg2);
1746 break;
1747 case PR_SET_FPEMU:
1748 error = SET_FPEMU_CTL(me, arg2);
1749 break;
1750 case PR_GET_FPEMU:
1751 error = GET_FPEMU_CTL(me, arg2);
1752 break;
1753 case PR_SET_FPEXC:
1754 error = SET_FPEXC_CTL(me, arg2);
1755 break;
1756 case PR_GET_FPEXC:
1757 error = GET_FPEXC_CTL(me, arg2);
1758 break;
1759 case PR_GET_TIMING:
1760 error = PR_TIMING_STATISTICAL;
1761 break;
1762 case PR_SET_TIMING:
1763 if (arg2 != PR_TIMING_STATISTICAL)
1764 error = -EINVAL;
1765 else
1766 error = 0;
1767 break;
1768
1769 case PR_SET_NAME:
1770 comm[sizeof(me->comm)-1] = 0;
1771 if (strncpy_from_user(comm, (char __user *)arg2,
1772 sizeof(me->comm) - 1) < 0)
1773 return -EFAULT;
1774 set_task_comm(me, comm);
1775 return 0;
1776 case PR_GET_NAME:
1777 get_task_comm(comm, me);
1778 if (copy_to_user((char __user *)arg2, comm,
1779 sizeof(comm)))
1780 return -EFAULT;
1781 return 0;
1782 case PR_GET_ENDIAN:
1783 error = GET_ENDIAN(me, arg2);
1784 break;
1785 case PR_SET_ENDIAN:
1786 error = SET_ENDIAN(me, arg2);
1787 break;
1788
1789 case PR_GET_SECCOMP:
1790 error = prctl_get_seccomp();
1791 break;
1792 case PR_SET_SECCOMP:
1793 error = prctl_set_seccomp(arg2);
1794 break;
1795 case PR_GET_TSC:
1796 error = GET_TSC_CTL(arg2);
1797 break;
1798 case PR_SET_TSC:
1799 error = SET_TSC_CTL(arg2);
1800 break;
1801 case PR_GET_TIMERSLACK:
1802 error = current->timer_slack_ns;
1803 break;
1804 case PR_SET_TIMERSLACK:
1805 if (arg2 <= 0)
1806 current->timer_slack_ns =
1807 current->default_timer_slack_ns;
1808 else
1809 current->timer_slack_ns = arg2;
1810 error = 0;
1811 break;
1812 default:
1813 error = -EINVAL;
1814 break;
1815 }
1816 return error;
1817 }
1818
1819 asmlinkage long sys_getcpu(unsigned __user *cpup, unsigned __user *nodep,
1820 struct getcpu_cache __user *unused)
1821 {
1822 int err = 0;
1823 int cpu = raw_smp_processor_id();
1824 if (cpup)
1825 err |= put_user(cpu, cpup);
1826 if (nodep)
1827 err |= put_user(cpu_to_node(cpu), nodep);
1828 return err ? -EFAULT : 0;
1829 }
1830
1831 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1832
1833 static void argv_cleanup(char **argv, char **envp)
1834 {
1835 argv_free(argv);
1836 }
1837
1838 /**
1839 * orderly_poweroff - Trigger an orderly system poweroff
1840 * @force: force poweroff if command execution fails
1841 *
1842 * This may be called from any context to trigger a system shutdown.
1843 * If the orderly shutdown fails, it will force an immediate shutdown.
1844 */
1845 int orderly_poweroff(bool force)
1846 {
1847 int argc;
1848 char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1849 static char *envp[] = {
1850 "HOME=/",
1851 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1852 NULL
1853 };
1854 int ret = -ENOMEM;
1855 struct subprocess_info *info;
1856
1857 if (argv == NULL) {
1858 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1859 __func__, poweroff_cmd);
1860 goto out;
1861 }
1862
1863 info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
1864 if (info == NULL) {
1865 argv_free(argv);
1866 goto out;
1867 }
1868
1869 call_usermodehelper_setcleanup(info, argv_cleanup);
1870
1871 ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
1872
1873 out:
1874 if (ret && force) {
1875 printk(KERN_WARNING "Failed to start orderly shutdown: "
1876 "forcing the issue\n");
1877
1878 /* I guess this should try to kick off some daemon to
1879 sync and poweroff asap. Or not even bother syncing
1880 if we're doing an emergency shutdown? */
1881 emergency_sync();
1882 kernel_power_off();
1883 }
1884
1885 return ret;
1886 }
1887 EXPORT_SYMBOL_GPL(orderly_poweroff);