]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/sys.c
tracing: Use strlcpy() instead of strcpy() in __trace_find_cmdline()
[mirror_ubuntu-zesty-kernel.git] / kernel / sys.c
1 /*
2 * linux/kernel/sys.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/export.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/reboot.h>
12 #include <linux/prctl.h>
13 #include <linux/highuid.h>
14 #include <linux/fs.h>
15 #include <linux/kmod.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/workqueue.h>
20 #include <linux/capability.h>
21 #include <linux/device.h>
22 #include <linux/key.h>
23 #include <linux/times.h>
24 #include <linux/posix-timers.h>
25 #include <linux/security.h>
26 #include <linux/dcookies.h>
27 #include <linux/suspend.h>
28 #include <linux/tty.h>
29 #include <linux/signal.h>
30 #include <linux/cn_proc.h>
31 #include <linux/getcpu.h>
32 #include <linux/task_io_accounting_ops.h>
33 #include <linux/seccomp.h>
34 #include <linux/cpu.h>
35 #include <linux/personality.h>
36 #include <linux/ptrace.h>
37 #include <linux/fs_struct.h>
38 #include <linux/file.h>
39 #include <linux/mount.h>
40 #include <linux/gfp.h>
41 #include <linux/syscore_ops.h>
42 #include <linux/version.h>
43 #include <linux/ctype.h>
44
45 #include <linux/compat.h>
46 #include <linux/syscalls.h>
47 #include <linux/kprobes.h>
48 #include <linux/user_namespace.h>
49 #include <linux/binfmts.h>
50
51 #include <linux/sched.h>
52 #include <linux/rcupdate.h>
53 #include <linux/uidgid.h>
54 #include <linux/cred.h>
55
56 #include <linux/kmsg_dump.h>
57 /* Move somewhere else to avoid recompiling? */
58 #include <generated/utsrelease.h>
59
60 #include <linux/uaccess.h>
61 #include <asm/io.h>
62 #include <asm/unistd.h>
63
64 #ifndef SET_UNALIGN_CTL
65 # define SET_UNALIGN_CTL(a, b) (-EINVAL)
66 #endif
67 #ifndef GET_UNALIGN_CTL
68 # define GET_UNALIGN_CTL(a, b) (-EINVAL)
69 #endif
70 #ifndef SET_FPEMU_CTL
71 # define SET_FPEMU_CTL(a, b) (-EINVAL)
72 #endif
73 #ifndef GET_FPEMU_CTL
74 # define GET_FPEMU_CTL(a, b) (-EINVAL)
75 #endif
76 #ifndef SET_FPEXC_CTL
77 # define SET_FPEXC_CTL(a, b) (-EINVAL)
78 #endif
79 #ifndef GET_FPEXC_CTL
80 # define GET_FPEXC_CTL(a, b) (-EINVAL)
81 #endif
82 #ifndef GET_ENDIAN
83 # define GET_ENDIAN(a, b) (-EINVAL)
84 #endif
85 #ifndef SET_ENDIAN
86 # define SET_ENDIAN(a, b) (-EINVAL)
87 #endif
88 #ifndef GET_TSC_CTL
89 # define GET_TSC_CTL(a) (-EINVAL)
90 #endif
91 #ifndef SET_TSC_CTL
92 # define SET_TSC_CTL(a) (-EINVAL)
93 #endif
94 #ifndef MPX_ENABLE_MANAGEMENT
95 # define MPX_ENABLE_MANAGEMENT() (-EINVAL)
96 #endif
97 #ifndef MPX_DISABLE_MANAGEMENT
98 # define MPX_DISABLE_MANAGEMENT() (-EINVAL)
99 #endif
100 #ifndef GET_FP_MODE
101 # define GET_FP_MODE(a) (-EINVAL)
102 #endif
103 #ifndef SET_FP_MODE
104 # define SET_FP_MODE(a,b) (-EINVAL)
105 #endif
106
107 /*
108 * this is where the system-wide overflow UID and GID are defined, for
109 * architectures that now have 32-bit UID/GID but didn't in the past
110 */
111
112 int overflowuid = DEFAULT_OVERFLOWUID;
113 int overflowgid = DEFAULT_OVERFLOWGID;
114
115 EXPORT_SYMBOL(overflowuid);
116 EXPORT_SYMBOL(overflowgid);
117
118 /*
119 * the same as above, but for filesystems which can only store a 16-bit
120 * UID and GID. as such, this is needed on all architectures
121 */
122
123 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
124 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
125
126 EXPORT_SYMBOL(fs_overflowuid);
127 EXPORT_SYMBOL(fs_overflowgid);
128
129 /*
130 * Returns true if current's euid is same as p's uid or euid,
131 * or has CAP_SYS_NICE to p's user_ns.
132 *
133 * Called with rcu_read_lock, creds are safe
134 */
135 static bool set_one_prio_perm(struct task_struct *p)
136 {
137 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
138
139 if (uid_eq(pcred->uid, cred->euid) ||
140 uid_eq(pcred->euid, cred->euid))
141 return true;
142 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
143 return true;
144 return false;
145 }
146
147 /*
148 * set the priority of a task
149 * - the caller must hold the RCU read lock
150 */
151 static int set_one_prio(struct task_struct *p, int niceval, int error)
152 {
153 int no_nice;
154
155 if (!set_one_prio_perm(p)) {
156 error = -EPERM;
157 goto out;
158 }
159 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
160 error = -EACCES;
161 goto out;
162 }
163 no_nice = security_task_setnice(p, niceval);
164 if (no_nice) {
165 error = no_nice;
166 goto out;
167 }
168 if (error == -ESRCH)
169 error = 0;
170 set_user_nice(p, niceval);
171 out:
172 return error;
173 }
174
175 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
176 {
177 struct task_struct *g, *p;
178 struct user_struct *user;
179 const struct cred *cred = current_cred();
180 int error = -EINVAL;
181 struct pid *pgrp;
182 kuid_t uid;
183
184 if (which > PRIO_USER || which < PRIO_PROCESS)
185 goto out;
186
187 /* normalize: avoid signed division (rounding problems) */
188 error = -ESRCH;
189 if (niceval < MIN_NICE)
190 niceval = MIN_NICE;
191 if (niceval > MAX_NICE)
192 niceval = MAX_NICE;
193
194 rcu_read_lock();
195 read_lock(&tasklist_lock);
196 switch (which) {
197 case PRIO_PROCESS:
198 if (who)
199 p = find_task_by_vpid(who);
200 else
201 p = current;
202 if (p)
203 error = set_one_prio(p, niceval, error);
204 break;
205 case PRIO_PGRP:
206 if (who)
207 pgrp = find_vpid(who);
208 else
209 pgrp = task_pgrp(current);
210 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
211 error = set_one_prio(p, niceval, error);
212 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
213 break;
214 case PRIO_USER:
215 uid = make_kuid(cred->user_ns, who);
216 user = cred->user;
217 if (!who)
218 uid = cred->uid;
219 else if (!uid_eq(uid, cred->uid)) {
220 user = find_user(uid);
221 if (!user)
222 goto out_unlock; /* No processes for this user */
223 }
224 do_each_thread(g, p) {
225 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
226 error = set_one_prio(p, niceval, error);
227 } while_each_thread(g, p);
228 if (!uid_eq(uid, cred->uid))
229 free_uid(user); /* For find_user() */
230 break;
231 }
232 out_unlock:
233 read_unlock(&tasklist_lock);
234 rcu_read_unlock();
235 out:
236 return error;
237 }
238
239 /*
240 * Ugh. To avoid negative return values, "getpriority()" will
241 * not return the normal nice-value, but a negated value that
242 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
243 * to stay compatible.
244 */
245 SYSCALL_DEFINE2(getpriority, int, which, int, who)
246 {
247 struct task_struct *g, *p;
248 struct user_struct *user;
249 const struct cred *cred = current_cred();
250 long niceval, retval = -ESRCH;
251 struct pid *pgrp;
252 kuid_t uid;
253
254 if (which > PRIO_USER || which < PRIO_PROCESS)
255 return -EINVAL;
256
257 rcu_read_lock();
258 read_lock(&tasklist_lock);
259 switch (which) {
260 case PRIO_PROCESS:
261 if (who)
262 p = find_task_by_vpid(who);
263 else
264 p = current;
265 if (p) {
266 niceval = nice_to_rlimit(task_nice(p));
267 if (niceval > retval)
268 retval = niceval;
269 }
270 break;
271 case PRIO_PGRP:
272 if (who)
273 pgrp = find_vpid(who);
274 else
275 pgrp = task_pgrp(current);
276 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
277 niceval = nice_to_rlimit(task_nice(p));
278 if (niceval > retval)
279 retval = niceval;
280 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
281 break;
282 case PRIO_USER:
283 uid = make_kuid(cred->user_ns, who);
284 user = cred->user;
285 if (!who)
286 uid = cred->uid;
287 else if (!uid_eq(uid, cred->uid)) {
288 user = find_user(uid);
289 if (!user)
290 goto out_unlock; /* No processes for this user */
291 }
292 do_each_thread(g, p) {
293 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
294 niceval = nice_to_rlimit(task_nice(p));
295 if (niceval > retval)
296 retval = niceval;
297 }
298 } while_each_thread(g, p);
299 if (!uid_eq(uid, cred->uid))
300 free_uid(user); /* for find_user() */
301 break;
302 }
303 out_unlock:
304 read_unlock(&tasklist_lock);
305 rcu_read_unlock();
306
307 return retval;
308 }
309
310 /*
311 * Unprivileged users may change the real gid to the effective gid
312 * or vice versa. (BSD-style)
313 *
314 * If you set the real gid at all, or set the effective gid to a value not
315 * equal to the real gid, then the saved gid is set to the new effective gid.
316 *
317 * This makes it possible for a setgid program to completely drop its
318 * privileges, which is often a useful assertion to make when you are doing
319 * a security audit over a program.
320 *
321 * The general idea is that a program which uses just setregid() will be
322 * 100% compatible with BSD. A program which uses just setgid() will be
323 * 100% compatible with POSIX with saved IDs.
324 *
325 * SMP: There are not races, the GIDs are checked only by filesystem
326 * operations (as far as semantic preservation is concerned).
327 */
328 #ifdef CONFIG_MULTIUSER
329 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
330 {
331 struct user_namespace *ns = current_user_ns();
332 const struct cred *old;
333 struct cred *new;
334 int retval;
335 kgid_t krgid, kegid;
336
337 krgid = make_kgid(ns, rgid);
338 kegid = make_kgid(ns, egid);
339
340 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
341 return -EINVAL;
342 if ((egid != (gid_t) -1) && !gid_valid(kegid))
343 return -EINVAL;
344
345 new = prepare_creds();
346 if (!new)
347 return -ENOMEM;
348 old = current_cred();
349
350 retval = -EPERM;
351 if (rgid != (gid_t) -1) {
352 if (gid_eq(old->gid, krgid) ||
353 gid_eq(old->egid, krgid) ||
354 ns_capable(old->user_ns, CAP_SETGID))
355 new->gid = krgid;
356 else
357 goto error;
358 }
359 if (egid != (gid_t) -1) {
360 if (gid_eq(old->gid, kegid) ||
361 gid_eq(old->egid, kegid) ||
362 gid_eq(old->sgid, kegid) ||
363 ns_capable(old->user_ns, CAP_SETGID))
364 new->egid = kegid;
365 else
366 goto error;
367 }
368
369 if (rgid != (gid_t) -1 ||
370 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
371 new->sgid = new->egid;
372 new->fsgid = new->egid;
373
374 return commit_creds(new);
375
376 error:
377 abort_creds(new);
378 return retval;
379 }
380
381 /*
382 * setgid() is implemented like SysV w/ SAVED_IDS
383 *
384 * SMP: Same implicit races as above.
385 */
386 SYSCALL_DEFINE1(setgid, gid_t, gid)
387 {
388 struct user_namespace *ns = current_user_ns();
389 const struct cred *old;
390 struct cred *new;
391 int retval;
392 kgid_t kgid;
393
394 kgid = make_kgid(ns, gid);
395 if (!gid_valid(kgid))
396 return -EINVAL;
397
398 new = prepare_creds();
399 if (!new)
400 return -ENOMEM;
401 old = current_cred();
402
403 retval = -EPERM;
404 if (ns_capable(old->user_ns, CAP_SETGID))
405 new->gid = new->egid = new->sgid = new->fsgid = kgid;
406 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
407 new->egid = new->fsgid = kgid;
408 else
409 goto error;
410
411 return commit_creds(new);
412
413 error:
414 abort_creds(new);
415 return retval;
416 }
417
418 /*
419 * change the user struct in a credentials set to match the new UID
420 */
421 static int set_user(struct cred *new)
422 {
423 struct user_struct *new_user;
424
425 new_user = alloc_uid(new->uid);
426 if (!new_user)
427 return -EAGAIN;
428
429 /*
430 * We don't fail in case of NPROC limit excess here because too many
431 * poorly written programs don't check set*uid() return code, assuming
432 * it never fails if called by root. We may still enforce NPROC limit
433 * for programs doing set*uid()+execve() by harmlessly deferring the
434 * failure to the execve() stage.
435 */
436 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
437 new_user != INIT_USER)
438 current->flags |= PF_NPROC_EXCEEDED;
439 else
440 current->flags &= ~PF_NPROC_EXCEEDED;
441
442 free_uid(new->user);
443 new->user = new_user;
444 return 0;
445 }
446
447 /*
448 * Unprivileged users may change the real uid to the effective uid
449 * or vice versa. (BSD-style)
450 *
451 * If you set the real uid at all, or set the effective uid to a value not
452 * equal to the real uid, then the saved uid is set to the new effective uid.
453 *
454 * This makes it possible for a setuid program to completely drop its
455 * privileges, which is often a useful assertion to make when you are doing
456 * a security audit over a program.
457 *
458 * The general idea is that a program which uses just setreuid() will be
459 * 100% compatible with BSD. A program which uses just setuid() will be
460 * 100% compatible with POSIX with saved IDs.
461 */
462 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
463 {
464 struct user_namespace *ns = current_user_ns();
465 const struct cred *old;
466 struct cred *new;
467 int retval;
468 kuid_t kruid, keuid;
469
470 kruid = make_kuid(ns, ruid);
471 keuid = make_kuid(ns, euid);
472
473 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
474 return -EINVAL;
475 if ((euid != (uid_t) -1) && !uid_valid(keuid))
476 return -EINVAL;
477
478 new = prepare_creds();
479 if (!new)
480 return -ENOMEM;
481 old = current_cred();
482
483 retval = -EPERM;
484 if (ruid != (uid_t) -1) {
485 new->uid = kruid;
486 if (!uid_eq(old->uid, kruid) &&
487 !uid_eq(old->euid, kruid) &&
488 !ns_capable(old->user_ns, CAP_SETUID))
489 goto error;
490 }
491
492 if (euid != (uid_t) -1) {
493 new->euid = keuid;
494 if (!uid_eq(old->uid, keuid) &&
495 !uid_eq(old->euid, keuid) &&
496 !uid_eq(old->suid, keuid) &&
497 !ns_capable(old->user_ns, CAP_SETUID))
498 goto error;
499 }
500
501 if (!uid_eq(new->uid, old->uid)) {
502 retval = set_user(new);
503 if (retval < 0)
504 goto error;
505 }
506 if (ruid != (uid_t) -1 ||
507 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
508 new->suid = new->euid;
509 new->fsuid = new->euid;
510
511 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
512 if (retval < 0)
513 goto error;
514
515 return commit_creds(new);
516
517 error:
518 abort_creds(new);
519 return retval;
520 }
521
522 /*
523 * setuid() is implemented like SysV with SAVED_IDS
524 *
525 * Note that SAVED_ID's is deficient in that a setuid root program
526 * like sendmail, for example, cannot set its uid to be a normal
527 * user and then switch back, because if you're root, setuid() sets
528 * the saved uid too. If you don't like this, blame the bright people
529 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
530 * will allow a root program to temporarily drop privileges and be able to
531 * regain them by swapping the real and effective uid.
532 */
533 SYSCALL_DEFINE1(setuid, uid_t, uid)
534 {
535 struct user_namespace *ns = current_user_ns();
536 const struct cred *old;
537 struct cred *new;
538 int retval;
539 kuid_t kuid;
540
541 kuid = make_kuid(ns, uid);
542 if (!uid_valid(kuid))
543 return -EINVAL;
544
545 new = prepare_creds();
546 if (!new)
547 return -ENOMEM;
548 old = current_cred();
549
550 retval = -EPERM;
551 if (ns_capable(old->user_ns, CAP_SETUID)) {
552 new->suid = new->uid = kuid;
553 if (!uid_eq(kuid, old->uid)) {
554 retval = set_user(new);
555 if (retval < 0)
556 goto error;
557 }
558 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
559 goto error;
560 }
561
562 new->fsuid = new->euid = kuid;
563
564 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
565 if (retval < 0)
566 goto error;
567
568 return commit_creds(new);
569
570 error:
571 abort_creds(new);
572 return retval;
573 }
574
575
576 /*
577 * This function implements a generic ability to update ruid, euid,
578 * and suid. This allows you to implement the 4.4 compatible seteuid().
579 */
580 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
581 {
582 struct user_namespace *ns = current_user_ns();
583 const struct cred *old;
584 struct cred *new;
585 int retval;
586 kuid_t kruid, keuid, ksuid;
587
588 kruid = make_kuid(ns, ruid);
589 keuid = make_kuid(ns, euid);
590 ksuid = make_kuid(ns, suid);
591
592 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
593 return -EINVAL;
594
595 if ((euid != (uid_t) -1) && !uid_valid(keuid))
596 return -EINVAL;
597
598 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
599 return -EINVAL;
600
601 new = prepare_creds();
602 if (!new)
603 return -ENOMEM;
604
605 old = current_cred();
606
607 retval = -EPERM;
608 if (!ns_capable(old->user_ns, CAP_SETUID)) {
609 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
610 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
611 goto error;
612 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
613 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
614 goto error;
615 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
616 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
617 goto error;
618 }
619
620 if (ruid != (uid_t) -1) {
621 new->uid = kruid;
622 if (!uid_eq(kruid, old->uid)) {
623 retval = set_user(new);
624 if (retval < 0)
625 goto error;
626 }
627 }
628 if (euid != (uid_t) -1)
629 new->euid = keuid;
630 if (suid != (uid_t) -1)
631 new->suid = ksuid;
632 new->fsuid = new->euid;
633
634 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
635 if (retval < 0)
636 goto error;
637
638 return commit_creds(new);
639
640 error:
641 abort_creds(new);
642 return retval;
643 }
644
645 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
646 {
647 const struct cred *cred = current_cred();
648 int retval;
649 uid_t ruid, euid, suid;
650
651 ruid = from_kuid_munged(cred->user_ns, cred->uid);
652 euid = from_kuid_munged(cred->user_ns, cred->euid);
653 suid = from_kuid_munged(cred->user_ns, cred->suid);
654
655 retval = put_user(ruid, ruidp);
656 if (!retval) {
657 retval = put_user(euid, euidp);
658 if (!retval)
659 return put_user(suid, suidp);
660 }
661 return retval;
662 }
663
664 /*
665 * Same as above, but for rgid, egid, sgid.
666 */
667 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
668 {
669 struct user_namespace *ns = current_user_ns();
670 const struct cred *old;
671 struct cred *new;
672 int retval;
673 kgid_t krgid, kegid, ksgid;
674
675 krgid = make_kgid(ns, rgid);
676 kegid = make_kgid(ns, egid);
677 ksgid = make_kgid(ns, sgid);
678
679 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
680 return -EINVAL;
681 if ((egid != (gid_t) -1) && !gid_valid(kegid))
682 return -EINVAL;
683 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
684 return -EINVAL;
685
686 new = prepare_creds();
687 if (!new)
688 return -ENOMEM;
689 old = current_cred();
690
691 retval = -EPERM;
692 if (!ns_capable(old->user_ns, CAP_SETGID)) {
693 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
694 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
695 goto error;
696 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
697 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
698 goto error;
699 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
700 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
701 goto error;
702 }
703
704 if (rgid != (gid_t) -1)
705 new->gid = krgid;
706 if (egid != (gid_t) -1)
707 new->egid = kegid;
708 if (sgid != (gid_t) -1)
709 new->sgid = ksgid;
710 new->fsgid = new->egid;
711
712 return commit_creds(new);
713
714 error:
715 abort_creds(new);
716 return retval;
717 }
718
719 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
720 {
721 const struct cred *cred = current_cred();
722 int retval;
723 gid_t rgid, egid, sgid;
724
725 rgid = from_kgid_munged(cred->user_ns, cred->gid);
726 egid = from_kgid_munged(cred->user_ns, cred->egid);
727 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
728
729 retval = put_user(rgid, rgidp);
730 if (!retval) {
731 retval = put_user(egid, egidp);
732 if (!retval)
733 retval = put_user(sgid, sgidp);
734 }
735
736 return retval;
737 }
738
739
740 /*
741 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
742 * is used for "access()" and for the NFS daemon (letting nfsd stay at
743 * whatever uid it wants to). It normally shadows "euid", except when
744 * explicitly set by setfsuid() or for access..
745 */
746 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
747 {
748 const struct cred *old;
749 struct cred *new;
750 uid_t old_fsuid;
751 kuid_t kuid;
752
753 old = current_cred();
754 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
755
756 kuid = make_kuid(old->user_ns, uid);
757 if (!uid_valid(kuid))
758 return old_fsuid;
759
760 new = prepare_creds();
761 if (!new)
762 return old_fsuid;
763
764 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
765 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
766 ns_capable(old->user_ns, CAP_SETUID)) {
767 if (!uid_eq(kuid, old->fsuid)) {
768 new->fsuid = kuid;
769 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
770 goto change_okay;
771 }
772 }
773
774 abort_creds(new);
775 return old_fsuid;
776
777 change_okay:
778 commit_creds(new);
779 return old_fsuid;
780 }
781
782 /*
783 * Samma på svenska..
784 */
785 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
786 {
787 const struct cred *old;
788 struct cred *new;
789 gid_t old_fsgid;
790 kgid_t kgid;
791
792 old = current_cred();
793 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
794
795 kgid = make_kgid(old->user_ns, gid);
796 if (!gid_valid(kgid))
797 return old_fsgid;
798
799 new = prepare_creds();
800 if (!new)
801 return old_fsgid;
802
803 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
804 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
805 ns_capable(old->user_ns, CAP_SETGID)) {
806 if (!gid_eq(kgid, old->fsgid)) {
807 new->fsgid = kgid;
808 goto change_okay;
809 }
810 }
811
812 abort_creds(new);
813 return old_fsgid;
814
815 change_okay:
816 commit_creds(new);
817 return old_fsgid;
818 }
819 #endif /* CONFIG_MULTIUSER */
820
821 /**
822 * sys_getpid - return the thread group id of the current process
823 *
824 * Note, despite the name, this returns the tgid not the pid. The tgid and
825 * the pid are identical unless CLONE_THREAD was specified on clone() in
826 * which case the tgid is the same in all threads of the same group.
827 *
828 * This is SMP safe as current->tgid does not change.
829 */
830 SYSCALL_DEFINE0(getpid)
831 {
832 return task_tgid_vnr(current);
833 }
834
835 /* Thread ID - the internal kernel "pid" */
836 SYSCALL_DEFINE0(gettid)
837 {
838 return task_pid_vnr(current);
839 }
840
841 /*
842 * Accessing ->real_parent is not SMP-safe, it could
843 * change from under us. However, we can use a stale
844 * value of ->real_parent under rcu_read_lock(), see
845 * release_task()->call_rcu(delayed_put_task_struct).
846 */
847 SYSCALL_DEFINE0(getppid)
848 {
849 int pid;
850
851 rcu_read_lock();
852 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
853 rcu_read_unlock();
854
855 return pid;
856 }
857
858 SYSCALL_DEFINE0(getuid)
859 {
860 /* Only we change this so SMP safe */
861 return from_kuid_munged(current_user_ns(), current_uid());
862 }
863
864 SYSCALL_DEFINE0(geteuid)
865 {
866 /* Only we change this so SMP safe */
867 return from_kuid_munged(current_user_ns(), current_euid());
868 }
869
870 SYSCALL_DEFINE0(getgid)
871 {
872 /* Only we change this so SMP safe */
873 return from_kgid_munged(current_user_ns(), current_gid());
874 }
875
876 SYSCALL_DEFINE0(getegid)
877 {
878 /* Only we change this so SMP safe */
879 return from_kgid_munged(current_user_ns(), current_egid());
880 }
881
882 void do_sys_times(struct tms *tms)
883 {
884 cputime_t tgutime, tgstime, cutime, cstime;
885
886 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
887 cutime = current->signal->cutime;
888 cstime = current->signal->cstime;
889 tms->tms_utime = cputime_to_clock_t(tgutime);
890 tms->tms_stime = cputime_to_clock_t(tgstime);
891 tms->tms_cutime = cputime_to_clock_t(cutime);
892 tms->tms_cstime = cputime_to_clock_t(cstime);
893 }
894
895 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
896 {
897 if (tbuf) {
898 struct tms tmp;
899
900 do_sys_times(&tmp);
901 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
902 return -EFAULT;
903 }
904 force_successful_syscall_return();
905 return (long) jiffies_64_to_clock_t(get_jiffies_64());
906 }
907
908 /*
909 * This needs some heavy checking ...
910 * I just haven't the stomach for it. I also don't fully
911 * understand sessions/pgrp etc. Let somebody who does explain it.
912 *
913 * OK, I think I have the protection semantics right.... this is really
914 * only important on a multi-user system anyway, to make sure one user
915 * can't send a signal to a process owned by another. -TYT, 12/12/91
916 *
917 * !PF_FORKNOEXEC check to conform completely to POSIX.
918 */
919 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
920 {
921 struct task_struct *p;
922 struct task_struct *group_leader = current->group_leader;
923 struct pid *pgrp;
924 int err;
925
926 if (!pid)
927 pid = task_pid_vnr(group_leader);
928 if (!pgid)
929 pgid = pid;
930 if (pgid < 0)
931 return -EINVAL;
932 rcu_read_lock();
933
934 /* From this point forward we keep holding onto the tasklist lock
935 * so that our parent does not change from under us. -DaveM
936 */
937 write_lock_irq(&tasklist_lock);
938
939 err = -ESRCH;
940 p = find_task_by_vpid(pid);
941 if (!p)
942 goto out;
943
944 err = -EINVAL;
945 if (!thread_group_leader(p))
946 goto out;
947
948 if (same_thread_group(p->real_parent, group_leader)) {
949 err = -EPERM;
950 if (task_session(p) != task_session(group_leader))
951 goto out;
952 err = -EACCES;
953 if (!(p->flags & PF_FORKNOEXEC))
954 goto out;
955 } else {
956 err = -ESRCH;
957 if (p != group_leader)
958 goto out;
959 }
960
961 err = -EPERM;
962 if (p->signal->leader)
963 goto out;
964
965 pgrp = task_pid(p);
966 if (pgid != pid) {
967 struct task_struct *g;
968
969 pgrp = find_vpid(pgid);
970 g = pid_task(pgrp, PIDTYPE_PGID);
971 if (!g || task_session(g) != task_session(group_leader))
972 goto out;
973 }
974
975 err = security_task_setpgid(p, pgid);
976 if (err)
977 goto out;
978
979 if (task_pgrp(p) != pgrp)
980 change_pid(p, PIDTYPE_PGID, pgrp);
981
982 err = 0;
983 out:
984 /* All paths lead to here, thus we are safe. -DaveM */
985 write_unlock_irq(&tasklist_lock);
986 rcu_read_unlock();
987 return err;
988 }
989
990 SYSCALL_DEFINE1(getpgid, pid_t, pid)
991 {
992 struct task_struct *p;
993 struct pid *grp;
994 int retval;
995
996 rcu_read_lock();
997 if (!pid)
998 grp = task_pgrp(current);
999 else {
1000 retval = -ESRCH;
1001 p = find_task_by_vpid(pid);
1002 if (!p)
1003 goto out;
1004 grp = task_pgrp(p);
1005 if (!grp)
1006 goto out;
1007
1008 retval = security_task_getpgid(p);
1009 if (retval)
1010 goto out;
1011 }
1012 retval = pid_vnr(grp);
1013 out:
1014 rcu_read_unlock();
1015 return retval;
1016 }
1017
1018 #ifdef __ARCH_WANT_SYS_GETPGRP
1019
1020 SYSCALL_DEFINE0(getpgrp)
1021 {
1022 return sys_getpgid(0);
1023 }
1024
1025 #endif
1026
1027 SYSCALL_DEFINE1(getsid, pid_t, pid)
1028 {
1029 struct task_struct *p;
1030 struct pid *sid;
1031 int retval;
1032
1033 rcu_read_lock();
1034 if (!pid)
1035 sid = task_session(current);
1036 else {
1037 retval = -ESRCH;
1038 p = find_task_by_vpid(pid);
1039 if (!p)
1040 goto out;
1041 sid = task_session(p);
1042 if (!sid)
1043 goto out;
1044
1045 retval = security_task_getsid(p);
1046 if (retval)
1047 goto out;
1048 }
1049 retval = pid_vnr(sid);
1050 out:
1051 rcu_read_unlock();
1052 return retval;
1053 }
1054
1055 static void set_special_pids(struct pid *pid)
1056 {
1057 struct task_struct *curr = current->group_leader;
1058
1059 if (task_session(curr) != pid)
1060 change_pid(curr, PIDTYPE_SID, pid);
1061
1062 if (task_pgrp(curr) != pid)
1063 change_pid(curr, PIDTYPE_PGID, pid);
1064 }
1065
1066 SYSCALL_DEFINE0(setsid)
1067 {
1068 struct task_struct *group_leader = current->group_leader;
1069 struct pid *sid = task_pid(group_leader);
1070 pid_t session = pid_vnr(sid);
1071 int err = -EPERM;
1072
1073 write_lock_irq(&tasklist_lock);
1074 /* Fail if I am already a session leader */
1075 if (group_leader->signal->leader)
1076 goto out;
1077
1078 /* Fail if a process group id already exists that equals the
1079 * proposed session id.
1080 */
1081 if (pid_task(sid, PIDTYPE_PGID))
1082 goto out;
1083
1084 group_leader->signal->leader = 1;
1085 set_special_pids(sid);
1086
1087 proc_clear_tty(group_leader);
1088
1089 err = session;
1090 out:
1091 write_unlock_irq(&tasklist_lock);
1092 if (err > 0) {
1093 proc_sid_connector(group_leader);
1094 sched_autogroup_create_attach(group_leader);
1095 }
1096 return err;
1097 }
1098
1099 DECLARE_RWSEM(uts_sem);
1100
1101 #ifdef COMPAT_UTS_MACHINE
1102 static char compat_uts_machine[__OLD_UTS_LEN+1] = COMPAT_UTS_MACHINE;
1103
1104 static int __init parse_compat_uts_machine(char *arg)
1105 {
1106 strncpy(compat_uts_machine, arg, __OLD_UTS_LEN);
1107 compat_uts_machine[__OLD_UTS_LEN] = 0;
1108 return 0;
1109 }
1110 early_param("compat_uts_machine", parse_compat_uts_machine);
1111
1112 #undef COMPAT_UTS_MACHINE
1113 #define COMPAT_UTS_MACHINE compat_uts_machine
1114 #endif
1115
1116 #ifdef COMPAT_UTS_MACHINE
1117 #define override_architecture(name) \
1118 (personality(current->personality) == PER_LINUX32 && \
1119 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1120 sizeof(COMPAT_UTS_MACHINE)))
1121 #else
1122 #define override_architecture(name) 0
1123 #endif
1124
1125 /*
1126 * Work around broken programs that cannot handle "Linux 3.0".
1127 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1128 * And we map 4.x to 2.6.60+x, so 4.0 would be 2.6.60.
1129 */
1130 static int override_release(char __user *release, size_t len)
1131 {
1132 int ret = 0;
1133
1134 if (current->personality & UNAME26) {
1135 const char *rest = UTS_RELEASE;
1136 char buf[65] = { 0 };
1137 int ndots = 0;
1138 unsigned v;
1139 size_t copy;
1140
1141 while (*rest) {
1142 if (*rest == '.' && ++ndots >= 3)
1143 break;
1144 if (!isdigit(*rest) && *rest != '.')
1145 break;
1146 rest++;
1147 }
1148 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
1149 copy = clamp_t(size_t, len, 1, sizeof(buf));
1150 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1151 ret = copy_to_user(release, buf, copy + 1);
1152 }
1153 return ret;
1154 }
1155
1156 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1157 {
1158 int errno = 0;
1159
1160 down_read(&uts_sem);
1161 if (copy_to_user(name, utsname(), sizeof *name))
1162 errno = -EFAULT;
1163 up_read(&uts_sem);
1164
1165 if (!errno && override_release(name->release, sizeof(name->release)))
1166 errno = -EFAULT;
1167 if (!errno && override_architecture(name))
1168 errno = -EFAULT;
1169 return errno;
1170 }
1171
1172 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1173 /*
1174 * Old cruft
1175 */
1176 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1177 {
1178 int error = 0;
1179
1180 if (!name)
1181 return -EFAULT;
1182
1183 down_read(&uts_sem);
1184 if (copy_to_user(name, utsname(), sizeof(*name)))
1185 error = -EFAULT;
1186 up_read(&uts_sem);
1187
1188 if (!error && override_release(name->release, sizeof(name->release)))
1189 error = -EFAULT;
1190 if (!error && override_architecture(name))
1191 error = -EFAULT;
1192 return error;
1193 }
1194
1195 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1196 {
1197 int error;
1198
1199 if (!name)
1200 return -EFAULT;
1201 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1202 return -EFAULT;
1203
1204 down_read(&uts_sem);
1205 error = __copy_to_user(&name->sysname, &utsname()->sysname,
1206 __OLD_UTS_LEN);
1207 error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1208 error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1209 __OLD_UTS_LEN);
1210 error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1211 error |= __copy_to_user(&name->release, &utsname()->release,
1212 __OLD_UTS_LEN);
1213 error |= __put_user(0, name->release + __OLD_UTS_LEN);
1214 error |= __copy_to_user(&name->version, &utsname()->version,
1215 __OLD_UTS_LEN);
1216 error |= __put_user(0, name->version + __OLD_UTS_LEN);
1217 error |= __copy_to_user(&name->machine, &utsname()->machine,
1218 __OLD_UTS_LEN);
1219 error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1220 up_read(&uts_sem);
1221
1222 if (!error && override_architecture(name))
1223 error = -EFAULT;
1224 if (!error && override_release(name->release, sizeof(name->release)))
1225 error = -EFAULT;
1226 return error ? -EFAULT : 0;
1227 }
1228 #endif
1229
1230 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1231 {
1232 int errno;
1233 char tmp[__NEW_UTS_LEN];
1234
1235 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1236 return -EPERM;
1237
1238 if (len < 0 || len > __NEW_UTS_LEN)
1239 return -EINVAL;
1240 down_write(&uts_sem);
1241 errno = -EFAULT;
1242 if (!copy_from_user(tmp, name, len)) {
1243 struct new_utsname *u = utsname();
1244
1245 memcpy(u->nodename, tmp, len);
1246 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1247 errno = 0;
1248 uts_proc_notify(UTS_PROC_HOSTNAME);
1249 }
1250 up_write(&uts_sem);
1251 return errno;
1252 }
1253
1254 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1255
1256 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1257 {
1258 int i, errno;
1259 struct new_utsname *u;
1260
1261 if (len < 0)
1262 return -EINVAL;
1263 down_read(&uts_sem);
1264 u = utsname();
1265 i = 1 + strlen(u->nodename);
1266 if (i > len)
1267 i = len;
1268 errno = 0;
1269 if (copy_to_user(name, u->nodename, i))
1270 errno = -EFAULT;
1271 up_read(&uts_sem);
1272 return errno;
1273 }
1274
1275 #endif
1276
1277 /*
1278 * Only setdomainname; getdomainname can be implemented by calling
1279 * uname()
1280 */
1281 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1282 {
1283 int errno;
1284 char tmp[__NEW_UTS_LEN];
1285
1286 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1287 return -EPERM;
1288 if (len < 0 || len > __NEW_UTS_LEN)
1289 return -EINVAL;
1290
1291 down_write(&uts_sem);
1292 errno = -EFAULT;
1293 if (!copy_from_user(tmp, name, len)) {
1294 struct new_utsname *u = utsname();
1295
1296 memcpy(u->domainname, tmp, len);
1297 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1298 errno = 0;
1299 uts_proc_notify(UTS_PROC_DOMAINNAME);
1300 }
1301 up_write(&uts_sem);
1302 return errno;
1303 }
1304
1305 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1306 {
1307 struct rlimit value;
1308 int ret;
1309
1310 ret = do_prlimit(current, resource, NULL, &value);
1311 if (!ret)
1312 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1313
1314 return ret;
1315 }
1316
1317 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1318
1319 /*
1320 * Back compatibility for getrlimit. Needed for some apps.
1321 */
1322 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1323 struct rlimit __user *, rlim)
1324 {
1325 struct rlimit x;
1326 if (resource >= RLIM_NLIMITS)
1327 return -EINVAL;
1328
1329 task_lock(current->group_leader);
1330 x = current->signal->rlim[resource];
1331 task_unlock(current->group_leader);
1332 if (x.rlim_cur > 0x7FFFFFFF)
1333 x.rlim_cur = 0x7FFFFFFF;
1334 if (x.rlim_max > 0x7FFFFFFF)
1335 x.rlim_max = 0x7FFFFFFF;
1336 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1337 }
1338
1339 #endif
1340
1341 static inline bool rlim64_is_infinity(__u64 rlim64)
1342 {
1343 #if BITS_PER_LONG < 64
1344 return rlim64 >= ULONG_MAX;
1345 #else
1346 return rlim64 == RLIM64_INFINITY;
1347 #endif
1348 }
1349
1350 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1351 {
1352 if (rlim->rlim_cur == RLIM_INFINITY)
1353 rlim64->rlim_cur = RLIM64_INFINITY;
1354 else
1355 rlim64->rlim_cur = rlim->rlim_cur;
1356 if (rlim->rlim_max == RLIM_INFINITY)
1357 rlim64->rlim_max = RLIM64_INFINITY;
1358 else
1359 rlim64->rlim_max = rlim->rlim_max;
1360 }
1361
1362 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1363 {
1364 if (rlim64_is_infinity(rlim64->rlim_cur))
1365 rlim->rlim_cur = RLIM_INFINITY;
1366 else
1367 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1368 if (rlim64_is_infinity(rlim64->rlim_max))
1369 rlim->rlim_max = RLIM_INFINITY;
1370 else
1371 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1372 }
1373
1374 /* make sure you are allowed to change @tsk limits before calling this */
1375 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1376 struct rlimit *new_rlim, struct rlimit *old_rlim)
1377 {
1378 struct rlimit *rlim;
1379 int retval = 0;
1380
1381 if (resource >= RLIM_NLIMITS)
1382 return -EINVAL;
1383 if (new_rlim) {
1384 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1385 return -EINVAL;
1386 if (resource == RLIMIT_NOFILE &&
1387 new_rlim->rlim_max > sysctl_nr_open)
1388 return -EPERM;
1389 }
1390
1391 /* protect tsk->signal and tsk->sighand from disappearing */
1392 read_lock(&tasklist_lock);
1393 if (!tsk->sighand) {
1394 retval = -ESRCH;
1395 goto out;
1396 }
1397
1398 rlim = tsk->signal->rlim + resource;
1399 task_lock(tsk->group_leader);
1400 if (new_rlim) {
1401 /* Keep the capable check against init_user_ns until
1402 cgroups can contain all limits */
1403 if (new_rlim->rlim_max > rlim->rlim_max &&
1404 !capable(CAP_SYS_RESOURCE))
1405 retval = -EPERM;
1406 if (!retval)
1407 retval = security_task_setrlimit(tsk->group_leader,
1408 resource, new_rlim);
1409 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1410 /*
1411 * The caller is asking for an immediate RLIMIT_CPU
1412 * expiry. But we use the zero value to mean "it was
1413 * never set". So let's cheat and make it one second
1414 * instead
1415 */
1416 new_rlim->rlim_cur = 1;
1417 }
1418 }
1419 if (!retval) {
1420 if (old_rlim)
1421 *old_rlim = *rlim;
1422 if (new_rlim)
1423 *rlim = *new_rlim;
1424 }
1425 task_unlock(tsk->group_leader);
1426
1427 /*
1428 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1429 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1430 * very long-standing error, and fixing it now risks breakage of
1431 * applications, so we live with it
1432 */
1433 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1434 new_rlim->rlim_cur != RLIM_INFINITY &&
1435 IS_ENABLED(CONFIG_POSIX_TIMERS))
1436 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1437 out:
1438 read_unlock(&tasklist_lock);
1439 return retval;
1440 }
1441
1442 /* rcu lock must be held */
1443 static int check_prlimit_permission(struct task_struct *task)
1444 {
1445 const struct cred *cred = current_cred(), *tcred;
1446
1447 if (current == task)
1448 return 0;
1449
1450 tcred = __task_cred(task);
1451 if (uid_eq(cred->uid, tcred->euid) &&
1452 uid_eq(cred->uid, tcred->suid) &&
1453 uid_eq(cred->uid, tcred->uid) &&
1454 gid_eq(cred->gid, tcred->egid) &&
1455 gid_eq(cred->gid, tcred->sgid) &&
1456 gid_eq(cred->gid, tcred->gid))
1457 return 0;
1458 if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1459 return 0;
1460
1461 return -EPERM;
1462 }
1463
1464 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1465 const struct rlimit64 __user *, new_rlim,
1466 struct rlimit64 __user *, old_rlim)
1467 {
1468 struct rlimit64 old64, new64;
1469 struct rlimit old, new;
1470 struct task_struct *tsk;
1471 int ret;
1472
1473 if (new_rlim) {
1474 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1475 return -EFAULT;
1476 rlim64_to_rlim(&new64, &new);
1477 }
1478
1479 rcu_read_lock();
1480 tsk = pid ? find_task_by_vpid(pid) : current;
1481 if (!tsk) {
1482 rcu_read_unlock();
1483 return -ESRCH;
1484 }
1485 ret = check_prlimit_permission(tsk);
1486 if (ret) {
1487 rcu_read_unlock();
1488 return ret;
1489 }
1490 get_task_struct(tsk);
1491 rcu_read_unlock();
1492
1493 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1494 old_rlim ? &old : NULL);
1495
1496 if (!ret && old_rlim) {
1497 rlim_to_rlim64(&old, &old64);
1498 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1499 ret = -EFAULT;
1500 }
1501
1502 put_task_struct(tsk);
1503 return ret;
1504 }
1505
1506 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1507 {
1508 struct rlimit new_rlim;
1509
1510 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1511 return -EFAULT;
1512 return do_prlimit(current, resource, &new_rlim, NULL);
1513 }
1514
1515 /*
1516 * It would make sense to put struct rusage in the task_struct,
1517 * except that would make the task_struct be *really big*. After
1518 * task_struct gets moved into malloc'ed memory, it would
1519 * make sense to do this. It will make moving the rest of the information
1520 * a lot simpler! (Which we're not doing right now because we're not
1521 * measuring them yet).
1522 *
1523 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1524 * races with threads incrementing their own counters. But since word
1525 * reads are atomic, we either get new values or old values and we don't
1526 * care which for the sums. We always take the siglock to protect reading
1527 * the c* fields from p->signal from races with exit.c updating those
1528 * fields when reaping, so a sample either gets all the additions of a
1529 * given child after it's reaped, or none so this sample is before reaping.
1530 *
1531 * Locking:
1532 * We need to take the siglock for CHILDEREN, SELF and BOTH
1533 * for the cases current multithreaded, non-current single threaded
1534 * non-current multithreaded. Thread traversal is now safe with
1535 * the siglock held.
1536 * Strictly speaking, we donot need to take the siglock if we are current and
1537 * single threaded, as no one else can take our signal_struct away, no one
1538 * else can reap the children to update signal->c* counters, and no one else
1539 * can race with the signal-> fields. If we do not take any lock, the
1540 * signal-> fields could be read out of order while another thread was just
1541 * exiting. So we should place a read memory barrier when we avoid the lock.
1542 * On the writer side, write memory barrier is implied in __exit_signal
1543 * as __exit_signal releases the siglock spinlock after updating the signal->
1544 * fields. But we don't do this yet to keep things simple.
1545 *
1546 */
1547
1548 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1549 {
1550 r->ru_nvcsw += t->nvcsw;
1551 r->ru_nivcsw += t->nivcsw;
1552 r->ru_minflt += t->min_flt;
1553 r->ru_majflt += t->maj_flt;
1554 r->ru_inblock += task_io_get_inblock(t);
1555 r->ru_oublock += task_io_get_oublock(t);
1556 }
1557
1558 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1559 {
1560 struct task_struct *t;
1561 unsigned long flags;
1562 cputime_t tgutime, tgstime, utime, stime;
1563 unsigned long maxrss = 0;
1564
1565 memset((char *)r, 0, sizeof (*r));
1566 utime = stime = 0;
1567
1568 if (who == RUSAGE_THREAD) {
1569 task_cputime_adjusted(current, &utime, &stime);
1570 accumulate_thread_rusage(p, r);
1571 maxrss = p->signal->maxrss;
1572 goto out;
1573 }
1574
1575 if (!lock_task_sighand(p, &flags))
1576 return;
1577
1578 switch (who) {
1579 case RUSAGE_BOTH:
1580 case RUSAGE_CHILDREN:
1581 utime = p->signal->cutime;
1582 stime = p->signal->cstime;
1583 r->ru_nvcsw = p->signal->cnvcsw;
1584 r->ru_nivcsw = p->signal->cnivcsw;
1585 r->ru_minflt = p->signal->cmin_flt;
1586 r->ru_majflt = p->signal->cmaj_flt;
1587 r->ru_inblock = p->signal->cinblock;
1588 r->ru_oublock = p->signal->coublock;
1589 maxrss = p->signal->cmaxrss;
1590
1591 if (who == RUSAGE_CHILDREN)
1592 break;
1593
1594 case RUSAGE_SELF:
1595 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1596 utime += tgutime;
1597 stime += tgstime;
1598 r->ru_nvcsw += p->signal->nvcsw;
1599 r->ru_nivcsw += p->signal->nivcsw;
1600 r->ru_minflt += p->signal->min_flt;
1601 r->ru_majflt += p->signal->maj_flt;
1602 r->ru_inblock += p->signal->inblock;
1603 r->ru_oublock += p->signal->oublock;
1604 if (maxrss < p->signal->maxrss)
1605 maxrss = p->signal->maxrss;
1606 t = p;
1607 do {
1608 accumulate_thread_rusage(t, r);
1609 } while_each_thread(p, t);
1610 break;
1611
1612 default:
1613 BUG();
1614 }
1615 unlock_task_sighand(p, &flags);
1616
1617 out:
1618 cputime_to_timeval(utime, &r->ru_utime);
1619 cputime_to_timeval(stime, &r->ru_stime);
1620
1621 if (who != RUSAGE_CHILDREN) {
1622 struct mm_struct *mm = get_task_mm(p);
1623
1624 if (mm) {
1625 setmax_mm_hiwater_rss(&maxrss, mm);
1626 mmput(mm);
1627 }
1628 }
1629 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1630 }
1631
1632 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1633 {
1634 struct rusage r;
1635
1636 k_getrusage(p, who, &r);
1637 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1638 }
1639
1640 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1641 {
1642 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1643 who != RUSAGE_THREAD)
1644 return -EINVAL;
1645 return getrusage(current, who, ru);
1646 }
1647
1648 #ifdef CONFIG_COMPAT
1649 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1650 {
1651 struct rusage r;
1652
1653 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1654 who != RUSAGE_THREAD)
1655 return -EINVAL;
1656
1657 k_getrusage(current, who, &r);
1658 return put_compat_rusage(&r, ru);
1659 }
1660 #endif
1661
1662 SYSCALL_DEFINE1(umask, int, mask)
1663 {
1664 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1665 return mask;
1666 }
1667
1668 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1669 {
1670 struct fd exe;
1671 struct file *old_exe, *exe_file;
1672 struct inode *inode;
1673 int err;
1674
1675 exe = fdget(fd);
1676 if (!exe.file)
1677 return -EBADF;
1678
1679 inode = file_inode(exe.file);
1680
1681 /*
1682 * Because the original mm->exe_file points to executable file, make
1683 * sure that this one is executable as well, to avoid breaking an
1684 * overall picture.
1685 */
1686 err = -EACCES;
1687 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1688 goto exit;
1689
1690 err = inode_permission(inode, MAY_EXEC);
1691 if (err)
1692 goto exit;
1693
1694 /*
1695 * Forbid mm->exe_file change if old file still mapped.
1696 */
1697 exe_file = get_mm_exe_file(mm);
1698 err = -EBUSY;
1699 if (exe_file) {
1700 struct vm_area_struct *vma;
1701
1702 down_read(&mm->mmap_sem);
1703 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1704 if (!vma->vm_file)
1705 continue;
1706 if (path_equal(&vma->vm_file->f_path,
1707 &exe_file->f_path))
1708 goto exit_err;
1709 }
1710
1711 up_read(&mm->mmap_sem);
1712 fput(exe_file);
1713 }
1714
1715 err = 0;
1716 /* set the new file, lockless */
1717 get_file(exe.file);
1718 old_exe = xchg(&mm->exe_file, exe.file);
1719 if (old_exe)
1720 fput(old_exe);
1721 exit:
1722 fdput(exe);
1723 return err;
1724 exit_err:
1725 up_read(&mm->mmap_sem);
1726 fput(exe_file);
1727 goto exit;
1728 }
1729
1730 /*
1731 * WARNING: we don't require any capability here so be very careful
1732 * in what is allowed for modification from userspace.
1733 */
1734 static int validate_prctl_map(struct prctl_mm_map *prctl_map)
1735 {
1736 unsigned long mmap_max_addr = TASK_SIZE;
1737 struct mm_struct *mm = current->mm;
1738 int error = -EINVAL, i;
1739
1740 static const unsigned char offsets[] = {
1741 offsetof(struct prctl_mm_map, start_code),
1742 offsetof(struct prctl_mm_map, end_code),
1743 offsetof(struct prctl_mm_map, start_data),
1744 offsetof(struct prctl_mm_map, end_data),
1745 offsetof(struct prctl_mm_map, start_brk),
1746 offsetof(struct prctl_mm_map, brk),
1747 offsetof(struct prctl_mm_map, start_stack),
1748 offsetof(struct prctl_mm_map, arg_start),
1749 offsetof(struct prctl_mm_map, arg_end),
1750 offsetof(struct prctl_mm_map, env_start),
1751 offsetof(struct prctl_mm_map, env_end),
1752 };
1753
1754 /*
1755 * Make sure the members are not somewhere outside
1756 * of allowed address space.
1757 */
1758 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1759 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1760
1761 if ((unsigned long)val >= mmap_max_addr ||
1762 (unsigned long)val < mmap_min_addr)
1763 goto out;
1764 }
1765
1766 /*
1767 * Make sure the pairs are ordered.
1768 */
1769 #define __prctl_check_order(__m1, __op, __m2) \
1770 ((unsigned long)prctl_map->__m1 __op \
1771 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1772 error = __prctl_check_order(start_code, <, end_code);
1773 error |= __prctl_check_order(start_data, <, end_data);
1774 error |= __prctl_check_order(start_brk, <=, brk);
1775 error |= __prctl_check_order(arg_start, <=, arg_end);
1776 error |= __prctl_check_order(env_start, <=, env_end);
1777 if (error)
1778 goto out;
1779 #undef __prctl_check_order
1780
1781 error = -EINVAL;
1782
1783 /*
1784 * @brk should be after @end_data in traditional maps.
1785 */
1786 if (prctl_map->start_brk <= prctl_map->end_data ||
1787 prctl_map->brk <= prctl_map->end_data)
1788 goto out;
1789
1790 /*
1791 * Neither we should allow to override limits if they set.
1792 */
1793 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1794 prctl_map->start_brk, prctl_map->end_data,
1795 prctl_map->start_data))
1796 goto out;
1797
1798 /*
1799 * Someone is trying to cheat the auxv vector.
1800 */
1801 if (prctl_map->auxv_size) {
1802 if (!prctl_map->auxv || prctl_map->auxv_size > sizeof(mm->saved_auxv))
1803 goto out;
1804 }
1805
1806 /*
1807 * Finally, make sure the caller has the rights to
1808 * change /proc/pid/exe link: only local root should
1809 * be allowed to.
1810 */
1811 if (prctl_map->exe_fd != (u32)-1) {
1812 struct user_namespace *ns = current_user_ns();
1813 const struct cred *cred = current_cred();
1814
1815 if (!uid_eq(cred->uid, make_kuid(ns, 0)) ||
1816 !gid_eq(cred->gid, make_kgid(ns, 0)))
1817 goto out;
1818 }
1819
1820 error = 0;
1821 out:
1822 return error;
1823 }
1824
1825 #ifdef CONFIG_CHECKPOINT_RESTORE
1826 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1827 {
1828 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1829 unsigned long user_auxv[AT_VECTOR_SIZE];
1830 struct mm_struct *mm = current->mm;
1831 int error;
1832
1833 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1834 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1835
1836 if (opt == PR_SET_MM_MAP_SIZE)
1837 return put_user((unsigned int)sizeof(prctl_map),
1838 (unsigned int __user *)addr);
1839
1840 if (data_size != sizeof(prctl_map))
1841 return -EINVAL;
1842
1843 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1844 return -EFAULT;
1845
1846 error = validate_prctl_map(&prctl_map);
1847 if (error)
1848 return error;
1849
1850 if (prctl_map.auxv_size) {
1851 memset(user_auxv, 0, sizeof(user_auxv));
1852 if (copy_from_user(user_auxv,
1853 (const void __user *)prctl_map.auxv,
1854 prctl_map.auxv_size))
1855 return -EFAULT;
1856
1857 /* Last entry must be AT_NULL as specification requires */
1858 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
1859 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
1860 }
1861
1862 if (prctl_map.exe_fd != (u32)-1) {
1863 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
1864 if (error)
1865 return error;
1866 }
1867
1868 down_write(&mm->mmap_sem);
1869
1870 /*
1871 * We don't validate if these members are pointing to
1872 * real present VMAs because application may have correspond
1873 * VMAs already unmapped and kernel uses these members for statistics
1874 * output in procfs mostly, except
1875 *
1876 * - @start_brk/@brk which are used in do_brk but kernel lookups
1877 * for VMAs when updating these memvers so anything wrong written
1878 * here cause kernel to swear at userspace program but won't lead
1879 * to any problem in kernel itself
1880 */
1881
1882 mm->start_code = prctl_map.start_code;
1883 mm->end_code = prctl_map.end_code;
1884 mm->start_data = prctl_map.start_data;
1885 mm->end_data = prctl_map.end_data;
1886 mm->start_brk = prctl_map.start_brk;
1887 mm->brk = prctl_map.brk;
1888 mm->start_stack = prctl_map.start_stack;
1889 mm->arg_start = prctl_map.arg_start;
1890 mm->arg_end = prctl_map.arg_end;
1891 mm->env_start = prctl_map.env_start;
1892 mm->env_end = prctl_map.env_end;
1893
1894 /*
1895 * Note this update of @saved_auxv is lockless thus
1896 * if someone reads this member in procfs while we're
1897 * updating -- it may get partly updated results. It's
1898 * known and acceptable trade off: we leave it as is to
1899 * not introduce additional locks here making the kernel
1900 * more complex.
1901 */
1902 if (prctl_map.auxv_size)
1903 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
1904
1905 up_write(&mm->mmap_sem);
1906 return 0;
1907 }
1908 #endif /* CONFIG_CHECKPOINT_RESTORE */
1909
1910 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
1911 unsigned long len)
1912 {
1913 /*
1914 * This doesn't move the auxiliary vector itself since it's pinned to
1915 * mm_struct, but it permits filling the vector with new values. It's
1916 * up to the caller to provide sane values here, otherwise userspace
1917 * tools which use this vector might be unhappy.
1918 */
1919 unsigned long user_auxv[AT_VECTOR_SIZE];
1920
1921 if (len > sizeof(user_auxv))
1922 return -EINVAL;
1923
1924 if (copy_from_user(user_auxv, (const void __user *)addr, len))
1925 return -EFAULT;
1926
1927 /* Make sure the last entry is always AT_NULL */
1928 user_auxv[AT_VECTOR_SIZE - 2] = 0;
1929 user_auxv[AT_VECTOR_SIZE - 1] = 0;
1930
1931 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1932
1933 task_lock(current);
1934 memcpy(mm->saved_auxv, user_auxv, len);
1935 task_unlock(current);
1936
1937 return 0;
1938 }
1939
1940 static int prctl_set_mm(int opt, unsigned long addr,
1941 unsigned long arg4, unsigned long arg5)
1942 {
1943 struct mm_struct *mm = current->mm;
1944 struct prctl_mm_map prctl_map;
1945 struct vm_area_struct *vma;
1946 int error;
1947
1948 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
1949 opt != PR_SET_MM_MAP &&
1950 opt != PR_SET_MM_MAP_SIZE)))
1951 return -EINVAL;
1952
1953 #ifdef CONFIG_CHECKPOINT_RESTORE
1954 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
1955 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
1956 #endif
1957
1958 if (!capable(CAP_SYS_RESOURCE))
1959 return -EPERM;
1960
1961 if (opt == PR_SET_MM_EXE_FILE)
1962 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
1963
1964 if (opt == PR_SET_MM_AUXV)
1965 return prctl_set_auxv(mm, addr, arg4);
1966
1967 if (addr >= TASK_SIZE || addr < mmap_min_addr)
1968 return -EINVAL;
1969
1970 error = -EINVAL;
1971
1972 down_write(&mm->mmap_sem);
1973 vma = find_vma(mm, addr);
1974
1975 prctl_map.start_code = mm->start_code;
1976 prctl_map.end_code = mm->end_code;
1977 prctl_map.start_data = mm->start_data;
1978 prctl_map.end_data = mm->end_data;
1979 prctl_map.start_brk = mm->start_brk;
1980 prctl_map.brk = mm->brk;
1981 prctl_map.start_stack = mm->start_stack;
1982 prctl_map.arg_start = mm->arg_start;
1983 prctl_map.arg_end = mm->arg_end;
1984 prctl_map.env_start = mm->env_start;
1985 prctl_map.env_end = mm->env_end;
1986 prctl_map.auxv = NULL;
1987 prctl_map.auxv_size = 0;
1988 prctl_map.exe_fd = -1;
1989
1990 switch (opt) {
1991 case PR_SET_MM_START_CODE:
1992 prctl_map.start_code = addr;
1993 break;
1994 case PR_SET_MM_END_CODE:
1995 prctl_map.end_code = addr;
1996 break;
1997 case PR_SET_MM_START_DATA:
1998 prctl_map.start_data = addr;
1999 break;
2000 case PR_SET_MM_END_DATA:
2001 prctl_map.end_data = addr;
2002 break;
2003 case PR_SET_MM_START_STACK:
2004 prctl_map.start_stack = addr;
2005 break;
2006 case PR_SET_MM_START_BRK:
2007 prctl_map.start_brk = addr;
2008 break;
2009 case PR_SET_MM_BRK:
2010 prctl_map.brk = addr;
2011 break;
2012 case PR_SET_MM_ARG_START:
2013 prctl_map.arg_start = addr;
2014 break;
2015 case PR_SET_MM_ARG_END:
2016 prctl_map.arg_end = addr;
2017 break;
2018 case PR_SET_MM_ENV_START:
2019 prctl_map.env_start = addr;
2020 break;
2021 case PR_SET_MM_ENV_END:
2022 prctl_map.env_end = addr;
2023 break;
2024 default:
2025 goto out;
2026 }
2027
2028 error = validate_prctl_map(&prctl_map);
2029 if (error)
2030 goto out;
2031
2032 switch (opt) {
2033 /*
2034 * If command line arguments and environment
2035 * are placed somewhere else on stack, we can
2036 * set them up here, ARG_START/END to setup
2037 * command line argumets and ENV_START/END
2038 * for environment.
2039 */
2040 case PR_SET_MM_START_STACK:
2041 case PR_SET_MM_ARG_START:
2042 case PR_SET_MM_ARG_END:
2043 case PR_SET_MM_ENV_START:
2044 case PR_SET_MM_ENV_END:
2045 if (!vma) {
2046 error = -EFAULT;
2047 goto out;
2048 }
2049 }
2050
2051 mm->start_code = prctl_map.start_code;
2052 mm->end_code = prctl_map.end_code;
2053 mm->start_data = prctl_map.start_data;
2054 mm->end_data = prctl_map.end_data;
2055 mm->start_brk = prctl_map.start_brk;
2056 mm->brk = prctl_map.brk;
2057 mm->start_stack = prctl_map.start_stack;
2058 mm->arg_start = prctl_map.arg_start;
2059 mm->arg_end = prctl_map.arg_end;
2060 mm->env_start = prctl_map.env_start;
2061 mm->env_end = prctl_map.env_end;
2062
2063 error = 0;
2064 out:
2065 up_write(&mm->mmap_sem);
2066 return error;
2067 }
2068
2069 #ifdef CONFIG_CHECKPOINT_RESTORE
2070 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2071 {
2072 return put_user(me->clear_child_tid, tid_addr);
2073 }
2074 #else
2075 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2076 {
2077 return -EINVAL;
2078 }
2079 #endif
2080
2081 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2082 unsigned long, arg4, unsigned long, arg5)
2083 {
2084 struct task_struct *me = current;
2085 unsigned char comm[sizeof(me->comm)];
2086 long error;
2087
2088 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2089 if (error != -ENOSYS)
2090 return error;
2091
2092 error = 0;
2093 switch (option) {
2094 case PR_SET_PDEATHSIG:
2095 if (!valid_signal(arg2)) {
2096 error = -EINVAL;
2097 break;
2098 }
2099 me->pdeath_signal = arg2;
2100 break;
2101 case PR_GET_PDEATHSIG:
2102 error = put_user(me->pdeath_signal, (int __user *)arg2);
2103 break;
2104 case PR_GET_DUMPABLE:
2105 error = get_dumpable(me->mm);
2106 break;
2107 case PR_SET_DUMPABLE:
2108 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2109 error = -EINVAL;
2110 break;
2111 }
2112 set_dumpable(me->mm, arg2);
2113 break;
2114
2115 case PR_SET_UNALIGN:
2116 error = SET_UNALIGN_CTL(me, arg2);
2117 break;
2118 case PR_GET_UNALIGN:
2119 error = GET_UNALIGN_CTL(me, arg2);
2120 break;
2121 case PR_SET_FPEMU:
2122 error = SET_FPEMU_CTL(me, arg2);
2123 break;
2124 case PR_GET_FPEMU:
2125 error = GET_FPEMU_CTL(me, arg2);
2126 break;
2127 case PR_SET_FPEXC:
2128 error = SET_FPEXC_CTL(me, arg2);
2129 break;
2130 case PR_GET_FPEXC:
2131 error = GET_FPEXC_CTL(me, arg2);
2132 break;
2133 case PR_GET_TIMING:
2134 error = PR_TIMING_STATISTICAL;
2135 break;
2136 case PR_SET_TIMING:
2137 if (arg2 != PR_TIMING_STATISTICAL)
2138 error = -EINVAL;
2139 break;
2140 case PR_SET_NAME:
2141 comm[sizeof(me->comm) - 1] = 0;
2142 if (strncpy_from_user(comm, (char __user *)arg2,
2143 sizeof(me->comm) - 1) < 0)
2144 return -EFAULT;
2145 set_task_comm(me, comm);
2146 proc_comm_connector(me);
2147 break;
2148 case PR_GET_NAME:
2149 get_task_comm(comm, me);
2150 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2151 return -EFAULT;
2152 break;
2153 case PR_GET_ENDIAN:
2154 error = GET_ENDIAN(me, arg2);
2155 break;
2156 case PR_SET_ENDIAN:
2157 error = SET_ENDIAN(me, arg2);
2158 break;
2159 case PR_GET_SECCOMP:
2160 error = prctl_get_seccomp();
2161 break;
2162 case PR_SET_SECCOMP:
2163 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2164 break;
2165 case PR_GET_TSC:
2166 error = GET_TSC_CTL(arg2);
2167 break;
2168 case PR_SET_TSC:
2169 error = SET_TSC_CTL(arg2);
2170 break;
2171 case PR_TASK_PERF_EVENTS_DISABLE:
2172 error = perf_event_task_disable();
2173 break;
2174 case PR_TASK_PERF_EVENTS_ENABLE:
2175 error = perf_event_task_enable();
2176 break;
2177 case PR_GET_TIMERSLACK:
2178 if (current->timer_slack_ns > ULONG_MAX)
2179 error = ULONG_MAX;
2180 else
2181 error = current->timer_slack_ns;
2182 break;
2183 case PR_SET_TIMERSLACK:
2184 if (arg2 <= 0)
2185 current->timer_slack_ns =
2186 current->default_timer_slack_ns;
2187 else
2188 current->timer_slack_ns = arg2;
2189 break;
2190 case PR_MCE_KILL:
2191 if (arg4 | arg5)
2192 return -EINVAL;
2193 switch (arg2) {
2194 case PR_MCE_KILL_CLEAR:
2195 if (arg3 != 0)
2196 return -EINVAL;
2197 current->flags &= ~PF_MCE_PROCESS;
2198 break;
2199 case PR_MCE_KILL_SET:
2200 current->flags |= PF_MCE_PROCESS;
2201 if (arg3 == PR_MCE_KILL_EARLY)
2202 current->flags |= PF_MCE_EARLY;
2203 else if (arg3 == PR_MCE_KILL_LATE)
2204 current->flags &= ~PF_MCE_EARLY;
2205 else if (arg3 == PR_MCE_KILL_DEFAULT)
2206 current->flags &=
2207 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2208 else
2209 return -EINVAL;
2210 break;
2211 default:
2212 return -EINVAL;
2213 }
2214 break;
2215 case PR_MCE_KILL_GET:
2216 if (arg2 | arg3 | arg4 | arg5)
2217 return -EINVAL;
2218 if (current->flags & PF_MCE_PROCESS)
2219 error = (current->flags & PF_MCE_EARLY) ?
2220 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2221 else
2222 error = PR_MCE_KILL_DEFAULT;
2223 break;
2224 case PR_SET_MM:
2225 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2226 break;
2227 case PR_GET_TID_ADDRESS:
2228 error = prctl_get_tid_address(me, (int __user **)arg2);
2229 break;
2230 case PR_SET_CHILD_SUBREAPER:
2231 me->signal->is_child_subreaper = !!arg2;
2232 break;
2233 case PR_GET_CHILD_SUBREAPER:
2234 error = put_user(me->signal->is_child_subreaper,
2235 (int __user *)arg2);
2236 break;
2237 case PR_SET_NO_NEW_PRIVS:
2238 if (arg2 != 1 || arg3 || arg4 || arg5)
2239 return -EINVAL;
2240
2241 task_set_no_new_privs(current);
2242 break;
2243 case PR_GET_NO_NEW_PRIVS:
2244 if (arg2 || arg3 || arg4 || arg5)
2245 return -EINVAL;
2246 return task_no_new_privs(current) ? 1 : 0;
2247 case PR_GET_THP_DISABLE:
2248 if (arg2 || arg3 || arg4 || arg5)
2249 return -EINVAL;
2250 error = !!(me->mm->def_flags & VM_NOHUGEPAGE);
2251 break;
2252 case PR_SET_THP_DISABLE:
2253 if (arg3 || arg4 || arg5)
2254 return -EINVAL;
2255 if (down_write_killable(&me->mm->mmap_sem))
2256 return -EINTR;
2257 if (arg2)
2258 me->mm->def_flags |= VM_NOHUGEPAGE;
2259 else
2260 me->mm->def_flags &= ~VM_NOHUGEPAGE;
2261 up_write(&me->mm->mmap_sem);
2262 break;
2263 case PR_MPX_ENABLE_MANAGEMENT:
2264 if (arg2 || arg3 || arg4 || arg5)
2265 return -EINVAL;
2266 error = MPX_ENABLE_MANAGEMENT();
2267 break;
2268 case PR_MPX_DISABLE_MANAGEMENT:
2269 if (arg2 || arg3 || arg4 || arg5)
2270 return -EINVAL;
2271 error = MPX_DISABLE_MANAGEMENT();
2272 break;
2273 case PR_SET_FP_MODE:
2274 error = SET_FP_MODE(me, arg2);
2275 break;
2276 case PR_GET_FP_MODE:
2277 error = GET_FP_MODE(me);
2278 break;
2279 default:
2280 error = -EINVAL;
2281 break;
2282 }
2283 return error;
2284 }
2285
2286 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2287 struct getcpu_cache __user *, unused)
2288 {
2289 int err = 0;
2290 int cpu = raw_smp_processor_id();
2291
2292 if (cpup)
2293 err |= put_user(cpu, cpup);
2294 if (nodep)
2295 err |= put_user(cpu_to_node(cpu), nodep);
2296 return err ? -EFAULT : 0;
2297 }
2298
2299 /**
2300 * do_sysinfo - fill in sysinfo struct
2301 * @info: pointer to buffer to fill
2302 */
2303 static int do_sysinfo(struct sysinfo *info)
2304 {
2305 unsigned long mem_total, sav_total;
2306 unsigned int mem_unit, bitcount;
2307 struct timespec tp;
2308
2309 memset(info, 0, sizeof(struct sysinfo));
2310
2311 get_monotonic_boottime(&tp);
2312 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2313
2314 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2315
2316 info->procs = nr_threads;
2317
2318 si_meminfo(info);
2319 si_swapinfo(info);
2320
2321 /*
2322 * If the sum of all the available memory (i.e. ram + swap)
2323 * is less than can be stored in a 32 bit unsigned long then
2324 * we can be binary compatible with 2.2.x kernels. If not,
2325 * well, in that case 2.2.x was broken anyways...
2326 *
2327 * -Erik Andersen <andersee@debian.org>
2328 */
2329
2330 mem_total = info->totalram + info->totalswap;
2331 if (mem_total < info->totalram || mem_total < info->totalswap)
2332 goto out;
2333 bitcount = 0;
2334 mem_unit = info->mem_unit;
2335 while (mem_unit > 1) {
2336 bitcount++;
2337 mem_unit >>= 1;
2338 sav_total = mem_total;
2339 mem_total <<= 1;
2340 if (mem_total < sav_total)
2341 goto out;
2342 }
2343
2344 /*
2345 * If mem_total did not overflow, multiply all memory values by
2346 * info->mem_unit and set it to 1. This leaves things compatible
2347 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2348 * kernels...
2349 */
2350
2351 info->mem_unit = 1;
2352 info->totalram <<= bitcount;
2353 info->freeram <<= bitcount;
2354 info->sharedram <<= bitcount;
2355 info->bufferram <<= bitcount;
2356 info->totalswap <<= bitcount;
2357 info->freeswap <<= bitcount;
2358 info->totalhigh <<= bitcount;
2359 info->freehigh <<= bitcount;
2360
2361 out:
2362 return 0;
2363 }
2364
2365 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2366 {
2367 struct sysinfo val;
2368
2369 do_sysinfo(&val);
2370
2371 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2372 return -EFAULT;
2373
2374 return 0;
2375 }
2376
2377 #ifdef CONFIG_COMPAT
2378 struct compat_sysinfo {
2379 s32 uptime;
2380 u32 loads[3];
2381 u32 totalram;
2382 u32 freeram;
2383 u32 sharedram;
2384 u32 bufferram;
2385 u32 totalswap;
2386 u32 freeswap;
2387 u16 procs;
2388 u16 pad;
2389 u32 totalhigh;
2390 u32 freehigh;
2391 u32 mem_unit;
2392 char _f[20-2*sizeof(u32)-sizeof(int)];
2393 };
2394
2395 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2396 {
2397 struct sysinfo s;
2398
2399 do_sysinfo(&s);
2400
2401 /* Check to see if any memory value is too large for 32-bit and scale
2402 * down if needed
2403 */
2404 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2405 int bitcount = 0;
2406
2407 while (s.mem_unit < PAGE_SIZE) {
2408 s.mem_unit <<= 1;
2409 bitcount++;
2410 }
2411
2412 s.totalram >>= bitcount;
2413 s.freeram >>= bitcount;
2414 s.sharedram >>= bitcount;
2415 s.bufferram >>= bitcount;
2416 s.totalswap >>= bitcount;
2417 s.freeswap >>= bitcount;
2418 s.totalhigh >>= bitcount;
2419 s.freehigh >>= bitcount;
2420 }
2421
2422 if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) ||
2423 __put_user(s.uptime, &info->uptime) ||
2424 __put_user(s.loads[0], &info->loads[0]) ||
2425 __put_user(s.loads[1], &info->loads[1]) ||
2426 __put_user(s.loads[2], &info->loads[2]) ||
2427 __put_user(s.totalram, &info->totalram) ||
2428 __put_user(s.freeram, &info->freeram) ||
2429 __put_user(s.sharedram, &info->sharedram) ||
2430 __put_user(s.bufferram, &info->bufferram) ||
2431 __put_user(s.totalswap, &info->totalswap) ||
2432 __put_user(s.freeswap, &info->freeswap) ||
2433 __put_user(s.procs, &info->procs) ||
2434 __put_user(s.totalhigh, &info->totalhigh) ||
2435 __put_user(s.freehigh, &info->freehigh) ||
2436 __put_user(s.mem_unit, &info->mem_unit))
2437 return -EFAULT;
2438
2439 return 0;
2440 }
2441 #endif /* CONFIG_COMPAT */