]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/sys.c
UBUNTU: Ubuntu-5.11.0-22.23
[mirror_ubuntu-hirsute-kernel.git] / kernel / sys.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/kernel/sys.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
15 #include <linux/fs.h>
16 #include <linux/kmod.h>
17 #include <linux/perf_event.h>
18 #include <linux/resource.h>
19 #include <linux/kernel.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/file.h>
40 #include <linux/mount.h>
41 #include <linux/gfp.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/version.h>
44 #include <linux/ctype.h>
45 #include <linux/syscall_user_dispatch.h>
46
47 #include <linux/compat.h>
48 #include <linux/syscalls.h>
49 #include <linux/kprobes.h>
50 #include <linux/user_namespace.h>
51 #include <linux/time_namespace.h>
52 #include <linux/binfmts.h>
53
54 #include <linux/sched.h>
55 #include <linux/sched/autogroup.h>
56 #include <linux/sched/loadavg.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/mm.h>
59 #include <linux/sched/coredump.h>
60 #include <linux/sched/task.h>
61 #include <linux/sched/cputime.h>
62 #include <linux/rcupdate.h>
63 #include <linux/uidgid.h>
64 #include <linux/cred.h>
65
66 #include <linux/nospec.h>
67
68 #include <linux/kmsg_dump.h>
69 /* Move somewhere else to avoid recompiling? */
70 #include <generated/utsrelease.h>
71
72 #include <linux/uaccess.h>
73 #include <asm/io.h>
74 #include <asm/unistd.h>
75
76 #include "uid16.h"
77
78 #ifndef SET_UNALIGN_CTL
79 # define SET_UNALIGN_CTL(a, b) (-EINVAL)
80 #endif
81 #ifndef GET_UNALIGN_CTL
82 # define GET_UNALIGN_CTL(a, b) (-EINVAL)
83 #endif
84 #ifndef SET_FPEMU_CTL
85 # define SET_FPEMU_CTL(a, b) (-EINVAL)
86 #endif
87 #ifndef GET_FPEMU_CTL
88 # define GET_FPEMU_CTL(a, b) (-EINVAL)
89 #endif
90 #ifndef SET_FPEXC_CTL
91 # define SET_FPEXC_CTL(a, b) (-EINVAL)
92 #endif
93 #ifndef GET_FPEXC_CTL
94 # define GET_FPEXC_CTL(a, b) (-EINVAL)
95 #endif
96 #ifndef GET_ENDIAN
97 # define GET_ENDIAN(a, b) (-EINVAL)
98 #endif
99 #ifndef SET_ENDIAN
100 # define SET_ENDIAN(a, b) (-EINVAL)
101 #endif
102 #ifndef GET_TSC_CTL
103 # define GET_TSC_CTL(a) (-EINVAL)
104 #endif
105 #ifndef SET_TSC_CTL
106 # define SET_TSC_CTL(a) (-EINVAL)
107 #endif
108 #ifndef GET_FP_MODE
109 # define GET_FP_MODE(a) (-EINVAL)
110 #endif
111 #ifndef SET_FP_MODE
112 # define SET_FP_MODE(a,b) (-EINVAL)
113 #endif
114 #ifndef SVE_SET_VL
115 # define SVE_SET_VL(a) (-EINVAL)
116 #endif
117 #ifndef SVE_GET_VL
118 # define SVE_GET_VL() (-EINVAL)
119 #endif
120 #ifndef PAC_RESET_KEYS
121 # define PAC_RESET_KEYS(a, b) (-EINVAL)
122 #endif
123 #ifndef SET_TAGGED_ADDR_CTRL
124 # define SET_TAGGED_ADDR_CTRL(a) (-EINVAL)
125 #endif
126 #ifndef GET_TAGGED_ADDR_CTRL
127 # define GET_TAGGED_ADDR_CTRL() (-EINVAL)
128 #endif
129
130 /*
131 * this is where the system-wide overflow UID and GID are defined, for
132 * architectures that now have 32-bit UID/GID but didn't in the past
133 */
134
135 int overflowuid = DEFAULT_OVERFLOWUID;
136 int overflowgid = DEFAULT_OVERFLOWGID;
137
138 EXPORT_SYMBOL(overflowuid);
139 EXPORT_SYMBOL(overflowgid);
140
141 /*
142 * the same as above, but for filesystems which can only store a 16-bit
143 * UID and GID. as such, this is needed on all architectures
144 */
145
146 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
147 int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
148
149 EXPORT_SYMBOL(fs_overflowuid);
150 EXPORT_SYMBOL(fs_overflowgid);
151
152 /*
153 * Returns true if current's euid is same as p's uid or euid,
154 * or has CAP_SYS_NICE to p's user_ns.
155 *
156 * Called with rcu_read_lock, creds are safe
157 */
158 static bool set_one_prio_perm(struct task_struct *p)
159 {
160 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
161
162 if (uid_eq(pcred->uid, cred->euid) ||
163 uid_eq(pcred->euid, cred->euid))
164 return true;
165 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
166 return true;
167 return false;
168 }
169
170 /*
171 * set the priority of a task
172 * - the caller must hold the RCU read lock
173 */
174 static int set_one_prio(struct task_struct *p, int niceval, int error)
175 {
176 int no_nice;
177
178 if (!set_one_prio_perm(p)) {
179 error = -EPERM;
180 goto out;
181 }
182 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
183 error = -EACCES;
184 goto out;
185 }
186 no_nice = security_task_setnice(p, niceval);
187 if (no_nice) {
188 error = no_nice;
189 goto out;
190 }
191 if (error == -ESRCH)
192 error = 0;
193 set_user_nice(p, niceval);
194 out:
195 return error;
196 }
197
198 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
199 {
200 struct task_struct *g, *p;
201 struct user_struct *user;
202 const struct cred *cred = current_cred();
203 int error = -EINVAL;
204 struct pid *pgrp;
205 kuid_t uid;
206
207 if (which > PRIO_USER || which < PRIO_PROCESS)
208 goto out;
209
210 /* normalize: avoid signed division (rounding problems) */
211 error = -ESRCH;
212 if (niceval < MIN_NICE)
213 niceval = MIN_NICE;
214 if (niceval > MAX_NICE)
215 niceval = MAX_NICE;
216
217 rcu_read_lock();
218 read_lock(&tasklist_lock);
219 switch (which) {
220 case PRIO_PROCESS:
221 if (who)
222 p = find_task_by_vpid(who);
223 else
224 p = current;
225 if (p)
226 error = set_one_prio(p, niceval, error);
227 break;
228 case PRIO_PGRP:
229 if (who)
230 pgrp = find_vpid(who);
231 else
232 pgrp = task_pgrp(current);
233 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
234 error = set_one_prio(p, niceval, error);
235 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
236 break;
237 case PRIO_USER:
238 uid = make_kuid(cred->user_ns, who);
239 user = cred->user;
240 if (!who)
241 uid = cred->uid;
242 else if (!uid_eq(uid, cred->uid)) {
243 user = find_user(uid);
244 if (!user)
245 goto out_unlock; /* No processes for this user */
246 }
247 do_each_thread(g, p) {
248 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
249 error = set_one_prio(p, niceval, error);
250 } while_each_thread(g, p);
251 if (!uid_eq(uid, cred->uid))
252 free_uid(user); /* For find_user() */
253 break;
254 }
255 out_unlock:
256 read_unlock(&tasklist_lock);
257 rcu_read_unlock();
258 out:
259 return error;
260 }
261
262 /*
263 * Ugh. To avoid negative return values, "getpriority()" will
264 * not return the normal nice-value, but a negated value that
265 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
266 * to stay compatible.
267 */
268 SYSCALL_DEFINE2(getpriority, int, which, int, who)
269 {
270 struct task_struct *g, *p;
271 struct user_struct *user;
272 const struct cred *cred = current_cred();
273 long niceval, retval = -ESRCH;
274 struct pid *pgrp;
275 kuid_t uid;
276
277 if (which > PRIO_USER || which < PRIO_PROCESS)
278 return -EINVAL;
279
280 rcu_read_lock();
281 read_lock(&tasklist_lock);
282 switch (which) {
283 case PRIO_PROCESS:
284 if (who)
285 p = find_task_by_vpid(who);
286 else
287 p = current;
288 if (p) {
289 niceval = nice_to_rlimit(task_nice(p));
290 if (niceval > retval)
291 retval = niceval;
292 }
293 break;
294 case PRIO_PGRP:
295 if (who)
296 pgrp = find_vpid(who);
297 else
298 pgrp = task_pgrp(current);
299 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
300 niceval = nice_to_rlimit(task_nice(p));
301 if (niceval > retval)
302 retval = niceval;
303 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
304 break;
305 case PRIO_USER:
306 uid = make_kuid(cred->user_ns, who);
307 user = cred->user;
308 if (!who)
309 uid = cred->uid;
310 else if (!uid_eq(uid, cred->uid)) {
311 user = find_user(uid);
312 if (!user)
313 goto out_unlock; /* No processes for this user */
314 }
315 do_each_thread(g, p) {
316 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
317 niceval = nice_to_rlimit(task_nice(p));
318 if (niceval > retval)
319 retval = niceval;
320 }
321 } while_each_thread(g, p);
322 if (!uid_eq(uid, cred->uid))
323 free_uid(user); /* for find_user() */
324 break;
325 }
326 out_unlock:
327 read_unlock(&tasklist_lock);
328 rcu_read_unlock();
329
330 return retval;
331 }
332
333 /*
334 * Unprivileged users may change the real gid to the effective gid
335 * or vice versa. (BSD-style)
336 *
337 * If you set the real gid at all, or set the effective gid to a value not
338 * equal to the real gid, then the saved gid is set to the new effective gid.
339 *
340 * This makes it possible for a setgid program to completely drop its
341 * privileges, which is often a useful assertion to make when you are doing
342 * a security audit over a program.
343 *
344 * The general idea is that a program which uses just setregid() will be
345 * 100% compatible with BSD. A program which uses just setgid() will be
346 * 100% compatible with POSIX with saved IDs.
347 *
348 * SMP: There are not races, the GIDs are checked only by filesystem
349 * operations (as far as semantic preservation is concerned).
350 */
351 #ifdef CONFIG_MULTIUSER
352 long __sys_setregid(gid_t rgid, gid_t egid)
353 {
354 struct user_namespace *ns = current_user_ns();
355 const struct cred *old;
356 struct cred *new;
357 int retval;
358 kgid_t krgid, kegid;
359
360 krgid = make_kgid(ns, rgid);
361 kegid = make_kgid(ns, egid);
362
363 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
364 return -EINVAL;
365 if ((egid != (gid_t) -1) && !gid_valid(kegid))
366 return -EINVAL;
367
368 new = prepare_creds();
369 if (!new)
370 return -ENOMEM;
371 old = current_cred();
372
373 retval = -EPERM;
374 if (rgid != (gid_t) -1) {
375 if (gid_eq(old->gid, krgid) ||
376 gid_eq(old->egid, krgid) ||
377 ns_capable_setid(old->user_ns, CAP_SETGID))
378 new->gid = krgid;
379 else
380 goto error;
381 }
382 if (egid != (gid_t) -1) {
383 if (gid_eq(old->gid, kegid) ||
384 gid_eq(old->egid, kegid) ||
385 gid_eq(old->sgid, kegid) ||
386 ns_capable_setid(old->user_ns, CAP_SETGID))
387 new->egid = kegid;
388 else
389 goto error;
390 }
391
392 if (rgid != (gid_t) -1 ||
393 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
394 new->sgid = new->egid;
395 new->fsgid = new->egid;
396
397 retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
398 if (retval < 0)
399 goto error;
400
401 return commit_creds(new);
402
403 error:
404 abort_creds(new);
405 return retval;
406 }
407
408 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
409 {
410 return __sys_setregid(rgid, egid);
411 }
412
413 /*
414 * setgid() is implemented like SysV w/ SAVED_IDS
415 *
416 * SMP: Same implicit races as above.
417 */
418 long __sys_setgid(gid_t gid)
419 {
420 struct user_namespace *ns = current_user_ns();
421 const struct cred *old;
422 struct cred *new;
423 int retval;
424 kgid_t kgid;
425
426 kgid = make_kgid(ns, gid);
427 if (!gid_valid(kgid))
428 return -EINVAL;
429
430 new = prepare_creds();
431 if (!new)
432 return -ENOMEM;
433 old = current_cred();
434
435 retval = -EPERM;
436 if (ns_capable_setid(old->user_ns, CAP_SETGID))
437 new->gid = new->egid = new->sgid = new->fsgid = kgid;
438 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
439 new->egid = new->fsgid = kgid;
440 else
441 goto error;
442
443 retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
444 if (retval < 0)
445 goto error;
446
447 return commit_creds(new);
448
449 error:
450 abort_creds(new);
451 return retval;
452 }
453
454 SYSCALL_DEFINE1(setgid, gid_t, gid)
455 {
456 return __sys_setgid(gid);
457 }
458
459 /*
460 * change the user struct in a credentials set to match the new UID
461 */
462 static int set_user(struct cred *new)
463 {
464 struct user_struct *new_user;
465
466 new_user = alloc_uid(new->uid);
467 if (!new_user)
468 return -EAGAIN;
469
470 /*
471 * We don't fail in case of NPROC limit excess here because too many
472 * poorly written programs don't check set*uid() return code, assuming
473 * it never fails if called by root. We may still enforce NPROC limit
474 * for programs doing set*uid()+execve() by harmlessly deferring the
475 * failure to the execve() stage.
476 */
477 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
478 new_user != INIT_USER)
479 current->flags |= PF_NPROC_EXCEEDED;
480 else
481 current->flags &= ~PF_NPROC_EXCEEDED;
482
483 free_uid(new->user);
484 new->user = new_user;
485 return 0;
486 }
487
488 /*
489 * Unprivileged users may change the real uid to the effective uid
490 * or vice versa. (BSD-style)
491 *
492 * If you set the real uid at all, or set the effective uid to a value not
493 * equal to the real uid, then the saved uid is set to the new effective uid.
494 *
495 * This makes it possible for a setuid program to completely drop its
496 * privileges, which is often a useful assertion to make when you are doing
497 * a security audit over a program.
498 *
499 * The general idea is that a program which uses just setreuid() will be
500 * 100% compatible with BSD. A program which uses just setuid() will be
501 * 100% compatible with POSIX with saved IDs.
502 */
503 long __sys_setreuid(uid_t ruid, uid_t euid)
504 {
505 struct user_namespace *ns = current_user_ns();
506 const struct cred *old;
507 struct cred *new;
508 int retval;
509 kuid_t kruid, keuid;
510
511 kruid = make_kuid(ns, ruid);
512 keuid = make_kuid(ns, euid);
513
514 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
515 return -EINVAL;
516 if ((euid != (uid_t) -1) && !uid_valid(keuid))
517 return -EINVAL;
518
519 new = prepare_creds();
520 if (!new)
521 return -ENOMEM;
522 old = current_cred();
523
524 retval = -EPERM;
525 if (ruid != (uid_t) -1) {
526 new->uid = kruid;
527 if (!uid_eq(old->uid, kruid) &&
528 !uid_eq(old->euid, kruid) &&
529 !ns_capable_setid(old->user_ns, CAP_SETUID))
530 goto error;
531 }
532
533 if (euid != (uid_t) -1) {
534 new->euid = keuid;
535 if (!uid_eq(old->uid, keuid) &&
536 !uid_eq(old->euid, keuid) &&
537 !uid_eq(old->suid, keuid) &&
538 !ns_capable_setid(old->user_ns, CAP_SETUID))
539 goto error;
540 }
541
542 if (!uid_eq(new->uid, old->uid)) {
543 retval = set_user(new);
544 if (retval < 0)
545 goto error;
546 }
547 if (ruid != (uid_t) -1 ||
548 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
549 new->suid = new->euid;
550 new->fsuid = new->euid;
551
552 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
553 if (retval < 0)
554 goto error;
555
556 return commit_creds(new);
557
558 error:
559 abort_creds(new);
560 return retval;
561 }
562
563 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
564 {
565 return __sys_setreuid(ruid, euid);
566 }
567
568 /*
569 * setuid() is implemented like SysV with SAVED_IDS
570 *
571 * Note that SAVED_ID's is deficient in that a setuid root program
572 * like sendmail, for example, cannot set its uid to be a normal
573 * user and then switch back, because if you're root, setuid() sets
574 * the saved uid too. If you don't like this, blame the bright people
575 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
576 * will allow a root program to temporarily drop privileges and be able to
577 * regain them by swapping the real and effective uid.
578 */
579 long __sys_setuid(uid_t uid)
580 {
581 struct user_namespace *ns = current_user_ns();
582 const struct cred *old;
583 struct cred *new;
584 int retval;
585 kuid_t kuid;
586
587 kuid = make_kuid(ns, uid);
588 if (!uid_valid(kuid))
589 return -EINVAL;
590
591 new = prepare_creds();
592 if (!new)
593 return -ENOMEM;
594 old = current_cred();
595
596 retval = -EPERM;
597 if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
598 new->suid = new->uid = kuid;
599 if (!uid_eq(kuid, old->uid)) {
600 retval = set_user(new);
601 if (retval < 0)
602 goto error;
603 }
604 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
605 goto error;
606 }
607
608 new->fsuid = new->euid = kuid;
609
610 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
611 if (retval < 0)
612 goto error;
613
614 return commit_creds(new);
615
616 error:
617 abort_creds(new);
618 return retval;
619 }
620
621 SYSCALL_DEFINE1(setuid, uid_t, uid)
622 {
623 return __sys_setuid(uid);
624 }
625
626
627 /*
628 * This function implements a generic ability to update ruid, euid,
629 * and suid. This allows you to implement the 4.4 compatible seteuid().
630 */
631 long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
632 {
633 struct user_namespace *ns = current_user_ns();
634 const struct cred *old;
635 struct cred *new;
636 int retval;
637 kuid_t kruid, keuid, ksuid;
638
639 kruid = make_kuid(ns, ruid);
640 keuid = make_kuid(ns, euid);
641 ksuid = make_kuid(ns, suid);
642
643 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
644 return -EINVAL;
645
646 if ((euid != (uid_t) -1) && !uid_valid(keuid))
647 return -EINVAL;
648
649 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
650 return -EINVAL;
651
652 new = prepare_creds();
653 if (!new)
654 return -ENOMEM;
655
656 old = current_cred();
657
658 retval = -EPERM;
659 if (!ns_capable_setid(old->user_ns, CAP_SETUID)) {
660 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
661 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
662 goto error;
663 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
664 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
665 goto error;
666 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
667 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
668 goto error;
669 }
670
671 if (ruid != (uid_t) -1) {
672 new->uid = kruid;
673 if (!uid_eq(kruid, old->uid)) {
674 retval = set_user(new);
675 if (retval < 0)
676 goto error;
677 }
678 }
679 if (euid != (uid_t) -1)
680 new->euid = keuid;
681 if (suid != (uid_t) -1)
682 new->suid = ksuid;
683 new->fsuid = new->euid;
684
685 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
686 if (retval < 0)
687 goto error;
688
689 return commit_creds(new);
690
691 error:
692 abort_creds(new);
693 return retval;
694 }
695
696 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
697 {
698 return __sys_setresuid(ruid, euid, suid);
699 }
700
701 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
702 {
703 const struct cred *cred = current_cred();
704 int retval;
705 uid_t ruid, euid, suid;
706
707 ruid = from_kuid_munged(cred->user_ns, cred->uid);
708 euid = from_kuid_munged(cred->user_ns, cred->euid);
709 suid = from_kuid_munged(cred->user_ns, cred->suid);
710
711 retval = put_user(ruid, ruidp);
712 if (!retval) {
713 retval = put_user(euid, euidp);
714 if (!retval)
715 return put_user(suid, suidp);
716 }
717 return retval;
718 }
719
720 /*
721 * Same as above, but for rgid, egid, sgid.
722 */
723 long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
724 {
725 struct user_namespace *ns = current_user_ns();
726 const struct cred *old;
727 struct cred *new;
728 int retval;
729 kgid_t krgid, kegid, ksgid;
730
731 krgid = make_kgid(ns, rgid);
732 kegid = make_kgid(ns, egid);
733 ksgid = make_kgid(ns, sgid);
734
735 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
736 return -EINVAL;
737 if ((egid != (gid_t) -1) && !gid_valid(kegid))
738 return -EINVAL;
739 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
740 return -EINVAL;
741
742 new = prepare_creds();
743 if (!new)
744 return -ENOMEM;
745 old = current_cred();
746
747 retval = -EPERM;
748 if (!ns_capable_setid(old->user_ns, CAP_SETGID)) {
749 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
750 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
751 goto error;
752 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
753 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
754 goto error;
755 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
756 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
757 goto error;
758 }
759
760 if (rgid != (gid_t) -1)
761 new->gid = krgid;
762 if (egid != (gid_t) -1)
763 new->egid = kegid;
764 if (sgid != (gid_t) -1)
765 new->sgid = ksgid;
766 new->fsgid = new->egid;
767
768 retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
769 if (retval < 0)
770 goto error;
771
772 return commit_creds(new);
773
774 error:
775 abort_creds(new);
776 return retval;
777 }
778
779 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
780 {
781 return __sys_setresgid(rgid, egid, sgid);
782 }
783
784 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
785 {
786 const struct cred *cred = current_cred();
787 int retval;
788 gid_t rgid, egid, sgid;
789
790 rgid = from_kgid_munged(cred->user_ns, cred->gid);
791 egid = from_kgid_munged(cred->user_ns, cred->egid);
792 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
793
794 retval = put_user(rgid, rgidp);
795 if (!retval) {
796 retval = put_user(egid, egidp);
797 if (!retval)
798 retval = put_user(sgid, sgidp);
799 }
800
801 return retval;
802 }
803
804
805 /*
806 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
807 * is used for "access()" and for the NFS daemon (letting nfsd stay at
808 * whatever uid it wants to). It normally shadows "euid", except when
809 * explicitly set by setfsuid() or for access..
810 */
811 long __sys_setfsuid(uid_t uid)
812 {
813 const struct cred *old;
814 struct cred *new;
815 uid_t old_fsuid;
816 kuid_t kuid;
817
818 old = current_cred();
819 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
820
821 kuid = make_kuid(old->user_ns, uid);
822 if (!uid_valid(kuid))
823 return old_fsuid;
824
825 new = prepare_creds();
826 if (!new)
827 return old_fsuid;
828
829 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
830 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
831 ns_capable_setid(old->user_ns, CAP_SETUID)) {
832 if (!uid_eq(kuid, old->fsuid)) {
833 new->fsuid = kuid;
834 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
835 goto change_okay;
836 }
837 }
838
839 abort_creds(new);
840 return old_fsuid;
841
842 change_okay:
843 commit_creds(new);
844 return old_fsuid;
845 }
846
847 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
848 {
849 return __sys_setfsuid(uid);
850 }
851
852 /*
853 * Samma på svenska..
854 */
855 long __sys_setfsgid(gid_t gid)
856 {
857 const struct cred *old;
858 struct cred *new;
859 gid_t old_fsgid;
860 kgid_t kgid;
861
862 old = current_cred();
863 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
864
865 kgid = make_kgid(old->user_ns, gid);
866 if (!gid_valid(kgid))
867 return old_fsgid;
868
869 new = prepare_creds();
870 if (!new)
871 return old_fsgid;
872
873 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
874 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
875 ns_capable_setid(old->user_ns, CAP_SETGID)) {
876 if (!gid_eq(kgid, old->fsgid)) {
877 new->fsgid = kgid;
878 if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
879 goto change_okay;
880 }
881 }
882
883 abort_creds(new);
884 return old_fsgid;
885
886 change_okay:
887 commit_creds(new);
888 return old_fsgid;
889 }
890
891 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
892 {
893 return __sys_setfsgid(gid);
894 }
895 #endif /* CONFIG_MULTIUSER */
896
897 /**
898 * sys_getpid - return the thread group id of the current process
899 *
900 * Note, despite the name, this returns the tgid not the pid. The tgid and
901 * the pid are identical unless CLONE_THREAD was specified on clone() in
902 * which case the tgid is the same in all threads of the same group.
903 *
904 * This is SMP safe as current->tgid does not change.
905 */
906 SYSCALL_DEFINE0(getpid)
907 {
908 return task_tgid_vnr(current);
909 }
910
911 /* Thread ID - the internal kernel "pid" */
912 SYSCALL_DEFINE0(gettid)
913 {
914 return task_pid_vnr(current);
915 }
916
917 /*
918 * Accessing ->real_parent is not SMP-safe, it could
919 * change from under us. However, we can use a stale
920 * value of ->real_parent under rcu_read_lock(), see
921 * release_task()->call_rcu(delayed_put_task_struct).
922 */
923 SYSCALL_DEFINE0(getppid)
924 {
925 int pid;
926
927 rcu_read_lock();
928 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
929 rcu_read_unlock();
930
931 return pid;
932 }
933
934 SYSCALL_DEFINE0(getuid)
935 {
936 /* Only we change this so SMP safe */
937 return from_kuid_munged(current_user_ns(), current_uid());
938 }
939
940 SYSCALL_DEFINE0(geteuid)
941 {
942 /* Only we change this so SMP safe */
943 return from_kuid_munged(current_user_ns(), current_euid());
944 }
945
946 SYSCALL_DEFINE0(getgid)
947 {
948 /* Only we change this so SMP safe */
949 return from_kgid_munged(current_user_ns(), current_gid());
950 }
951
952 SYSCALL_DEFINE0(getegid)
953 {
954 /* Only we change this so SMP safe */
955 return from_kgid_munged(current_user_ns(), current_egid());
956 }
957
958 static void do_sys_times(struct tms *tms)
959 {
960 u64 tgutime, tgstime, cutime, cstime;
961
962 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
963 cutime = current->signal->cutime;
964 cstime = current->signal->cstime;
965 tms->tms_utime = nsec_to_clock_t(tgutime);
966 tms->tms_stime = nsec_to_clock_t(tgstime);
967 tms->tms_cutime = nsec_to_clock_t(cutime);
968 tms->tms_cstime = nsec_to_clock_t(cstime);
969 }
970
971 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
972 {
973 if (tbuf) {
974 struct tms tmp;
975
976 do_sys_times(&tmp);
977 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
978 return -EFAULT;
979 }
980 force_successful_syscall_return();
981 return (long) jiffies_64_to_clock_t(get_jiffies_64());
982 }
983
984 #ifdef CONFIG_COMPAT
985 static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
986 {
987 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
988 }
989
990 COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
991 {
992 if (tbuf) {
993 struct tms tms;
994 struct compat_tms tmp;
995
996 do_sys_times(&tms);
997 /* Convert our struct tms to the compat version. */
998 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
999 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
1000 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1001 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1002 if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1003 return -EFAULT;
1004 }
1005 force_successful_syscall_return();
1006 return compat_jiffies_to_clock_t(jiffies);
1007 }
1008 #endif
1009
1010 /*
1011 * This needs some heavy checking ...
1012 * I just haven't the stomach for it. I also don't fully
1013 * understand sessions/pgrp etc. Let somebody who does explain it.
1014 *
1015 * OK, I think I have the protection semantics right.... this is really
1016 * only important on a multi-user system anyway, to make sure one user
1017 * can't send a signal to a process owned by another. -TYT, 12/12/91
1018 *
1019 * !PF_FORKNOEXEC check to conform completely to POSIX.
1020 */
1021 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1022 {
1023 struct task_struct *p;
1024 struct task_struct *group_leader = current->group_leader;
1025 struct pid *pgrp;
1026 int err;
1027
1028 if (!pid)
1029 pid = task_pid_vnr(group_leader);
1030 if (!pgid)
1031 pgid = pid;
1032 if (pgid < 0)
1033 return -EINVAL;
1034 rcu_read_lock();
1035
1036 /* From this point forward we keep holding onto the tasklist lock
1037 * so that our parent does not change from under us. -DaveM
1038 */
1039 write_lock_irq(&tasklist_lock);
1040
1041 err = -ESRCH;
1042 p = find_task_by_vpid(pid);
1043 if (!p)
1044 goto out;
1045
1046 err = -EINVAL;
1047 if (!thread_group_leader(p))
1048 goto out;
1049
1050 if (same_thread_group(p->real_parent, group_leader)) {
1051 err = -EPERM;
1052 if (task_session(p) != task_session(group_leader))
1053 goto out;
1054 err = -EACCES;
1055 if (!(p->flags & PF_FORKNOEXEC))
1056 goto out;
1057 } else {
1058 err = -ESRCH;
1059 if (p != group_leader)
1060 goto out;
1061 }
1062
1063 err = -EPERM;
1064 if (p->signal->leader)
1065 goto out;
1066
1067 pgrp = task_pid(p);
1068 if (pgid != pid) {
1069 struct task_struct *g;
1070
1071 pgrp = find_vpid(pgid);
1072 g = pid_task(pgrp, PIDTYPE_PGID);
1073 if (!g || task_session(g) != task_session(group_leader))
1074 goto out;
1075 }
1076
1077 err = security_task_setpgid(p, pgid);
1078 if (err)
1079 goto out;
1080
1081 if (task_pgrp(p) != pgrp)
1082 change_pid(p, PIDTYPE_PGID, pgrp);
1083
1084 err = 0;
1085 out:
1086 /* All paths lead to here, thus we are safe. -DaveM */
1087 write_unlock_irq(&tasklist_lock);
1088 rcu_read_unlock();
1089 return err;
1090 }
1091
1092 static int do_getpgid(pid_t pid)
1093 {
1094 struct task_struct *p;
1095 struct pid *grp;
1096 int retval;
1097
1098 rcu_read_lock();
1099 if (!pid)
1100 grp = task_pgrp(current);
1101 else {
1102 retval = -ESRCH;
1103 p = find_task_by_vpid(pid);
1104 if (!p)
1105 goto out;
1106 grp = task_pgrp(p);
1107 if (!grp)
1108 goto out;
1109
1110 retval = security_task_getpgid(p);
1111 if (retval)
1112 goto out;
1113 }
1114 retval = pid_vnr(grp);
1115 out:
1116 rcu_read_unlock();
1117 return retval;
1118 }
1119
1120 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1121 {
1122 return do_getpgid(pid);
1123 }
1124
1125 #ifdef __ARCH_WANT_SYS_GETPGRP
1126
1127 SYSCALL_DEFINE0(getpgrp)
1128 {
1129 return do_getpgid(0);
1130 }
1131
1132 #endif
1133
1134 SYSCALL_DEFINE1(getsid, pid_t, pid)
1135 {
1136 struct task_struct *p;
1137 struct pid *sid;
1138 int retval;
1139
1140 rcu_read_lock();
1141 if (!pid)
1142 sid = task_session(current);
1143 else {
1144 retval = -ESRCH;
1145 p = find_task_by_vpid(pid);
1146 if (!p)
1147 goto out;
1148 sid = task_session(p);
1149 if (!sid)
1150 goto out;
1151
1152 retval = security_task_getsid(p);
1153 if (retval)
1154 goto out;
1155 }
1156 retval = pid_vnr(sid);
1157 out:
1158 rcu_read_unlock();
1159 return retval;
1160 }
1161
1162 static void set_special_pids(struct pid *pid)
1163 {
1164 struct task_struct *curr = current->group_leader;
1165
1166 if (task_session(curr) != pid)
1167 change_pid(curr, PIDTYPE_SID, pid);
1168
1169 if (task_pgrp(curr) != pid)
1170 change_pid(curr, PIDTYPE_PGID, pid);
1171 }
1172
1173 int ksys_setsid(void)
1174 {
1175 struct task_struct *group_leader = current->group_leader;
1176 struct pid *sid = task_pid(group_leader);
1177 pid_t session = pid_vnr(sid);
1178 int err = -EPERM;
1179
1180 write_lock_irq(&tasklist_lock);
1181 /* Fail if I am already a session leader */
1182 if (group_leader->signal->leader)
1183 goto out;
1184
1185 /* Fail if a process group id already exists that equals the
1186 * proposed session id.
1187 */
1188 if (pid_task(sid, PIDTYPE_PGID))
1189 goto out;
1190
1191 group_leader->signal->leader = 1;
1192 set_special_pids(sid);
1193
1194 proc_clear_tty(group_leader);
1195
1196 err = session;
1197 out:
1198 write_unlock_irq(&tasklist_lock);
1199 if (err > 0) {
1200 proc_sid_connector(group_leader);
1201 sched_autogroup_create_attach(group_leader);
1202 }
1203 return err;
1204 }
1205
1206 SYSCALL_DEFINE0(setsid)
1207 {
1208 return ksys_setsid();
1209 }
1210
1211 DECLARE_RWSEM(uts_sem);
1212
1213 #ifdef COMPAT_UTS_MACHINE
1214 static char compat_uts_machine[__OLD_UTS_LEN+1] = COMPAT_UTS_MACHINE;
1215
1216 static int __init parse_compat_uts_machine(char *arg)
1217 {
1218 strncpy(compat_uts_machine, arg, __OLD_UTS_LEN);
1219 compat_uts_machine[__OLD_UTS_LEN] = 0;
1220 return 0;
1221 }
1222 early_param("compat_uts_machine", parse_compat_uts_machine);
1223
1224 #undef COMPAT_UTS_MACHINE
1225 #define COMPAT_UTS_MACHINE compat_uts_machine
1226 #endif
1227
1228 #ifdef COMPAT_UTS_MACHINE
1229 #define override_architecture(name) \
1230 (personality(current->personality) == PER_LINUX32 && \
1231 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1232 sizeof(COMPAT_UTS_MACHINE)))
1233 #else
1234 #define override_architecture(name) 0
1235 #endif
1236
1237 /*
1238 * Work around broken programs that cannot handle "Linux 3.0".
1239 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1240 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1241 * 2.6.60.
1242 */
1243 static int override_release(char __user *release, size_t len)
1244 {
1245 int ret = 0;
1246
1247 if (current->personality & UNAME26) {
1248 const char *rest = UTS_RELEASE;
1249 char buf[65] = { 0 };
1250 int ndots = 0;
1251 unsigned v;
1252 size_t copy;
1253
1254 while (*rest) {
1255 if (*rest == '.' && ++ndots >= 3)
1256 break;
1257 if (!isdigit(*rest) && *rest != '.')
1258 break;
1259 rest++;
1260 }
1261 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
1262 copy = clamp_t(size_t, len, 1, sizeof(buf));
1263 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1264 ret = copy_to_user(release, buf, copy + 1);
1265 }
1266 return ret;
1267 }
1268
1269 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1270 {
1271 struct new_utsname tmp;
1272
1273 down_read(&uts_sem);
1274 memcpy(&tmp, utsname(), sizeof(tmp));
1275 up_read(&uts_sem);
1276 if (copy_to_user(name, &tmp, sizeof(tmp)))
1277 return -EFAULT;
1278
1279 if (override_release(name->release, sizeof(name->release)))
1280 return -EFAULT;
1281 if (override_architecture(name))
1282 return -EFAULT;
1283 return 0;
1284 }
1285
1286 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1287 /*
1288 * Old cruft
1289 */
1290 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1291 {
1292 struct old_utsname tmp;
1293
1294 if (!name)
1295 return -EFAULT;
1296
1297 down_read(&uts_sem);
1298 memcpy(&tmp, utsname(), sizeof(tmp));
1299 up_read(&uts_sem);
1300 if (copy_to_user(name, &tmp, sizeof(tmp)))
1301 return -EFAULT;
1302
1303 if (override_release(name->release, sizeof(name->release)))
1304 return -EFAULT;
1305 if (override_architecture(name))
1306 return -EFAULT;
1307 return 0;
1308 }
1309
1310 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1311 {
1312 struct oldold_utsname tmp;
1313
1314 if (!name)
1315 return -EFAULT;
1316
1317 memset(&tmp, 0, sizeof(tmp));
1318
1319 down_read(&uts_sem);
1320 memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1321 memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1322 memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1323 memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1324 memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1325 up_read(&uts_sem);
1326 if (copy_to_user(name, &tmp, sizeof(tmp)))
1327 return -EFAULT;
1328
1329 if (override_architecture(name))
1330 return -EFAULT;
1331 if (override_release(name->release, sizeof(name->release)))
1332 return -EFAULT;
1333 return 0;
1334 }
1335 #endif
1336
1337 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1338 {
1339 int errno;
1340 char tmp[__NEW_UTS_LEN];
1341
1342 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1343 return -EPERM;
1344
1345 if (len < 0 || len > __NEW_UTS_LEN)
1346 return -EINVAL;
1347 errno = -EFAULT;
1348 if (!copy_from_user(tmp, name, len)) {
1349 struct new_utsname *u;
1350
1351 down_write(&uts_sem);
1352 u = utsname();
1353 memcpy(u->nodename, tmp, len);
1354 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1355 errno = 0;
1356 uts_proc_notify(UTS_PROC_HOSTNAME);
1357 up_write(&uts_sem);
1358 }
1359 return errno;
1360 }
1361
1362 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1363
1364 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1365 {
1366 int i;
1367 struct new_utsname *u;
1368 char tmp[__NEW_UTS_LEN + 1];
1369
1370 if (len < 0)
1371 return -EINVAL;
1372 down_read(&uts_sem);
1373 u = utsname();
1374 i = 1 + strlen(u->nodename);
1375 if (i > len)
1376 i = len;
1377 memcpy(tmp, u->nodename, i);
1378 up_read(&uts_sem);
1379 if (copy_to_user(name, tmp, i))
1380 return -EFAULT;
1381 return 0;
1382 }
1383
1384 #endif
1385
1386 /*
1387 * Only setdomainname; getdomainname can be implemented by calling
1388 * uname()
1389 */
1390 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1391 {
1392 int errno;
1393 char tmp[__NEW_UTS_LEN];
1394
1395 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1396 return -EPERM;
1397 if (len < 0 || len > __NEW_UTS_LEN)
1398 return -EINVAL;
1399
1400 errno = -EFAULT;
1401 if (!copy_from_user(tmp, name, len)) {
1402 struct new_utsname *u;
1403
1404 down_write(&uts_sem);
1405 u = utsname();
1406 memcpy(u->domainname, tmp, len);
1407 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1408 errno = 0;
1409 uts_proc_notify(UTS_PROC_DOMAINNAME);
1410 up_write(&uts_sem);
1411 }
1412 return errno;
1413 }
1414
1415 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1416 {
1417 struct rlimit value;
1418 int ret;
1419
1420 ret = do_prlimit(current, resource, NULL, &value);
1421 if (!ret)
1422 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1423
1424 return ret;
1425 }
1426
1427 #ifdef CONFIG_COMPAT
1428
1429 COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1430 struct compat_rlimit __user *, rlim)
1431 {
1432 struct rlimit r;
1433 struct compat_rlimit r32;
1434
1435 if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1436 return -EFAULT;
1437
1438 if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1439 r.rlim_cur = RLIM_INFINITY;
1440 else
1441 r.rlim_cur = r32.rlim_cur;
1442 if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1443 r.rlim_max = RLIM_INFINITY;
1444 else
1445 r.rlim_max = r32.rlim_max;
1446 return do_prlimit(current, resource, &r, NULL);
1447 }
1448
1449 COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1450 struct compat_rlimit __user *, rlim)
1451 {
1452 struct rlimit r;
1453 int ret;
1454
1455 ret = do_prlimit(current, resource, NULL, &r);
1456 if (!ret) {
1457 struct compat_rlimit r32;
1458 if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1459 r32.rlim_cur = COMPAT_RLIM_INFINITY;
1460 else
1461 r32.rlim_cur = r.rlim_cur;
1462 if (r.rlim_max > COMPAT_RLIM_INFINITY)
1463 r32.rlim_max = COMPAT_RLIM_INFINITY;
1464 else
1465 r32.rlim_max = r.rlim_max;
1466
1467 if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1468 return -EFAULT;
1469 }
1470 return ret;
1471 }
1472
1473 #endif
1474
1475 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1476
1477 /*
1478 * Back compatibility for getrlimit. Needed for some apps.
1479 */
1480 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1481 struct rlimit __user *, rlim)
1482 {
1483 struct rlimit x;
1484 if (resource >= RLIM_NLIMITS)
1485 return -EINVAL;
1486
1487 resource = array_index_nospec(resource, RLIM_NLIMITS);
1488 task_lock(current->group_leader);
1489 x = current->signal->rlim[resource];
1490 task_unlock(current->group_leader);
1491 if (x.rlim_cur > 0x7FFFFFFF)
1492 x.rlim_cur = 0x7FFFFFFF;
1493 if (x.rlim_max > 0x7FFFFFFF)
1494 x.rlim_max = 0x7FFFFFFF;
1495 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1496 }
1497
1498 #ifdef CONFIG_COMPAT
1499 COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1500 struct compat_rlimit __user *, rlim)
1501 {
1502 struct rlimit r;
1503
1504 if (resource >= RLIM_NLIMITS)
1505 return -EINVAL;
1506
1507 resource = array_index_nospec(resource, RLIM_NLIMITS);
1508 task_lock(current->group_leader);
1509 r = current->signal->rlim[resource];
1510 task_unlock(current->group_leader);
1511 if (r.rlim_cur > 0x7FFFFFFF)
1512 r.rlim_cur = 0x7FFFFFFF;
1513 if (r.rlim_max > 0x7FFFFFFF)
1514 r.rlim_max = 0x7FFFFFFF;
1515
1516 if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1517 put_user(r.rlim_max, &rlim->rlim_max))
1518 return -EFAULT;
1519 return 0;
1520 }
1521 #endif
1522
1523 #endif
1524
1525 static inline bool rlim64_is_infinity(__u64 rlim64)
1526 {
1527 #if BITS_PER_LONG < 64
1528 return rlim64 >= ULONG_MAX;
1529 #else
1530 return rlim64 == RLIM64_INFINITY;
1531 #endif
1532 }
1533
1534 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1535 {
1536 if (rlim->rlim_cur == RLIM_INFINITY)
1537 rlim64->rlim_cur = RLIM64_INFINITY;
1538 else
1539 rlim64->rlim_cur = rlim->rlim_cur;
1540 if (rlim->rlim_max == RLIM_INFINITY)
1541 rlim64->rlim_max = RLIM64_INFINITY;
1542 else
1543 rlim64->rlim_max = rlim->rlim_max;
1544 }
1545
1546 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1547 {
1548 if (rlim64_is_infinity(rlim64->rlim_cur))
1549 rlim->rlim_cur = RLIM_INFINITY;
1550 else
1551 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1552 if (rlim64_is_infinity(rlim64->rlim_max))
1553 rlim->rlim_max = RLIM_INFINITY;
1554 else
1555 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1556 }
1557
1558 /* make sure you are allowed to change @tsk limits before calling this */
1559 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1560 struct rlimit *new_rlim, struct rlimit *old_rlim)
1561 {
1562 struct rlimit *rlim;
1563 int retval = 0;
1564
1565 if (resource >= RLIM_NLIMITS)
1566 return -EINVAL;
1567 if (new_rlim) {
1568 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1569 return -EINVAL;
1570 if (resource == RLIMIT_NOFILE &&
1571 new_rlim->rlim_max > sysctl_nr_open)
1572 return -EPERM;
1573 }
1574
1575 /* protect tsk->signal and tsk->sighand from disappearing */
1576 read_lock(&tasklist_lock);
1577 if (!tsk->sighand) {
1578 retval = -ESRCH;
1579 goto out;
1580 }
1581
1582 rlim = tsk->signal->rlim + resource;
1583 task_lock(tsk->group_leader);
1584 if (new_rlim) {
1585 /* Keep the capable check against init_user_ns until
1586 cgroups can contain all limits */
1587 if (new_rlim->rlim_max > rlim->rlim_max &&
1588 !capable(CAP_SYS_RESOURCE))
1589 retval = -EPERM;
1590 if (!retval)
1591 retval = security_task_setrlimit(tsk, resource, new_rlim);
1592 }
1593 if (!retval) {
1594 if (old_rlim)
1595 *old_rlim = *rlim;
1596 if (new_rlim)
1597 *rlim = *new_rlim;
1598 }
1599 task_unlock(tsk->group_leader);
1600
1601 /*
1602 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1603 * infite. In case of RLIM_INFINITY the posix CPU timer code
1604 * ignores the rlimit.
1605 */
1606 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1607 new_rlim->rlim_cur != RLIM_INFINITY &&
1608 IS_ENABLED(CONFIG_POSIX_TIMERS))
1609 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1610 out:
1611 read_unlock(&tasklist_lock);
1612 return retval;
1613 }
1614
1615 /* rcu lock must be held */
1616 static int check_prlimit_permission(struct task_struct *task,
1617 unsigned int flags)
1618 {
1619 const struct cred *cred = current_cred(), *tcred;
1620 bool id_match;
1621
1622 if (current == task)
1623 return 0;
1624
1625 tcred = __task_cred(task);
1626 id_match = (uid_eq(cred->uid, tcred->euid) &&
1627 uid_eq(cred->uid, tcred->suid) &&
1628 uid_eq(cred->uid, tcred->uid) &&
1629 gid_eq(cred->gid, tcred->egid) &&
1630 gid_eq(cred->gid, tcred->sgid) &&
1631 gid_eq(cred->gid, tcred->gid));
1632 if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1633 return -EPERM;
1634
1635 return security_task_prlimit(cred, tcred, flags);
1636 }
1637
1638 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1639 const struct rlimit64 __user *, new_rlim,
1640 struct rlimit64 __user *, old_rlim)
1641 {
1642 struct rlimit64 old64, new64;
1643 struct rlimit old, new;
1644 struct task_struct *tsk;
1645 unsigned int checkflags = 0;
1646 int ret;
1647
1648 if (old_rlim)
1649 checkflags |= LSM_PRLIMIT_READ;
1650
1651 if (new_rlim) {
1652 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1653 return -EFAULT;
1654 rlim64_to_rlim(&new64, &new);
1655 checkflags |= LSM_PRLIMIT_WRITE;
1656 }
1657
1658 rcu_read_lock();
1659 tsk = pid ? find_task_by_vpid(pid) : current;
1660 if (!tsk) {
1661 rcu_read_unlock();
1662 return -ESRCH;
1663 }
1664 ret = check_prlimit_permission(tsk, checkflags);
1665 if (ret) {
1666 rcu_read_unlock();
1667 return ret;
1668 }
1669 get_task_struct(tsk);
1670 rcu_read_unlock();
1671
1672 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1673 old_rlim ? &old : NULL);
1674
1675 if (!ret && old_rlim) {
1676 rlim_to_rlim64(&old, &old64);
1677 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1678 ret = -EFAULT;
1679 }
1680
1681 put_task_struct(tsk);
1682 return ret;
1683 }
1684
1685 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1686 {
1687 struct rlimit new_rlim;
1688
1689 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1690 return -EFAULT;
1691 return do_prlimit(current, resource, &new_rlim, NULL);
1692 }
1693
1694 /*
1695 * It would make sense to put struct rusage in the task_struct,
1696 * except that would make the task_struct be *really big*. After
1697 * task_struct gets moved into malloc'ed memory, it would
1698 * make sense to do this. It will make moving the rest of the information
1699 * a lot simpler! (Which we're not doing right now because we're not
1700 * measuring them yet).
1701 *
1702 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1703 * races with threads incrementing their own counters. But since word
1704 * reads are atomic, we either get new values or old values and we don't
1705 * care which for the sums. We always take the siglock to protect reading
1706 * the c* fields from p->signal from races with exit.c updating those
1707 * fields when reaping, so a sample either gets all the additions of a
1708 * given child after it's reaped, or none so this sample is before reaping.
1709 *
1710 * Locking:
1711 * We need to take the siglock for CHILDEREN, SELF and BOTH
1712 * for the cases current multithreaded, non-current single threaded
1713 * non-current multithreaded. Thread traversal is now safe with
1714 * the siglock held.
1715 * Strictly speaking, we donot need to take the siglock if we are current and
1716 * single threaded, as no one else can take our signal_struct away, no one
1717 * else can reap the children to update signal->c* counters, and no one else
1718 * can race with the signal-> fields. If we do not take any lock, the
1719 * signal-> fields could be read out of order while another thread was just
1720 * exiting. So we should place a read memory barrier when we avoid the lock.
1721 * On the writer side, write memory barrier is implied in __exit_signal
1722 * as __exit_signal releases the siglock spinlock after updating the signal->
1723 * fields. But we don't do this yet to keep things simple.
1724 *
1725 */
1726
1727 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1728 {
1729 r->ru_nvcsw += t->nvcsw;
1730 r->ru_nivcsw += t->nivcsw;
1731 r->ru_minflt += t->min_flt;
1732 r->ru_majflt += t->maj_flt;
1733 r->ru_inblock += task_io_get_inblock(t);
1734 r->ru_oublock += task_io_get_oublock(t);
1735 }
1736
1737 void getrusage(struct task_struct *p, int who, struct rusage *r)
1738 {
1739 struct task_struct *t;
1740 unsigned long flags;
1741 u64 tgutime, tgstime, utime, stime;
1742 unsigned long maxrss = 0;
1743
1744 memset((char *)r, 0, sizeof (*r));
1745 utime = stime = 0;
1746
1747 if (who == RUSAGE_THREAD) {
1748 task_cputime_adjusted(current, &utime, &stime);
1749 accumulate_thread_rusage(p, r);
1750 maxrss = p->signal->maxrss;
1751 goto out;
1752 }
1753
1754 if (!lock_task_sighand(p, &flags))
1755 return;
1756
1757 switch (who) {
1758 case RUSAGE_BOTH:
1759 case RUSAGE_CHILDREN:
1760 utime = p->signal->cutime;
1761 stime = p->signal->cstime;
1762 r->ru_nvcsw = p->signal->cnvcsw;
1763 r->ru_nivcsw = p->signal->cnivcsw;
1764 r->ru_minflt = p->signal->cmin_flt;
1765 r->ru_majflt = p->signal->cmaj_flt;
1766 r->ru_inblock = p->signal->cinblock;
1767 r->ru_oublock = p->signal->coublock;
1768 maxrss = p->signal->cmaxrss;
1769
1770 if (who == RUSAGE_CHILDREN)
1771 break;
1772 fallthrough;
1773
1774 case RUSAGE_SELF:
1775 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1776 utime += tgutime;
1777 stime += tgstime;
1778 r->ru_nvcsw += p->signal->nvcsw;
1779 r->ru_nivcsw += p->signal->nivcsw;
1780 r->ru_minflt += p->signal->min_flt;
1781 r->ru_majflt += p->signal->maj_flt;
1782 r->ru_inblock += p->signal->inblock;
1783 r->ru_oublock += p->signal->oublock;
1784 if (maxrss < p->signal->maxrss)
1785 maxrss = p->signal->maxrss;
1786 t = p;
1787 do {
1788 accumulate_thread_rusage(t, r);
1789 } while_each_thread(p, t);
1790 break;
1791
1792 default:
1793 BUG();
1794 }
1795 unlock_task_sighand(p, &flags);
1796
1797 out:
1798 r->ru_utime = ns_to_kernel_old_timeval(utime);
1799 r->ru_stime = ns_to_kernel_old_timeval(stime);
1800
1801 if (who != RUSAGE_CHILDREN) {
1802 struct mm_struct *mm = get_task_mm(p);
1803
1804 if (mm) {
1805 setmax_mm_hiwater_rss(&maxrss, mm);
1806 mmput(mm);
1807 }
1808 }
1809 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1810 }
1811
1812 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1813 {
1814 struct rusage r;
1815
1816 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1817 who != RUSAGE_THREAD)
1818 return -EINVAL;
1819
1820 getrusage(current, who, &r);
1821 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1822 }
1823
1824 #ifdef CONFIG_COMPAT
1825 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1826 {
1827 struct rusage r;
1828
1829 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1830 who != RUSAGE_THREAD)
1831 return -EINVAL;
1832
1833 getrusage(current, who, &r);
1834 return put_compat_rusage(&r, ru);
1835 }
1836 #endif
1837
1838 SYSCALL_DEFINE1(umask, int, mask)
1839 {
1840 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1841 return mask;
1842 }
1843
1844 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1845 {
1846 struct fd exe;
1847 struct file *old_exe, *exe_file;
1848 struct inode *inode;
1849 int err;
1850
1851 exe = fdget(fd);
1852 if (!exe.file)
1853 return -EBADF;
1854
1855 inode = file_inode(exe.file);
1856
1857 /*
1858 * Because the original mm->exe_file points to executable file, make
1859 * sure that this one is executable as well, to avoid breaking an
1860 * overall picture.
1861 */
1862 err = -EACCES;
1863 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1864 goto exit;
1865
1866 err = inode_permission(inode, MAY_EXEC);
1867 if (err)
1868 goto exit;
1869
1870 /*
1871 * Forbid mm->exe_file change if old file still mapped.
1872 */
1873 exe_file = get_mm_exe_file(mm);
1874 err = -EBUSY;
1875 if (exe_file) {
1876 struct vm_area_struct *vma;
1877
1878 mmap_read_lock(mm);
1879 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1880 if (!vma->vm_file)
1881 continue;
1882 if (path_equal(&vma->vm_file->f_path,
1883 &exe_file->f_path))
1884 goto exit_err;
1885 }
1886
1887 mmap_read_unlock(mm);
1888 fput(exe_file);
1889 }
1890
1891 err = 0;
1892 /* set the new file, lockless */
1893 get_file(exe.file);
1894 old_exe = xchg(&mm->exe_file, exe.file);
1895 if (old_exe)
1896 fput(old_exe);
1897 exit:
1898 fdput(exe);
1899 return err;
1900 exit_err:
1901 mmap_read_unlock(mm);
1902 fput(exe_file);
1903 goto exit;
1904 }
1905
1906 /*
1907 * Check arithmetic relations of passed addresses.
1908 *
1909 * WARNING: we don't require any capability here so be very careful
1910 * in what is allowed for modification from userspace.
1911 */
1912 static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1913 {
1914 unsigned long mmap_max_addr = TASK_SIZE;
1915 int error = -EINVAL, i;
1916
1917 static const unsigned char offsets[] = {
1918 offsetof(struct prctl_mm_map, start_code),
1919 offsetof(struct prctl_mm_map, end_code),
1920 offsetof(struct prctl_mm_map, start_data),
1921 offsetof(struct prctl_mm_map, end_data),
1922 offsetof(struct prctl_mm_map, start_brk),
1923 offsetof(struct prctl_mm_map, brk),
1924 offsetof(struct prctl_mm_map, start_stack),
1925 offsetof(struct prctl_mm_map, arg_start),
1926 offsetof(struct prctl_mm_map, arg_end),
1927 offsetof(struct prctl_mm_map, env_start),
1928 offsetof(struct prctl_mm_map, env_end),
1929 };
1930
1931 /*
1932 * Make sure the members are not somewhere outside
1933 * of allowed address space.
1934 */
1935 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1936 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1937
1938 if ((unsigned long)val >= mmap_max_addr ||
1939 (unsigned long)val < mmap_min_addr)
1940 goto out;
1941 }
1942
1943 /*
1944 * Make sure the pairs are ordered.
1945 */
1946 #define __prctl_check_order(__m1, __op, __m2) \
1947 ((unsigned long)prctl_map->__m1 __op \
1948 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1949 error = __prctl_check_order(start_code, <, end_code);
1950 error |= __prctl_check_order(start_data,<=, end_data);
1951 error |= __prctl_check_order(start_brk, <=, brk);
1952 error |= __prctl_check_order(arg_start, <=, arg_end);
1953 error |= __prctl_check_order(env_start, <=, env_end);
1954 if (error)
1955 goto out;
1956 #undef __prctl_check_order
1957
1958 error = -EINVAL;
1959
1960 /*
1961 * @brk should be after @end_data in traditional maps.
1962 */
1963 if (prctl_map->start_brk <= prctl_map->end_data ||
1964 prctl_map->brk <= prctl_map->end_data)
1965 goto out;
1966
1967 /*
1968 * Neither we should allow to override limits if they set.
1969 */
1970 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1971 prctl_map->start_brk, prctl_map->end_data,
1972 prctl_map->start_data))
1973 goto out;
1974
1975 error = 0;
1976 out:
1977 return error;
1978 }
1979
1980 #ifdef CONFIG_CHECKPOINT_RESTORE
1981 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1982 {
1983 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1984 unsigned long user_auxv[AT_VECTOR_SIZE];
1985 struct mm_struct *mm = current->mm;
1986 int error;
1987
1988 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1989 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1990
1991 if (opt == PR_SET_MM_MAP_SIZE)
1992 return put_user((unsigned int)sizeof(prctl_map),
1993 (unsigned int __user *)addr);
1994
1995 if (data_size != sizeof(prctl_map))
1996 return -EINVAL;
1997
1998 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1999 return -EFAULT;
2000
2001 error = validate_prctl_map_addr(&prctl_map);
2002 if (error)
2003 return error;
2004
2005 if (prctl_map.auxv_size) {
2006 /*
2007 * Someone is trying to cheat the auxv vector.
2008 */
2009 if (!prctl_map.auxv ||
2010 prctl_map.auxv_size > sizeof(mm->saved_auxv))
2011 return -EINVAL;
2012
2013 memset(user_auxv, 0, sizeof(user_auxv));
2014 if (copy_from_user(user_auxv,
2015 (const void __user *)prctl_map.auxv,
2016 prctl_map.auxv_size))
2017 return -EFAULT;
2018
2019 /* Last entry must be AT_NULL as specification requires */
2020 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2021 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2022 }
2023
2024 if (prctl_map.exe_fd != (u32)-1) {
2025 /*
2026 * Check if the current user is checkpoint/restore capable.
2027 * At the time of this writing, it checks for CAP_SYS_ADMIN
2028 * or CAP_CHECKPOINT_RESTORE.
2029 * Note that a user with access to ptrace can masquerade an
2030 * arbitrary program as any executable, even setuid ones.
2031 * This may have implications in the tomoyo subsystem.
2032 */
2033 if (!checkpoint_restore_ns_capable(current_user_ns()))
2034 return -EPERM;
2035
2036 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2037 if (error)
2038 return error;
2039 }
2040
2041 /*
2042 * arg_lock protects concurent updates but we still need mmap_lock for
2043 * read to exclude races with sys_brk.
2044 */
2045 mmap_read_lock(mm);
2046
2047 /*
2048 * We don't validate if these members are pointing to
2049 * real present VMAs because application may have correspond
2050 * VMAs already unmapped and kernel uses these members for statistics
2051 * output in procfs mostly, except
2052 *
2053 * - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2054 * for VMAs when updating these memvers so anything wrong written
2055 * here cause kernel to swear at userspace program but won't lead
2056 * to any problem in kernel itself
2057 */
2058
2059 spin_lock(&mm->arg_lock);
2060 mm->start_code = prctl_map.start_code;
2061 mm->end_code = prctl_map.end_code;
2062 mm->start_data = prctl_map.start_data;
2063 mm->end_data = prctl_map.end_data;
2064 mm->start_brk = prctl_map.start_brk;
2065 mm->brk = prctl_map.brk;
2066 mm->start_stack = prctl_map.start_stack;
2067 mm->arg_start = prctl_map.arg_start;
2068 mm->arg_end = prctl_map.arg_end;
2069 mm->env_start = prctl_map.env_start;
2070 mm->env_end = prctl_map.env_end;
2071 spin_unlock(&mm->arg_lock);
2072
2073 /*
2074 * Note this update of @saved_auxv is lockless thus
2075 * if someone reads this member in procfs while we're
2076 * updating -- it may get partly updated results. It's
2077 * known and acceptable trade off: we leave it as is to
2078 * not introduce additional locks here making the kernel
2079 * more complex.
2080 */
2081 if (prctl_map.auxv_size)
2082 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2083
2084 mmap_read_unlock(mm);
2085 return 0;
2086 }
2087 #endif /* CONFIG_CHECKPOINT_RESTORE */
2088
2089 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2090 unsigned long len)
2091 {
2092 /*
2093 * This doesn't move the auxiliary vector itself since it's pinned to
2094 * mm_struct, but it permits filling the vector with new values. It's
2095 * up to the caller to provide sane values here, otherwise userspace
2096 * tools which use this vector might be unhappy.
2097 */
2098 unsigned long user_auxv[AT_VECTOR_SIZE];
2099
2100 if (len > sizeof(user_auxv))
2101 return -EINVAL;
2102
2103 if (copy_from_user(user_auxv, (const void __user *)addr, len))
2104 return -EFAULT;
2105
2106 /* Make sure the last entry is always AT_NULL */
2107 user_auxv[AT_VECTOR_SIZE - 2] = 0;
2108 user_auxv[AT_VECTOR_SIZE - 1] = 0;
2109
2110 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2111
2112 task_lock(current);
2113 memcpy(mm->saved_auxv, user_auxv, len);
2114 task_unlock(current);
2115
2116 return 0;
2117 }
2118
2119 static int prctl_set_mm(int opt, unsigned long addr,
2120 unsigned long arg4, unsigned long arg5)
2121 {
2122 struct mm_struct *mm = current->mm;
2123 struct prctl_mm_map prctl_map = {
2124 .auxv = NULL,
2125 .auxv_size = 0,
2126 .exe_fd = -1,
2127 };
2128 struct vm_area_struct *vma;
2129 int error;
2130
2131 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2132 opt != PR_SET_MM_MAP &&
2133 opt != PR_SET_MM_MAP_SIZE)))
2134 return -EINVAL;
2135
2136 #ifdef CONFIG_CHECKPOINT_RESTORE
2137 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2138 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2139 #endif
2140
2141 if (!capable(CAP_SYS_RESOURCE))
2142 return -EPERM;
2143
2144 if (opt == PR_SET_MM_EXE_FILE)
2145 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2146
2147 if (opt == PR_SET_MM_AUXV)
2148 return prctl_set_auxv(mm, addr, arg4);
2149
2150 if (addr >= TASK_SIZE || addr < mmap_min_addr)
2151 return -EINVAL;
2152
2153 error = -EINVAL;
2154
2155 /*
2156 * arg_lock protects concurent updates of arg boundaries, we need
2157 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2158 * validation.
2159 */
2160 mmap_read_lock(mm);
2161 vma = find_vma(mm, addr);
2162
2163 spin_lock(&mm->arg_lock);
2164 prctl_map.start_code = mm->start_code;
2165 prctl_map.end_code = mm->end_code;
2166 prctl_map.start_data = mm->start_data;
2167 prctl_map.end_data = mm->end_data;
2168 prctl_map.start_brk = mm->start_brk;
2169 prctl_map.brk = mm->brk;
2170 prctl_map.start_stack = mm->start_stack;
2171 prctl_map.arg_start = mm->arg_start;
2172 prctl_map.arg_end = mm->arg_end;
2173 prctl_map.env_start = mm->env_start;
2174 prctl_map.env_end = mm->env_end;
2175
2176 switch (opt) {
2177 case PR_SET_MM_START_CODE:
2178 prctl_map.start_code = addr;
2179 break;
2180 case PR_SET_MM_END_CODE:
2181 prctl_map.end_code = addr;
2182 break;
2183 case PR_SET_MM_START_DATA:
2184 prctl_map.start_data = addr;
2185 break;
2186 case PR_SET_MM_END_DATA:
2187 prctl_map.end_data = addr;
2188 break;
2189 case PR_SET_MM_START_STACK:
2190 prctl_map.start_stack = addr;
2191 break;
2192 case PR_SET_MM_START_BRK:
2193 prctl_map.start_brk = addr;
2194 break;
2195 case PR_SET_MM_BRK:
2196 prctl_map.brk = addr;
2197 break;
2198 case PR_SET_MM_ARG_START:
2199 prctl_map.arg_start = addr;
2200 break;
2201 case PR_SET_MM_ARG_END:
2202 prctl_map.arg_end = addr;
2203 break;
2204 case PR_SET_MM_ENV_START:
2205 prctl_map.env_start = addr;
2206 break;
2207 case PR_SET_MM_ENV_END:
2208 prctl_map.env_end = addr;
2209 break;
2210 default:
2211 goto out;
2212 }
2213
2214 error = validate_prctl_map_addr(&prctl_map);
2215 if (error)
2216 goto out;
2217
2218 switch (opt) {
2219 /*
2220 * If command line arguments and environment
2221 * are placed somewhere else on stack, we can
2222 * set them up here, ARG_START/END to setup
2223 * command line argumets and ENV_START/END
2224 * for environment.
2225 */
2226 case PR_SET_MM_START_STACK:
2227 case PR_SET_MM_ARG_START:
2228 case PR_SET_MM_ARG_END:
2229 case PR_SET_MM_ENV_START:
2230 case PR_SET_MM_ENV_END:
2231 if (!vma) {
2232 error = -EFAULT;
2233 goto out;
2234 }
2235 }
2236
2237 mm->start_code = prctl_map.start_code;
2238 mm->end_code = prctl_map.end_code;
2239 mm->start_data = prctl_map.start_data;
2240 mm->end_data = prctl_map.end_data;
2241 mm->start_brk = prctl_map.start_brk;
2242 mm->brk = prctl_map.brk;
2243 mm->start_stack = prctl_map.start_stack;
2244 mm->arg_start = prctl_map.arg_start;
2245 mm->arg_end = prctl_map.arg_end;
2246 mm->env_start = prctl_map.env_start;
2247 mm->env_end = prctl_map.env_end;
2248
2249 error = 0;
2250 out:
2251 spin_unlock(&mm->arg_lock);
2252 mmap_read_unlock(mm);
2253 return error;
2254 }
2255
2256 #ifdef CONFIG_CHECKPOINT_RESTORE
2257 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2258 {
2259 return put_user(me->clear_child_tid, tid_addr);
2260 }
2261 #else
2262 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2263 {
2264 return -EINVAL;
2265 }
2266 #endif
2267
2268 static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2269 {
2270 /*
2271 * If task has has_child_subreaper - all its decendants
2272 * already have these flag too and new decendants will
2273 * inherit it on fork, skip them.
2274 *
2275 * If we've found child_reaper - skip descendants in
2276 * it's subtree as they will never get out pidns.
2277 */
2278 if (p->signal->has_child_subreaper ||
2279 is_child_reaper(task_pid(p)))
2280 return 0;
2281
2282 p->signal->has_child_subreaper = 1;
2283 return 1;
2284 }
2285
2286 int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2287 {
2288 return -EINVAL;
2289 }
2290
2291 int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2292 unsigned long ctrl)
2293 {
2294 return -EINVAL;
2295 }
2296
2297 #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2298
2299 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2300 unsigned long, arg4, unsigned long, arg5)
2301 {
2302 struct task_struct *me = current;
2303 unsigned char comm[sizeof(me->comm)];
2304 long error;
2305
2306 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2307 if (error != -ENOSYS)
2308 return error;
2309
2310 error = 0;
2311 switch (option) {
2312 case PR_SET_PDEATHSIG:
2313 if (!valid_signal(arg2)) {
2314 error = -EINVAL;
2315 break;
2316 }
2317 me->pdeath_signal = arg2;
2318 break;
2319 case PR_GET_PDEATHSIG:
2320 error = put_user(me->pdeath_signal, (int __user *)arg2);
2321 break;
2322 case PR_GET_DUMPABLE:
2323 error = get_dumpable(me->mm);
2324 break;
2325 case PR_SET_DUMPABLE:
2326 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2327 error = -EINVAL;
2328 break;
2329 }
2330 set_dumpable(me->mm, arg2);
2331 break;
2332
2333 case PR_SET_UNALIGN:
2334 error = SET_UNALIGN_CTL(me, arg2);
2335 break;
2336 case PR_GET_UNALIGN:
2337 error = GET_UNALIGN_CTL(me, arg2);
2338 break;
2339 case PR_SET_FPEMU:
2340 error = SET_FPEMU_CTL(me, arg2);
2341 break;
2342 case PR_GET_FPEMU:
2343 error = GET_FPEMU_CTL(me, arg2);
2344 break;
2345 case PR_SET_FPEXC:
2346 error = SET_FPEXC_CTL(me, arg2);
2347 break;
2348 case PR_GET_FPEXC:
2349 error = GET_FPEXC_CTL(me, arg2);
2350 break;
2351 case PR_GET_TIMING:
2352 error = PR_TIMING_STATISTICAL;
2353 break;
2354 case PR_SET_TIMING:
2355 if (arg2 != PR_TIMING_STATISTICAL)
2356 error = -EINVAL;
2357 break;
2358 case PR_SET_NAME:
2359 comm[sizeof(me->comm) - 1] = 0;
2360 if (strncpy_from_user(comm, (char __user *)arg2,
2361 sizeof(me->comm) - 1) < 0)
2362 return -EFAULT;
2363 set_task_comm(me, comm);
2364 proc_comm_connector(me);
2365 break;
2366 case PR_GET_NAME:
2367 get_task_comm(comm, me);
2368 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2369 return -EFAULT;
2370 break;
2371 case PR_GET_ENDIAN:
2372 error = GET_ENDIAN(me, arg2);
2373 break;
2374 case PR_SET_ENDIAN:
2375 error = SET_ENDIAN(me, arg2);
2376 break;
2377 case PR_GET_SECCOMP:
2378 error = prctl_get_seccomp();
2379 break;
2380 case PR_SET_SECCOMP:
2381 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2382 break;
2383 case PR_GET_TSC:
2384 error = GET_TSC_CTL(arg2);
2385 break;
2386 case PR_SET_TSC:
2387 error = SET_TSC_CTL(arg2);
2388 break;
2389 case PR_TASK_PERF_EVENTS_DISABLE:
2390 error = perf_event_task_disable();
2391 break;
2392 case PR_TASK_PERF_EVENTS_ENABLE:
2393 error = perf_event_task_enable();
2394 break;
2395 case PR_GET_TIMERSLACK:
2396 if (current->timer_slack_ns > ULONG_MAX)
2397 error = ULONG_MAX;
2398 else
2399 error = current->timer_slack_ns;
2400 break;
2401 case PR_SET_TIMERSLACK:
2402 if (arg2 <= 0)
2403 current->timer_slack_ns =
2404 current->default_timer_slack_ns;
2405 else
2406 current->timer_slack_ns = arg2;
2407 break;
2408 case PR_MCE_KILL:
2409 if (arg4 | arg5)
2410 return -EINVAL;
2411 switch (arg2) {
2412 case PR_MCE_KILL_CLEAR:
2413 if (arg3 != 0)
2414 return -EINVAL;
2415 current->flags &= ~PF_MCE_PROCESS;
2416 break;
2417 case PR_MCE_KILL_SET:
2418 current->flags |= PF_MCE_PROCESS;
2419 if (arg3 == PR_MCE_KILL_EARLY)
2420 current->flags |= PF_MCE_EARLY;
2421 else if (arg3 == PR_MCE_KILL_LATE)
2422 current->flags &= ~PF_MCE_EARLY;
2423 else if (arg3 == PR_MCE_KILL_DEFAULT)
2424 current->flags &=
2425 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2426 else
2427 return -EINVAL;
2428 break;
2429 default:
2430 return -EINVAL;
2431 }
2432 break;
2433 case PR_MCE_KILL_GET:
2434 if (arg2 | arg3 | arg4 | arg5)
2435 return -EINVAL;
2436 if (current->flags & PF_MCE_PROCESS)
2437 error = (current->flags & PF_MCE_EARLY) ?
2438 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2439 else
2440 error = PR_MCE_KILL_DEFAULT;
2441 break;
2442 case PR_SET_MM:
2443 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2444 break;
2445 case PR_GET_TID_ADDRESS:
2446 error = prctl_get_tid_address(me, (int __user * __user *)arg2);
2447 break;
2448 case PR_SET_CHILD_SUBREAPER:
2449 me->signal->is_child_subreaper = !!arg2;
2450 if (!arg2)
2451 break;
2452
2453 walk_process_tree(me, propagate_has_child_subreaper, NULL);
2454 break;
2455 case PR_GET_CHILD_SUBREAPER:
2456 error = put_user(me->signal->is_child_subreaper,
2457 (int __user *)arg2);
2458 break;
2459 case PR_SET_NO_NEW_PRIVS:
2460 if (arg2 != 1 || arg3 || arg4 || arg5)
2461 return -EINVAL;
2462
2463 task_set_no_new_privs(current);
2464 break;
2465 case PR_GET_NO_NEW_PRIVS:
2466 if (arg2 || arg3 || arg4 || arg5)
2467 return -EINVAL;
2468 return task_no_new_privs(current) ? 1 : 0;
2469 case PR_GET_THP_DISABLE:
2470 if (arg2 || arg3 || arg4 || arg5)
2471 return -EINVAL;
2472 error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2473 break;
2474 case PR_SET_THP_DISABLE:
2475 if (arg3 || arg4 || arg5)
2476 return -EINVAL;
2477 if (mmap_write_lock_killable(me->mm))
2478 return -EINTR;
2479 if (arg2)
2480 set_bit(MMF_DISABLE_THP, &me->mm->flags);
2481 else
2482 clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2483 mmap_write_unlock(me->mm);
2484 break;
2485 case PR_MPX_ENABLE_MANAGEMENT:
2486 case PR_MPX_DISABLE_MANAGEMENT:
2487 /* No longer implemented: */
2488 return -EINVAL;
2489 case PR_SET_FP_MODE:
2490 error = SET_FP_MODE(me, arg2);
2491 break;
2492 case PR_GET_FP_MODE:
2493 error = GET_FP_MODE(me);
2494 break;
2495 case PR_SVE_SET_VL:
2496 error = SVE_SET_VL(arg2);
2497 break;
2498 case PR_SVE_GET_VL:
2499 error = SVE_GET_VL();
2500 break;
2501 case PR_GET_SPECULATION_CTRL:
2502 if (arg3 || arg4 || arg5)
2503 return -EINVAL;
2504 error = arch_prctl_spec_ctrl_get(me, arg2);
2505 break;
2506 case PR_SET_SPECULATION_CTRL:
2507 if (arg4 || arg5)
2508 return -EINVAL;
2509 error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2510 break;
2511 case PR_PAC_RESET_KEYS:
2512 if (arg3 || arg4 || arg5)
2513 return -EINVAL;
2514 error = PAC_RESET_KEYS(me, arg2);
2515 break;
2516 case PR_SET_TAGGED_ADDR_CTRL:
2517 if (arg3 || arg4 || arg5)
2518 return -EINVAL;
2519 error = SET_TAGGED_ADDR_CTRL(arg2);
2520 break;
2521 case PR_GET_TAGGED_ADDR_CTRL:
2522 if (arg2 || arg3 || arg4 || arg5)
2523 return -EINVAL;
2524 error = GET_TAGGED_ADDR_CTRL();
2525 break;
2526 case PR_SET_IO_FLUSHER:
2527 if (!capable(CAP_SYS_RESOURCE))
2528 return -EPERM;
2529
2530 if (arg3 || arg4 || arg5)
2531 return -EINVAL;
2532
2533 if (arg2 == 1)
2534 current->flags |= PR_IO_FLUSHER;
2535 else if (!arg2)
2536 current->flags &= ~PR_IO_FLUSHER;
2537 else
2538 return -EINVAL;
2539 break;
2540 case PR_GET_IO_FLUSHER:
2541 if (!capable(CAP_SYS_RESOURCE))
2542 return -EPERM;
2543
2544 if (arg2 || arg3 || arg4 || arg5)
2545 return -EINVAL;
2546
2547 error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2548 break;
2549 case PR_SET_SYSCALL_USER_DISPATCH:
2550 error = set_syscall_user_dispatch(arg2, arg3, arg4,
2551 (char __user *) arg5);
2552 break;
2553 default:
2554 error = -EINVAL;
2555 break;
2556 }
2557 return error;
2558 }
2559
2560 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2561 struct getcpu_cache __user *, unused)
2562 {
2563 int err = 0;
2564 int cpu = raw_smp_processor_id();
2565
2566 if (cpup)
2567 err |= put_user(cpu, cpup);
2568 if (nodep)
2569 err |= put_user(cpu_to_node(cpu), nodep);
2570 return err ? -EFAULT : 0;
2571 }
2572
2573 /**
2574 * do_sysinfo - fill in sysinfo struct
2575 * @info: pointer to buffer to fill
2576 */
2577 static int do_sysinfo(struct sysinfo *info)
2578 {
2579 unsigned long mem_total, sav_total;
2580 unsigned int mem_unit, bitcount;
2581 struct timespec64 tp;
2582
2583 memset(info, 0, sizeof(struct sysinfo));
2584
2585 ktime_get_boottime_ts64(&tp);
2586 timens_add_boottime(&tp);
2587 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2588
2589 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2590
2591 info->procs = nr_threads;
2592
2593 si_meminfo(info);
2594 si_swapinfo(info);
2595
2596 /*
2597 * If the sum of all the available memory (i.e. ram + swap)
2598 * is less than can be stored in a 32 bit unsigned long then
2599 * we can be binary compatible with 2.2.x kernels. If not,
2600 * well, in that case 2.2.x was broken anyways...
2601 *
2602 * -Erik Andersen <andersee@debian.org>
2603 */
2604
2605 mem_total = info->totalram + info->totalswap;
2606 if (mem_total < info->totalram || mem_total < info->totalswap)
2607 goto out;
2608 bitcount = 0;
2609 mem_unit = info->mem_unit;
2610 while (mem_unit > 1) {
2611 bitcount++;
2612 mem_unit >>= 1;
2613 sav_total = mem_total;
2614 mem_total <<= 1;
2615 if (mem_total < sav_total)
2616 goto out;
2617 }
2618
2619 /*
2620 * If mem_total did not overflow, multiply all memory values by
2621 * info->mem_unit and set it to 1. This leaves things compatible
2622 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2623 * kernels...
2624 */
2625
2626 info->mem_unit = 1;
2627 info->totalram <<= bitcount;
2628 info->freeram <<= bitcount;
2629 info->sharedram <<= bitcount;
2630 info->bufferram <<= bitcount;
2631 info->totalswap <<= bitcount;
2632 info->freeswap <<= bitcount;
2633 info->totalhigh <<= bitcount;
2634 info->freehigh <<= bitcount;
2635
2636 out:
2637 return 0;
2638 }
2639
2640 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2641 {
2642 struct sysinfo val;
2643
2644 do_sysinfo(&val);
2645
2646 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2647 return -EFAULT;
2648
2649 return 0;
2650 }
2651
2652 #ifdef CONFIG_COMPAT
2653 struct compat_sysinfo {
2654 s32 uptime;
2655 u32 loads[3];
2656 u32 totalram;
2657 u32 freeram;
2658 u32 sharedram;
2659 u32 bufferram;
2660 u32 totalswap;
2661 u32 freeswap;
2662 u16 procs;
2663 u16 pad;
2664 u32 totalhigh;
2665 u32 freehigh;
2666 u32 mem_unit;
2667 char _f[20-2*sizeof(u32)-sizeof(int)];
2668 };
2669
2670 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2671 {
2672 struct sysinfo s;
2673 struct compat_sysinfo s_32;
2674
2675 do_sysinfo(&s);
2676
2677 /* Check to see if any memory value is too large for 32-bit and scale
2678 * down if needed
2679 */
2680 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2681 int bitcount = 0;
2682
2683 while (s.mem_unit < PAGE_SIZE) {
2684 s.mem_unit <<= 1;
2685 bitcount++;
2686 }
2687
2688 s.totalram >>= bitcount;
2689 s.freeram >>= bitcount;
2690 s.sharedram >>= bitcount;
2691 s.bufferram >>= bitcount;
2692 s.totalswap >>= bitcount;
2693 s.freeswap >>= bitcount;
2694 s.totalhigh >>= bitcount;
2695 s.freehigh >>= bitcount;
2696 }
2697
2698 memset(&s_32, 0, sizeof(s_32));
2699 s_32.uptime = s.uptime;
2700 s_32.loads[0] = s.loads[0];
2701 s_32.loads[1] = s.loads[1];
2702 s_32.loads[2] = s.loads[2];
2703 s_32.totalram = s.totalram;
2704 s_32.freeram = s.freeram;
2705 s_32.sharedram = s.sharedram;
2706 s_32.bufferram = s.bufferram;
2707 s_32.totalswap = s.totalswap;
2708 s_32.freeswap = s.freeswap;
2709 s_32.procs = s.procs;
2710 s_32.totalhigh = s.totalhigh;
2711 s_32.freehigh = s.freehigh;
2712 s_32.mem_unit = s.mem_unit;
2713 if (copy_to_user(info, &s_32, sizeof(s_32)))
2714 return -EFAULT;
2715 return 0;
2716 }
2717 #endif /* CONFIG_COMPAT */