]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/sys.c
time, signal: Protect resource use statistics with seqlock
[mirror_ubuntu-zesty-kernel.git] / kernel / sys.c
1 /*
2 * linux/kernel/sys.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/export.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/reboot.h>
12 #include <linux/prctl.h>
13 #include <linux/highuid.h>
14 #include <linux/fs.h>
15 #include <linux/kmod.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/workqueue.h>
20 #include <linux/capability.h>
21 #include <linux/device.h>
22 #include <linux/key.h>
23 #include <linux/times.h>
24 #include <linux/posix-timers.h>
25 #include <linux/security.h>
26 #include <linux/dcookies.h>
27 #include <linux/suspend.h>
28 #include <linux/tty.h>
29 #include <linux/signal.h>
30 #include <linux/cn_proc.h>
31 #include <linux/getcpu.h>
32 #include <linux/task_io_accounting_ops.h>
33 #include <linux/seccomp.h>
34 #include <linux/cpu.h>
35 #include <linux/personality.h>
36 #include <linux/ptrace.h>
37 #include <linux/fs_struct.h>
38 #include <linux/file.h>
39 #include <linux/mount.h>
40 #include <linux/gfp.h>
41 #include <linux/syscore_ops.h>
42 #include <linux/version.h>
43 #include <linux/ctype.h>
44
45 #include <linux/compat.h>
46 #include <linux/syscalls.h>
47 #include <linux/kprobes.h>
48 #include <linux/user_namespace.h>
49 #include <linux/binfmts.h>
50
51 #include <linux/sched.h>
52 #include <linux/rcupdate.h>
53 #include <linux/uidgid.h>
54 #include <linux/cred.h>
55
56 #include <linux/kmsg_dump.h>
57 /* Move somewhere else to avoid recompiling? */
58 #include <generated/utsrelease.h>
59
60 #include <asm/uaccess.h>
61 #include <asm/io.h>
62 #include <asm/unistd.h>
63
64 #ifndef SET_UNALIGN_CTL
65 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
66 #endif
67 #ifndef GET_UNALIGN_CTL
68 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
69 #endif
70 #ifndef SET_FPEMU_CTL
71 # define SET_FPEMU_CTL(a,b) (-EINVAL)
72 #endif
73 #ifndef GET_FPEMU_CTL
74 # define GET_FPEMU_CTL(a,b) (-EINVAL)
75 #endif
76 #ifndef SET_FPEXC_CTL
77 # define SET_FPEXC_CTL(a,b) (-EINVAL)
78 #endif
79 #ifndef GET_FPEXC_CTL
80 # define GET_FPEXC_CTL(a,b) (-EINVAL)
81 #endif
82 #ifndef GET_ENDIAN
83 # define GET_ENDIAN(a,b) (-EINVAL)
84 #endif
85 #ifndef SET_ENDIAN
86 # define SET_ENDIAN(a,b) (-EINVAL)
87 #endif
88 #ifndef GET_TSC_CTL
89 # define GET_TSC_CTL(a) (-EINVAL)
90 #endif
91 #ifndef SET_TSC_CTL
92 # define SET_TSC_CTL(a) (-EINVAL)
93 #endif
94
95 /*
96 * this is where the system-wide overflow UID and GID are defined, for
97 * architectures that now have 32-bit UID/GID but didn't in the past
98 */
99
100 int overflowuid = DEFAULT_OVERFLOWUID;
101 int overflowgid = DEFAULT_OVERFLOWGID;
102
103 EXPORT_SYMBOL(overflowuid);
104 EXPORT_SYMBOL(overflowgid);
105
106 /*
107 * the same as above, but for filesystems which can only store a 16-bit
108 * UID and GID. as such, this is needed on all architectures
109 */
110
111 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
112 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
113
114 EXPORT_SYMBOL(fs_overflowuid);
115 EXPORT_SYMBOL(fs_overflowgid);
116
117 /*
118 * Returns true if current's euid is same as p's uid or euid,
119 * or has CAP_SYS_NICE to p's user_ns.
120 *
121 * Called with rcu_read_lock, creds are safe
122 */
123 static bool set_one_prio_perm(struct task_struct *p)
124 {
125 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
126
127 if (uid_eq(pcred->uid, cred->euid) ||
128 uid_eq(pcred->euid, cred->euid))
129 return true;
130 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
131 return true;
132 return false;
133 }
134
135 /*
136 * set the priority of a task
137 * - the caller must hold the RCU read lock
138 */
139 static int set_one_prio(struct task_struct *p, int niceval, int error)
140 {
141 int no_nice;
142
143 if (!set_one_prio_perm(p)) {
144 error = -EPERM;
145 goto out;
146 }
147 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
148 error = -EACCES;
149 goto out;
150 }
151 no_nice = security_task_setnice(p, niceval);
152 if (no_nice) {
153 error = no_nice;
154 goto out;
155 }
156 if (error == -ESRCH)
157 error = 0;
158 set_user_nice(p, niceval);
159 out:
160 return error;
161 }
162
163 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
164 {
165 struct task_struct *g, *p;
166 struct user_struct *user;
167 const struct cred *cred = current_cred();
168 int error = -EINVAL;
169 struct pid *pgrp;
170 kuid_t uid;
171
172 if (which > PRIO_USER || which < PRIO_PROCESS)
173 goto out;
174
175 /* normalize: avoid signed division (rounding problems) */
176 error = -ESRCH;
177 if (niceval < MIN_NICE)
178 niceval = MIN_NICE;
179 if (niceval > MAX_NICE)
180 niceval = MAX_NICE;
181
182 rcu_read_lock();
183 read_lock(&tasklist_lock);
184 switch (which) {
185 case PRIO_PROCESS:
186 if (who)
187 p = find_task_by_vpid(who);
188 else
189 p = current;
190 if (p)
191 error = set_one_prio(p, niceval, error);
192 break;
193 case PRIO_PGRP:
194 if (who)
195 pgrp = find_vpid(who);
196 else
197 pgrp = task_pgrp(current);
198 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
199 error = set_one_prio(p, niceval, error);
200 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
201 break;
202 case PRIO_USER:
203 uid = make_kuid(cred->user_ns, who);
204 user = cred->user;
205 if (!who)
206 uid = cred->uid;
207 else if (!uid_eq(uid, cred->uid) &&
208 !(user = find_user(uid)))
209 goto out_unlock; /* No processes for this user */
210
211 do_each_thread(g, p) {
212 if (uid_eq(task_uid(p), uid))
213 error = set_one_prio(p, niceval, error);
214 } while_each_thread(g, p);
215 if (!uid_eq(uid, cred->uid))
216 free_uid(user); /* For find_user() */
217 break;
218 }
219 out_unlock:
220 read_unlock(&tasklist_lock);
221 rcu_read_unlock();
222 out:
223 return error;
224 }
225
226 /*
227 * Ugh. To avoid negative return values, "getpriority()" will
228 * not return the normal nice-value, but a negated value that
229 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
230 * to stay compatible.
231 */
232 SYSCALL_DEFINE2(getpriority, int, which, int, who)
233 {
234 struct task_struct *g, *p;
235 struct user_struct *user;
236 const struct cred *cred = current_cred();
237 long niceval, retval = -ESRCH;
238 struct pid *pgrp;
239 kuid_t uid;
240
241 if (which > PRIO_USER || which < PRIO_PROCESS)
242 return -EINVAL;
243
244 rcu_read_lock();
245 read_lock(&tasklist_lock);
246 switch (which) {
247 case PRIO_PROCESS:
248 if (who)
249 p = find_task_by_vpid(who);
250 else
251 p = current;
252 if (p) {
253 niceval = nice_to_rlimit(task_nice(p));
254 if (niceval > retval)
255 retval = niceval;
256 }
257 break;
258 case PRIO_PGRP:
259 if (who)
260 pgrp = find_vpid(who);
261 else
262 pgrp = task_pgrp(current);
263 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
264 niceval = nice_to_rlimit(task_nice(p));
265 if (niceval > retval)
266 retval = niceval;
267 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
268 break;
269 case PRIO_USER:
270 uid = make_kuid(cred->user_ns, who);
271 user = cred->user;
272 if (!who)
273 uid = cred->uid;
274 else if (!uid_eq(uid, cred->uid) &&
275 !(user = find_user(uid)))
276 goto out_unlock; /* No processes for this user */
277
278 do_each_thread(g, p) {
279 if (uid_eq(task_uid(p), uid)) {
280 niceval = nice_to_rlimit(task_nice(p));
281 if (niceval > retval)
282 retval = niceval;
283 }
284 } while_each_thread(g, p);
285 if (!uid_eq(uid, cred->uid))
286 free_uid(user); /* for find_user() */
287 break;
288 }
289 out_unlock:
290 read_unlock(&tasklist_lock);
291 rcu_read_unlock();
292
293 return retval;
294 }
295
296 /*
297 * Unprivileged users may change the real gid to the effective gid
298 * or vice versa. (BSD-style)
299 *
300 * If you set the real gid at all, or set the effective gid to a value not
301 * equal to the real gid, then the saved gid is set to the new effective gid.
302 *
303 * This makes it possible for a setgid program to completely drop its
304 * privileges, which is often a useful assertion to make when you are doing
305 * a security audit over a program.
306 *
307 * The general idea is that a program which uses just setregid() will be
308 * 100% compatible with BSD. A program which uses just setgid() will be
309 * 100% compatible with POSIX with saved IDs.
310 *
311 * SMP: There are not races, the GIDs are checked only by filesystem
312 * operations (as far as semantic preservation is concerned).
313 */
314 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
315 {
316 struct user_namespace *ns = current_user_ns();
317 const struct cred *old;
318 struct cred *new;
319 int retval;
320 kgid_t krgid, kegid;
321
322 krgid = make_kgid(ns, rgid);
323 kegid = make_kgid(ns, egid);
324
325 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
326 return -EINVAL;
327 if ((egid != (gid_t) -1) && !gid_valid(kegid))
328 return -EINVAL;
329
330 new = prepare_creds();
331 if (!new)
332 return -ENOMEM;
333 old = current_cred();
334
335 retval = -EPERM;
336 if (rgid != (gid_t) -1) {
337 if (gid_eq(old->gid, krgid) ||
338 gid_eq(old->egid, krgid) ||
339 ns_capable(old->user_ns, CAP_SETGID))
340 new->gid = krgid;
341 else
342 goto error;
343 }
344 if (egid != (gid_t) -1) {
345 if (gid_eq(old->gid, kegid) ||
346 gid_eq(old->egid, kegid) ||
347 gid_eq(old->sgid, kegid) ||
348 ns_capable(old->user_ns, CAP_SETGID))
349 new->egid = kegid;
350 else
351 goto error;
352 }
353
354 if (rgid != (gid_t) -1 ||
355 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
356 new->sgid = new->egid;
357 new->fsgid = new->egid;
358
359 return commit_creds(new);
360
361 error:
362 abort_creds(new);
363 return retval;
364 }
365
366 /*
367 * setgid() is implemented like SysV w/ SAVED_IDS
368 *
369 * SMP: Same implicit races as above.
370 */
371 SYSCALL_DEFINE1(setgid, gid_t, gid)
372 {
373 struct user_namespace *ns = current_user_ns();
374 const struct cred *old;
375 struct cred *new;
376 int retval;
377 kgid_t kgid;
378
379 kgid = make_kgid(ns, gid);
380 if (!gid_valid(kgid))
381 return -EINVAL;
382
383 new = prepare_creds();
384 if (!new)
385 return -ENOMEM;
386 old = current_cred();
387
388 retval = -EPERM;
389 if (ns_capable(old->user_ns, CAP_SETGID))
390 new->gid = new->egid = new->sgid = new->fsgid = kgid;
391 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
392 new->egid = new->fsgid = kgid;
393 else
394 goto error;
395
396 return commit_creds(new);
397
398 error:
399 abort_creds(new);
400 return retval;
401 }
402
403 /*
404 * change the user struct in a credentials set to match the new UID
405 */
406 static int set_user(struct cred *new)
407 {
408 struct user_struct *new_user;
409
410 new_user = alloc_uid(new->uid);
411 if (!new_user)
412 return -EAGAIN;
413
414 /*
415 * We don't fail in case of NPROC limit excess here because too many
416 * poorly written programs don't check set*uid() return code, assuming
417 * it never fails if called by root. We may still enforce NPROC limit
418 * for programs doing set*uid()+execve() by harmlessly deferring the
419 * failure to the execve() stage.
420 */
421 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
422 new_user != INIT_USER)
423 current->flags |= PF_NPROC_EXCEEDED;
424 else
425 current->flags &= ~PF_NPROC_EXCEEDED;
426
427 free_uid(new->user);
428 new->user = new_user;
429 return 0;
430 }
431
432 /*
433 * Unprivileged users may change the real uid to the effective uid
434 * or vice versa. (BSD-style)
435 *
436 * If you set the real uid at all, or set the effective uid to a value not
437 * equal to the real uid, then the saved uid is set to the new effective uid.
438 *
439 * This makes it possible for a setuid program to completely drop its
440 * privileges, which is often a useful assertion to make when you are doing
441 * a security audit over a program.
442 *
443 * The general idea is that a program which uses just setreuid() will be
444 * 100% compatible with BSD. A program which uses just setuid() will be
445 * 100% compatible with POSIX with saved IDs.
446 */
447 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
448 {
449 struct user_namespace *ns = current_user_ns();
450 const struct cred *old;
451 struct cred *new;
452 int retval;
453 kuid_t kruid, keuid;
454
455 kruid = make_kuid(ns, ruid);
456 keuid = make_kuid(ns, euid);
457
458 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
459 return -EINVAL;
460 if ((euid != (uid_t) -1) && !uid_valid(keuid))
461 return -EINVAL;
462
463 new = prepare_creds();
464 if (!new)
465 return -ENOMEM;
466 old = current_cred();
467
468 retval = -EPERM;
469 if (ruid != (uid_t) -1) {
470 new->uid = kruid;
471 if (!uid_eq(old->uid, kruid) &&
472 !uid_eq(old->euid, kruid) &&
473 !ns_capable(old->user_ns, CAP_SETUID))
474 goto error;
475 }
476
477 if (euid != (uid_t) -1) {
478 new->euid = keuid;
479 if (!uid_eq(old->uid, keuid) &&
480 !uid_eq(old->euid, keuid) &&
481 !uid_eq(old->suid, keuid) &&
482 !ns_capable(old->user_ns, CAP_SETUID))
483 goto error;
484 }
485
486 if (!uid_eq(new->uid, old->uid)) {
487 retval = set_user(new);
488 if (retval < 0)
489 goto error;
490 }
491 if (ruid != (uid_t) -1 ||
492 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
493 new->suid = new->euid;
494 new->fsuid = new->euid;
495
496 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
497 if (retval < 0)
498 goto error;
499
500 return commit_creds(new);
501
502 error:
503 abort_creds(new);
504 return retval;
505 }
506
507 /*
508 * setuid() is implemented like SysV with SAVED_IDS
509 *
510 * Note that SAVED_ID's is deficient in that a setuid root program
511 * like sendmail, for example, cannot set its uid to be a normal
512 * user and then switch back, because if you're root, setuid() sets
513 * the saved uid too. If you don't like this, blame the bright people
514 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
515 * will allow a root program to temporarily drop privileges and be able to
516 * regain them by swapping the real and effective uid.
517 */
518 SYSCALL_DEFINE1(setuid, uid_t, uid)
519 {
520 struct user_namespace *ns = current_user_ns();
521 const struct cred *old;
522 struct cred *new;
523 int retval;
524 kuid_t kuid;
525
526 kuid = make_kuid(ns, uid);
527 if (!uid_valid(kuid))
528 return -EINVAL;
529
530 new = prepare_creds();
531 if (!new)
532 return -ENOMEM;
533 old = current_cred();
534
535 retval = -EPERM;
536 if (ns_capable(old->user_ns, CAP_SETUID)) {
537 new->suid = new->uid = kuid;
538 if (!uid_eq(kuid, old->uid)) {
539 retval = set_user(new);
540 if (retval < 0)
541 goto error;
542 }
543 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
544 goto error;
545 }
546
547 new->fsuid = new->euid = kuid;
548
549 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
550 if (retval < 0)
551 goto error;
552
553 return commit_creds(new);
554
555 error:
556 abort_creds(new);
557 return retval;
558 }
559
560
561 /*
562 * This function implements a generic ability to update ruid, euid,
563 * and suid. This allows you to implement the 4.4 compatible seteuid().
564 */
565 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
566 {
567 struct user_namespace *ns = current_user_ns();
568 const struct cred *old;
569 struct cred *new;
570 int retval;
571 kuid_t kruid, keuid, ksuid;
572
573 kruid = make_kuid(ns, ruid);
574 keuid = make_kuid(ns, euid);
575 ksuid = make_kuid(ns, suid);
576
577 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
578 return -EINVAL;
579
580 if ((euid != (uid_t) -1) && !uid_valid(keuid))
581 return -EINVAL;
582
583 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
584 return -EINVAL;
585
586 new = prepare_creds();
587 if (!new)
588 return -ENOMEM;
589
590 old = current_cred();
591
592 retval = -EPERM;
593 if (!ns_capable(old->user_ns, CAP_SETUID)) {
594 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
595 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
596 goto error;
597 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
598 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
599 goto error;
600 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
601 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
602 goto error;
603 }
604
605 if (ruid != (uid_t) -1) {
606 new->uid = kruid;
607 if (!uid_eq(kruid, old->uid)) {
608 retval = set_user(new);
609 if (retval < 0)
610 goto error;
611 }
612 }
613 if (euid != (uid_t) -1)
614 new->euid = keuid;
615 if (suid != (uid_t) -1)
616 new->suid = ksuid;
617 new->fsuid = new->euid;
618
619 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
620 if (retval < 0)
621 goto error;
622
623 return commit_creds(new);
624
625 error:
626 abort_creds(new);
627 return retval;
628 }
629
630 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
631 {
632 const struct cred *cred = current_cred();
633 int retval;
634 uid_t ruid, euid, suid;
635
636 ruid = from_kuid_munged(cred->user_ns, cred->uid);
637 euid = from_kuid_munged(cred->user_ns, cred->euid);
638 suid = from_kuid_munged(cred->user_ns, cred->suid);
639
640 if (!(retval = put_user(ruid, ruidp)) &&
641 !(retval = put_user(euid, euidp)))
642 retval = put_user(suid, suidp);
643
644 return retval;
645 }
646
647 /*
648 * Same as above, but for rgid, egid, sgid.
649 */
650 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
651 {
652 struct user_namespace *ns = current_user_ns();
653 const struct cred *old;
654 struct cred *new;
655 int retval;
656 kgid_t krgid, kegid, ksgid;
657
658 krgid = make_kgid(ns, rgid);
659 kegid = make_kgid(ns, egid);
660 ksgid = make_kgid(ns, sgid);
661
662 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
663 return -EINVAL;
664 if ((egid != (gid_t) -1) && !gid_valid(kegid))
665 return -EINVAL;
666 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
667 return -EINVAL;
668
669 new = prepare_creds();
670 if (!new)
671 return -ENOMEM;
672 old = current_cred();
673
674 retval = -EPERM;
675 if (!ns_capable(old->user_ns, CAP_SETGID)) {
676 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
677 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
678 goto error;
679 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
680 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
681 goto error;
682 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
683 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
684 goto error;
685 }
686
687 if (rgid != (gid_t) -1)
688 new->gid = krgid;
689 if (egid != (gid_t) -1)
690 new->egid = kegid;
691 if (sgid != (gid_t) -1)
692 new->sgid = ksgid;
693 new->fsgid = new->egid;
694
695 return commit_creds(new);
696
697 error:
698 abort_creds(new);
699 return retval;
700 }
701
702 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
703 {
704 const struct cred *cred = current_cred();
705 int retval;
706 gid_t rgid, egid, sgid;
707
708 rgid = from_kgid_munged(cred->user_ns, cred->gid);
709 egid = from_kgid_munged(cred->user_ns, cred->egid);
710 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
711
712 if (!(retval = put_user(rgid, rgidp)) &&
713 !(retval = put_user(egid, egidp)))
714 retval = put_user(sgid, sgidp);
715
716 return retval;
717 }
718
719
720 /*
721 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
722 * is used for "access()" and for the NFS daemon (letting nfsd stay at
723 * whatever uid it wants to). It normally shadows "euid", except when
724 * explicitly set by setfsuid() or for access..
725 */
726 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
727 {
728 const struct cred *old;
729 struct cred *new;
730 uid_t old_fsuid;
731 kuid_t kuid;
732
733 old = current_cred();
734 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
735
736 kuid = make_kuid(old->user_ns, uid);
737 if (!uid_valid(kuid))
738 return old_fsuid;
739
740 new = prepare_creds();
741 if (!new)
742 return old_fsuid;
743
744 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
745 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
746 ns_capable(old->user_ns, CAP_SETUID)) {
747 if (!uid_eq(kuid, old->fsuid)) {
748 new->fsuid = kuid;
749 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
750 goto change_okay;
751 }
752 }
753
754 abort_creds(new);
755 return old_fsuid;
756
757 change_okay:
758 commit_creds(new);
759 return old_fsuid;
760 }
761
762 /*
763 * Samma på svenska..
764 */
765 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
766 {
767 const struct cred *old;
768 struct cred *new;
769 gid_t old_fsgid;
770 kgid_t kgid;
771
772 old = current_cred();
773 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
774
775 kgid = make_kgid(old->user_ns, gid);
776 if (!gid_valid(kgid))
777 return old_fsgid;
778
779 new = prepare_creds();
780 if (!new)
781 return old_fsgid;
782
783 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
784 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
785 ns_capable(old->user_ns, CAP_SETGID)) {
786 if (!gid_eq(kgid, old->fsgid)) {
787 new->fsgid = kgid;
788 goto change_okay;
789 }
790 }
791
792 abort_creds(new);
793 return old_fsgid;
794
795 change_okay:
796 commit_creds(new);
797 return old_fsgid;
798 }
799
800 /**
801 * sys_getpid - return the thread group id of the current process
802 *
803 * Note, despite the name, this returns the tgid not the pid. The tgid and
804 * the pid are identical unless CLONE_THREAD was specified on clone() in
805 * which case the tgid is the same in all threads of the same group.
806 *
807 * This is SMP safe as current->tgid does not change.
808 */
809 SYSCALL_DEFINE0(getpid)
810 {
811 return task_tgid_vnr(current);
812 }
813
814 /* Thread ID - the internal kernel "pid" */
815 SYSCALL_DEFINE0(gettid)
816 {
817 return task_pid_vnr(current);
818 }
819
820 /*
821 * Accessing ->real_parent is not SMP-safe, it could
822 * change from under us. However, we can use a stale
823 * value of ->real_parent under rcu_read_lock(), see
824 * release_task()->call_rcu(delayed_put_task_struct).
825 */
826 SYSCALL_DEFINE0(getppid)
827 {
828 int pid;
829
830 rcu_read_lock();
831 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
832 rcu_read_unlock();
833
834 return pid;
835 }
836
837 SYSCALL_DEFINE0(getuid)
838 {
839 /* Only we change this so SMP safe */
840 return from_kuid_munged(current_user_ns(), current_uid());
841 }
842
843 SYSCALL_DEFINE0(geteuid)
844 {
845 /* Only we change this so SMP safe */
846 return from_kuid_munged(current_user_ns(), current_euid());
847 }
848
849 SYSCALL_DEFINE0(getgid)
850 {
851 /* Only we change this so SMP safe */
852 return from_kgid_munged(current_user_ns(), current_gid());
853 }
854
855 SYSCALL_DEFINE0(getegid)
856 {
857 /* Only we change this so SMP safe */
858 return from_kgid_munged(current_user_ns(), current_egid());
859 }
860
861 void do_sys_times(struct tms *tms)
862 {
863 cputime_t tgutime, tgstime, cutime, cstime;
864
865 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
866 cutime = current->signal->cutime;
867 cstime = current->signal->cstime;
868 tms->tms_utime = cputime_to_clock_t(tgutime);
869 tms->tms_stime = cputime_to_clock_t(tgstime);
870 tms->tms_cutime = cputime_to_clock_t(cutime);
871 tms->tms_cstime = cputime_to_clock_t(cstime);
872 }
873
874 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
875 {
876 if (tbuf) {
877 struct tms tmp;
878
879 do_sys_times(&tmp);
880 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
881 return -EFAULT;
882 }
883 force_successful_syscall_return();
884 return (long) jiffies_64_to_clock_t(get_jiffies_64());
885 }
886
887 /*
888 * This needs some heavy checking ...
889 * I just haven't the stomach for it. I also don't fully
890 * understand sessions/pgrp etc. Let somebody who does explain it.
891 *
892 * OK, I think I have the protection semantics right.... this is really
893 * only important on a multi-user system anyway, to make sure one user
894 * can't send a signal to a process owned by another. -TYT, 12/12/91
895 *
896 * !PF_FORKNOEXEC check to conform completely to POSIX.
897 */
898 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
899 {
900 struct task_struct *p;
901 struct task_struct *group_leader = current->group_leader;
902 struct pid *pgrp;
903 int err;
904
905 if (!pid)
906 pid = task_pid_vnr(group_leader);
907 if (!pgid)
908 pgid = pid;
909 if (pgid < 0)
910 return -EINVAL;
911 rcu_read_lock();
912
913 /* From this point forward we keep holding onto the tasklist lock
914 * so that our parent does not change from under us. -DaveM
915 */
916 write_lock_irq(&tasklist_lock);
917
918 err = -ESRCH;
919 p = find_task_by_vpid(pid);
920 if (!p)
921 goto out;
922
923 err = -EINVAL;
924 if (!thread_group_leader(p))
925 goto out;
926
927 if (same_thread_group(p->real_parent, group_leader)) {
928 err = -EPERM;
929 if (task_session(p) != task_session(group_leader))
930 goto out;
931 err = -EACCES;
932 if (!(p->flags & PF_FORKNOEXEC))
933 goto out;
934 } else {
935 err = -ESRCH;
936 if (p != group_leader)
937 goto out;
938 }
939
940 err = -EPERM;
941 if (p->signal->leader)
942 goto out;
943
944 pgrp = task_pid(p);
945 if (pgid != pid) {
946 struct task_struct *g;
947
948 pgrp = find_vpid(pgid);
949 g = pid_task(pgrp, PIDTYPE_PGID);
950 if (!g || task_session(g) != task_session(group_leader))
951 goto out;
952 }
953
954 err = security_task_setpgid(p, pgid);
955 if (err)
956 goto out;
957
958 if (task_pgrp(p) != pgrp)
959 change_pid(p, PIDTYPE_PGID, pgrp);
960
961 err = 0;
962 out:
963 /* All paths lead to here, thus we are safe. -DaveM */
964 write_unlock_irq(&tasklist_lock);
965 rcu_read_unlock();
966 return err;
967 }
968
969 SYSCALL_DEFINE1(getpgid, pid_t, pid)
970 {
971 struct task_struct *p;
972 struct pid *grp;
973 int retval;
974
975 rcu_read_lock();
976 if (!pid)
977 grp = task_pgrp(current);
978 else {
979 retval = -ESRCH;
980 p = find_task_by_vpid(pid);
981 if (!p)
982 goto out;
983 grp = task_pgrp(p);
984 if (!grp)
985 goto out;
986
987 retval = security_task_getpgid(p);
988 if (retval)
989 goto out;
990 }
991 retval = pid_vnr(grp);
992 out:
993 rcu_read_unlock();
994 return retval;
995 }
996
997 #ifdef __ARCH_WANT_SYS_GETPGRP
998
999 SYSCALL_DEFINE0(getpgrp)
1000 {
1001 return sys_getpgid(0);
1002 }
1003
1004 #endif
1005
1006 SYSCALL_DEFINE1(getsid, pid_t, pid)
1007 {
1008 struct task_struct *p;
1009 struct pid *sid;
1010 int retval;
1011
1012 rcu_read_lock();
1013 if (!pid)
1014 sid = task_session(current);
1015 else {
1016 retval = -ESRCH;
1017 p = find_task_by_vpid(pid);
1018 if (!p)
1019 goto out;
1020 sid = task_session(p);
1021 if (!sid)
1022 goto out;
1023
1024 retval = security_task_getsid(p);
1025 if (retval)
1026 goto out;
1027 }
1028 retval = pid_vnr(sid);
1029 out:
1030 rcu_read_unlock();
1031 return retval;
1032 }
1033
1034 static void set_special_pids(struct pid *pid)
1035 {
1036 struct task_struct *curr = current->group_leader;
1037
1038 if (task_session(curr) != pid)
1039 change_pid(curr, PIDTYPE_SID, pid);
1040
1041 if (task_pgrp(curr) != pid)
1042 change_pid(curr, PIDTYPE_PGID, pid);
1043 }
1044
1045 SYSCALL_DEFINE0(setsid)
1046 {
1047 struct task_struct *group_leader = current->group_leader;
1048 struct pid *sid = task_pid(group_leader);
1049 pid_t session = pid_vnr(sid);
1050 int err = -EPERM;
1051
1052 write_lock_irq(&tasklist_lock);
1053 /* Fail if I am already a session leader */
1054 if (group_leader->signal->leader)
1055 goto out;
1056
1057 /* Fail if a process group id already exists that equals the
1058 * proposed session id.
1059 */
1060 if (pid_task(sid, PIDTYPE_PGID))
1061 goto out;
1062
1063 group_leader->signal->leader = 1;
1064 set_special_pids(sid);
1065
1066 proc_clear_tty(group_leader);
1067
1068 err = session;
1069 out:
1070 write_unlock_irq(&tasklist_lock);
1071 if (err > 0) {
1072 proc_sid_connector(group_leader);
1073 sched_autogroup_create_attach(group_leader);
1074 }
1075 return err;
1076 }
1077
1078 DECLARE_RWSEM(uts_sem);
1079
1080 #ifdef COMPAT_UTS_MACHINE
1081 #define override_architecture(name) \
1082 (personality(current->personality) == PER_LINUX32 && \
1083 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1084 sizeof(COMPAT_UTS_MACHINE)))
1085 #else
1086 #define override_architecture(name) 0
1087 #endif
1088
1089 /*
1090 * Work around broken programs that cannot handle "Linux 3.0".
1091 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1092 */
1093 static int override_release(char __user *release, size_t len)
1094 {
1095 int ret = 0;
1096
1097 if (current->personality & UNAME26) {
1098 const char *rest = UTS_RELEASE;
1099 char buf[65] = { 0 };
1100 int ndots = 0;
1101 unsigned v;
1102 size_t copy;
1103
1104 while (*rest) {
1105 if (*rest == '.' && ++ndots >= 3)
1106 break;
1107 if (!isdigit(*rest) && *rest != '.')
1108 break;
1109 rest++;
1110 }
1111 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
1112 copy = clamp_t(size_t, len, 1, sizeof(buf));
1113 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1114 ret = copy_to_user(release, buf, copy + 1);
1115 }
1116 return ret;
1117 }
1118
1119 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1120 {
1121 int errno = 0;
1122
1123 down_read(&uts_sem);
1124 if (copy_to_user(name, utsname(), sizeof *name))
1125 errno = -EFAULT;
1126 up_read(&uts_sem);
1127
1128 if (!errno && override_release(name->release, sizeof(name->release)))
1129 errno = -EFAULT;
1130 if (!errno && override_architecture(name))
1131 errno = -EFAULT;
1132 return errno;
1133 }
1134
1135 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1136 /*
1137 * Old cruft
1138 */
1139 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1140 {
1141 int error = 0;
1142
1143 if (!name)
1144 return -EFAULT;
1145
1146 down_read(&uts_sem);
1147 if (copy_to_user(name, utsname(), sizeof(*name)))
1148 error = -EFAULT;
1149 up_read(&uts_sem);
1150
1151 if (!error && override_release(name->release, sizeof(name->release)))
1152 error = -EFAULT;
1153 if (!error && override_architecture(name))
1154 error = -EFAULT;
1155 return error;
1156 }
1157
1158 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1159 {
1160 int error;
1161
1162 if (!name)
1163 return -EFAULT;
1164 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1165 return -EFAULT;
1166
1167 down_read(&uts_sem);
1168 error = __copy_to_user(&name->sysname, &utsname()->sysname,
1169 __OLD_UTS_LEN);
1170 error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1171 error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1172 __OLD_UTS_LEN);
1173 error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1174 error |= __copy_to_user(&name->release, &utsname()->release,
1175 __OLD_UTS_LEN);
1176 error |= __put_user(0, name->release + __OLD_UTS_LEN);
1177 error |= __copy_to_user(&name->version, &utsname()->version,
1178 __OLD_UTS_LEN);
1179 error |= __put_user(0, name->version + __OLD_UTS_LEN);
1180 error |= __copy_to_user(&name->machine, &utsname()->machine,
1181 __OLD_UTS_LEN);
1182 error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1183 up_read(&uts_sem);
1184
1185 if (!error && override_architecture(name))
1186 error = -EFAULT;
1187 if (!error && override_release(name->release, sizeof(name->release)))
1188 error = -EFAULT;
1189 return error ? -EFAULT : 0;
1190 }
1191 #endif
1192
1193 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1194 {
1195 int errno;
1196 char tmp[__NEW_UTS_LEN];
1197
1198 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1199 return -EPERM;
1200
1201 if (len < 0 || len > __NEW_UTS_LEN)
1202 return -EINVAL;
1203 down_write(&uts_sem);
1204 errno = -EFAULT;
1205 if (!copy_from_user(tmp, name, len)) {
1206 struct new_utsname *u = utsname();
1207
1208 memcpy(u->nodename, tmp, len);
1209 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1210 errno = 0;
1211 uts_proc_notify(UTS_PROC_HOSTNAME);
1212 }
1213 up_write(&uts_sem);
1214 return errno;
1215 }
1216
1217 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1218
1219 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1220 {
1221 int i, errno;
1222 struct new_utsname *u;
1223
1224 if (len < 0)
1225 return -EINVAL;
1226 down_read(&uts_sem);
1227 u = utsname();
1228 i = 1 + strlen(u->nodename);
1229 if (i > len)
1230 i = len;
1231 errno = 0;
1232 if (copy_to_user(name, u->nodename, i))
1233 errno = -EFAULT;
1234 up_read(&uts_sem);
1235 return errno;
1236 }
1237
1238 #endif
1239
1240 /*
1241 * Only setdomainname; getdomainname can be implemented by calling
1242 * uname()
1243 */
1244 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1245 {
1246 int errno;
1247 char tmp[__NEW_UTS_LEN];
1248
1249 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1250 return -EPERM;
1251 if (len < 0 || len > __NEW_UTS_LEN)
1252 return -EINVAL;
1253
1254 down_write(&uts_sem);
1255 errno = -EFAULT;
1256 if (!copy_from_user(tmp, name, len)) {
1257 struct new_utsname *u = utsname();
1258
1259 memcpy(u->domainname, tmp, len);
1260 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1261 errno = 0;
1262 uts_proc_notify(UTS_PROC_DOMAINNAME);
1263 }
1264 up_write(&uts_sem);
1265 return errno;
1266 }
1267
1268 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1269 {
1270 struct rlimit value;
1271 int ret;
1272
1273 ret = do_prlimit(current, resource, NULL, &value);
1274 if (!ret)
1275 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1276
1277 return ret;
1278 }
1279
1280 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1281
1282 /*
1283 * Back compatibility for getrlimit. Needed for some apps.
1284 */
1285
1286 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1287 struct rlimit __user *, rlim)
1288 {
1289 struct rlimit x;
1290 if (resource >= RLIM_NLIMITS)
1291 return -EINVAL;
1292
1293 task_lock(current->group_leader);
1294 x = current->signal->rlim[resource];
1295 task_unlock(current->group_leader);
1296 if (x.rlim_cur > 0x7FFFFFFF)
1297 x.rlim_cur = 0x7FFFFFFF;
1298 if (x.rlim_max > 0x7FFFFFFF)
1299 x.rlim_max = 0x7FFFFFFF;
1300 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1301 }
1302
1303 #endif
1304
1305 static inline bool rlim64_is_infinity(__u64 rlim64)
1306 {
1307 #if BITS_PER_LONG < 64
1308 return rlim64 >= ULONG_MAX;
1309 #else
1310 return rlim64 == RLIM64_INFINITY;
1311 #endif
1312 }
1313
1314 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1315 {
1316 if (rlim->rlim_cur == RLIM_INFINITY)
1317 rlim64->rlim_cur = RLIM64_INFINITY;
1318 else
1319 rlim64->rlim_cur = rlim->rlim_cur;
1320 if (rlim->rlim_max == RLIM_INFINITY)
1321 rlim64->rlim_max = RLIM64_INFINITY;
1322 else
1323 rlim64->rlim_max = rlim->rlim_max;
1324 }
1325
1326 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1327 {
1328 if (rlim64_is_infinity(rlim64->rlim_cur))
1329 rlim->rlim_cur = RLIM_INFINITY;
1330 else
1331 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1332 if (rlim64_is_infinity(rlim64->rlim_max))
1333 rlim->rlim_max = RLIM_INFINITY;
1334 else
1335 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1336 }
1337
1338 /* make sure you are allowed to change @tsk limits before calling this */
1339 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1340 struct rlimit *new_rlim, struct rlimit *old_rlim)
1341 {
1342 struct rlimit *rlim;
1343 int retval = 0;
1344
1345 if (resource >= RLIM_NLIMITS)
1346 return -EINVAL;
1347 if (new_rlim) {
1348 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1349 return -EINVAL;
1350 if (resource == RLIMIT_NOFILE &&
1351 new_rlim->rlim_max > sysctl_nr_open)
1352 return -EPERM;
1353 }
1354
1355 /* protect tsk->signal and tsk->sighand from disappearing */
1356 read_lock(&tasklist_lock);
1357 if (!tsk->sighand) {
1358 retval = -ESRCH;
1359 goto out;
1360 }
1361
1362 rlim = tsk->signal->rlim + resource;
1363 task_lock(tsk->group_leader);
1364 if (new_rlim) {
1365 /* Keep the capable check against init_user_ns until
1366 cgroups can contain all limits */
1367 if (new_rlim->rlim_max > rlim->rlim_max &&
1368 !capable(CAP_SYS_RESOURCE))
1369 retval = -EPERM;
1370 if (!retval)
1371 retval = security_task_setrlimit(tsk->group_leader,
1372 resource, new_rlim);
1373 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1374 /*
1375 * The caller is asking for an immediate RLIMIT_CPU
1376 * expiry. But we use the zero value to mean "it was
1377 * never set". So let's cheat and make it one second
1378 * instead
1379 */
1380 new_rlim->rlim_cur = 1;
1381 }
1382 }
1383 if (!retval) {
1384 if (old_rlim)
1385 *old_rlim = *rlim;
1386 if (new_rlim)
1387 *rlim = *new_rlim;
1388 }
1389 task_unlock(tsk->group_leader);
1390
1391 /*
1392 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1393 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1394 * very long-standing error, and fixing it now risks breakage of
1395 * applications, so we live with it
1396 */
1397 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1398 new_rlim->rlim_cur != RLIM_INFINITY)
1399 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1400 out:
1401 read_unlock(&tasklist_lock);
1402 return retval;
1403 }
1404
1405 /* rcu lock must be held */
1406 static int check_prlimit_permission(struct task_struct *task)
1407 {
1408 const struct cred *cred = current_cred(), *tcred;
1409
1410 if (current == task)
1411 return 0;
1412
1413 tcred = __task_cred(task);
1414 if (uid_eq(cred->uid, tcred->euid) &&
1415 uid_eq(cred->uid, tcred->suid) &&
1416 uid_eq(cred->uid, tcred->uid) &&
1417 gid_eq(cred->gid, tcred->egid) &&
1418 gid_eq(cred->gid, tcred->sgid) &&
1419 gid_eq(cred->gid, tcred->gid))
1420 return 0;
1421 if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1422 return 0;
1423
1424 return -EPERM;
1425 }
1426
1427 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1428 const struct rlimit64 __user *, new_rlim,
1429 struct rlimit64 __user *, old_rlim)
1430 {
1431 struct rlimit64 old64, new64;
1432 struct rlimit old, new;
1433 struct task_struct *tsk;
1434 int ret;
1435
1436 if (new_rlim) {
1437 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1438 return -EFAULT;
1439 rlim64_to_rlim(&new64, &new);
1440 }
1441
1442 rcu_read_lock();
1443 tsk = pid ? find_task_by_vpid(pid) : current;
1444 if (!tsk) {
1445 rcu_read_unlock();
1446 return -ESRCH;
1447 }
1448 ret = check_prlimit_permission(tsk);
1449 if (ret) {
1450 rcu_read_unlock();
1451 return ret;
1452 }
1453 get_task_struct(tsk);
1454 rcu_read_unlock();
1455
1456 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1457 old_rlim ? &old : NULL);
1458
1459 if (!ret && old_rlim) {
1460 rlim_to_rlim64(&old, &old64);
1461 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1462 ret = -EFAULT;
1463 }
1464
1465 put_task_struct(tsk);
1466 return ret;
1467 }
1468
1469 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1470 {
1471 struct rlimit new_rlim;
1472
1473 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1474 return -EFAULT;
1475 return do_prlimit(current, resource, &new_rlim, NULL);
1476 }
1477
1478 /*
1479 * It would make sense to put struct rusage in the task_struct,
1480 * except that would make the task_struct be *really big*. After
1481 * task_struct gets moved into malloc'ed memory, it would
1482 * make sense to do this. It will make moving the rest of the information
1483 * a lot simpler! (Which we're not doing right now because we're not
1484 * measuring them yet).
1485 *
1486 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1487 * races with threads incrementing their own counters. But since word
1488 * reads are atomic, we either get new values or old values and we don't
1489 * care which for the sums. We always take the siglock to protect reading
1490 * the c* fields from p->signal from races with exit.c updating those
1491 * fields when reaping, so a sample either gets all the additions of a
1492 * given child after it's reaped, or none so this sample is before reaping.
1493 *
1494 * Locking:
1495 * We need to take the siglock for CHILDEREN, SELF and BOTH
1496 * for the cases current multithreaded, non-current single threaded
1497 * non-current multithreaded. Thread traversal is now safe with
1498 * the siglock held.
1499 * Strictly speaking, we donot need to take the siglock if we are current and
1500 * single threaded, as no one else can take our signal_struct away, no one
1501 * else can reap the children to update signal->c* counters, and no one else
1502 * can race with the signal-> fields. If we do not take any lock, the
1503 * signal-> fields could be read out of order while another thread was just
1504 * exiting. So we should place a read memory barrier when we avoid the lock.
1505 * On the writer side, write memory barrier is implied in __exit_signal
1506 * as __exit_signal releases the siglock spinlock after updating the signal->
1507 * fields. But we don't do this yet to keep things simple.
1508 *
1509 */
1510
1511 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1512 {
1513 r->ru_nvcsw += t->nvcsw;
1514 r->ru_nivcsw += t->nivcsw;
1515 r->ru_minflt += t->min_flt;
1516 r->ru_majflt += t->maj_flt;
1517 r->ru_inblock += task_io_get_inblock(t);
1518 r->ru_oublock += task_io_get_oublock(t);
1519 }
1520
1521 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1522 {
1523 struct task_struct *t;
1524 unsigned long flags;
1525 cputime_t tgutime, tgstime, utime, stime;
1526 unsigned long maxrss = 0;
1527
1528 memset((char *) r, 0, sizeof *r);
1529 utime = stime = 0;
1530
1531 if (who == RUSAGE_THREAD) {
1532 task_cputime_adjusted(current, &utime, &stime);
1533 accumulate_thread_rusage(p, r);
1534 maxrss = p->signal->maxrss;
1535 goto out;
1536 }
1537
1538 if (!lock_task_sighand(p, &flags))
1539 return;
1540
1541 switch (who) {
1542 case RUSAGE_BOTH:
1543 case RUSAGE_CHILDREN:
1544 utime = p->signal->cutime;
1545 stime = p->signal->cstime;
1546 r->ru_nvcsw = p->signal->cnvcsw;
1547 r->ru_nivcsw = p->signal->cnivcsw;
1548 r->ru_minflt = p->signal->cmin_flt;
1549 r->ru_majflt = p->signal->cmaj_flt;
1550 r->ru_inblock = p->signal->cinblock;
1551 r->ru_oublock = p->signal->coublock;
1552 maxrss = p->signal->cmaxrss;
1553
1554 if (who == RUSAGE_CHILDREN)
1555 break;
1556
1557 case RUSAGE_SELF:
1558 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1559 utime += tgutime;
1560 stime += tgstime;
1561 r->ru_nvcsw += p->signal->nvcsw;
1562 r->ru_nivcsw += p->signal->nivcsw;
1563 r->ru_minflt += p->signal->min_flt;
1564 r->ru_majflt += p->signal->maj_flt;
1565 r->ru_inblock += p->signal->inblock;
1566 r->ru_oublock += p->signal->oublock;
1567 if (maxrss < p->signal->maxrss)
1568 maxrss = p->signal->maxrss;
1569 t = p;
1570 do {
1571 accumulate_thread_rusage(t, r);
1572 } while_each_thread(p, t);
1573 break;
1574
1575 default:
1576 BUG();
1577 }
1578 unlock_task_sighand(p, &flags);
1579
1580 out:
1581 cputime_to_timeval(utime, &r->ru_utime);
1582 cputime_to_timeval(stime, &r->ru_stime);
1583
1584 if (who != RUSAGE_CHILDREN) {
1585 struct mm_struct *mm = get_task_mm(p);
1586 if (mm) {
1587 setmax_mm_hiwater_rss(&maxrss, mm);
1588 mmput(mm);
1589 }
1590 }
1591 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1592 }
1593
1594 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1595 {
1596 struct rusage r;
1597 k_getrusage(p, who, &r);
1598 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1599 }
1600
1601 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1602 {
1603 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1604 who != RUSAGE_THREAD)
1605 return -EINVAL;
1606 return getrusage(current, who, ru);
1607 }
1608
1609 #ifdef CONFIG_COMPAT
1610 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1611 {
1612 struct rusage r;
1613
1614 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1615 who != RUSAGE_THREAD)
1616 return -EINVAL;
1617
1618 k_getrusage(current, who, &r);
1619 return put_compat_rusage(&r, ru);
1620 }
1621 #endif
1622
1623 SYSCALL_DEFINE1(umask, int, mask)
1624 {
1625 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1626 return mask;
1627 }
1628
1629 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1630 {
1631 struct fd exe;
1632 struct inode *inode;
1633 int err;
1634
1635 exe = fdget(fd);
1636 if (!exe.file)
1637 return -EBADF;
1638
1639 inode = file_inode(exe.file);
1640
1641 /*
1642 * Because the original mm->exe_file points to executable file, make
1643 * sure that this one is executable as well, to avoid breaking an
1644 * overall picture.
1645 */
1646 err = -EACCES;
1647 if (!S_ISREG(inode->i_mode) ||
1648 exe.file->f_path.mnt->mnt_flags & MNT_NOEXEC)
1649 goto exit;
1650
1651 err = inode_permission(inode, MAY_EXEC);
1652 if (err)
1653 goto exit;
1654
1655 down_write(&mm->mmap_sem);
1656
1657 /*
1658 * Forbid mm->exe_file change if old file still mapped.
1659 */
1660 err = -EBUSY;
1661 if (mm->exe_file) {
1662 struct vm_area_struct *vma;
1663
1664 for (vma = mm->mmap; vma; vma = vma->vm_next)
1665 if (vma->vm_file &&
1666 path_equal(&vma->vm_file->f_path,
1667 &mm->exe_file->f_path))
1668 goto exit_unlock;
1669 }
1670
1671 /*
1672 * The symlink can be changed only once, just to disallow arbitrary
1673 * transitions malicious software might bring in. This means one
1674 * could make a snapshot over all processes running and monitor
1675 * /proc/pid/exe changes to notice unusual activity if needed.
1676 */
1677 err = -EPERM;
1678 if (test_and_set_bit(MMF_EXE_FILE_CHANGED, &mm->flags))
1679 goto exit_unlock;
1680
1681 err = 0;
1682 set_mm_exe_file(mm, exe.file); /* this grabs a reference to exe.file */
1683 exit_unlock:
1684 up_write(&mm->mmap_sem);
1685
1686 exit:
1687 fdput(exe);
1688 return err;
1689 }
1690
1691 static int prctl_set_mm(int opt, unsigned long addr,
1692 unsigned long arg4, unsigned long arg5)
1693 {
1694 unsigned long rlim = rlimit(RLIMIT_DATA);
1695 struct mm_struct *mm = current->mm;
1696 struct vm_area_struct *vma;
1697 int error;
1698
1699 if (arg5 || (arg4 && opt != PR_SET_MM_AUXV))
1700 return -EINVAL;
1701
1702 if (!capable(CAP_SYS_RESOURCE))
1703 return -EPERM;
1704
1705 if (opt == PR_SET_MM_EXE_FILE)
1706 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
1707
1708 if (addr >= TASK_SIZE || addr < mmap_min_addr)
1709 return -EINVAL;
1710
1711 error = -EINVAL;
1712
1713 down_read(&mm->mmap_sem);
1714 vma = find_vma(mm, addr);
1715
1716 switch (opt) {
1717 case PR_SET_MM_START_CODE:
1718 mm->start_code = addr;
1719 break;
1720 case PR_SET_MM_END_CODE:
1721 mm->end_code = addr;
1722 break;
1723 case PR_SET_MM_START_DATA:
1724 mm->start_data = addr;
1725 break;
1726 case PR_SET_MM_END_DATA:
1727 mm->end_data = addr;
1728 break;
1729
1730 case PR_SET_MM_START_BRK:
1731 if (addr <= mm->end_data)
1732 goto out;
1733
1734 if (rlim < RLIM_INFINITY &&
1735 (mm->brk - addr) +
1736 (mm->end_data - mm->start_data) > rlim)
1737 goto out;
1738
1739 mm->start_brk = addr;
1740 break;
1741
1742 case PR_SET_MM_BRK:
1743 if (addr <= mm->end_data)
1744 goto out;
1745
1746 if (rlim < RLIM_INFINITY &&
1747 (addr - mm->start_brk) +
1748 (mm->end_data - mm->start_data) > rlim)
1749 goto out;
1750
1751 mm->brk = addr;
1752 break;
1753
1754 /*
1755 * If command line arguments and environment
1756 * are placed somewhere else on stack, we can
1757 * set them up here, ARG_START/END to setup
1758 * command line argumets and ENV_START/END
1759 * for environment.
1760 */
1761 case PR_SET_MM_START_STACK:
1762 case PR_SET_MM_ARG_START:
1763 case PR_SET_MM_ARG_END:
1764 case PR_SET_MM_ENV_START:
1765 case PR_SET_MM_ENV_END:
1766 if (!vma) {
1767 error = -EFAULT;
1768 goto out;
1769 }
1770 if (opt == PR_SET_MM_START_STACK)
1771 mm->start_stack = addr;
1772 else if (opt == PR_SET_MM_ARG_START)
1773 mm->arg_start = addr;
1774 else if (opt == PR_SET_MM_ARG_END)
1775 mm->arg_end = addr;
1776 else if (opt == PR_SET_MM_ENV_START)
1777 mm->env_start = addr;
1778 else if (opt == PR_SET_MM_ENV_END)
1779 mm->env_end = addr;
1780 break;
1781
1782 /*
1783 * This doesn't move auxiliary vector itself
1784 * since it's pinned to mm_struct, but allow
1785 * to fill vector with new values. It's up
1786 * to a caller to provide sane values here
1787 * otherwise user space tools which use this
1788 * vector might be unhappy.
1789 */
1790 case PR_SET_MM_AUXV: {
1791 unsigned long user_auxv[AT_VECTOR_SIZE];
1792
1793 if (arg4 > sizeof(user_auxv))
1794 goto out;
1795 up_read(&mm->mmap_sem);
1796
1797 if (copy_from_user(user_auxv, (const void __user *)addr, arg4))
1798 return -EFAULT;
1799
1800 /* Make sure the last entry is always AT_NULL */
1801 user_auxv[AT_VECTOR_SIZE - 2] = 0;
1802 user_auxv[AT_VECTOR_SIZE - 1] = 0;
1803
1804 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1805
1806 task_lock(current);
1807 memcpy(mm->saved_auxv, user_auxv, arg4);
1808 task_unlock(current);
1809
1810 return 0;
1811 }
1812 default:
1813 goto out;
1814 }
1815
1816 error = 0;
1817 out:
1818 up_read(&mm->mmap_sem);
1819 return error;
1820 }
1821
1822 #ifdef CONFIG_CHECKPOINT_RESTORE
1823 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
1824 {
1825 return put_user(me->clear_child_tid, tid_addr);
1826 }
1827 #else
1828 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
1829 {
1830 return -EINVAL;
1831 }
1832 #endif
1833
1834 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1835 unsigned long, arg4, unsigned long, arg5)
1836 {
1837 struct task_struct *me = current;
1838 unsigned char comm[sizeof(me->comm)];
1839 long error;
1840
1841 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1842 if (error != -ENOSYS)
1843 return error;
1844
1845 error = 0;
1846 switch (option) {
1847 case PR_SET_PDEATHSIG:
1848 if (!valid_signal(arg2)) {
1849 error = -EINVAL;
1850 break;
1851 }
1852 me->pdeath_signal = arg2;
1853 break;
1854 case PR_GET_PDEATHSIG:
1855 error = put_user(me->pdeath_signal, (int __user *)arg2);
1856 break;
1857 case PR_GET_DUMPABLE:
1858 error = get_dumpable(me->mm);
1859 break;
1860 case PR_SET_DUMPABLE:
1861 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
1862 error = -EINVAL;
1863 break;
1864 }
1865 set_dumpable(me->mm, arg2);
1866 break;
1867
1868 case PR_SET_UNALIGN:
1869 error = SET_UNALIGN_CTL(me, arg2);
1870 break;
1871 case PR_GET_UNALIGN:
1872 error = GET_UNALIGN_CTL(me, arg2);
1873 break;
1874 case PR_SET_FPEMU:
1875 error = SET_FPEMU_CTL(me, arg2);
1876 break;
1877 case PR_GET_FPEMU:
1878 error = GET_FPEMU_CTL(me, arg2);
1879 break;
1880 case PR_SET_FPEXC:
1881 error = SET_FPEXC_CTL(me, arg2);
1882 break;
1883 case PR_GET_FPEXC:
1884 error = GET_FPEXC_CTL(me, arg2);
1885 break;
1886 case PR_GET_TIMING:
1887 error = PR_TIMING_STATISTICAL;
1888 break;
1889 case PR_SET_TIMING:
1890 if (arg2 != PR_TIMING_STATISTICAL)
1891 error = -EINVAL;
1892 break;
1893 case PR_SET_NAME:
1894 comm[sizeof(me->comm) - 1] = 0;
1895 if (strncpy_from_user(comm, (char __user *)arg2,
1896 sizeof(me->comm) - 1) < 0)
1897 return -EFAULT;
1898 set_task_comm(me, comm);
1899 proc_comm_connector(me);
1900 break;
1901 case PR_GET_NAME:
1902 get_task_comm(comm, me);
1903 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
1904 return -EFAULT;
1905 break;
1906 case PR_GET_ENDIAN:
1907 error = GET_ENDIAN(me, arg2);
1908 break;
1909 case PR_SET_ENDIAN:
1910 error = SET_ENDIAN(me, arg2);
1911 break;
1912 case PR_GET_SECCOMP:
1913 error = prctl_get_seccomp();
1914 break;
1915 case PR_SET_SECCOMP:
1916 error = prctl_set_seccomp(arg2, (char __user *)arg3);
1917 break;
1918 case PR_GET_TSC:
1919 error = GET_TSC_CTL(arg2);
1920 break;
1921 case PR_SET_TSC:
1922 error = SET_TSC_CTL(arg2);
1923 break;
1924 case PR_TASK_PERF_EVENTS_DISABLE:
1925 error = perf_event_task_disable();
1926 break;
1927 case PR_TASK_PERF_EVENTS_ENABLE:
1928 error = perf_event_task_enable();
1929 break;
1930 case PR_GET_TIMERSLACK:
1931 error = current->timer_slack_ns;
1932 break;
1933 case PR_SET_TIMERSLACK:
1934 if (arg2 <= 0)
1935 current->timer_slack_ns =
1936 current->default_timer_slack_ns;
1937 else
1938 current->timer_slack_ns = arg2;
1939 break;
1940 case PR_MCE_KILL:
1941 if (arg4 | arg5)
1942 return -EINVAL;
1943 switch (arg2) {
1944 case PR_MCE_KILL_CLEAR:
1945 if (arg3 != 0)
1946 return -EINVAL;
1947 current->flags &= ~PF_MCE_PROCESS;
1948 break;
1949 case PR_MCE_KILL_SET:
1950 current->flags |= PF_MCE_PROCESS;
1951 if (arg3 == PR_MCE_KILL_EARLY)
1952 current->flags |= PF_MCE_EARLY;
1953 else if (arg3 == PR_MCE_KILL_LATE)
1954 current->flags &= ~PF_MCE_EARLY;
1955 else if (arg3 == PR_MCE_KILL_DEFAULT)
1956 current->flags &=
1957 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
1958 else
1959 return -EINVAL;
1960 break;
1961 default:
1962 return -EINVAL;
1963 }
1964 break;
1965 case PR_MCE_KILL_GET:
1966 if (arg2 | arg3 | arg4 | arg5)
1967 return -EINVAL;
1968 if (current->flags & PF_MCE_PROCESS)
1969 error = (current->flags & PF_MCE_EARLY) ?
1970 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1971 else
1972 error = PR_MCE_KILL_DEFAULT;
1973 break;
1974 case PR_SET_MM:
1975 error = prctl_set_mm(arg2, arg3, arg4, arg5);
1976 break;
1977 case PR_GET_TID_ADDRESS:
1978 error = prctl_get_tid_address(me, (int __user **)arg2);
1979 break;
1980 case PR_SET_CHILD_SUBREAPER:
1981 me->signal->is_child_subreaper = !!arg2;
1982 break;
1983 case PR_GET_CHILD_SUBREAPER:
1984 error = put_user(me->signal->is_child_subreaper,
1985 (int __user *)arg2);
1986 break;
1987 case PR_SET_NO_NEW_PRIVS:
1988 if (arg2 != 1 || arg3 || arg4 || arg5)
1989 return -EINVAL;
1990
1991 task_set_no_new_privs(current);
1992 break;
1993 case PR_GET_NO_NEW_PRIVS:
1994 if (arg2 || arg3 || arg4 || arg5)
1995 return -EINVAL;
1996 return task_no_new_privs(current) ? 1 : 0;
1997 case PR_GET_THP_DISABLE:
1998 if (arg2 || arg3 || arg4 || arg5)
1999 return -EINVAL;
2000 error = !!(me->mm->def_flags & VM_NOHUGEPAGE);
2001 break;
2002 case PR_SET_THP_DISABLE:
2003 if (arg3 || arg4 || arg5)
2004 return -EINVAL;
2005 down_write(&me->mm->mmap_sem);
2006 if (arg2)
2007 me->mm->def_flags |= VM_NOHUGEPAGE;
2008 else
2009 me->mm->def_flags &= ~VM_NOHUGEPAGE;
2010 up_write(&me->mm->mmap_sem);
2011 break;
2012 default:
2013 error = -EINVAL;
2014 break;
2015 }
2016 return error;
2017 }
2018
2019 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2020 struct getcpu_cache __user *, unused)
2021 {
2022 int err = 0;
2023 int cpu = raw_smp_processor_id();
2024 if (cpup)
2025 err |= put_user(cpu, cpup);
2026 if (nodep)
2027 err |= put_user(cpu_to_node(cpu), nodep);
2028 return err ? -EFAULT : 0;
2029 }
2030
2031 /**
2032 * do_sysinfo - fill in sysinfo struct
2033 * @info: pointer to buffer to fill
2034 */
2035 static int do_sysinfo(struct sysinfo *info)
2036 {
2037 unsigned long mem_total, sav_total;
2038 unsigned int mem_unit, bitcount;
2039 struct timespec tp;
2040
2041 memset(info, 0, sizeof(struct sysinfo));
2042
2043 get_monotonic_boottime(&tp);
2044 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2045
2046 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2047
2048 info->procs = nr_threads;
2049
2050 si_meminfo(info);
2051 si_swapinfo(info);
2052
2053 /*
2054 * If the sum of all the available memory (i.e. ram + swap)
2055 * is less than can be stored in a 32 bit unsigned long then
2056 * we can be binary compatible with 2.2.x kernels. If not,
2057 * well, in that case 2.2.x was broken anyways...
2058 *
2059 * -Erik Andersen <andersee@debian.org>
2060 */
2061
2062 mem_total = info->totalram + info->totalswap;
2063 if (mem_total < info->totalram || mem_total < info->totalswap)
2064 goto out;
2065 bitcount = 0;
2066 mem_unit = info->mem_unit;
2067 while (mem_unit > 1) {
2068 bitcount++;
2069 mem_unit >>= 1;
2070 sav_total = mem_total;
2071 mem_total <<= 1;
2072 if (mem_total < sav_total)
2073 goto out;
2074 }
2075
2076 /*
2077 * If mem_total did not overflow, multiply all memory values by
2078 * info->mem_unit and set it to 1. This leaves things compatible
2079 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2080 * kernels...
2081 */
2082
2083 info->mem_unit = 1;
2084 info->totalram <<= bitcount;
2085 info->freeram <<= bitcount;
2086 info->sharedram <<= bitcount;
2087 info->bufferram <<= bitcount;
2088 info->totalswap <<= bitcount;
2089 info->freeswap <<= bitcount;
2090 info->totalhigh <<= bitcount;
2091 info->freehigh <<= bitcount;
2092
2093 out:
2094 return 0;
2095 }
2096
2097 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2098 {
2099 struct sysinfo val;
2100
2101 do_sysinfo(&val);
2102
2103 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2104 return -EFAULT;
2105
2106 return 0;
2107 }
2108
2109 #ifdef CONFIG_COMPAT
2110 struct compat_sysinfo {
2111 s32 uptime;
2112 u32 loads[3];
2113 u32 totalram;
2114 u32 freeram;
2115 u32 sharedram;
2116 u32 bufferram;
2117 u32 totalswap;
2118 u32 freeswap;
2119 u16 procs;
2120 u16 pad;
2121 u32 totalhigh;
2122 u32 freehigh;
2123 u32 mem_unit;
2124 char _f[20-2*sizeof(u32)-sizeof(int)];
2125 };
2126
2127 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2128 {
2129 struct sysinfo s;
2130
2131 do_sysinfo(&s);
2132
2133 /* Check to see if any memory value is too large for 32-bit and scale
2134 * down if needed
2135 */
2136 if ((s.totalram >> 32) || (s.totalswap >> 32)) {
2137 int bitcount = 0;
2138
2139 while (s.mem_unit < PAGE_SIZE) {
2140 s.mem_unit <<= 1;
2141 bitcount++;
2142 }
2143
2144 s.totalram >>= bitcount;
2145 s.freeram >>= bitcount;
2146 s.sharedram >>= bitcount;
2147 s.bufferram >>= bitcount;
2148 s.totalswap >>= bitcount;
2149 s.freeswap >>= bitcount;
2150 s.totalhigh >>= bitcount;
2151 s.freehigh >>= bitcount;
2152 }
2153
2154 if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) ||
2155 __put_user(s.uptime, &info->uptime) ||
2156 __put_user(s.loads[0], &info->loads[0]) ||
2157 __put_user(s.loads[1], &info->loads[1]) ||
2158 __put_user(s.loads[2], &info->loads[2]) ||
2159 __put_user(s.totalram, &info->totalram) ||
2160 __put_user(s.freeram, &info->freeram) ||
2161 __put_user(s.sharedram, &info->sharedram) ||
2162 __put_user(s.bufferram, &info->bufferram) ||
2163 __put_user(s.totalswap, &info->totalswap) ||
2164 __put_user(s.freeswap, &info->freeswap) ||
2165 __put_user(s.procs, &info->procs) ||
2166 __put_user(s.totalhigh, &info->totalhigh) ||
2167 __put_user(s.freehigh, &info->freehigh) ||
2168 __put_user(s.mem_unit, &info->mem_unit))
2169 return -EFAULT;
2170
2171 return 0;
2172 }
2173 #endif /* CONFIG_COMPAT */