]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/sys.c
Revert: "ring-buffer: Remove HAVE_64BIT_ALIGNED_ACCESS"
[mirror_ubuntu-hirsute-kernel.git] / kernel / sys.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/kernel/sys.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
15 #include <linux/fs.h>
16 #include <linux/kmod.h>
17 #include <linux/perf_event.h>
18 #include <linux/resource.h>
19 #include <linux/kernel.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/file.h>
40 #include <linux/mount.h>
41 #include <linux/gfp.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/version.h>
44 #include <linux/ctype.h>
45
46 #include <linux/compat.h>
47 #include <linux/syscalls.h>
48 #include <linux/kprobes.h>
49 #include <linux/user_namespace.h>
50 #include <linux/time_namespace.h>
51 #include <linux/binfmts.h>
52
53 #include <linux/sched.h>
54 #include <linux/sched/autogroup.h>
55 #include <linux/sched/loadavg.h>
56 #include <linux/sched/stat.h>
57 #include <linux/sched/mm.h>
58 #include <linux/sched/coredump.h>
59 #include <linux/sched/task.h>
60 #include <linux/sched/cputime.h>
61 #include <linux/rcupdate.h>
62 #include <linux/uidgid.h>
63 #include <linux/cred.h>
64
65 #include <linux/nospec.h>
66
67 #include <linux/kmsg_dump.h>
68 /* Move somewhere else to avoid recompiling? */
69 #include <generated/utsrelease.h>
70
71 #include <linux/uaccess.h>
72 #include <asm/io.h>
73 #include <asm/unistd.h>
74
75 #include "uid16.h"
76
77 #ifndef SET_UNALIGN_CTL
78 # define SET_UNALIGN_CTL(a, b) (-EINVAL)
79 #endif
80 #ifndef GET_UNALIGN_CTL
81 # define GET_UNALIGN_CTL(a, b) (-EINVAL)
82 #endif
83 #ifndef SET_FPEMU_CTL
84 # define SET_FPEMU_CTL(a, b) (-EINVAL)
85 #endif
86 #ifndef GET_FPEMU_CTL
87 # define GET_FPEMU_CTL(a, b) (-EINVAL)
88 #endif
89 #ifndef SET_FPEXC_CTL
90 # define SET_FPEXC_CTL(a, b) (-EINVAL)
91 #endif
92 #ifndef GET_FPEXC_CTL
93 # define GET_FPEXC_CTL(a, b) (-EINVAL)
94 #endif
95 #ifndef GET_ENDIAN
96 # define GET_ENDIAN(a, b) (-EINVAL)
97 #endif
98 #ifndef SET_ENDIAN
99 # define SET_ENDIAN(a, b) (-EINVAL)
100 #endif
101 #ifndef GET_TSC_CTL
102 # define GET_TSC_CTL(a) (-EINVAL)
103 #endif
104 #ifndef SET_TSC_CTL
105 # define SET_TSC_CTL(a) (-EINVAL)
106 #endif
107 #ifndef GET_FP_MODE
108 # define GET_FP_MODE(a) (-EINVAL)
109 #endif
110 #ifndef SET_FP_MODE
111 # define SET_FP_MODE(a,b) (-EINVAL)
112 #endif
113 #ifndef SVE_SET_VL
114 # define SVE_SET_VL(a) (-EINVAL)
115 #endif
116 #ifndef SVE_GET_VL
117 # define SVE_GET_VL() (-EINVAL)
118 #endif
119 #ifndef PAC_RESET_KEYS
120 # define PAC_RESET_KEYS(a, b) (-EINVAL)
121 #endif
122 #ifndef SET_TAGGED_ADDR_CTRL
123 # define SET_TAGGED_ADDR_CTRL(a) (-EINVAL)
124 #endif
125 #ifndef GET_TAGGED_ADDR_CTRL
126 # define GET_TAGGED_ADDR_CTRL() (-EINVAL)
127 #endif
128
129 /*
130 * this is where the system-wide overflow UID and GID are defined, for
131 * architectures that now have 32-bit UID/GID but didn't in the past
132 */
133
134 int overflowuid = DEFAULT_OVERFLOWUID;
135 int overflowgid = DEFAULT_OVERFLOWGID;
136
137 EXPORT_SYMBOL(overflowuid);
138 EXPORT_SYMBOL(overflowgid);
139
140 /*
141 * the same as above, but for filesystems which can only store a 16-bit
142 * UID and GID. as such, this is needed on all architectures
143 */
144
145 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
146 int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
147
148 EXPORT_SYMBOL(fs_overflowuid);
149 EXPORT_SYMBOL(fs_overflowgid);
150
151 /*
152 * Returns true if current's euid is same as p's uid or euid,
153 * or has CAP_SYS_NICE to p's user_ns.
154 *
155 * Called with rcu_read_lock, creds are safe
156 */
157 static bool set_one_prio_perm(struct task_struct *p)
158 {
159 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
160
161 if (uid_eq(pcred->uid, cred->euid) ||
162 uid_eq(pcred->euid, cred->euid))
163 return true;
164 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
165 return true;
166 return false;
167 }
168
169 /*
170 * set the priority of a task
171 * - the caller must hold the RCU read lock
172 */
173 static int set_one_prio(struct task_struct *p, int niceval, int error)
174 {
175 int no_nice;
176
177 if (!set_one_prio_perm(p)) {
178 error = -EPERM;
179 goto out;
180 }
181 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
182 error = -EACCES;
183 goto out;
184 }
185 no_nice = security_task_setnice(p, niceval);
186 if (no_nice) {
187 error = no_nice;
188 goto out;
189 }
190 if (error == -ESRCH)
191 error = 0;
192 set_user_nice(p, niceval);
193 out:
194 return error;
195 }
196
197 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
198 {
199 struct task_struct *g, *p;
200 struct user_struct *user;
201 const struct cred *cred = current_cred();
202 int error = -EINVAL;
203 struct pid *pgrp;
204 kuid_t uid;
205
206 if (which > PRIO_USER || which < PRIO_PROCESS)
207 goto out;
208
209 /* normalize: avoid signed division (rounding problems) */
210 error = -ESRCH;
211 if (niceval < MIN_NICE)
212 niceval = MIN_NICE;
213 if (niceval > MAX_NICE)
214 niceval = MAX_NICE;
215
216 rcu_read_lock();
217 read_lock(&tasklist_lock);
218 switch (which) {
219 case PRIO_PROCESS:
220 if (who)
221 p = find_task_by_vpid(who);
222 else
223 p = current;
224 if (p)
225 error = set_one_prio(p, niceval, error);
226 break;
227 case PRIO_PGRP:
228 if (who)
229 pgrp = find_vpid(who);
230 else
231 pgrp = task_pgrp(current);
232 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
233 error = set_one_prio(p, niceval, error);
234 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
235 break;
236 case PRIO_USER:
237 uid = make_kuid(cred->user_ns, who);
238 user = cred->user;
239 if (!who)
240 uid = cred->uid;
241 else if (!uid_eq(uid, cred->uid)) {
242 user = find_user(uid);
243 if (!user)
244 goto out_unlock; /* No processes for this user */
245 }
246 do_each_thread(g, p) {
247 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
248 error = set_one_prio(p, niceval, error);
249 } while_each_thread(g, p);
250 if (!uid_eq(uid, cred->uid))
251 free_uid(user); /* For find_user() */
252 break;
253 }
254 out_unlock:
255 read_unlock(&tasklist_lock);
256 rcu_read_unlock();
257 out:
258 return error;
259 }
260
261 /*
262 * Ugh. To avoid negative return values, "getpriority()" will
263 * not return the normal nice-value, but a negated value that
264 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
265 * to stay compatible.
266 */
267 SYSCALL_DEFINE2(getpriority, int, which, int, who)
268 {
269 struct task_struct *g, *p;
270 struct user_struct *user;
271 const struct cred *cred = current_cred();
272 long niceval, retval = -ESRCH;
273 struct pid *pgrp;
274 kuid_t uid;
275
276 if (which > PRIO_USER || which < PRIO_PROCESS)
277 return -EINVAL;
278
279 rcu_read_lock();
280 read_lock(&tasklist_lock);
281 switch (which) {
282 case PRIO_PROCESS:
283 if (who)
284 p = find_task_by_vpid(who);
285 else
286 p = current;
287 if (p) {
288 niceval = nice_to_rlimit(task_nice(p));
289 if (niceval > retval)
290 retval = niceval;
291 }
292 break;
293 case PRIO_PGRP:
294 if (who)
295 pgrp = find_vpid(who);
296 else
297 pgrp = task_pgrp(current);
298 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
299 niceval = nice_to_rlimit(task_nice(p));
300 if (niceval > retval)
301 retval = niceval;
302 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
303 break;
304 case PRIO_USER:
305 uid = make_kuid(cred->user_ns, who);
306 user = cred->user;
307 if (!who)
308 uid = cred->uid;
309 else if (!uid_eq(uid, cred->uid)) {
310 user = find_user(uid);
311 if (!user)
312 goto out_unlock; /* No processes for this user */
313 }
314 do_each_thread(g, p) {
315 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
316 niceval = nice_to_rlimit(task_nice(p));
317 if (niceval > retval)
318 retval = niceval;
319 }
320 } while_each_thread(g, p);
321 if (!uid_eq(uid, cred->uid))
322 free_uid(user); /* for find_user() */
323 break;
324 }
325 out_unlock:
326 read_unlock(&tasklist_lock);
327 rcu_read_unlock();
328
329 return retval;
330 }
331
332 /*
333 * Unprivileged users may change the real gid to the effective gid
334 * or vice versa. (BSD-style)
335 *
336 * If you set the real gid at all, or set the effective gid to a value not
337 * equal to the real gid, then the saved gid is set to the new effective gid.
338 *
339 * This makes it possible for a setgid program to completely drop its
340 * privileges, which is often a useful assertion to make when you are doing
341 * a security audit over a program.
342 *
343 * The general idea is that a program which uses just setregid() will be
344 * 100% compatible with BSD. A program which uses just setgid() will be
345 * 100% compatible with POSIX with saved IDs.
346 *
347 * SMP: There are not races, the GIDs are checked only by filesystem
348 * operations (as far as semantic preservation is concerned).
349 */
350 #ifdef CONFIG_MULTIUSER
351 long __sys_setregid(gid_t rgid, gid_t egid)
352 {
353 struct user_namespace *ns = current_user_ns();
354 const struct cred *old;
355 struct cred *new;
356 int retval;
357 kgid_t krgid, kegid;
358
359 krgid = make_kgid(ns, rgid);
360 kegid = make_kgid(ns, egid);
361
362 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
363 return -EINVAL;
364 if ((egid != (gid_t) -1) && !gid_valid(kegid))
365 return -EINVAL;
366
367 new = prepare_creds();
368 if (!new)
369 return -ENOMEM;
370 old = current_cred();
371
372 retval = -EPERM;
373 if (rgid != (gid_t) -1) {
374 if (gid_eq(old->gid, krgid) ||
375 gid_eq(old->egid, krgid) ||
376 ns_capable_setid(old->user_ns, CAP_SETGID))
377 new->gid = krgid;
378 else
379 goto error;
380 }
381 if (egid != (gid_t) -1) {
382 if (gid_eq(old->gid, kegid) ||
383 gid_eq(old->egid, kegid) ||
384 gid_eq(old->sgid, kegid) ||
385 ns_capable_setid(old->user_ns, CAP_SETGID))
386 new->egid = kegid;
387 else
388 goto error;
389 }
390
391 if (rgid != (gid_t) -1 ||
392 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
393 new->sgid = new->egid;
394 new->fsgid = new->egid;
395
396 retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
397 if (retval < 0)
398 goto error;
399
400 return commit_creds(new);
401
402 error:
403 abort_creds(new);
404 return retval;
405 }
406
407 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
408 {
409 return __sys_setregid(rgid, egid);
410 }
411
412 /*
413 * setgid() is implemented like SysV w/ SAVED_IDS
414 *
415 * SMP: Same implicit races as above.
416 */
417 long __sys_setgid(gid_t gid)
418 {
419 struct user_namespace *ns = current_user_ns();
420 const struct cred *old;
421 struct cred *new;
422 int retval;
423 kgid_t kgid;
424
425 kgid = make_kgid(ns, gid);
426 if (!gid_valid(kgid))
427 return -EINVAL;
428
429 new = prepare_creds();
430 if (!new)
431 return -ENOMEM;
432 old = current_cred();
433
434 retval = -EPERM;
435 if (ns_capable_setid(old->user_ns, CAP_SETGID))
436 new->gid = new->egid = new->sgid = new->fsgid = kgid;
437 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
438 new->egid = new->fsgid = kgid;
439 else
440 goto error;
441
442 retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
443 if (retval < 0)
444 goto error;
445
446 return commit_creds(new);
447
448 error:
449 abort_creds(new);
450 return retval;
451 }
452
453 SYSCALL_DEFINE1(setgid, gid_t, gid)
454 {
455 return __sys_setgid(gid);
456 }
457
458 /*
459 * change the user struct in a credentials set to match the new UID
460 */
461 static int set_user(struct cred *new)
462 {
463 struct user_struct *new_user;
464
465 new_user = alloc_uid(new->uid);
466 if (!new_user)
467 return -EAGAIN;
468
469 /*
470 * We don't fail in case of NPROC limit excess here because too many
471 * poorly written programs don't check set*uid() return code, assuming
472 * it never fails if called by root. We may still enforce NPROC limit
473 * for programs doing set*uid()+execve() by harmlessly deferring the
474 * failure to the execve() stage.
475 */
476 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
477 new_user != INIT_USER)
478 current->flags |= PF_NPROC_EXCEEDED;
479 else
480 current->flags &= ~PF_NPROC_EXCEEDED;
481
482 free_uid(new->user);
483 new->user = new_user;
484 return 0;
485 }
486
487 /*
488 * Unprivileged users may change the real uid to the effective uid
489 * or vice versa. (BSD-style)
490 *
491 * If you set the real uid at all, or set the effective uid to a value not
492 * equal to the real uid, then the saved uid is set to the new effective uid.
493 *
494 * This makes it possible for a setuid program to completely drop its
495 * privileges, which is often a useful assertion to make when you are doing
496 * a security audit over a program.
497 *
498 * The general idea is that a program which uses just setreuid() will be
499 * 100% compatible with BSD. A program which uses just setuid() will be
500 * 100% compatible with POSIX with saved IDs.
501 */
502 long __sys_setreuid(uid_t ruid, uid_t euid)
503 {
504 struct user_namespace *ns = current_user_ns();
505 const struct cred *old;
506 struct cred *new;
507 int retval;
508 kuid_t kruid, keuid;
509
510 kruid = make_kuid(ns, ruid);
511 keuid = make_kuid(ns, euid);
512
513 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
514 return -EINVAL;
515 if ((euid != (uid_t) -1) && !uid_valid(keuid))
516 return -EINVAL;
517
518 new = prepare_creds();
519 if (!new)
520 return -ENOMEM;
521 old = current_cred();
522
523 retval = -EPERM;
524 if (ruid != (uid_t) -1) {
525 new->uid = kruid;
526 if (!uid_eq(old->uid, kruid) &&
527 !uid_eq(old->euid, kruid) &&
528 !ns_capable_setid(old->user_ns, CAP_SETUID))
529 goto error;
530 }
531
532 if (euid != (uid_t) -1) {
533 new->euid = keuid;
534 if (!uid_eq(old->uid, keuid) &&
535 !uid_eq(old->euid, keuid) &&
536 !uid_eq(old->suid, keuid) &&
537 !ns_capable_setid(old->user_ns, CAP_SETUID))
538 goto error;
539 }
540
541 if (!uid_eq(new->uid, old->uid)) {
542 retval = set_user(new);
543 if (retval < 0)
544 goto error;
545 }
546 if (ruid != (uid_t) -1 ||
547 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
548 new->suid = new->euid;
549 new->fsuid = new->euid;
550
551 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
552 if (retval < 0)
553 goto error;
554
555 return commit_creds(new);
556
557 error:
558 abort_creds(new);
559 return retval;
560 }
561
562 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
563 {
564 return __sys_setreuid(ruid, euid);
565 }
566
567 /*
568 * setuid() is implemented like SysV with SAVED_IDS
569 *
570 * Note that SAVED_ID's is deficient in that a setuid root program
571 * like sendmail, for example, cannot set its uid to be a normal
572 * user and then switch back, because if you're root, setuid() sets
573 * the saved uid too. If you don't like this, blame the bright people
574 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
575 * will allow a root program to temporarily drop privileges and be able to
576 * regain them by swapping the real and effective uid.
577 */
578 long __sys_setuid(uid_t uid)
579 {
580 struct user_namespace *ns = current_user_ns();
581 const struct cred *old;
582 struct cred *new;
583 int retval;
584 kuid_t kuid;
585
586 kuid = make_kuid(ns, uid);
587 if (!uid_valid(kuid))
588 return -EINVAL;
589
590 new = prepare_creds();
591 if (!new)
592 return -ENOMEM;
593 old = current_cred();
594
595 retval = -EPERM;
596 if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
597 new->suid = new->uid = kuid;
598 if (!uid_eq(kuid, old->uid)) {
599 retval = set_user(new);
600 if (retval < 0)
601 goto error;
602 }
603 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
604 goto error;
605 }
606
607 new->fsuid = new->euid = kuid;
608
609 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
610 if (retval < 0)
611 goto error;
612
613 return commit_creds(new);
614
615 error:
616 abort_creds(new);
617 return retval;
618 }
619
620 SYSCALL_DEFINE1(setuid, uid_t, uid)
621 {
622 return __sys_setuid(uid);
623 }
624
625
626 /*
627 * This function implements a generic ability to update ruid, euid,
628 * and suid. This allows you to implement the 4.4 compatible seteuid().
629 */
630 long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
631 {
632 struct user_namespace *ns = current_user_ns();
633 const struct cred *old;
634 struct cred *new;
635 int retval;
636 kuid_t kruid, keuid, ksuid;
637
638 kruid = make_kuid(ns, ruid);
639 keuid = make_kuid(ns, euid);
640 ksuid = make_kuid(ns, suid);
641
642 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
643 return -EINVAL;
644
645 if ((euid != (uid_t) -1) && !uid_valid(keuid))
646 return -EINVAL;
647
648 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
649 return -EINVAL;
650
651 new = prepare_creds();
652 if (!new)
653 return -ENOMEM;
654
655 old = current_cred();
656
657 retval = -EPERM;
658 if (!ns_capable_setid(old->user_ns, CAP_SETUID)) {
659 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
660 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
661 goto error;
662 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
663 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
664 goto error;
665 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
666 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
667 goto error;
668 }
669
670 if (ruid != (uid_t) -1) {
671 new->uid = kruid;
672 if (!uid_eq(kruid, old->uid)) {
673 retval = set_user(new);
674 if (retval < 0)
675 goto error;
676 }
677 }
678 if (euid != (uid_t) -1)
679 new->euid = keuid;
680 if (suid != (uid_t) -1)
681 new->suid = ksuid;
682 new->fsuid = new->euid;
683
684 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
685 if (retval < 0)
686 goto error;
687
688 return commit_creds(new);
689
690 error:
691 abort_creds(new);
692 return retval;
693 }
694
695 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
696 {
697 return __sys_setresuid(ruid, euid, suid);
698 }
699
700 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
701 {
702 const struct cred *cred = current_cred();
703 int retval;
704 uid_t ruid, euid, suid;
705
706 ruid = from_kuid_munged(cred->user_ns, cred->uid);
707 euid = from_kuid_munged(cred->user_ns, cred->euid);
708 suid = from_kuid_munged(cred->user_ns, cred->suid);
709
710 retval = put_user(ruid, ruidp);
711 if (!retval) {
712 retval = put_user(euid, euidp);
713 if (!retval)
714 return put_user(suid, suidp);
715 }
716 return retval;
717 }
718
719 /*
720 * Same as above, but for rgid, egid, sgid.
721 */
722 long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
723 {
724 struct user_namespace *ns = current_user_ns();
725 const struct cred *old;
726 struct cred *new;
727 int retval;
728 kgid_t krgid, kegid, ksgid;
729
730 krgid = make_kgid(ns, rgid);
731 kegid = make_kgid(ns, egid);
732 ksgid = make_kgid(ns, sgid);
733
734 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
735 return -EINVAL;
736 if ((egid != (gid_t) -1) && !gid_valid(kegid))
737 return -EINVAL;
738 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
739 return -EINVAL;
740
741 new = prepare_creds();
742 if (!new)
743 return -ENOMEM;
744 old = current_cred();
745
746 retval = -EPERM;
747 if (!ns_capable_setid(old->user_ns, CAP_SETGID)) {
748 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
749 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
750 goto error;
751 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
752 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
753 goto error;
754 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
755 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
756 goto error;
757 }
758
759 if (rgid != (gid_t) -1)
760 new->gid = krgid;
761 if (egid != (gid_t) -1)
762 new->egid = kegid;
763 if (sgid != (gid_t) -1)
764 new->sgid = ksgid;
765 new->fsgid = new->egid;
766
767 retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
768 if (retval < 0)
769 goto error;
770
771 return commit_creds(new);
772
773 error:
774 abort_creds(new);
775 return retval;
776 }
777
778 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
779 {
780 return __sys_setresgid(rgid, egid, sgid);
781 }
782
783 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
784 {
785 const struct cred *cred = current_cred();
786 int retval;
787 gid_t rgid, egid, sgid;
788
789 rgid = from_kgid_munged(cred->user_ns, cred->gid);
790 egid = from_kgid_munged(cred->user_ns, cred->egid);
791 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
792
793 retval = put_user(rgid, rgidp);
794 if (!retval) {
795 retval = put_user(egid, egidp);
796 if (!retval)
797 retval = put_user(sgid, sgidp);
798 }
799
800 return retval;
801 }
802
803
804 /*
805 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
806 * is used for "access()" and for the NFS daemon (letting nfsd stay at
807 * whatever uid it wants to). It normally shadows "euid", except when
808 * explicitly set by setfsuid() or for access..
809 */
810 long __sys_setfsuid(uid_t uid)
811 {
812 const struct cred *old;
813 struct cred *new;
814 uid_t old_fsuid;
815 kuid_t kuid;
816
817 old = current_cred();
818 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
819
820 kuid = make_kuid(old->user_ns, uid);
821 if (!uid_valid(kuid))
822 return old_fsuid;
823
824 new = prepare_creds();
825 if (!new)
826 return old_fsuid;
827
828 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
829 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
830 ns_capable_setid(old->user_ns, CAP_SETUID)) {
831 if (!uid_eq(kuid, old->fsuid)) {
832 new->fsuid = kuid;
833 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
834 goto change_okay;
835 }
836 }
837
838 abort_creds(new);
839 return old_fsuid;
840
841 change_okay:
842 commit_creds(new);
843 return old_fsuid;
844 }
845
846 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
847 {
848 return __sys_setfsuid(uid);
849 }
850
851 /*
852 * Samma på svenska..
853 */
854 long __sys_setfsgid(gid_t gid)
855 {
856 const struct cred *old;
857 struct cred *new;
858 gid_t old_fsgid;
859 kgid_t kgid;
860
861 old = current_cred();
862 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
863
864 kgid = make_kgid(old->user_ns, gid);
865 if (!gid_valid(kgid))
866 return old_fsgid;
867
868 new = prepare_creds();
869 if (!new)
870 return old_fsgid;
871
872 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
873 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
874 ns_capable_setid(old->user_ns, CAP_SETGID)) {
875 if (!gid_eq(kgid, old->fsgid)) {
876 new->fsgid = kgid;
877 if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
878 goto change_okay;
879 }
880 }
881
882 abort_creds(new);
883 return old_fsgid;
884
885 change_okay:
886 commit_creds(new);
887 return old_fsgid;
888 }
889
890 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
891 {
892 return __sys_setfsgid(gid);
893 }
894 #endif /* CONFIG_MULTIUSER */
895
896 /**
897 * sys_getpid - return the thread group id of the current process
898 *
899 * Note, despite the name, this returns the tgid not the pid. The tgid and
900 * the pid are identical unless CLONE_THREAD was specified on clone() in
901 * which case the tgid is the same in all threads of the same group.
902 *
903 * This is SMP safe as current->tgid does not change.
904 */
905 SYSCALL_DEFINE0(getpid)
906 {
907 return task_tgid_vnr(current);
908 }
909
910 /* Thread ID - the internal kernel "pid" */
911 SYSCALL_DEFINE0(gettid)
912 {
913 return task_pid_vnr(current);
914 }
915
916 /*
917 * Accessing ->real_parent is not SMP-safe, it could
918 * change from under us. However, we can use a stale
919 * value of ->real_parent under rcu_read_lock(), see
920 * release_task()->call_rcu(delayed_put_task_struct).
921 */
922 SYSCALL_DEFINE0(getppid)
923 {
924 int pid;
925
926 rcu_read_lock();
927 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
928 rcu_read_unlock();
929
930 return pid;
931 }
932
933 SYSCALL_DEFINE0(getuid)
934 {
935 /* Only we change this so SMP safe */
936 return from_kuid_munged(current_user_ns(), current_uid());
937 }
938
939 SYSCALL_DEFINE0(geteuid)
940 {
941 /* Only we change this so SMP safe */
942 return from_kuid_munged(current_user_ns(), current_euid());
943 }
944
945 SYSCALL_DEFINE0(getgid)
946 {
947 /* Only we change this so SMP safe */
948 return from_kgid_munged(current_user_ns(), current_gid());
949 }
950
951 SYSCALL_DEFINE0(getegid)
952 {
953 /* Only we change this so SMP safe */
954 return from_kgid_munged(current_user_ns(), current_egid());
955 }
956
957 static void do_sys_times(struct tms *tms)
958 {
959 u64 tgutime, tgstime, cutime, cstime;
960
961 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
962 cutime = current->signal->cutime;
963 cstime = current->signal->cstime;
964 tms->tms_utime = nsec_to_clock_t(tgutime);
965 tms->tms_stime = nsec_to_clock_t(tgstime);
966 tms->tms_cutime = nsec_to_clock_t(cutime);
967 tms->tms_cstime = nsec_to_clock_t(cstime);
968 }
969
970 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
971 {
972 if (tbuf) {
973 struct tms tmp;
974
975 do_sys_times(&tmp);
976 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
977 return -EFAULT;
978 }
979 force_successful_syscall_return();
980 return (long) jiffies_64_to_clock_t(get_jiffies_64());
981 }
982
983 #ifdef CONFIG_COMPAT
984 static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
985 {
986 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
987 }
988
989 COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
990 {
991 if (tbuf) {
992 struct tms tms;
993 struct compat_tms tmp;
994
995 do_sys_times(&tms);
996 /* Convert our struct tms to the compat version. */
997 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
998 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
999 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1000 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1001 if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1002 return -EFAULT;
1003 }
1004 force_successful_syscall_return();
1005 return compat_jiffies_to_clock_t(jiffies);
1006 }
1007 #endif
1008
1009 /*
1010 * This needs some heavy checking ...
1011 * I just haven't the stomach for it. I also don't fully
1012 * understand sessions/pgrp etc. Let somebody who does explain it.
1013 *
1014 * OK, I think I have the protection semantics right.... this is really
1015 * only important on a multi-user system anyway, to make sure one user
1016 * can't send a signal to a process owned by another. -TYT, 12/12/91
1017 *
1018 * !PF_FORKNOEXEC check to conform completely to POSIX.
1019 */
1020 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1021 {
1022 struct task_struct *p;
1023 struct task_struct *group_leader = current->group_leader;
1024 struct pid *pgrp;
1025 int err;
1026
1027 if (!pid)
1028 pid = task_pid_vnr(group_leader);
1029 if (!pgid)
1030 pgid = pid;
1031 if (pgid < 0)
1032 return -EINVAL;
1033 rcu_read_lock();
1034
1035 /* From this point forward we keep holding onto the tasklist lock
1036 * so that our parent does not change from under us. -DaveM
1037 */
1038 write_lock_irq(&tasklist_lock);
1039
1040 err = -ESRCH;
1041 p = find_task_by_vpid(pid);
1042 if (!p)
1043 goto out;
1044
1045 err = -EINVAL;
1046 if (!thread_group_leader(p))
1047 goto out;
1048
1049 if (same_thread_group(p->real_parent, group_leader)) {
1050 err = -EPERM;
1051 if (task_session(p) != task_session(group_leader))
1052 goto out;
1053 err = -EACCES;
1054 if (!(p->flags & PF_FORKNOEXEC))
1055 goto out;
1056 } else {
1057 err = -ESRCH;
1058 if (p != group_leader)
1059 goto out;
1060 }
1061
1062 err = -EPERM;
1063 if (p->signal->leader)
1064 goto out;
1065
1066 pgrp = task_pid(p);
1067 if (pgid != pid) {
1068 struct task_struct *g;
1069
1070 pgrp = find_vpid(pgid);
1071 g = pid_task(pgrp, PIDTYPE_PGID);
1072 if (!g || task_session(g) != task_session(group_leader))
1073 goto out;
1074 }
1075
1076 err = security_task_setpgid(p, pgid);
1077 if (err)
1078 goto out;
1079
1080 if (task_pgrp(p) != pgrp)
1081 change_pid(p, PIDTYPE_PGID, pgrp);
1082
1083 err = 0;
1084 out:
1085 /* All paths lead to here, thus we are safe. -DaveM */
1086 write_unlock_irq(&tasklist_lock);
1087 rcu_read_unlock();
1088 return err;
1089 }
1090
1091 static int do_getpgid(pid_t pid)
1092 {
1093 struct task_struct *p;
1094 struct pid *grp;
1095 int retval;
1096
1097 rcu_read_lock();
1098 if (!pid)
1099 grp = task_pgrp(current);
1100 else {
1101 retval = -ESRCH;
1102 p = find_task_by_vpid(pid);
1103 if (!p)
1104 goto out;
1105 grp = task_pgrp(p);
1106 if (!grp)
1107 goto out;
1108
1109 retval = security_task_getpgid(p);
1110 if (retval)
1111 goto out;
1112 }
1113 retval = pid_vnr(grp);
1114 out:
1115 rcu_read_unlock();
1116 return retval;
1117 }
1118
1119 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1120 {
1121 return do_getpgid(pid);
1122 }
1123
1124 #ifdef __ARCH_WANT_SYS_GETPGRP
1125
1126 SYSCALL_DEFINE0(getpgrp)
1127 {
1128 return do_getpgid(0);
1129 }
1130
1131 #endif
1132
1133 SYSCALL_DEFINE1(getsid, pid_t, pid)
1134 {
1135 struct task_struct *p;
1136 struct pid *sid;
1137 int retval;
1138
1139 rcu_read_lock();
1140 if (!pid)
1141 sid = task_session(current);
1142 else {
1143 retval = -ESRCH;
1144 p = find_task_by_vpid(pid);
1145 if (!p)
1146 goto out;
1147 sid = task_session(p);
1148 if (!sid)
1149 goto out;
1150
1151 retval = security_task_getsid(p);
1152 if (retval)
1153 goto out;
1154 }
1155 retval = pid_vnr(sid);
1156 out:
1157 rcu_read_unlock();
1158 return retval;
1159 }
1160
1161 static void set_special_pids(struct pid *pid)
1162 {
1163 struct task_struct *curr = current->group_leader;
1164
1165 if (task_session(curr) != pid)
1166 change_pid(curr, PIDTYPE_SID, pid);
1167
1168 if (task_pgrp(curr) != pid)
1169 change_pid(curr, PIDTYPE_PGID, pid);
1170 }
1171
1172 int ksys_setsid(void)
1173 {
1174 struct task_struct *group_leader = current->group_leader;
1175 struct pid *sid = task_pid(group_leader);
1176 pid_t session = pid_vnr(sid);
1177 int err = -EPERM;
1178
1179 write_lock_irq(&tasklist_lock);
1180 /* Fail if I am already a session leader */
1181 if (group_leader->signal->leader)
1182 goto out;
1183
1184 /* Fail if a process group id already exists that equals the
1185 * proposed session id.
1186 */
1187 if (pid_task(sid, PIDTYPE_PGID))
1188 goto out;
1189
1190 group_leader->signal->leader = 1;
1191 set_special_pids(sid);
1192
1193 proc_clear_tty(group_leader);
1194
1195 err = session;
1196 out:
1197 write_unlock_irq(&tasklist_lock);
1198 if (err > 0) {
1199 proc_sid_connector(group_leader);
1200 sched_autogroup_create_attach(group_leader);
1201 }
1202 return err;
1203 }
1204
1205 SYSCALL_DEFINE0(setsid)
1206 {
1207 return ksys_setsid();
1208 }
1209
1210 DECLARE_RWSEM(uts_sem);
1211
1212 #ifdef COMPAT_UTS_MACHINE
1213 static char compat_uts_machine[__OLD_UTS_LEN+1] = COMPAT_UTS_MACHINE;
1214
1215 static int __init parse_compat_uts_machine(char *arg)
1216 {
1217 strncpy(compat_uts_machine, arg, __OLD_UTS_LEN);
1218 compat_uts_machine[__OLD_UTS_LEN] = 0;
1219 return 0;
1220 }
1221 early_param("compat_uts_machine", parse_compat_uts_machine);
1222
1223 #undef COMPAT_UTS_MACHINE
1224 #define COMPAT_UTS_MACHINE compat_uts_machine
1225 #endif
1226
1227 #ifdef COMPAT_UTS_MACHINE
1228 #define override_architecture(name) \
1229 (personality(current->personality) == PER_LINUX32 && \
1230 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1231 sizeof(COMPAT_UTS_MACHINE)))
1232 #else
1233 #define override_architecture(name) 0
1234 #endif
1235
1236 /*
1237 * Work around broken programs that cannot handle "Linux 3.0".
1238 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1239 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1240 * 2.6.60.
1241 */
1242 static int override_release(char __user *release, size_t len)
1243 {
1244 int ret = 0;
1245
1246 if (current->personality & UNAME26) {
1247 const char *rest = UTS_RELEASE;
1248 char buf[65] = { 0 };
1249 int ndots = 0;
1250 unsigned v;
1251 size_t copy;
1252
1253 while (*rest) {
1254 if (*rest == '.' && ++ndots >= 3)
1255 break;
1256 if (!isdigit(*rest) && *rest != '.')
1257 break;
1258 rest++;
1259 }
1260 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
1261 copy = clamp_t(size_t, len, 1, sizeof(buf));
1262 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1263 ret = copy_to_user(release, buf, copy + 1);
1264 }
1265 return ret;
1266 }
1267
1268 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1269 {
1270 struct new_utsname tmp;
1271
1272 down_read(&uts_sem);
1273 memcpy(&tmp, utsname(), sizeof(tmp));
1274 up_read(&uts_sem);
1275 if (copy_to_user(name, &tmp, sizeof(tmp)))
1276 return -EFAULT;
1277
1278 if (override_release(name->release, sizeof(name->release)))
1279 return -EFAULT;
1280 if (override_architecture(name))
1281 return -EFAULT;
1282 return 0;
1283 }
1284
1285 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1286 /*
1287 * Old cruft
1288 */
1289 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1290 {
1291 struct old_utsname tmp;
1292
1293 if (!name)
1294 return -EFAULT;
1295
1296 down_read(&uts_sem);
1297 memcpy(&tmp, utsname(), sizeof(tmp));
1298 up_read(&uts_sem);
1299 if (copy_to_user(name, &tmp, sizeof(tmp)))
1300 return -EFAULT;
1301
1302 if (override_release(name->release, sizeof(name->release)))
1303 return -EFAULT;
1304 if (override_architecture(name))
1305 return -EFAULT;
1306 return 0;
1307 }
1308
1309 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1310 {
1311 struct oldold_utsname tmp;
1312
1313 if (!name)
1314 return -EFAULT;
1315
1316 memset(&tmp, 0, sizeof(tmp));
1317
1318 down_read(&uts_sem);
1319 memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1320 memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1321 memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1322 memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1323 memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1324 up_read(&uts_sem);
1325 if (copy_to_user(name, &tmp, sizeof(tmp)))
1326 return -EFAULT;
1327
1328 if (override_architecture(name))
1329 return -EFAULT;
1330 if (override_release(name->release, sizeof(name->release)))
1331 return -EFAULT;
1332 return 0;
1333 }
1334 #endif
1335
1336 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1337 {
1338 int errno;
1339 char tmp[__NEW_UTS_LEN];
1340
1341 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1342 return -EPERM;
1343
1344 if (len < 0 || len > __NEW_UTS_LEN)
1345 return -EINVAL;
1346 errno = -EFAULT;
1347 if (!copy_from_user(tmp, name, len)) {
1348 struct new_utsname *u;
1349
1350 down_write(&uts_sem);
1351 u = utsname();
1352 memcpy(u->nodename, tmp, len);
1353 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1354 errno = 0;
1355 uts_proc_notify(UTS_PROC_HOSTNAME);
1356 up_write(&uts_sem);
1357 }
1358 return errno;
1359 }
1360
1361 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1362
1363 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1364 {
1365 int i;
1366 struct new_utsname *u;
1367 char tmp[__NEW_UTS_LEN + 1];
1368
1369 if (len < 0)
1370 return -EINVAL;
1371 down_read(&uts_sem);
1372 u = utsname();
1373 i = 1 + strlen(u->nodename);
1374 if (i > len)
1375 i = len;
1376 memcpy(tmp, u->nodename, i);
1377 up_read(&uts_sem);
1378 if (copy_to_user(name, tmp, i))
1379 return -EFAULT;
1380 return 0;
1381 }
1382
1383 #endif
1384
1385 /*
1386 * Only setdomainname; getdomainname can be implemented by calling
1387 * uname()
1388 */
1389 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1390 {
1391 int errno;
1392 char tmp[__NEW_UTS_LEN];
1393
1394 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1395 return -EPERM;
1396 if (len < 0 || len > __NEW_UTS_LEN)
1397 return -EINVAL;
1398
1399 errno = -EFAULT;
1400 if (!copy_from_user(tmp, name, len)) {
1401 struct new_utsname *u;
1402
1403 down_write(&uts_sem);
1404 u = utsname();
1405 memcpy(u->domainname, tmp, len);
1406 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1407 errno = 0;
1408 uts_proc_notify(UTS_PROC_DOMAINNAME);
1409 up_write(&uts_sem);
1410 }
1411 return errno;
1412 }
1413
1414 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1415 {
1416 struct rlimit value;
1417 int ret;
1418
1419 ret = do_prlimit(current, resource, NULL, &value);
1420 if (!ret)
1421 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1422
1423 return ret;
1424 }
1425
1426 #ifdef CONFIG_COMPAT
1427
1428 COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1429 struct compat_rlimit __user *, rlim)
1430 {
1431 struct rlimit r;
1432 struct compat_rlimit r32;
1433
1434 if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1435 return -EFAULT;
1436
1437 if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1438 r.rlim_cur = RLIM_INFINITY;
1439 else
1440 r.rlim_cur = r32.rlim_cur;
1441 if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1442 r.rlim_max = RLIM_INFINITY;
1443 else
1444 r.rlim_max = r32.rlim_max;
1445 return do_prlimit(current, resource, &r, NULL);
1446 }
1447
1448 COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1449 struct compat_rlimit __user *, rlim)
1450 {
1451 struct rlimit r;
1452 int ret;
1453
1454 ret = do_prlimit(current, resource, NULL, &r);
1455 if (!ret) {
1456 struct compat_rlimit r32;
1457 if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1458 r32.rlim_cur = COMPAT_RLIM_INFINITY;
1459 else
1460 r32.rlim_cur = r.rlim_cur;
1461 if (r.rlim_max > COMPAT_RLIM_INFINITY)
1462 r32.rlim_max = COMPAT_RLIM_INFINITY;
1463 else
1464 r32.rlim_max = r.rlim_max;
1465
1466 if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1467 return -EFAULT;
1468 }
1469 return ret;
1470 }
1471
1472 #endif
1473
1474 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1475
1476 /*
1477 * Back compatibility for getrlimit. Needed for some apps.
1478 */
1479 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1480 struct rlimit __user *, rlim)
1481 {
1482 struct rlimit x;
1483 if (resource >= RLIM_NLIMITS)
1484 return -EINVAL;
1485
1486 resource = array_index_nospec(resource, RLIM_NLIMITS);
1487 task_lock(current->group_leader);
1488 x = current->signal->rlim[resource];
1489 task_unlock(current->group_leader);
1490 if (x.rlim_cur > 0x7FFFFFFF)
1491 x.rlim_cur = 0x7FFFFFFF;
1492 if (x.rlim_max > 0x7FFFFFFF)
1493 x.rlim_max = 0x7FFFFFFF;
1494 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1495 }
1496
1497 #ifdef CONFIG_COMPAT
1498 COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1499 struct compat_rlimit __user *, rlim)
1500 {
1501 struct rlimit r;
1502
1503 if (resource >= RLIM_NLIMITS)
1504 return -EINVAL;
1505
1506 resource = array_index_nospec(resource, RLIM_NLIMITS);
1507 task_lock(current->group_leader);
1508 r = current->signal->rlim[resource];
1509 task_unlock(current->group_leader);
1510 if (r.rlim_cur > 0x7FFFFFFF)
1511 r.rlim_cur = 0x7FFFFFFF;
1512 if (r.rlim_max > 0x7FFFFFFF)
1513 r.rlim_max = 0x7FFFFFFF;
1514
1515 if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1516 put_user(r.rlim_max, &rlim->rlim_max))
1517 return -EFAULT;
1518 return 0;
1519 }
1520 #endif
1521
1522 #endif
1523
1524 static inline bool rlim64_is_infinity(__u64 rlim64)
1525 {
1526 #if BITS_PER_LONG < 64
1527 return rlim64 >= ULONG_MAX;
1528 #else
1529 return rlim64 == RLIM64_INFINITY;
1530 #endif
1531 }
1532
1533 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1534 {
1535 if (rlim->rlim_cur == RLIM_INFINITY)
1536 rlim64->rlim_cur = RLIM64_INFINITY;
1537 else
1538 rlim64->rlim_cur = rlim->rlim_cur;
1539 if (rlim->rlim_max == RLIM_INFINITY)
1540 rlim64->rlim_max = RLIM64_INFINITY;
1541 else
1542 rlim64->rlim_max = rlim->rlim_max;
1543 }
1544
1545 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1546 {
1547 if (rlim64_is_infinity(rlim64->rlim_cur))
1548 rlim->rlim_cur = RLIM_INFINITY;
1549 else
1550 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1551 if (rlim64_is_infinity(rlim64->rlim_max))
1552 rlim->rlim_max = RLIM_INFINITY;
1553 else
1554 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1555 }
1556
1557 /* make sure you are allowed to change @tsk limits before calling this */
1558 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1559 struct rlimit *new_rlim, struct rlimit *old_rlim)
1560 {
1561 struct rlimit *rlim;
1562 int retval = 0;
1563
1564 if (resource >= RLIM_NLIMITS)
1565 return -EINVAL;
1566 if (new_rlim) {
1567 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1568 return -EINVAL;
1569 if (resource == RLIMIT_NOFILE &&
1570 new_rlim->rlim_max > sysctl_nr_open)
1571 return -EPERM;
1572 }
1573
1574 /* protect tsk->signal and tsk->sighand from disappearing */
1575 read_lock(&tasklist_lock);
1576 if (!tsk->sighand) {
1577 retval = -ESRCH;
1578 goto out;
1579 }
1580
1581 rlim = tsk->signal->rlim + resource;
1582 task_lock(tsk->group_leader);
1583 if (new_rlim) {
1584 /* Keep the capable check against init_user_ns until
1585 cgroups can contain all limits */
1586 if (new_rlim->rlim_max > rlim->rlim_max &&
1587 !capable(CAP_SYS_RESOURCE))
1588 retval = -EPERM;
1589 if (!retval)
1590 retval = security_task_setrlimit(tsk, resource, new_rlim);
1591 }
1592 if (!retval) {
1593 if (old_rlim)
1594 *old_rlim = *rlim;
1595 if (new_rlim)
1596 *rlim = *new_rlim;
1597 }
1598 task_unlock(tsk->group_leader);
1599
1600 /*
1601 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1602 * infite. In case of RLIM_INFINITY the posix CPU timer code
1603 * ignores the rlimit.
1604 */
1605 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1606 new_rlim->rlim_cur != RLIM_INFINITY &&
1607 IS_ENABLED(CONFIG_POSIX_TIMERS))
1608 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1609 out:
1610 read_unlock(&tasklist_lock);
1611 return retval;
1612 }
1613
1614 /* rcu lock must be held */
1615 static int check_prlimit_permission(struct task_struct *task,
1616 unsigned int flags)
1617 {
1618 const struct cred *cred = current_cred(), *tcred;
1619 bool id_match;
1620
1621 if (current == task)
1622 return 0;
1623
1624 tcred = __task_cred(task);
1625 id_match = (uid_eq(cred->uid, tcred->euid) &&
1626 uid_eq(cred->uid, tcred->suid) &&
1627 uid_eq(cred->uid, tcred->uid) &&
1628 gid_eq(cred->gid, tcred->egid) &&
1629 gid_eq(cred->gid, tcred->sgid) &&
1630 gid_eq(cred->gid, tcred->gid));
1631 if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1632 return -EPERM;
1633
1634 return security_task_prlimit(cred, tcred, flags);
1635 }
1636
1637 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1638 const struct rlimit64 __user *, new_rlim,
1639 struct rlimit64 __user *, old_rlim)
1640 {
1641 struct rlimit64 old64, new64;
1642 struct rlimit old, new;
1643 struct task_struct *tsk;
1644 unsigned int checkflags = 0;
1645 int ret;
1646
1647 if (old_rlim)
1648 checkflags |= LSM_PRLIMIT_READ;
1649
1650 if (new_rlim) {
1651 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1652 return -EFAULT;
1653 rlim64_to_rlim(&new64, &new);
1654 checkflags |= LSM_PRLIMIT_WRITE;
1655 }
1656
1657 rcu_read_lock();
1658 tsk = pid ? find_task_by_vpid(pid) : current;
1659 if (!tsk) {
1660 rcu_read_unlock();
1661 return -ESRCH;
1662 }
1663 ret = check_prlimit_permission(tsk, checkflags);
1664 if (ret) {
1665 rcu_read_unlock();
1666 return ret;
1667 }
1668 get_task_struct(tsk);
1669 rcu_read_unlock();
1670
1671 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1672 old_rlim ? &old : NULL);
1673
1674 if (!ret && old_rlim) {
1675 rlim_to_rlim64(&old, &old64);
1676 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1677 ret = -EFAULT;
1678 }
1679
1680 put_task_struct(tsk);
1681 return ret;
1682 }
1683
1684 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1685 {
1686 struct rlimit new_rlim;
1687
1688 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1689 return -EFAULT;
1690 return do_prlimit(current, resource, &new_rlim, NULL);
1691 }
1692
1693 /*
1694 * It would make sense to put struct rusage in the task_struct,
1695 * except that would make the task_struct be *really big*. After
1696 * task_struct gets moved into malloc'ed memory, it would
1697 * make sense to do this. It will make moving the rest of the information
1698 * a lot simpler! (Which we're not doing right now because we're not
1699 * measuring them yet).
1700 *
1701 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1702 * races with threads incrementing their own counters. But since word
1703 * reads are atomic, we either get new values or old values and we don't
1704 * care which for the sums. We always take the siglock to protect reading
1705 * the c* fields from p->signal from races with exit.c updating those
1706 * fields when reaping, so a sample either gets all the additions of a
1707 * given child after it's reaped, or none so this sample is before reaping.
1708 *
1709 * Locking:
1710 * We need to take the siglock for CHILDEREN, SELF and BOTH
1711 * for the cases current multithreaded, non-current single threaded
1712 * non-current multithreaded. Thread traversal is now safe with
1713 * the siglock held.
1714 * Strictly speaking, we donot need to take the siglock if we are current and
1715 * single threaded, as no one else can take our signal_struct away, no one
1716 * else can reap the children to update signal->c* counters, and no one else
1717 * can race with the signal-> fields. If we do not take any lock, the
1718 * signal-> fields could be read out of order while another thread was just
1719 * exiting. So we should place a read memory barrier when we avoid the lock.
1720 * On the writer side, write memory barrier is implied in __exit_signal
1721 * as __exit_signal releases the siglock spinlock after updating the signal->
1722 * fields. But we don't do this yet to keep things simple.
1723 *
1724 */
1725
1726 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1727 {
1728 r->ru_nvcsw += t->nvcsw;
1729 r->ru_nivcsw += t->nivcsw;
1730 r->ru_minflt += t->min_flt;
1731 r->ru_majflt += t->maj_flt;
1732 r->ru_inblock += task_io_get_inblock(t);
1733 r->ru_oublock += task_io_get_oublock(t);
1734 }
1735
1736 void getrusage(struct task_struct *p, int who, struct rusage *r)
1737 {
1738 struct task_struct *t;
1739 unsigned long flags;
1740 u64 tgutime, tgstime, utime, stime;
1741 unsigned long maxrss = 0;
1742
1743 memset((char *)r, 0, sizeof (*r));
1744 utime = stime = 0;
1745
1746 if (who == RUSAGE_THREAD) {
1747 task_cputime_adjusted(current, &utime, &stime);
1748 accumulate_thread_rusage(p, r);
1749 maxrss = p->signal->maxrss;
1750 goto out;
1751 }
1752
1753 if (!lock_task_sighand(p, &flags))
1754 return;
1755
1756 switch (who) {
1757 case RUSAGE_BOTH:
1758 case RUSAGE_CHILDREN:
1759 utime = p->signal->cutime;
1760 stime = p->signal->cstime;
1761 r->ru_nvcsw = p->signal->cnvcsw;
1762 r->ru_nivcsw = p->signal->cnivcsw;
1763 r->ru_minflt = p->signal->cmin_flt;
1764 r->ru_majflt = p->signal->cmaj_flt;
1765 r->ru_inblock = p->signal->cinblock;
1766 r->ru_oublock = p->signal->coublock;
1767 maxrss = p->signal->cmaxrss;
1768
1769 if (who == RUSAGE_CHILDREN)
1770 break;
1771 fallthrough;
1772
1773 case RUSAGE_SELF:
1774 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1775 utime += tgutime;
1776 stime += tgstime;
1777 r->ru_nvcsw += p->signal->nvcsw;
1778 r->ru_nivcsw += p->signal->nivcsw;
1779 r->ru_minflt += p->signal->min_flt;
1780 r->ru_majflt += p->signal->maj_flt;
1781 r->ru_inblock += p->signal->inblock;
1782 r->ru_oublock += p->signal->oublock;
1783 if (maxrss < p->signal->maxrss)
1784 maxrss = p->signal->maxrss;
1785 t = p;
1786 do {
1787 accumulate_thread_rusage(t, r);
1788 } while_each_thread(p, t);
1789 break;
1790
1791 default:
1792 BUG();
1793 }
1794 unlock_task_sighand(p, &flags);
1795
1796 out:
1797 r->ru_utime = ns_to_kernel_old_timeval(utime);
1798 r->ru_stime = ns_to_kernel_old_timeval(stime);
1799
1800 if (who != RUSAGE_CHILDREN) {
1801 struct mm_struct *mm = get_task_mm(p);
1802
1803 if (mm) {
1804 setmax_mm_hiwater_rss(&maxrss, mm);
1805 mmput(mm);
1806 }
1807 }
1808 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1809 }
1810
1811 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1812 {
1813 struct rusage r;
1814
1815 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1816 who != RUSAGE_THREAD)
1817 return -EINVAL;
1818
1819 getrusage(current, who, &r);
1820 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1821 }
1822
1823 #ifdef CONFIG_COMPAT
1824 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1825 {
1826 struct rusage r;
1827
1828 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1829 who != RUSAGE_THREAD)
1830 return -EINVAL;
1831
1832 getrusage(current, who, &r);
1833 return put_compat_rusage(&r, ru);
1834 }
1835 #endif
1836
1837 SYSCALL_DEFINE1(umask, int, mask)
1838 {
1839 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1840 return mask;
1841 }
1842
1843 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1844 {
1845 struct fd exe;
1846 struct file *old_exe, *exe_file;
1847 struct inode *inode;
1848 int err;
1849
1850 exe = fdget(fd);
1851 if (!exe.file)
1852 return -EBADF;
1853
1854 inode = file_inode(exe.file);
1855
1856 /*
1857 * Because the original mm->exe_file points to executable file, make
1858 * sure that this one is executable as well, to avoid breaking an
1859 * overall picture.
1860 */
1861 err = -EACCES;
1862 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1863 goto exit;
1864
1865 err = inode_permission(inode, MAY_EXEC);
1866 if (err)
1867 goto exit;
1868
1869 /*
1870 * Forbid mm->exe_file change if old file still mapped.
1871 */
1872 exe_file = get_mm_exe_file(mm);
1873 err = -EBUSY;
1874 if (exe_file) {
1875 struct vm_area_struct *vma;
1876
1877 mmap_read_lock(mm);
1878 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1879 if (!vma->vm_file)
1880 continue;
1881 if (path_equal(&vma->vm_file->f_path,
1882 &exe_file->f_path))
1883 goto exit_err;
1884 }
1885
1886 mmap_read_unlock(mm);
1887 fput(exe_file);
1888 }
1889
1890 err = 0;
1891 /* set the new file, lockless */
1892 get_file(exe.file);
1893 old_exe = xchg(&mm->exe_file, exe.file);
1894 if (old_exe)
1895 fput(old_exe);
1896 exit:
1897 fdput(exe);
1898 return err;
1899 exit_err:
1900 mmap_read_unlock(mm);
1901 fput(exe_file);
1902 goto exit;
1903 }
1904
1905 /*
1906 * Check arithmetic relations of passed addresses.
1907 *
1908 * WARNING: we don't require any capability here so be very careful
1909 * in what is allowed for modification from userspace.
1910 */
1911 static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1912 {
1913 unsigned long mmap_max_addr = TASK_SIZE;
1914 int error = -EINVAL, i;
1915
1916 static const unsigned char offsets[] = {
1917 offsetof(struct prctl_mm_map, start_code),
1918 offsetof(struct prctl_mm_map, end_code),
1919 offsetof(struct prctl_mm_map, start_data),
1920 offsetof(struct prctl_mm_map, end_data),
1921 offsetof(struct prctl_mm_map, start_brk),
1922 offsetof(struct prctl_mm_map, brk),
1923 offsetof(struct prctl_mm_map, start_stack),
1924 offsetof(struct prctl_mm_map, arg_start),
1925 offsetof(struct prctl_mm_map, arg_end),
1926 offsetof(struct prctl_mm_map, env_start),
1927 offsetof(struct prctl_mm_map, env_end),
1928 };
1929
1930 /*
1931 * Make sure the members are not somewhere outside
1932 * of allowed address space.
1933 */
1934 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1935 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1936
1937 if ((unsigned long)val >= mmap_max_addr ||
1938 (unsigned long)val < mmap_min_addr)
1939 goto out;
1940 }
1941
1942 /*
1943 * Make sure the pairs are ordered.
1944 */
1945 #define __prctl_check_order(__m1, __op, __m2) \
1946 ((unsigned long)prctl_map->__m1 __op \
1947 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1948 error = __prctl_check_order(start_code, <, end_code);
1949 error |= __prctl_check_order(start_data,<=, end_data);
1950 error |= __prctl_check_order(start_brk, <=, brk);
1951 error |= __prctl_check_order(arg_start, <=, arg_end);
1952 error |= __prctl_check_order(env_start, <=, env_end);
1953 if (error)
1954 goto out;
1955 #undef __prctl_check_order
1956
1957 error = -EINVAL;
1958
1959 /*
1960 * @brk should be after @end_data in traditional maps.
1961 */
1962 if (prctl_map->start_brk <= prctl_map->end_data ||
1963 prctl_map->brk <= prctl_map->end_data)
1964 goto out;
1965
1966 /*
1967 * Neither we should allow to override limits if they set.
1968 */
1969 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1970 prctl_map->start_brk, prctl_map->end_data,
1971 prctl_map->start_data))
1972 goto out;
1973
1974 error = 0;
1975 out:
1976 return error;
1977 }
1978
1979 #ifdef CONFIG_CHECKPOINT_RESTORE
1980 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1981 {
1982 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1983 unsigned long user_auxv[AT_VECTOR_SIZE];
1984 struct mm_struct *mm = current->mm;
1985 int error;
1986
1987 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1988 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1989
1990 if (opt == PR_SET_MM_MAP_SIZE)
1991 return put_user((unsigned int)sizeof(prctl_map),
1992 (unsigned int __user *)addr);
1993
1994 if (data_size != sizeof(prctl_map))
1995 return -EINVAL;
1996
1997 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1998 return -EFAULT;
1999
2000 error = validate_prctl_map_addr(&prctl_map);
2001 if (error)
2002 return error;
2003
2004 if (prctl_map.auxv_size) {
2005 /*
2006 * Someone is trying to cheat the auxv vector.
2007 */
2008 if (!prctl_map.auxv ||
2009 prctl_map.auxv_size > sizeof(mm->saved_auxv))
2010 return -EINVAL;
2011
2012 memset(user_auxv, 0, sizeof(user_auxv));
2013 if (copy_from_user(user_auxv,
2014 (const void __user *)prctl_map.auxv,
2015 prctl_map.auxv_size))
2016 return -EFAULT;
2017
2018 /* Last entry must be AT_NULL as specification requires */
2019 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2020 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2021 }
2022
2023 if (prctl_map.exe_fd != (u32)-1) {
2024 /*
2025 * Check if the current user is checkpoint/restore capable.
2026 * At the time of this writing, it checks for CAP_SYS_ADMIN
2027 * or CAP_CHECKPOINT_RESTORE.
2028 * Note that a user with access to ptrace can masquerade an
2029 * arbitrary program as any executable, even setuid ones.
2030 * This may have implications in the tomoyo subsystem.
2031 */
2032 if (!checkpoint_restore_ns_capable(current_user_ns()))
2033 return -EPERM;
2034
2035 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2036 if (error)
2037 return error;
2038 }
2039
2040 /*
2041 * arg_lock protects concurent updates but we still need mmap_lock for
2042 * read to exclude races with sys_brk.
2043 */
2044 mmap_read_lock(mm);
2045
2046 /*
2047 * We don't validate if these members are pointing to
2048 * real present VMAs because application may have correspond
2049 * VMAs already unmapped and kernel uses these members for statistics
2050 * output in procfs mostly, except
2051 *
2052 * - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2053 * for VMAs when updating these memvers so anything wrong written
2054 * here cause kernel to swear at userspace program but won't lead
2055 * to any problem in kernel itself
2056 */
2057
2058 spin_lock(&mm->arg_lock);
2059 mm->start_code = prctl_map.start_code;
2060 mm->end_code = prctl_map.end_code;
2061 mm->start_data = prctl_map.start_data;
2062 mm->end_data = prctl_map.end_data;
2063 mm->start_brk = prctl_map.start_brk;
2064 mm->brk = prctl_map.brk;
2065 mm->start_stack = prctl_map.start_stack;
2066 mm->arg_start = prctl_map.arg_start;
2067 mm->arg_end = prctl_map.arg_end;
2068 mm->env_start = prctl_map.env_start;
2069 mm->env_end = prctl_map.env_end;
2070 spin_unlock(&mm->arg_lock);
2071
2072 /*
2073 * Note this update of @saved_auxv is lockless thus
2074 * if someone reads this member in procfs while we're
2075 * updating -- it may get partly updated results. It's
2076 * known and acceptable trade off: we leave it as is to
2077 * not introduce additional locks here making the kernel
2078 * more complex.
2079 */
2080 if (prctl_map.auxv_size)
2081 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2082
2083 mmap_read_unlock(mm);
2084 return 0;
2085 }
2086 #endif /* CONFIG_CHECKPOINT_RESTORE */
2087
2088 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2089 unsigned long len)
2090 {
2091 /*
2092 * This doesn't move the auxiliary vector itself since it's pinned to
2093 * mm_struct, but it permits filling the vector with new values. It's
2094 * up to the caller to provide sane values here, otherwise userspace
2095 * tools which use this vector might be unhappy.
2096 */
2097 unsigned long user_auxv[AT_VECTOR_SIZE];
2098
2099 if (len > sizeof(user_auxv))
2100 return -EINVAL;
2101
2102 if (copy_from_user(user_auxv, (const void __user *)addr, len))
2103 return -EFAULT;
2104
2105 /* Make sure the last entry is always AT_NULL */
2106 user_auxv[AT_VECTOR_SIZE - 2] = 0;
2107 user_auxv[AT_VECTOR_SIZE - 1] = 0;
2108
2109 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2110
2111 task_lock(current);
2112 memcpy(mm->saved_auxv, user_auxv, len);
2113 task_unlock(current);
2114
2115 return 0;
2116 }
2117
2118 static int prctl_set_mm(int opt, unsigned long addr,
2119 unsigned long arg4, unsigned long arg5)
2120 {
2121 struct mm_struct *mm = current->mm;
2122 struct prctl_mm_map prctl_map = {
2123 .auxv = NULL,
2124 .auxv_size = 0,
2125 .exe_fd = -1,
2126 };
2127 struct vm_area_struct *vma;
2128 int error;
2129
2130 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2131 opt != PR_SET_MM_MAP &&
2132 opt != PR_SET_MM_MAP_SIZE)))
2133 return -EINVAL;
2134
2135 #ifdef CONFIG_CHECKPOINT_RESTORE
2136 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2137 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2138 #endif
2139
2140 if (!capable(CAP_SYS_RESOURCE))
2141 return -EPERM;
2142
2143 if (opt == PR_SET_MM_EXE_FILE)
2144 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2145
2146 if (opt == PR_SET_MM_AUXV)
2147 return prctl_set_auxv(mm, addr, arg4);
2148
2149 if (addr >= TASK_SIZE || addr < mmap_min_addr)
2150 return -EINVAL;
2151
2152 error = -EINVAL;
2153
2154 /*
2155 * arg_lock protects concurent updates of arg boundaries, we need
2156 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2157 * validation.
2158 */
2159 mmap_read_lock(mm);
2160 vma = find_vma(mm, addr);
2161
2162 spin_lock(&mm->arg_lock);
2163 prctl_map.start_code = mm->start_code;
2164 prctl_map.end_code = mm->end_code;
2165 prctl_map.start_data = mm->start_data;
2166 prctl_map.end_data = mm->end_data;
2167 prctl_map.start_brk = mm->start_brk;
2168 prctl_map.brk = mm->brk;
2169 prctl_map.start_stack = mm->start_stack;
2170 prctl_map.arg_start = mm->arg_start;
2171 prctl_map.arg_end = mm->arg_end;
2172 prctl_map.env_start = mm->env_start;
2173 prctl_map.env_end = mm->env_end;
2174
2175 switch (opt) {
2176 case PR_SET_MM_START_CODE:
2177 prctl_map.start_code = addr;
2178 break;
2179 case PR_SET_MM_END_CODE:
2180 prctl_map.end_code = addr;
2181 break;
2182 case PR_SET_MM_START_DATA:
2183 prctl_map.start_data = addr;
2184 break;
2185 case PR_SET_MM_END_DATA:
2186 prctl_map.end_data = addr;
2187 break;
2188 case PR_SET_MM_START_STACK:
2189 prctl_map.start_stack = addr;
2190 break;
2191 case PR_SET_MM_START_BRK:
2192 prctl_map.start_brk = addr;
2193 break;
2194 case PR_SET_MM_BRK:
2195 prctl_map.brk = addr;
2196 break;
2197 case PR_SET_MM_ARG_START:
2198 prctl_map.arg_start = addr;
2199 break;
2200 case PR_SET_MM_ARG_END:
2201 prctl_map.arg_end = addr;
2202 break;
2203 case PR_SET_MM_ENV_START:
2204 prctl_map.env_start = addr;
2205 break;
2206 case PR_SET_MM_ENV_END:
2207 prctl_map.env_end = addr;
2208 break;
2209 default:
2210 goto out;
2211 }
2212
2213 error = validate_prctl_map_addr(&prctl_map);
2214 if (error)
2215 goto out;
2216
2217 switch (opt) {
2218 /*
2219 * If command line arguments and environment
2220 * are placed somewhere else on stack, we can
2221 * set them up here, ARG_START/END to setup
2222 * command line argumets and ENV_START/END
2223 * for environment.
2224 */
2225 case PR_SET_MM_START_STACK:
2226 case PR_SET_MM_ARG_START:
2227 case PR_SET_MM_ARG_END:
2228 case PR_SET_MM_ENV_START:
2229 case PR_SET_MM_ENV_END:
2230 if (!vma) {
2231 error = -EFAULT;
2232 goto out;
2233 }
2234 }
2235
2236 mm->start_code = prctl_map.start_code;
2237 mm->end_code = prctl_map.end_code;
2238 mm->start_data = prctl_map.start_data;
2239 mm->end_data = prctl_map.end_data;
2240 mm->start_brk = prctl_map.start_brk;
2241 mm->brk = prctl_map.brk;
2242 mm->start_stack = prctl_map.start_stack;
2243 mm->arg_start = prctl_map.arg_start;
2244 mm->arg_end = prctl_map.arg_end;
2245 mm->env_start = prctl_map.env_start;
2246 mm->env_end = prctl_map.env_end;
2247
2248 error = 0;
2249 out:
2250 spin_unlock(&mm->arg_lock);
2251 mmap_read_unlock(mm);
2252 return error;
2253 }
2254
2255 #ifdef CONFIG_CHECKPOINT_RESTORE
2256 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2257 {
2258 return put_user(me->clear_child_tid, tid_addr);
2259 }
2260 #else
2261 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2262 {
2263 return -EINVAL;
2264 }
2265 #endif
2266
2267 static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2268 {
2269 /*
2270 * If task has has_child_subreaper - all its decendants
2271 * already have these flag too and new decendants will
2272 * inherit it on fork, skip them.
2273 *
2274 * If we've found child_reaper - skip descendants in
2275 * it's subtree as they will never get out pidns.
2276 */
2277 if (p->signal->has_child_subreaper ||
2278 is_child_reaper(task_pid(p)))
2279 return 0;
2280
2281 p->signal->has_child_subreaper = 1;
2282 return 1;
2283 }
2284
2285 int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2286 {
2287 return -EINVAL;
2288 }
2289
2290 int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2291 unsigned long ctrl)
2292 {
2293 return -EINVAL;
2294 }
2295
2296 #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2297
2298 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2299 unsigned long, arg4, unsigned long, arg5)
2300 {
2301 struct task_struct *me = current;
2302 unsigned char comm[sizeof(me->comm)];
2303 long error;
2304
2305 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2306 if (error != -ENOSYS)
2307 return error;
2308
2309 error = 0;
2310 switch (option) {
2311 case PR_SET_PDEATHSIG:
2312 if (!valid_signal(arg2)) {
2313 error = -EINVAL;
2314 break;
2315 }
2316 me->pdeath_signal = arg2;
2317 break;
2318 case PR_GET_PDEATHSIG:
2319 error = put_user(me->pdeath_signal, (int __user *)arg2);
2320 break;
2321 case PR_GET_DUMPABLE:
2322 error = get_dumpable(me->mm);
2323 break;
2324 case PR_SET_DUMPABLE:
2325 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2326 error = -EINVAL;
2327 break;
2328 }
2329 set_dumpable(me->mm, arg2);
2330 break;
2331
2332 case PR_SET_UNALIGN:
2333 error = SET_UNALIGN_CTL(me, arg2);
2334 break;
2335 case PR_GET_UNALIGN:
2336 error = GET_UNALIGN_CTL(me, arg2);
2337 break;
2338 case PR_SET_FPEMU:
2339 error = SET_FPEMU_CTL(me, arg2);
2340 break;
2341 case PR_GET_FPEMU:
2342 error = GET_FPEMU_CTL(me, arg2);
2343 break;
2344 case PR_SET_FPEXC:
2345 error = SET_FPEXC_CTL(me, arg2);
2346 break;
2347 case PR_GET_FPEXC:
2348 error = GET_FPEXC_CTL(me, arg2);
2349 break;
2350 case PR_GET_TIMING:
2351 error = PR_TIMING_STATISTICAL;
2352 break;
2353 case PR_SET_TIMING:
2354 if (arg2 != PR_TIMING_STATISTICAL)
2355 error = -EINVAL;
2356 break;
2357 case PR_SET_NAME:
2358 comm[sizeof(me->comm) - 1] = 0;
2359 if (strncpy_from_user(comm, (char __user *)arg2,
2360 sizeof(me->comm) - 1) < 0)
2361 return -EFAULT;
2362 set_task_comm(me, comm);
2363 proc_comm_connector(me);
2364 break;
2365 case PR_GET_NAME:
2366 get_task_comm(comm, me);
2367 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2368 return -EFAULT;
2369 break;
2370 case PR_GET_ENDIAN:
2371 error = GET_ENDIAN(me, arg2);
2372 break;
2373 case PR_SET_ENDIAN:
2374 error = SET_ENDIAN(me, arg2);
2375 break;
2376 case PR_GET_SECCOMP:
2377 error = prctl_get_seccomp();
2378 break;
2379 case PR_SET_SECCOMP:
2380 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2381 break;
2382 case PR_GET_TSC:
2383 error = GET_TSC_CTL(arg2);
2384 break;
2385 case PR_SET_TSC:
2386 error = SET_TSC_CTL(arg2);
2387 break;
2388 case PR_TASK_PERF_EVENTS_DISABLE:
2389 error = perf_event_task_disable();
2390 break;
2391 case PR_TASK_PERF_EVENTS_ENABLE:
2392 error = perf_event_task_enable();
2393 break;
2394 case PR_GET_TIMERSLACK:
2395 if (current->timer_slack_ns > ULONG_MAX)
2396 error = ULONG_MAX;
2397 else
2398 error = current->timer_slack_ns;
2399 break;
2400 case PR_SET_TIMERSLACK:
2401 if (arg2 <= 0)
2402 current->timer_slack_ns =
2403 current->default_timer_slack_ns;
2404 else
2405 current->timer_slack_ns = arg2;
2406 break;
2407 case PR_MCE_KILL:
2408 if (arg4 | arg5)
2409 return -EINVAL;
2410 switch (arg2) {
2411 case PR_MCE_KILL_CLEAR:
2412 if (arg3 != 0)
2413 return -EINVAL;
2414 current->flags &= ~PF_MCE_PROCESS;
2415 break;
2416 case PR_MCE_KILL_SET:
2417 current->flags |= PF_MCE_PROCESS;
2418 if (arg3 == PR_MCE_KILL_EARLY)
2419 current->flags |= PF_MCE_EARLY;
2420 else if (arg3 == PR_MCE_KILL_LATE)
2421 current->flags &= ~PF_MCE_EARLY;
2422 else if (arg3 == PR_MCE_KILL_DEFAULT)
2423 current->flags &=
2424 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2425 else
2426 return -EINVAL;
2427 break;
2428 default:
2429 return -EINVAL;
2430 }
2431 break;
2432 case PR_MCE_KILL_GET:
2433 if (arg2 | arg3 | arg4 | arg5)
2434 return -EINVAL;
2435 if (current->flags & PF_MCE_PROCESS)
2436 error = (current->flags & PF_MCE_EARLY) ?
2437 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2438 else
2439 error = PR_MCE_KILL_DEFAULT;
2440 break;
2441 case PR_SET_MM:
2442 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2443 break;
2444 case PR_GET_TID_ADDRESS:
2445 error = prctl_get_tid_address(me, (int __user * __user *)arg2);
2446 break;
2447 case PR_SET_CHILD_SUBREAPER:
2448 me->signal->is_child_subreaper = !!arg2;
2449 if (!arg2)
2450 break;
2451
2452 walk_process_tree(me, propagate_has_child_subreaper, NULL);
2453 break;
2454 case PR_GET_CHILD_SUBREAPER:
2455 error = put_user(me->signal->is_child_subreaper,
2456 (int __user *)arg2);
2457 break;
2458 case PR_SET_NO_NEW_PRIVS:
2459 if (arg2 != 1 || arg3 || arg4 || arg5)
2460 return -EINVAL;
2461
2462 task_set_no_new_privs(current);
2463 break;
2464 case PR_GET_NO_NEW_PRIVS:
2465 if (arg2 || arg3 || arg4 || arg5)
2466 return -EINVAL;
2467 return task_no_new_privs(current) ? 1 : 0;
2468 case PR_GET_THP_DISABLE:
2469 if (arg2 || arg3 || arg4 || arg5)
2470 return -EINVAL;
2471 error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2472 break;
2473 case PR_SET_THP_DISABLE:
2474 if (arg3 || arg4 || arg5)
2475 return -EINVAL;
2476 if (mmap_write_lock_killable(me->mm))
2477 return -EINTR;
2478 if (arg2)
2479 set_bit(MMF_DISABLE_THP, &me->mm->flags);
2480 else
2481 clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2482 mmap_write_unlock(me->mm);
2483 break;
2484 case PR_MPX_ENABLE_MANAGEMENT:
2485 case PR_MPX_DISABLE_MANAGEMENT:
2486 /* No longer implemented: */
2487 return -EINVAL;
2488 case PR_SET_FP_MODE:
2489 error = SET_FP_MODE(me, arg2);
2490 break;
2491 case PR_GET_FP_MODE:
2492 error = GET_FP_MODE(me);
2493 break;
2494 case PR_SVE_SET_VL:
2495 error = SVE_SET_VL(arg2);
2496 break;
2497 case PR_SVE_GET_VL:
2498 error = SVE_GET_VL();
2499 break;
2500 case PR_GET_SPECULATION_CTRL:
2501 if (arg3 || arg4 || arg5)
2502 return -EINVAL;
2503 error = arch_prctl_spec_ctrl_get(me, arg2);
2504 break;
2505 case PR_SET_SPECULATION_CTRL:
2506 if (arg4 || arg5)
2507 return -EINVAL;
2508 error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2509 break;
2510 case PR_PAC_RESET_KEYS:
2511 if (arg3 || arg4 || arg5)
2512 return -EINVAL;
2513 error = PAC_RESET_KEYS(me, arg2);
2514 break;
2515 case PR_SET_TAGGED_ADDR_CTRL:
2516 if (arg3 || arg4 || arg5)
2517 return -EINVAL;
2518 error = SET_TAGGED_ADDR_CTRL(arg2);
2519 break;
2520 case PR_GET_TAGGED_ADDR_CTRL:
2521 if (arg2 || arg3 || arg4 || arg5)
2522 return -EINVAL;
2523 error = GET_TAGGED_ADDR_CTRL();
2524 break;
2525 case PR_SET_IO_FLUSHER:
2526 if (!capable(CAP_SYS_RESOURCE))
2527 return -EPERM;
2528
2529 if (arg3 || arg4 || arg5)
2530 return -EINVAL;
2531
2532 if (arg2 == 1)
2533 current->flags |= PR_IO_FLUSHER;
2534 else if (!arg2)
2535 current->flags &= ~PR_IO_FLUSHER;
2536 else
2537 return -EINVAL;
2538 break;
2539 case PR_GET_IO_FLUSHER:
2540 if (!capable(CAP_SYS_RESOURCE))
2541 return -EPERM;
2542
2543 if (arg2 || arg3 || arg4 || arg5)
2544 return -EINVAL;
2545
2546 error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2547 break;
2548 default:
2549 error = -EINVAL;
2550 break;
2551 }
2552 return error;
2553 }
2554
2555 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2556 struct getcpu_cache __user *, unused)
2557 {
2558 int err = 0;
2559 int cpu = raw_smp_processor_id();
2560
2561 if (cpup)
2562 err |= put_user(cpu, cpup);
2563 if (nodep)
2564 err |= put_user(cpu_to_node(cpu), nodep);
2565 return err ? -EFAULT : 0;
2566 }
2567
2568 /**
2569 * do_sysinfo - fill in sysinfo struct
2570 * @info: pointer to buffer to fill
2571 */
2572 static int do_sysinfo(struct sysinfo *info)
2573 {
2574 unsigned long mem_total, sav_total;
2575 unsigned int mem_unit, bitcount;
2576 struct timespec64 tp;
2577
2578 memset(info, 0, sizeof(struct sysinfo));
2579
2580 ktime_get_boottime_ts64(&tp);
2581 timens_add_boottime(&tp);
2582 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2583
2584 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2585
2586 info->procs = nr_threads;
2587
2588 si_meminfo(info);
2589 si_swapinfo(info);
2590
2591 /*
2592 * If the sum of all the available memory (i.e. ram + swap)
2593 * is less than can be stored in a 32 bit unsigned long then
2594 * we can be binary compatible with 2.2.x kernels. If not,
2595 * well, in that case 2.2.x was broken anyways...
2596 *
2597 * -Erik Andersen <andersee@debian.org>
2598 */
2599
2600 mem_total = info->totalram + info->totalswap;
2601 if (mem_total < info->totalram || mem_total < info->totalswap)
2602 goto out;
2603 bitcount = 0;
2604 mem_unit = info->mem_unit;
2605 while (mem_unit > 1) {
2606 bitcount++;
2607 mem_unit >>= 1;
2608 sav_total = mem_total;
2609 mem_total <<= 1;
2610 if (mem_total < sav_total)
2611 goto out;
2612 }
2613
2614 /*
2615 * If mem_total did not overflow, multiply all memory values by
2616 * info->mem_unit and set it to 1. This leaves things compatible
2617 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2618 * kernels...
2619 */
2620
2621 info->mem_unit = 1;
2622 info->totalram <<= bitcount;
2623 info->freeram <<= bitcount;
2624 info->sharedram <<= bitcount;
2625 info->bufferram <<= bitcount;
2626 info->totalswap <<= bitcount;
2627 info->freeswap <<= bitcount;
2628 info->totalhigh <<= bitcount;
2629 info->freehigh <<= bitcount;
2630
2631 out:
2632 return 0;
2633 }
2634
2635 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2636 {
2637 struct sysinfo val;
2638
2639 do_sysinfo(&val);
2640
2641 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2642 return -EFAULT;
2643
2644 return 0;
2645 }
2646
2647 #ifdef CONFIG_COMPAT
2648 struct compat_sysinfo {
2649 s32 uptime;
2650 u32 loads[3];
2651 u32 totalram;
2652 u32 freeram;
2653 u32 sharedram;
2654 u32 bufferram;
2655 u32 totalswap;
2656 u32 freeswap;
2657 u16 procs;
2658 u16 pad;
2659 u32 totalhigh;
2660 u32 freehigh;
2661 u32 mem_unit;
2662 char _f[20-2*sizeof(u32)-sizeof(int)];
2663 };
2664
2665 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2666 {
2667 struct sysinfo s;
2668 struct compat_sysinfo s_32;
2669
2670 do_sysinfo(&s);
2671
2672 /* Check to see if any memory value is too large for 32-bit and scale
2673 * down if needed
2674 */
2675 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2676 int bitcount = 0;
2677
2678 while (s.mem_unit < PAGE_SIZE) {
2679 s.mem_unit <<= 1;
2680 bitcount++;
2681 }
2682
2683 s.totalram >>= bitcount;
2684 s.freeram >>= bitcount;
2685 s.sharedram >>= bitcount;
2686 s.bufferram >>= bitcount;
2687 s.totalswap >>= bitcount;
2688 s.freeswap >>= bitcount;
2689 s.totalhigh >>= bitcount;
2690 s.freehigh >>= bitcount;
2691 }
2692
2693 memset(&s_32, 0, sizeof(s_32));
2694 s_32.uptime = s.uptime;
2695 s_32.loads[0] = s.loads[0];
2696 s_32.loads[1] = s.loads[1];
2697 s_32.loads[2] = s.loads[2];
2698 s_32.totalram = s.totalram;
2699 s_32.freeram = s.freeram;
2700 s_32.sharedram = s.sharedram;
2701 s_32.bufferram = s.bufferram;
2702 s_32.totalswap = s.totalswap;
2703 s_32.freeswap = s.freeswap;
2704 s_32.procs = s.procs;
2705 s_32.totalhigh = s.totalhigh;
2706 s_32.freehigh = s.freehigh;
2707 s_32.mem_unit = s.mem_unit;
2708 if (copy_to_user(info, &s_32, sizeof(s_32)))
2709 return -EFAULT;
2710 return 0;
2711 }
2712 #endif /* CONFIG_COMPAT */