]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/sys.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-artful-kernel.git] / kernel / sys.c
1 /*
2 * linux/kernel/sys.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/export.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/reboot.h>
12 #include <linux/prctl.h>
13 #include <linux/highuid.h>
14 #include <linux/fs.h>
15 #include <linux/kmod.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/workqueue.h>
20 #include <linux/capability.h>
21 #include <linux/device.h>
22 #include <linux/key.h>
23 #include <linux/times.h>
24 #include <linux/posix-timers.h>
25 #include <linux/security.h>
26 #include <linux/dcookies.h>
27 #include <linux/suspend.h>
28 #include <linux/tty.h>
29 #include <linux/signal.h>
30 #include <linux/cn_proc.h>
31 #include <linux/getcpu.h>
32 #include <linux/task_io_accounting_ops.h>
33 #include <linux/seccomp.h>
34 #include <linux/cpu.h>
35 #include <linux/personality.h>
36 #include <linux/ptrace.h>
37 #include <linux/fs_struct.h>
38 #include <linux/file.h>
39 #include <linux/mount.h>
40 #include <linux/gfp.h>
41 #include <linux/syscore_ops.h>
42 #include <linux/version.h>
43 #include <linux/ctype.h>
44
45 #include <linux/compat.h>
46 #include <linux/syscalls.h>
47 #include <linux/kprobes.h>
48 #include <linux/user_namespace.h>
49 #include <linux/binfmts.h>
50
51 #include <linux/sched.h>
52 #include <linux/sched/autogroup.h>
53 #include <linux/sched/loadavg.h>
54 #include <linux/sched/mm.h>
55 #include <linux/sched/coredump.h>
56 #include <linux/rcupdate.h>
57 #include <linux/uidgid.h>
58 #include <linux/cred.h>
59
60 #include <linux/kmsg_dump.h>
61 /* Move somewhere else to avoid recompiling? */
62 #include <generated/utsrelease.h>
63
64 #include <linux/uaccess.h>
65 #include <asm/io.h>
66 #include <asm/unistd.h>
67
68 #ifndef SET_UNALIGN_CTL
69 # define SET_UNALIGN_CTL(a, b) (-EINVAL)
70 #endif
71 #ifndef GET_UNALIGN_CTL
72 # define GET_UNALIGN_CTL(a, b) (-EINVAL)
73 #endif
74 #ifndef SET_FPEMU_CTL
75 # define SET_FPEMU_CTL(a, b) (-EINVAL)
76 #endif
77 #ifndef GET_FPEMU_CTL
78 # define GET_FPEMU_CTL(a, b) (-EINVAL)
79 #endif
80 #ifndef SET_FPEXC_CTL
81 # define SET_FPEXC_CTL(a, b) (-EINVAL)
82 #endif
83 #ifndef GET_FPEXC_CTL
84 # define GET_FPEXC_CTL(a, b) (-EINVAL)
85 #endif
86 #ifndef GET_ENDIAN
87 # define GET_ENDIAN(a, b) (-EINVAL)
88 #endif
89 #ifndef SET_ENDIAN
90 # define SET_ENDIAN(a, b) (-EINVAL)
91 #endif
92 #ifndef GET_TSC_CTL
93 # define GET_TSC_CTL(a) (-EINVAL)
94 #endif
95 #ifndef SET_TSC_CTL
96 # define SET_TSC_CTL(a) (-EINVAL)
97 #endif
98 #ifndef MPX_ENABLE_MANAGEMENT
99 # define MPX_ENABLE_MANAGEMENT() (-EINVAL)
100 #endif
101 #ifndef MPX_DISABLE_MANAGEMENT
102 # define MPX_DISABLE_MANAGEMENT() (-EINVAL)
103 #endif
104 #ifndef GET_FP_MODE
105 # define GET_FP_MODE(a) (-EINVAL)
106 #endif
107 #ifndef SET_FP_MODE
108 # define SET_FP_MODE(a,b) (-EINVAL)
109 #endif
110
111 /*
112 * this is where the system-wide overflow UID and GID are defined, for
113 * architectures that now have 32-bit UID/GID but didn't in the past
114 */
115
116 int overflowuid = DEFAULT_OVERFLOWUID;
117 int overflowgid = DEFAULT_OVERFLOWGID;
118
119 EXPORT_SYMBOL(overflowuid);
120 EXPORT_SYMBOL(overflowgid);
121
122 /*
123 * the same as above, but for filesystems which can only store a 16-bit
124 * UID and GID. as such, this is needed on all architectures
125 */
126
127 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
128 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
129
130 EXPORT_SYMBOL(fs_overflowuid);
131 EXPORT_SYMBOL(fs_overflowgid);
132
133 /*
134 * Returns true if current's euid is same as p's uid or euid,
135 * or has CAP_SYS_NICE to p's user_ns.
136 *
137 * Called with rcu_read_lock, creds are safe
138 */
139 static bool set_one_prio_perm(struct task_struct *p)
140 {
141 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
142
143 if (uid_eq(pcred->uid, cred->euid) ||
144 uid_eq(pcred->euid, cred->euid))
145 return true;
146 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
147 return true;
148 return false;
149 }
150
151 /*
152 * set the priority of a task
153 * - the caller must hold the RCU read lock
154 */
155 static int set_one_prio(struct task_struct *p, int niceval, int error)
156 {
157 int no_nice;
158
159 if (!set_one_prio_perm(p)) {
160 error = -EPERM;
161 goto out;
162 }
163 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
164 error = -EACCES;
165 goto out;
166 }
167 no_nice = security_task_setnice(p, niceval);
168 if (no_nice) {
169 error = no_nice;
170 goto out;
171 }
172 if (error == -ESRCH)
173 error = 0;
174 set_user_nice(p, niceval);
175 out:
176 return error;
177 }
178
179 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
180 {
181 struct task_struct *g, *p;
182 struct user_struct *user;
183 const struct cred *cred = current_cred();
184 int error = -EINVAL;
185 struct pid *pgrp;
186 kuid_t uid;
187
188 if (which > PRIO_USER || which < PRIO_PROCESS)
189 goto out;
190
191 /* normalize: avoid signed division (rounding problems) */
192 error = -ESRCH;
193 if (niceval < MIN_NICE)
194 niceval = MIN_NICE;
195 if (niceval > MAX_NICE)
196 niceval = MAX_NICE;
197
198 rcu_read_lock();
199 read_lock(&tasklist_lock);
200 switch (which) {
201 case PRIO_PROCESS:
202 if (who)
203 p = find_task_by_vpid(who);
204 else
205 p = current;
206 if (p)
207 error = set_one_prio(p, niceval, error);
208 break;
209 case PRIO_PGRP:
210 if (who)
211 pgrp = find_vpid(who);
212 else
213 pgrp = task_pgrp(current);
214 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
215 error = set_one_prio(p, niceval, error);
216 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
217 break;
218 case PRIO_USER:
219 uid = make_kuid(cred->user_ns, who);
220 user = cred->user;
221 if (!who)
222 uid = cred->uid;
223 else if (!uid_eq(uid, cred->uid)) {
224 user = find_user(uid);
225 if (!user)
226 goto out_unlock; /* No processes for this user */
227 }
228 do_each_thread(g, p) {
229 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
230 error = set_one_prio(p, niceval, error);
231 } while_each_thread(g, p);
232 if (!uid_eq(uid, cred->uid))
233 free_uid(user); /* For find_user() */
234 break;
235 }
236 out_unlock:
237 read_unlock(&tasklist_lock);
238 rcu_read_unlock();
239 out:
240 return error;
241 }
242
243 /*
244 * Ugh. To avoid negative return values, "getpriority()" will
245 * not return the normal nice-value, but a negated value that
246 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
247 * to stay compatible.
248 */
249 SYSCALL_DEFINE2(getpriority, int, which, int, who)
250 {
251 struct task_struct *g, *p;
252 struct user_struct *user;
253 const struct cred *cred = current_cred();
254 long niceval, retval = -ESRCH;
255 struct pid *pgrp;
256 kuid_t uid;
257
258 if (which > PRIO_USER || which < PRIO_PROCESS)
259 return -EINVAL;
260
261 rcu_read_lock();
262 read_lock(&tasklist_lock);
263 switch (which) {
264 case PRIO_PROCESS:
265 if (who)
266 p = find_task_by_vpid(who);
267 else
268 p = current;
269 if (p) {
270 niceval = nice_to_rlimit(task_nice(p));
271 if (niceval > retval)
272 retval = niceval;
273 }
274 break;
275 case PRIO_PGRP:
276 if (who)
277 pgrp = find_vpid(who);
278 else
279 pgrp = task_pgrp(current);
280 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
281 niceval = nice_to_rlimit(task_nice(p));
282 if (niceval > retval)
283 retval = niceval;
284 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
285 break;
286 case PRIO_USER:
287 uid = make_kuid(cred->user_ns, who);
288 user = cred->user;
289 if (!who)
290 uid = cred->uid;
291 else if (!uid_eq(uid, cred->uid)) {
292 user = find_user(uid);
293 if (!user)
294 goto out_unlock; /* No processes for this user */
295 }
296 do_each_thread(g, p) {
297 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
298 niceval = nice_to_rlimit(task_nice(p));
299 if (niceval > retval)
300 retval = niceval;
301 }
302 } while_each_thread(g, p);
303 if (!uid_eq(uid, cred->uid))
304 free_uid(user); /* for find_user() */
305 break;
306 }
307 out_unlock:
308 read_unlock(&tasklist_lock);
309 rcu_read_unlock();
310
311 return retval;
312 }
313
314 /*
315 * Unprivileged users may change the real gid to the effective gid
316 * or vice versa. (BSD-style)
317 *
318 * If you set the real gid at all, or set the effective gid to a value not
319 * equal to the real gid, then the saved gid is set to the new effective gid.
320 *
321 * This makes it possible for a setgid program to completely drop its
322 * privileges, which is often a useful assertion to make when you are doing
323 * a security audit over a program.
324 *
325 * The general idea is that a program which uses just setregid() will be
326 * 100% compatible with BSD. A program which uses just setgid() will be
327 * 100% compatible with POSIX with saved IDs.
328 *
329 * SMP: There are not races, the GIDs are checked only by filesystem
330 * operations (as far as semantic preservation is concerned).
331 */
332 #ifdef CONFIG_MULTIUSER
333 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
334 {
335 struct user_namespace *ns = current_user_ns();
336 const struct cred *old;
337 struct cred *new;
338 int retval;
339 kgid_t krgid, kegid;
340
341 krgid = make_kgid(ns, rgid);
342 kegid = make_kgid(ns, egid);
343
344 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
345 return -EINVAL;
346 if ((egid != (gid_t) -1) && !gid_valid(kegid))
347 return -EINVAL;
348
349 new = prepare_creds();
350 if (!new)
351 return -ENOMEM;
352 old = current_cred();
353
354 retval = -EPERM;
355 if (rgid != (gid_t) -1) {
356 if (gid_eq(old->gid, krgid) ||
357 gid_eq(old->egid, krgid) ||
358 ns_capable(old->user_ns, CAP_SETGID))
359 new->gid = krgid;
360 else
361 goto error;
362 }
363 if (egid != (gid_t) -1) {
364 if (gid_eq(old->gid, kegid) ||
365 gid_eq(old->egid, kegid) ||
366 gid_eq(old->sgid, kegid) ||
367 ns_capable(old->user_ns, CAP_SETGID))
368 new->egid = kegid;
369 else
370 goto error;
371 }
372
373 if (rgid != (gid_t) -1 ||
374 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
375 new->sgid = new->egid;
376 new->fsgid = new->egid;
377
378 return commit_creds(new);
379
380 error:
381 abort_creds(new);
382 return retval;
383 }
384
385 /*
386 * setgid() is implemented like SysV w/ SAVED_IDS
387 *
388 * SMP: Same implicit races as above.
389 */
390 SYSCALL_DEFINE1(setgid, gid_t, gid)
391 {
392 struct user_namespace *ns = current_user_ns();
393 const struct cred *old;
394 struct cred *new;
395 int retval;
396 kgid_t kgid;
397
398 kgid = make_kgid(ns, gid);
399 if (!gid_valid(kgid))
400 return -EINVAL;
401
402 new = prepare_creds();
403 if (!new)
404 return -ENOMEM;
405 old = current_cred();
406
407 retval = -EPERM;
408 if (ns_capable(old->user_ns, CAP_SETGID))
409 new->gid = new->egid = new->sgid = new->fsgid = kgid;
410 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
411 new->egid = new->fsgid = kgid;
412 else
413 goto error;
414
415 return commit_creds(new);
416
417 error:
418 abort_creds(new);
419 return retval;
420 }
421
422 /*
423 * change the user struct in a credentials set to match the new UID
424 */
425 static int set_user(struct cred *new)
426 {
427 struct user_struct *new_user;
428
429 new_user = alloc_uid(new->uid);
430 if (!new_user)
431 return -EAGAIN;
432
433 /*
434 * We don't fail in case of NPROC limit excess here because too many
435 * poorly written programs don't check set*uid() return code, assuming
436 * it never fails if called by root. We may still enforce NPROC limit
437 * for programs doing set*uid()+execve() by harmlessly deferring the
438 * failure to the execve() stage.
439 */
440 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
441 new_user != INIT_USER)
442 current->flags |= PF_NPROC_EXCEEDED;
443 else
444 current->flags &= ~PF_NPROC_EXCEEDED;
445
446 free_uid(new->user);
447 new->user = new_user;
448 return 0;
449 }
450
451 /*
452 * Unprivileged users may change the real uid to the effective uid
453 * or vice versa. (BSD-style)
454 *
455 * If you set the real uid at all, or set the effective uid to a value not
456 * equal to the real uid, then the saved uid is set to the new effective uid.
457 *
458 * This makes it possible for a setuid program to completely drop its
459 * privileges, which is often a useful assertion to make when you are doing
460 * a security audit over a program.
461 *
462 * The general idea is that a program which uses just setreuid() will be
463 * 100% compatible with BSD. A program which uses just setuid() will be
464 * 100% compatible with POSIX with saved IDs.
465 */
466 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
467 {
468 struct user_namespace *ns = current_user_ns();
469 const struct cred *old;
470 struct cred *new;
471 int retval;
472 kuid_t kruid, keuid;
473
474 kruid = make_kuid(ns, ruid);
475 keuid = make_kuid(ns, euid);
476
477 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
478 return -EINVAL;
479 if ((euid != (uid_t) -1) && !uid_valid(keuid))
480 return -EINVAL;
481
482 new = prepare_creds();
483 if (!new)
484 return -ENOMEM;
485 old = current_cred();
486
487 retval = -EPERM;
488 if (ruid != (uid_t) -1) {
489 new->uid = kruid;
490 if (!uid_eq(old->uid, kruid) &&
491 !uid_eq(old->euid, kruid) &&
492 !ns_capable(old->user_ns, CAP_SETUID))
493 goto error;
494 }
495
496 if (euid != (uid_t) -1) {
497 new->euid = keuid;
498 if (!uid_eq(old->uid, keuid) &&
499 !uid_eq(old->euid, keuid) &&
500 !uid_eq(old->suid, keuid) &&
501 !ns_capable(old->user_ns, CAP_SETUID))
502 goto error;
503 }
504
505 if (!uid_eq(new->uid, old->uid)) {
506 retval = set_user(new);
507 if (retval < 0)
508 goto error;
509 }
510 if (ruid != (uid_t) -1 ||
511 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
512 new->suid = new->euid;
513 new->fsuid = new->euid;
514
515 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
516 if (retval < 0)
517 goto error;
518
519 return commit_creds(new);
520
521 error:
522 abort_creds(new);
523 return retval;
524 }
525
526 /*
527 * setuid() is implemented like SysV with SAVED_IDS
528 *
529 * Note that SAVED_ID's is deficient in that a setuid root program
530 * like sendmail, for example, cannot set its uid to be a normal
531 * user and then switch back, because if you're root, setuid() sets
532 * the saved uid too. If you don't like this, blame the bright people
533 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
534 * will allow a root program to temporarily drop privileges and be able to
535 * regain them by swapping the real and effective uid.
536 */
537 SYSCALL_DEFINE1(setuid, uid_t, uid)
538 {
539 struct user_namespace *ns = current_user_ns();
540 const struct cred *old;
541 struct cred *new;
542 int retval;
543 kuid_t kuid;
544
545 kuid = make_kuid(ns, uid);
546 if (!uid_valid(kuid))
547 return -EINVAL;
548
549 new = prepare_creds();
550 if (!new)
551 return -ENOMEM;
552 old = current_cred();
553
554 retval = -EPERM;
555 if (ns_capable(old->user_ns, CAP_SETUID)) {
556 new->suid = new->uid = kuid;
557 if (!uid_eq(kuid, old->uid)) {
558 retval = set_user(new);
559 if (retval < 0)
560 goto error;
561 }
562 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
563 goto error;
564 }
565
566 new->fsuid = new->euid = kuid;
567
568 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
569 if (retval < 0)
570 goto error;
571
572 return commit_creds(new);
573
574 error:
575 abort_creds(new);
576 return retval;
577 }
578
579
580 /*
581 * This function implements a generic ability to update ruid, euid,
582 * and suid. This allows you to implement the 4.4 compatible seteuid().
583 */
584 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
585 {
586 struct user_namespace *ns = current_user_ns();
587 const struct cred *old;
588 struct cred *new;
589 int retval;
590 kuid_t kruid, keuid, ksuid;
591
592 kruid = make_kuid(ns, ruid);
593 keuid = make_kuid(ns, euid);
594 ksuid = make_kuid(ns, suid);
595
596 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
597 return -EINVAL;
598
599 if ((euid != (uid_t) -1) && !uid_valid(keuid))
600 return -EINVAL;
601
602 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
603 return -EINVAL;
604
605 new = prepare_creds();
606 if (!new)
607 return -ENOMEM;
608
609 old = current_cred();
610
611 retval = -EPERM;
612 if (!ns_capable(old->user_ns, CAP_SETUID)) {
613 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
614 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
615 goto error;
616 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
617 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
618 goto error;
619 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
620 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
621 goto error;
622 }
623
624 if (ruid != (uid_t) -1) {
625 new->uid = kruid;
626 if (!uid_eq(kruid, old->uid)) {
627 retval = set_user(new);
628 if (retval < 0)
629 goto error;
630 }
631 }
632 if (euid != (uid_t) -1)
633 new->euid = keuid;
634 if (suid != (uid_t) -1)
635 new->suid = ksuid;
636 new->fsuid = new->euid;
637
638 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
639 if (retval < 0)
640 goto error;
641
642 return commit_creds(new);
643
644 error:
645 abort_creds(new);
646 return retval;
647 }
648
649 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
650 {
651 const struct cred *cred = current_cred();
652 int retval;
653 uid_t ruid, euid, suid;
654
655 ruid = from_kuid_munged(cred->user_ns, cred->uid);
656 euid = from_kuid_munged(cred->user_ns, cred->euid);
657 suid = from_kuid_munged(cred->user_ns, cred->suid);
658
659 retval = put_user(ruid, ruidp);
660 if (!retval) {
661 retval = put_user(euid, euidp);
662 if (!retval)
663 return put_user(suid, suidp);
664 }
665 return retval;
666 }
667
668 /*
669 * Same as above, but for rgid, egid, sgid.
670 */
671 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
672 {
673 struct user_namespace *ns = current_user_ns();
674 const struct cred *old;
675 struct cred *new;
676 int retval;
677 kgid_t krgid, kegid, ksgid;
678
679 krgid = make_kgid(ns, rgid);
680 kegid = make_kgid(ns, egid);
681 ksgid = make_kgid(ns, sgid);
682
683 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
684 return -EINVAL;
685 if ((egid != (gid_t) -1) && !gid_valid(kegid))
686 return -EINVAL;
687 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
688 return -EINVAL;
689
690 new = prepare_creds();
691 if (!new)
692 return -ENOMEM;
693 old = current_cred();
694
695 retval = -EPERM;
696 if (!ns_capable(old->user_ns, CAP_SETGID)) {
697 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
698 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
699 goto error;
700 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
701 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
702 goto error;
703 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
704 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
705 goto error;
706 }
707
708 if (rgid != (gid_t) -1)
709 new->gid = krgid;
710 if (egid != (gid_t) -1)
711 new->egid = kegid;
712 if (sgid != (gid_t) -1)
713 new->sgid = ksgid;
714 new->fsgid = new->egid;
715
716 return commit_creds(new);
717
718 error:
719 abort_creds(new);
720 return retval;
721 }
722
723 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
724 {
725 const struct cred *cred = current_cred();
726 int retval;
727 gid_t rgid, egid, sgid;
728
729 rgid = from_kgid_munged(cred->user_ns, cred->gid);
730 egid = from_kgid_munged(cred->user_ns, cred->egid);
731 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
732
733 retval = put_user(rgid, rgidp);
734 if (!retval) {
735 retval = put_user(egid, egidp);
736 if (!retval)
737 retval = put_user(sgid, sgidp);
738 }
739
740 return retval;
741 }
742
743
744 /*
745 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
746 * is used for "access()" and for the NFS daemon (letting nfsd stay at
747 * whatever uid it wants to). It normally shadows "euid", except when
748 * explicitly set by setfsuid() or for access..
749 */
750 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
751 {
752 const struct cred *old;
753 struct cred *new;
754 uid_t old_fsuid;
755 kuid_t kuid;
756
757 old = current_cred();
758 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
759
760 kuid = make_kuid(old->user_ns, uid);
761 if (!uid_valid(kuid))
762 return old_fsuid;
763
764 new = prepare_creds();
765 if (!new)
766 return old_fsuid;
767
768 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
769 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
770 ns_capable(old->user_ns, CAP_SETUID)) {
771 if (!uid_eq(kuid, old->fsuid)) {
772 new->fsuid = kuid;
773 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
774 goto change_okay;
775 }
776 }
777
778 abort_creds(new);
779 return old_fsuid;
780
781 change_okay:
782 commit_creds(new);
783 return old_fsuid;
784 }
785
786 /*
787 * Samma på svenska..
788 */
789 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
790 {
791 const struct cred *old;
792 struct cred *new;
793 gid_t old_fsgid;
794 kgid_t kgid;
795
796 old = current_cred();
797 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
798
799 kgid = make_kgid(old->user_ns, gid);
800 if (!gid_valid(kgid))
801 return old_fsgid;
802
803 new = prepare_creds();
804 if (!new)
805 return old_fsgid;
806
807 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
808 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
809 ns_capable(old->user_ns, CAP_SETGID)) {
810 if (!gid_eq(kgid, old->fsgid)) {
811 new->fsgid = kgid;
812 goto change_okay;
813 }
814 }
815
816 abort_creds(new);
817 return old_fsgid;
818
819 change_okay:
820 commit_creds(new);
821 return old_fsgid;
822 }
823 #endif /* CONFIG_MULTIUSER */
824
825 /**
826 * sys_getpid - return the thread group id of the current process
827 *
828 * Note, despite the name, this returns the tgid not the pid. The tgid and
829 * the pid are identical unless CLONE_THREAD was specified on clone() in
830 * which case the tgid is the same in all threads of the same group.
831 *
832 * This is SMP safe as current->tgid does not change.
833 */
834 SYSCALL_DEFINE0(getpid)
835 {
836 return task_tgid_vnr(current);
837 }
838
839 /* Thread ID - the internal kernel "pid" */
840 SYSCALL_DEFINE0(gettid)
841 {
842 return task_pid_vnr(current);
843 }
844
845 /*
846 * Accessing ->real_parent is not SMP-safe, it could
847 * change from under us. However, we can use a stale
848 * value of ->real_parent under rcu_read_lock(), see
849 * release_task()->call_rcu(delayed_put_task_struct).
850 */
851 SYSCALL_DEFINE0(getppid)
852 {
853 int pid;
854
855 rcu_read_lock();
856 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
857 rcu_read_unlock();
858
859 return pid;
860 }
861
862 SYSCALL_DEFINE0(getuid)
863 {
864 /* Only we change this so SMP safe */
865 return from_kuid_munged(current_user_ns(), current_uid());
866 }
867
868 SYSCALL_DEFINE0(geteuid)
869 {
870 /* Only we change this so SMP safe */
871 return from_kuid_munged(current_user_ns(), current_euid());
872 }
873
874 SYSCALL_DEFINE0(getgid)
875 {
876 /* Only we change this so SMP safe */
877 return from_kgid_munged(current_user_ns(), current_gid());
878 }
879
880 SYSCALL_DEFINE0(getegid)
881 {
882 /* Only we change this so SMP safe */
883 return from_kgid_munged(current_user_ns(), current_egid());
884 }
885
886 void do_sys_times(struct tms *tms)
887 {
888 u64 tgutime, tgstime, cutime, cstime;
889
890 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
891 cutime = current->signal->cutime;
892 cstime = current->signal->cstime;
893 tms->tms_utime = nsec_to_clock_t(tgutime);
894 tms->tms_stime = nsec_to_clock_t(tgstime);
895 tms->tms_cutime = nsec_to_clock_t(cutime);
896 tms->tms_cstime = nsec_to_clock_t(cstime);
897 }
898
899 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
900 {
901 if (tbuf) {
902 struct tms tmp;
903
904 do_sys_times(&tmp);
905 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
906 return -EFAULT;
907 }
908 force_successful_syscall_return();
909 return (long) jiffies_64_to_clock_t(get_jiffies_64());
910 }
911
912 /*
913 * This needs some heavy checking ...
914 * I just haven't the stomach for it. I also don't fully
915 * understand sessions/pgrp etc. Let somebody who does explain it.
916 *
917 * OK, I think I have the protection semantics right.... this is really
918 * only important on a multi-user system anyway, to make sure one user
919 * can't send a signal to a process owned by another. -TYT, 12/12/91
920 *
921 * !PF_FORKNOEXEC check to conform completely to POSIX.
922 */
923 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
924 {
925 struct task_struct *p;
926 struct task_struct *group_leader = current->group_leader;
927 struct pid *pgrp;
928 int err;
929
930 if (!pid)
931 pid = task_pid_vnr(group_leader);
932 if (!pgid)
933 pgid = pid;
934 if (pgid < 0)
935 return -EINVAL;
936 rcu_read_lock();
937
938 /* From this point forward we keep holding onto the tasklist lock
939 * so that our parent does not change from under us. -DaveM
940 */
941 write_lock_irq(&tasklist_lock);
942
943 err = -ESRCH;
944 p = find_task_by_vpid(pid);
945 if (!p)
946 goto out;
947
948 err = -EINVAL;
949 if (!thread_group_leader(p))
950 goto out;
951
952 if (same_thread_group(p->real_parent, group_leader)) {
953 err = -EPERM;
954 if (task_session(p) != task_session(group_leader))
955 goto out;
956 err = -EACCES;
957 if (!(p->flags & PF_FORKNOEXEC))
958 goto out;
959 } else {
960 err = -ESRCH;
961 if (p != group_leader)
962 goto out;
963 }
964
965 err = -EPERM;
966 if (p->signal->leader)
967 goto out;
968
969 pgrp = task_pid(p);
970 if (pgid != pid) {
971 struct task_struct *g;
972
973 pgrp = find_vpid(pgid);
974 g = pid_task(pgrp, PIDTYPE_PGID);
975 if (!g || task_session(g) != task_session(group_leader))
976 goto out;
977 }
978
979 err = security_task_setpgid(p, pgid);
980 if (err)
981 goto out;
982
983 if (task_pgrp(p) != pgrp)
984 change_pid(p, PIDTYPE_PGID, pgrp);
985
986 err = 0;
987 out:
988 /* All paths lead to here, thus we are safe. -DaveM */
989 write_unlock_irq(&tasklist_lock);
990 rcu_read_unlock();
991 return err;
992 }
993
994 SYSCALL_DEFINE1(getpgid, pid_t, pid)
995 {
996 struct task_struct *p;
997 struct pid *grp;
998 int retval;
999
1000 rcu_read_lock();
1001 if (!pid)
1002 grp = task_pgrp(current);
1003 else {
1004 retval = -ESRCH;
1005 p = find_task_by_vpid(pid);
1006 if (!p)
1007 goto out;
1008 grp = task_pgrp(p);
1009 if (!grp)
1010 goto out;
1011
1012 retval = security_task_getpgid(p);
1013 if (retval)
1014 goto out;
1015 }
1016 retval = pid_vnr(grp);
1017 out:
1018 rcu_read_unlock();
1019 return retval;
1020 }
1021
1022 #ifdef __ARCH_WANT_SYS_GETPGRP
1023
1024 SYSCALL_DEFINE0(getpgrp)
1025 {
1026 return sys_getpgid(0);
1027 }
1028
1029 #endif
1030
1031 SYSCALL_DEFINE1(getsid, pid_t, pid)
1032 {
1033 struct task_struct *p;
1034 struct pid *sid;
1035 int retval;
1036
1037 rcu_read_lock();
1038 if (!pid)
1039 sid = task_session(current);
1040 else {
1041 retval = -ESRCH;
1042 p = find_task_by_vpid(pid);
1043 if (!p)
1044 goto out;
1045 sid = task_session(p);
1046 if (!sid)
1047 goto out;
1048
1049 retval = security_task_getsid(p);
1050 if (retval)
1051 goto out;
1052 }
1053 retval = pid_vnr(sid);
1054 out:
1055 rcu_read_unlock();
1056 return retval;
1057 }
1058
1059 static void set_special_pids(struct pid *pid)
1060 {
1061 struct task_struct *curr = current->group_leader;
1062
1063 if (task_session(curr) != pid)
1064 change_pid(curr, PIDTYPE_SID, pid);
1065
1066 if (task_pgrp(curr) != pid)
1067 change_pid(curr, PIDTYPE_PGID, pid);
1068 }
1069
1070 SYSCALL_DEFINE0(setsid)
1071 {
1072 struct task_struct *group_leader = current->group_leader;
1073 struct pid *sid = task_pid(group_leader);
1074 pid_t session = pid_vnr(sid);
1075 int err = -EPERM;
1076
1077 write_lock_irq(&tasklist_lock);
1078 /* Fail if I am already a session leader */
1079 if (group_leader->signal->leader)
1080 goto out;
1081
1082 /* Fail if a process group id already exists that equals the
1083 * proposed session id.
1084 */
1085 if (pid_task(sid, PIDTYPE_PGID))
1086 goto out;
1087
1088 group_leader->signal->leader = 1;
1089 set_special_pids(sid);
1090
1091 proc_clear_tty(group_leader);
1092
1093 err = session;
1094 out:
1095 write_unlock_irq(&tasklist_lock);
1096 if (err > 0) {
1097 proc_sid_connector(group_leader);
1098 sched_autogroup_create_attach(group_leader);
1099 }
1100 return err;
1101 }
1102
1103 DECLARE_RWSEM(uts_sem);
1104
1105 #ifdef COMPAT_UTS_MACHINE
1106 #define override_architecture(name) \
1107 (personality(current->personality) == PER_LINUX32 && \
1108 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1109 sizeof(COMPAT_UTS_MACHINE)))
1110 #else
1111 #define override_architecture(name) 0
1112 #endif
1113
1114 /*
1115 * Work around broken programs that cannot handle "Linux 3.0".
1116 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1117 * And we map 4.x to 2.6.60+x, so 4.0 would be 2.6.60.
1118 */
1119 static int override_release(char __user *release, size_t len)
1120 {
1121 int ret = 0;
1122
1123 if (current->personality & UNAME26) {
1124 const char *rest = UTS_RELEASE;
1125 char buf[65] = { 0 };
1126 int ndots = 0;
1127 unsigned v;
1128 size_t copy;
1129
1130 while (*rest) {
1131 if (*rest == '.' && ++ndots >= 3)
1132 break;
1133 if (!isdigit(*rest) && *rest != '.')
1134 break;
1135 rest++;
1136 }
1137 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
1138 copy = clamp_t(size_t, len, 1, sizeof(buf));
1139 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1140 ret = copy_to_user(release, buf, copy + 1);
1141 }
1142 return ret;
1143 }
1144
1145 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1146 {
1147 int errno = 0;
1148
1149 down_read(&uts_sem);
1150 if (copy_to_user(name, utsname(), sizeof *name))
1151 errno = -EFAULT;
1152 up_read(&uts_sem);
1153
1154 if (!errno && override_release(name->release, sizeof(name->release)))
1155 errno = -EFAULT;
1156 if (!errno && override_architecture(name))
1157 errno = -EFAULT;
1158 return errno;
1159 }
1160
1161 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1162 /*
1163 * Old cruft
1164 */
1165 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1166 {
1167 int error = 0;
1168
1169 if (!name)
1170 return -EFAULT;
1171
1172 down_read(&uts_sem);
1173 if (copy_to_user(name, utsname(), sizeof(*name)))
1174 error = -EFAULT;
1175 up_read(&uts_sem);
1176
1177 if (!error && override_release(name->release, sizeof(name->release)))
1178 error = -EFAULT;
1179 if (!error && override_architecture(name))
1180 error = -EFAULT;
1181 return error;
1182 }
1183
1184 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1185 {
1186 int error;
1187
1188 if (!name)
1189 return -EFAULT;
1190 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1191 return -EFAULT;
1192
1193 down_read(&uts_sem);
1194 error = __copy_to_user(&name->sysname, &utsname()->sysname,
1195 __OLD_UTS_LEN);
1196 error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1197 error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1198 __OLD_UTS_LEN);
1199 error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1200 error |= __copy_to_user(&name->release, &utsname()->release,
1201 __OLD_UTS_LEN);
1202 error |= __put_user(0, name->release + __OLD_UTS_LEN);
1203 error |= __copy_to_user(&name->version, &utsname()->version,
1204 __OLD_UTS_LEN);
1205 error |= __put_user(0, name->version + __OLD_UTS_LEN);
1206 error |= __copy_to_user(&name->machine, &utsname()->machine,
1207 __OLD_UTS_LEN);
1208 error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1209 up_read(&uts_sem);
1210
1211 if (!error && override_architecture(name))
1212 error = -EFAULT;
1213 if (!error && override_release(name->release, sizeof(name->release)))
1214 error = -EFAULT;
1215 return error ? -EFAULT : 0;
1216 }
1217 #endif
1218
1219 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1220 {
1221 int errno;
1222 char tmp[__NEW_UTS_LEN];
1223
1224 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1225 return -EPERM;
1226
1227 if (len < 0 || len > __NEW_UTS_LEN)
1228 return -EINVAL;
1229 down_write(&uts_sem);
1230 errno = -EFAULT;
1231 if (!copy_from_user(tmp, name, len)) {
1232 struct new_utsname *u = utsname();
1233
1234 memcpy(u->nodename, tmp, len);
1235 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1236 errno = 0;
1237 uts_proc_notify(UTS_PROC_HOSTNAME);
1238 }
1239 up_write(&uts_sem);
1240 return errno;
1241 }
1242
1243 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1244
1245 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1246 {
1247 int i, errno;
1248 struct new_utsname *u;
1249
1250 if (len < 0)
1251 return -EINVAL;
1252 down_read(&uts_sem);
1253 u = utsname();
1254 i = 1 + strlen(u->nodename);
1255 if (i > len)
1256 i = len;
1257 errno = 0;
1258 if (copy_to_user(name, u->nodename, i))
1259 errno = -EFAULT;
1260 up_read(&uts_sem);
1261 return errno;
1262 }
1263
1264 #endif
1265
1266 /*
1267 * Only setdomainname; getdomainname can be implemented by calling
1268 * uname()
1269 */
1270 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1271 {
1272 int errno;
1273 char tmp[__NEW_UTS_LEN];
1274
1275 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1276 return -EPERM;
1277 if (len < 0 || len > __NEW_UTS_LEN)
1278 return -EINVAL;
1279
1280 down_write(&uts_sem);
1281 errno = -EFAULT;
1282 if (!copy_from_user(tmp, name, len)) {
1283 struct new_utsname *u = utsname();
1284
1285 memcpy(u->domainname, tmp, len);
1286 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1287 errno = 0;
1288 uts_proc_notify(UTS_PROC_DOMAINNAME);
1289 }
1290 up_write(&uts_sem);
1291 return errno;
1292 }
1293
1294 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1295 {
1296 struct rlimit value;
1297 int ret;
1298
1299 ret = do_prlimit(current, resource, NULL, &value);
1300 if (!ret)
1301 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1302
1303 return ret;
1304 }
1305
1306 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1307
1308 /*
1309 * Back compatibility for getrlimit. Needed for some apps.
1310 */
1311 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1312 struct rlimit __user *, rlim)
1313 {
1314 struct rlimit x;
1315 if (resource >= RLIM_NLIMITS)
1316 return -EINVAL;
1317
1318 task_lock(current->group_leader);
1319 x = current->signal->rlim[resource];
1320 task_unlock(current->group_leader);
1321 if (x.rlim_cur > 0x7FFFFFFF)
1322 x.rlim_cur = 0x7FFFFFFF;
1323 if (x.rlim_max > 0x7FFFFFFF)
1324 x.rlim_max = 0x7FFFFFFF;
1325 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1326 }
1327
1328 #endif
1329
1330 static inline bool rlim64_is_infinity(__u64 rlim64)
1331 {
1332 #if BITS_PER_LONG < 64
1333 return rlim64 >= ULONG_MAX;
1334 #else
1335 return rlim64 == RLIM64_INFINITY;
1336 #endif
1337 }
1338
1339 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1340 {
1341 if (rlim->rlim_cur == RLIM_INFINITY)
1342 rlim64->rlim_cur = RLIM64_INFINITY;
1343 else
1344 rlim64->rlim_cur = rlim->rlim_cur;
1345 if (rlim->rlim_max == RLIM_INFINITY)
1346 rlim64->rlim_max = RLIM64_INFINITY;
1347 else
1348 rlim64->rlim_max = rlim->rlim_max;
1349 }
1350
1351 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1352 {
1353 if (rlim64_is_infinity(rlim64->rlim_cur))
1354 rlim->rlim_cur = RLIM_INFINITY;
1355 else
1356 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1357 if (rlim64_is_infinity(rlim64->rlim_max))
1358 rlim->rlim_max = RLIM_INFINITY;
1359 else
1360 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1361 }
1362
1363 /* make sure you are allowed to change @tsk limits before calling this */
1364 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1365 struct rlimit *new_rlim, struct rlimit *old_rlim)
1366 {
1367 struct rlimit *rlim;
1368 int retval = 0;
1369
1370 if (resource >= RLIM_NLIMITS)
1371 return -EINVAL;
1372 if (new_rlim) {
1373 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1374 return -EINVAL;
1375 if (resource == RLIMIT_NOFILE &&
1376 new_rlim->rlim_max > sysctl_nr_open)
1377 return -EPERM;
1378 }
1379
1380 /* protect tsk->signal and tsk->sighand from disappearing */
1381 read_lock(&tasklist_lock);
1382 if (!tsk->sighand) {
1383 retval = -ESRCH;
1384 goto out;
1385 }
1386
1387 rlim = tsk->signal->rlim + resource;
1388 task_lock(tsk->group_leader);
1389 if (new_rlim) {
1390 /* Keep the capable check against init_user_ns until
1391 cgroups can contain all limits */
1392 if (new_rlim->rlim_max > rlim->rlim_max &&
1393 !capable(CAP_SYS_RESOURCE))
1394 retval = -EPERM;
1395 if (!retval)
1396 retval = security_task_setrlimit(tsk->group_leader,
1397 resource, new_rlim);
1398 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1399 /*
1400 * The caller is asking for an immediate RLIMIT_CPU
1401 * expiry. But we use the zero value to mean "it was
1402 * never set". So let's cheat and make it one second
1403 * instead
1404 */
1405 new_rlim->rlim_cur = 1;
1406 }
1407 }
1408 if (!retval) {
1409 if (old_rlim)
1410 *old_rlim = *rlim;
1411 if (new_rlim)
1412 *rlim = *new_rlim;
1413 }
1414 task_unlock(tsk->group_leader);
1415
1416 /*
1417 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1418 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1419 * very long-standing error, and fixing it now risks breakage of
1420 * applications, so we live with it
1421 */
1422 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1423 new_rlim->rlim_cur != RLIM_INFINITY &&
1424 IS_ENABLED(CONFIG_POSIX_TIMERS))
1425 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1426 out:
1427 read_unlock(&tasklist_lock);
1428 return retval;
1429 }
1430
1431 /* rcu lock must be held */
1432 static int check_prlimit_permission(struct task_struct *task)
1433 {
1434 const struct cred *cred = current_cred(), *tcred;
1435
1436 if (current == task)
1437 return 0;
1438
1439 tcred = __task_cred(task);
1440 if (uid_eq(cred->uid, tcred->euid) &&
1441 uid_eq(cred->uid, tcred->suid) &&
1442 uid_eq(cred->uid, tcred->uid) &&
1443 gid_eq(cred->gid, tcred->egid) &&
1444 gid_eq(cred->gid, tcred->sgid) &&
1445 gid_eq(cred->gid, tcred->gid))
1446 return 0;
1447 if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1448 return 0;
1449
1450 return -EPERM;
1451 }
1452
1453 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1454 const struct rlimit64 __user *, new_rlim,
1455 struct rlimit64 __user *, old_rlim)
1456 {
1457 struct rlimit64 old64, new64;
1458 struct rlimit old, new;
1459 struct task_struct *tsk;
1460 int ret;
1461
1462 if (new_rlim) {
1463 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1464 return -EFAULT;
1465 rlim64_to_rlim(&new64, &new);
1466 }
1467
1468 rcu_read_lock();
1469 tsk = pid ? find_task_by_vpid(pid) : current;
1470 if (!tsk) {
1471 rcu_read_unlock();
1472 return -ESRCH;
1473 }
1474 ret = check_prlimit_permission(tsk);
1475 if (ret) {
1476 rcu_read_unlock();
1477 return ret;
1478 }
1479 get_task_struct(tsk);
1480 rcu_read_unlock();
1481
1482 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1483 old_rlim ? &old : NULL);
1484
1485 if (!ret && old_rlim) {
1486 rlim_to_rlim64(&old, &old64);
1487 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1488 ret = -EFAULT;
1489 }
1490
1491 put_task_struct(tsk);
1492 return ret;
1493 }
1494
1495 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1496 {
1497 struct rlimit new_rlim;
1498
1499 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1500 return -EFAULT;
1501 return do_prlimit(current, resource, &new_rlim, NULL);
1502 }
1503
1504 /*
1505 * It would make sense to put struct rusage in the task_struct,
1506 * except that would make the task_struct be *really big*. After
1507 * task_struct gets moved into malloc'ed memory, it would
1508 * make sense to do this. It will make moving the rest of the information
1509 * a lot simpler! (Which we're not doing right now because we're not
1510 * measuring them yet).
1511 *
1512 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1513 * races with threads incrementing their own counters. But since word
1514 * reads are atomic, we either get new values or old values and we don't
1515 * care which for the sums. We always take the siglock to protect reading
1516 * the c* fields from p->signal from races with exit.c updating those
1517 * fields when reaping, so a sample either gets all the additions of a
1518 * given child after it's reaped, or none so this sample is before reaping.
1519 *
1520 * Locking:
1521 * We need to take the siglock for CHILDEREN, SELF and BOTH
1522 * for the cases current multithreaded, non-current single threaded
1523 * non-current multithreaded. Thread traversal is now safe with
1524 * the siglock held.
1525 * Strictly speaking, we donot need to take the siglock if we are current and
1526 * single threaded, as no one else can take our signal_struct away, no one
1527 * else can reap the children to update signal->c* counters, and no one else
1528 * can race with the signal-> fields. If we do not take any lock, the
1529 * signal-> fields could be read out of order while another thread was just
1530 * exiting. So we should place a read memory barrier when we avoid the lock.
1531 * On the writer side, write memory barrier is implied in __exit_signal
1532 * as __exit_signal releases the siglock spinlock after updating the signal->
1533 * fields. But we don't do this yet to keep things simple.
1534 *
1535 */
1536
1537 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1538 {
1539 r->ru_nvcsw += t->nvcsw;
1540 r->ru_nivcsw += t->nivcsw;
1541 r->ru_minflt += t->min_flt;
1542 r->ru_majflt += t->maj_flt;
1543 r->ru_inblock += task_io_get_inblock(t);
1544 r->ru_oublock += task_io_get_oublock(t);
1545 }
1546
1547 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1548 {
1549 struct task_struct *t;
1550 unsigned long flags;
1551 u64 tgutime, tgstime, utime, stime;
1552 unsigned long maxrss = 0;
1553
1554 memset((char *)r, 0, sizeof (*r));
1555 utime = stime = 0;
1556
1557 if (who == RUSAGE_THREAD) {
1558 task_cputime_adjusted(current, &utime, &stime);
1559 accumulate_thread_rusage(p, r);
1560 maxrss = p->signal->maxrss;
1561 goto out;
1562 }
1563
1564 if (!lock_task_sighand(p, &flags))
1565 return;
1566
1567 switch (who) {
1568 case RUSAGE_BOTH:
1569 case RUSAGE_CHILDREN:
1570 utime = p->signal->cutime;
1571 stime = p->signal->cstime;
1572 r->ru_nvcsw = p->signal->cnvcsw;
1573 r->ru_nivcsw = p->signal->cnivcsw;
1574 r->ru_minflt = p->signal->cmin_flt;
1575 r->ru_majflt = p->signal->cmaj_flt;
1576 r->ru_inblock = p->signal->cinblock;
1577 r->ru_oublock = p->signal->coublock;
1578 maxrss = p->signal->cmaxrss;
1579
1580 if (who == RUSAGE_CHILDREN)
1581 break;
1582
1583 case RUSAGE_SELF:
1584 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1585 utime += tgutime;
1586 stime += tgstime;
1587 r->ru_nvcsw += p->signal->nvcsw;
1588 r->ru_nivcsw += p->signal->nivcsw;
1589 r->ru_minflt += p->signal->min_flt;
1590 r->ru_majflt += p->signal->maj_flt;
1591 r->ru_inblock += p->signal->inblock;
1592 r->ru_oublock += p->signal->oublock;
1593 if (maxrss < p->signal->maxrss)
1594 maxrss = p->signal->maxrss;
1595 t = p;
1596 do {
1597 accumulate_thread_rusage(t, r);
1598 } while_each_thread(p, t);
1599 break;
1600
1601 default:
1602 BUG();
1603 }
1604 unlock_task_sighand(p, &flags);
1605
1606 out:
1607 r->ru_utime = ns_to_timeval(utime);
1608 r->ru_stime = ns_to_timeval(stime);
1609
1610 if (who != RUSAGE_CHILDREN) {
1611 struct mm_struct *mm = get_task_mm(p);
1612
1613 if (mm) {
1614 setmax_mm_hiwater_rss(&maxrss, mm);
1615 mmput(mm);
1616 }
1617 }
1618 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1619 }
1620
1621 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1622 {
1623 struct rusage r;
1624
1625 k_getrusage(p, who, &r);
1626 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1627 }
1628
1629 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1630 {
1631 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1632 who != RUSAGE_THREAD)
1633 return -EINVAL;
1634 return getrusage(current, who, ru);
1635 }
1636
1637 #ifdef CONFIG_COMPAT
1638 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1639 {
1640 struct rusage r;
1641
1642 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1643 who != RUSAGE_THREAD)
1644 return -EINVAL;
1645
1646 k_getrusage(current, who, &r);
1647 return put_compat_rusage(&r, ru);
1648 }
1649 #endif
1650
1651 SYSCALL_DEFINE1(umask, int, mask)
1652 {
1653 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1654 return mask;
1655 }
1656
1657 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1658 {
1659 struct fd exe;
1660 struct file *old_exe, *exe_file;
1661 struct inode *inode;
1662 int err;
1663
1664 exe = fdget(fd);
1665 if (!exe.file)
1666 return -EBADF;
1667
1668 inode = file_inode(exe.file);
1669
1670 /*
1671 * Because the original mm->exe_file points to executable file, make
1672 * sure that this one is executable as well, to avoid breaking an
1673 * overall picture.
1674 */
1675 err = -EACCES;
1676 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1677 goto exit;
1678
1679 err = inode_permission(inode, MAY_EXEC);
1680 if (err)
1681 goto exit;
1682
1683 /*
1684 * Forbid mm->exe_file change if old file still mapped.
1685 */
1686 exe_file = get_mm_exe_file(mm);
1687 err = -EBUSY;
1688 if (exe_file) {
1689 struct vm_area_struct *vma;
1690
1691 down_read(&mm->mmap_sem);
1692 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1693 if (!vma->vm_file)
1694 continue;
1695 if (path_equal(&vma->vm_file->f_path,
1696 &exe_file->f_path))
1697 goto exit_err;
1698 }
1699
1700 up_read(&mm->mmap_sem);
1701 fput(exe_file);
1702 }
1703
1704 err = 0;
1705 /* set the new file, lockless */
1706 get_file(exe.file);
1707 old_exe = xchg(&mm->exe_file, exe.file);
1708 if (old_exe)
1709 fput(old_exe);
1710 exit:
1711 fdput(exe);
1712 return err;
1713 exit_err:
1714 up_read(&mm->mmap_sem);
1715 fput(exe_file);
1716 goto exit;
1717 }
1718
1719 /*
1720 * WARNING: we don't require any capability here so be very careful
1721 * in what is allowed for modification from userspace.
1722 */
1723 static int validate_prctl_map(struct prctl_mm_map *prctl_map)
1724 {
1725 unsigned long mmap_max_addr = TASK_SIZE;
1726 struct mm_struct *mm = current->mm;
1727 int error = -EINVAL, i;
1728
1729 static const unsigned char offsets[] = {
1730 offsetof(struct prctl_mm_map, start_code),
1731 offsetof(struct prctl_mm_map, end_code),
1732 offsetof(struct prctl_mm_map, start_data),
1733 offsetof(struct prctl_mm_map, end_data),
1734 offsetof(struct prctl_mm_map, start_brk),
1735 offsetof(struct prctl_mm_map, brk),
1736 offsetof(struct prctl_mm_map, start_stack),
1737 offsetof(struct prctl_mm_map, arg_start),
1738 offsetof(struct prctl_mm_map, arg_end),
1739 offsetof(struct prctl_mm_map, env_start),
1740 offsetof(struct prctl_mm_map, env_end),
1741 };
1742
1743 /*
1744 * Make sure the members are not somewhere outside
1745 * of allowed address space.
1746 */
1747 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1748 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1749
1750 if ((unsigned long)val >= mmap_max_addr ||
1751 (unsigned long)val < mmap_min_addr)
1752 goto out;
1753 }
1754
1755 /*
1756 * Make sure the pairs are ordered.
1757 */
1758 #define __prctl_check_order(__m1, __op, __m2) \
1759 ((unsigned long)prctl_map->__m1 __op \
1760 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1761 error = __prctl_check_order(start_code, <, end_code);
1762 error |= __prctl_check_order(start_data, <, end_data);
1763 error |= __prctl_check_order(start_brk, <=, brk);
1764 error |= __prctl_check_order(arg_start, <=, arg_end);
1765 error |= __prctl_check_order(env_start, <=, env_end);
1766 if (error)
1767 goto out;
1768 #undef __prctl_check_order
1769
1770 error = -EINVAL;
1771
1772 /*
1773 * @brk should be after @end_data in traditional maps.
1774 */
1775 if (prctl_map->start_brk <= prctl_map->end_data ||
1776 prctl_map->brk <= prctl_map->end_data)
1777 goto out;
1778
1779 /*
1780 * Neither we should allow to override limits if they set.
1781 */
1782 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1783 prctl_map->start_brk, prctl_map->end_data,
1784 prctl_map->start_data))
1785 goto out;
1786
1787 /*
1788 * Someone is trying to cheat the auxv vector.
1789 */
1790 if (prctl_map->auxv_size) {
1791 if (!prctl_map->auxv || prctl_map->auxv_size > sizeof(mm->saved_auxv))
1792 goto out;
1793 }
1794
1795 /*
1796 * Finally, make sure the caller has the rights to
1797 * change /proc/pid/exe link: only local root should
1798 * be allowed to.
1799 */
1800 if (prctl_map->exe_fd != (u32)-1) {
1801 struct user_namespace *ns = current_user_ns();
1802 const struct cred *cred = current_cred();
1803
1804 if (!uid_eq(cred->uid, make_kuid(ns, 0)) ||
1805 !gid_eq(cred->gid, make_kgid(ns, 0)))
1806 goto out;
1807 }
1808
1809 error = 0;
1810 out:
1811 return error;
1812 }
1813
1814 #ifdef CONFIG_CHECKPOINT_RESTORE
1815 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1816 {
1817 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1818 unsigned long user_auxv[AT_VECTOR_SIZE];
1819 struct mm_struct *mm = current->mm;
1820 int error;
1821
1822 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1823 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1824
1825 if (opt == PR_SET_MM_MAP_SIZE)
1826 return put_user((unsigned int)sizeof(prctl_map),
1827 (unsigned int __user *)addr);
1828
1829 if (data_size != sizeof(prctl_map))
1830 return -EINVAL;
1831
1832 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1833 return -EFAULT;
1834
1835 error = validate_prctl_map(&prctl_map);
1836 if (error)
1837 return error;
1838
1839 if (prctl_map.auxv_size) {
1840 memset(user_auxv, 0, sizeof(user_auxv));
1841 if (copy_from_user(user_auxv,
1842 (const void __user *)prctl_map.auxv,
1843 prctl_map.auxv_size))
1844 return -EFAULT;
1845
1846 /* Last entry must be AT_NULL as specification requires */
1847 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
1848 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
1849 }
1850
1851 if (prctl_map.exe_fd != (u32)-1) {
1852 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
1853 if (error)
1854 return error;
1855 }
1856
1857 down_write(&mm->mmap_sem);
1858
1859 /*
1860 * We don't validate if these members are pointing to
1861 * real present VMAs because application may have correspond
1862 * VMAs already unmapped and kernel uses these members for statistics
1863 * output in procfs mostly, except
1864 *
1865 * - @start_brk/@brk which are used in do_brk but kernel lookups
1866 * for VMAs when updating these memvers so anything wrong written
1867 * here cause kernel to swear at userspace program but won't lead
1868 * to any problem in kernel itself
1869 */
1870
1871 mm->start_code = prctl_map.start_code;
1872 mm->end_code = prctl_map.end_code;
1873 mm->start_data = prctl_map.start_data;
1874 mm->end_data = prctl_map.end_data;
1875 mm->start_brk = prctl_map.start_brk;
1876 mm->brk = prctl_map.brk;
1877 mm->start_stack = prctl_map.start_stack;
1878 mm->arg_start = prctl_map.arg_start;
1879 mm->arg_end = prctl_map.arg_end;
1880 mm->env_start = prctl_map.env_start;
1881 mm->env_end = prctl_map.env_end;
1882
1883 /*
1884 * Note this update of @saved_auxv is lockless thus
1885 * if someone reads this member in procfs while we're
1886 * updating -- it may get partly updated results. It's
1887 * known and acceptable trade off: we leave it as is to
1888 * not introduce additional locks here making the kernel
1889 * more complex.
1890 */
1891 if (prctl_map.auxv_size)
1892 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
1893
1894 up_write(&mm->mmap_sem);
1895 return 0;
1896 }
1897 #endif /* CONFIG_CHECKPOINT_RESTORE */
1898
1899 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
1900 unsigned long len)
1901 {
1902 /*
1903 * This doesn't move the auxiliary vector itself since it's pinned to
1904 * mm_struct, but it permits filling the vector with new values. It's
1905 * up to the caller to provide sane values here, otherwise userspace
1906 * tools which use this vector might be unhappy.
1907 */
1908 unsigned long user_auxv[AT_VECTOR_SIZE];
1909
1910 if (len > sizeof(user_auxv))
1911 return -EINVAL;
1912
1913 if (copy_from_user(user_auxv, (const void __user *)addr, len))
1914 return -EFAULT;
1915
1916 /* Make sure the last entry is always AT_NULL */
1917 user_auxv[AT_VECTOR_SIZE - 2] = 0;
1918 user_auxv[AT_VECTOR_SIZE - 1] = 0;
1919
1920 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1921
1922 task_lock(current);
1923 memcpy(mm->saved_auxv, user_auxv, len);
1924 task_unlock(current);
1925
1926 return 0;
1927 }
1928
1929 static int prctl_set_mm(int opt, unsigned long addr,
1930 unsigned long arg4, unsigned long arg5)
1931 {
1932 struct mm_struct *mm = current->mm;
1933 struct prctl_mm_map prctl_map;
1934 struct vm_area_struct *vma;
1935 int error;
1936
1937 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
1938 opt != PR_SET_MM_MAP &&
1939 opt != PR_SET_MM_MAP_SIZE)))
1940 return -EINVAL;
1941
1942 #ifdef CONFIG_CHECKPOINT_RESTORE
1943 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
1944 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
1945 #endif
1946
1947 if (!capable(CAP_SYS_RESOURCE))
1948 return -EPERM;
1949
1950 if (opt == PR_SET_MM_EXE_FILE)
1951 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
1952
1953 if (opt == PR_SET_MM_AUXV)
1954 return prctl_set_auxv(mm, addr, arg4);
1955
1956 if (addr >= TASK_SIZE || addr < mmap_min_addr)
1957 return -EINVAL;
1958
1959 error = -EINVAL;
1960
1961 down_write(&mm->mmap_sem);
1962 vma = find_vma(mm, addr);
1963
1964 prctl_map.start_code = mm->start_code;
1965 prctl_map.end_code = mm->end_code;
1966 prctl_map.start_data = mm->start_data;
1967 prctl_map.end_data = mm->end_data;
1968 prctl_map.start_brk = mm->start_brk;
1969 prctl_map.brk = mm->brk;
1970 prctl_map.start_stack = mm->start_stack;
1971 prctl_map.arg_start = mm->arg_start;
1972 prctl_map.arg_end = mm->arg_end;
1973 prctl_map.env_start = mm->env_start;
1974 prctl_map.env_end = mm->env_end;
1975 prctl_map.auxv = NULL;
1976 prctl_map.auxv_size = 0;
1977 prctl_map.exe_fd = -1;
1978
1979 switch (opt) {
1980 case PR_SET_MM_START_CODE:
1981 prctl_map.start_code = addr;
1982 break;
1983 case PR_SET_MM_END_CODE:
1984 prctl_map.end_code = addr;
1985 break;
1986 case PR_SET_MM_START_DATA:
1987 prctl_map.start_data = addr;
1988 break;
1989 case PR_SET_MM_END_DATA:
1990 prctl_map.end_data = addr;
1991 break;
1992 case PR_SET_MM_START_STACK:
1993 prctl_map.start_stack = addr;
1994 break;
1995 case PR_SET_MM_START_BRK:
1996 prctl_map.start_brk = addr;
1997 break;
1998 case PR_SET_MM_BRK:
1999 prctl_map.brk = addr;
2000 break;
2001 case PR_SET_MM_ARG_START:
2002 prctl_map.arg_start = addr;
2003 break;
2004 case PR_SET_MM_ARG_END:
2005 prctl_map.arg_end = addr;
2006 break;
2007 case PR_SET_MM_ENV_START:
2008 prctl_map.env_start = addr;
2009 break;
2010 case PR_SET_MM_ENV_END:
2011 prctl_map.env_end = addr;
2012 break;
2013 default:
2014 goto out;
2015 }
2016
2017 error = validate_prctl_map(&prctl_map);
2018 if (error)
2019 goto out;
2020
2021 switch (opt) {
2022 /*
2023 * If command line arguments and environment
2024 * are placed somewhere else on stack, we can
2025 * set them up here, ARG_START/END to setup
2026 * command line argumets and ENV_START/END
2027 * for environment.
2028 */
2029 case PR_SET_MM_START_STACK:
2030 case PR_SET_MM_ARG_START:
2031 case PR_SET_MM_ARG_END:
2032 case PR_SET_MM_ENV_START:
2033 case PR_SET_MM_ENV_END:
2034 if (!vma) {
2035 error = -EFAULT;
2036 goto out;
2037 }
2038 }
2039
2040 mm->start_code = prctl_map.start_code;
2041 mm->end_code = prctl_map.end_code;
2042 mm->start_data = prctl_map.start_data;
2043 mm->end_data = prctl_map.end_data;
2044 mm->start_brk = prctl_map.start_brk;
2045 mm->brk = prctl_map.brk;
2046 mm->start_stack = prctl_map.start_stack;
2047 mm->arg_start = prctl_map.arg_start;
2048 mm->arg_end = prctl_map.arg_end;
2049 mm->env_start = prctl_map.env_start;
2050 mm->env_end = prctl_map.env_end;
2051
2052 error = 0;
2053 out:
2054 up_write(&mm->mmap_sem);
2055 return error;
2056 }
2057
2058 #ifdef CONFIG_CHECKPOINT_RESTORE
2059 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2060 {
2061 return put_user(me->clear_child_tid, tid_addr);
2062 }
2063 #else
2064 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2065 {
2066 return -EINVAL;
2067 }
2068 #endif
2069
2070 static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2071 {
2072 /*
2073 * If task has has_child_subreaper - all its decendants
2074 * already have these flag too and new decendants will
2075 * inherit it on fork, skip them.
2076 *
2077 * If we've found child_reaper - skip descendants in
2078 * it's subtree as they will never get out pidns.
2079 */
2080 if (p->signal->has_child_subreaper ||
2081 is_child_reaper(task_pid(p)))
2082 return 0;
2083
2084 p->signal->has_child_subreaper = 1;
2085 return 1;
2086 }
2087
2088 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2089 unsigned long, arg4, unsigned long, arg5)
2090 {
2091 struct task_struct *me = current;
2092 unsigned char comm[sizeof(me->comm)];
2093 long error;
2094
2095 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2096 if (error != -ENOSYS)
2097 return error;
2098
2099 error = 0;
2100 switch (option) {
2101 case PR_SET_PDEATHSIG:
2102 if (!valid_signal(arg2)) {
2103 error = -EINVAL;
2104 break;
2105 }
2106 me->pdeath_signal = arg2;
2107 break;
2108 case PR_GET_PDEATHSIG:
2109 error = put_user(me->pdeath_signal, (int __user *)arg2);
2110 break;
2111 case PR_GET_DUMPABLE:
2112 error = get_dumpable(me->mm);
2113 break;
2114 case PR_SET_DUMPABLE:
2115 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2116 error = -EINVAL;
2117 break;
2118 }
2119 set_dumpable(me->mm, arg2);
2120 break;
2121
2122 case PR_SET_UNALIGN:
2123 error = SET_UNALIGN_CTL(me, arg2);
2124 break;
2125 case PR_GET_UNALIGN:
2126 error = GET_UNALIGN_CTL(me, arg2);
2127 break;
2128 case PR_SET_FPEMU:
2129 error = SET_FPEMU_CTL(me, arg2);
2130 break;
2131 case PR_GET_FPEMU:
2132 error = GET_FPEMU_CTL(me, arg2);
2133 break;
2134 case PR_SET_FPEXC:
2135 error = SET_FPEXC_CTL(me, arg2);
2136 break;
2137 case PR_GET_FPEXC:
2138 error = GET_FPEXC_CTL(me, arg2);
2139 break;
2140 case PR_GET_TIMING:
2141 error = PR_TIMING_STATISTICAL;
2142 break;
2143 case PR_SET_TIMING:
2144 if (arg2 != PR_TIMING_STATISTICAL)
2145 error = -EINVAL;
2146 break;
2147 case PR_SET_NAME:
2148 comm[sizeof(me->comm) - 1] = 0;
2149 if (strncpy_from_user(comm, (char __user *)arg2,
2150 sizeof(me->comm) - 1) < 0)
2151 return -EFAULT;
2152 set_task_comm(me, comm);
2153 proc_comm_connector(me);
2154 break;
2155 case PR_GET_NAME:
2156 get_task_comm(comm, me);
2157 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2158 return -EFAULT;
2159 break;
2160 case PR_GET_ENDIAN:
2161 error = GET_ENDIAN(me, arg2);
2162 break;
2163 case PR_SET_ENDIAN:
2164 error = SET_ENDIAN(me, arg2);
2165 break;
2166 case PR_GET_SECCOMP:
2167 error = prctl_get_seccomp();
2168 break;
2169 case PR_SET_SECCOMP:
2170 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2171 break;
2172 case PR_GET_TSC:
2173 error = GET_TSC_CTL(arg2);
2174 break;
2175 case PR_SET_TSC:
2176 error = SET_TSC_CTL(arg2);
2177 break;
2178 case PR_TASK_PERF_EVENTS_DISABLE:
2179 error = perf_event_task_disable();
2180 break;
2181 case PR_TASK_PERF_EVENTS_ENABLE:
2182 error = perf_event_task_enable();
2183 break;
2184 case PR_GET_TIMERSLACK:
2185 if (current->timer_slack_ns > ULONG_MAX)
2186 error = ULONG_MAX;
2187 else
2188 error = current->timer_slack_ns;
2189 break;
2190 case PR_SET_TIMERSLACK:
2191 if (arg2 <= 0)
2192 current->timer_slack_ns =
2193 current->default_timer_slack_ns;
2194 else
2195 current->timer_slack_ns = arg2;
2196 break;
2197 case PR_MCE_KILL:
2198 if (arg4 | arg5)
2199 return -EINVAL;
2200 switch (arg2) {
2201 case PR_MCE_KILL_CLEAR:
2202 if (arg3 != 0)
2203 return -EINVAL;
2204 current->flags &= ~PF_MCE_PROCESS;
2205 break;
2206 case PR_MCE_KILL_SET:
2207 current->flags |= PF_MCE_PROCESS;
2208 if (arg3 == PR_MCE_KILL_EARLY)
2209 current->flags |= PF_MCE_EARLY;
2210 else if (arg3 == PR_MCE_KILL_LATE)
2211 current->flags &= ~PF_MCE_EARLY;
2212 else if (arg3 == PR_MCE_KILL_DEFAULT)
2213 current->flags &=
2214 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2215 else
2216 return -EINVAL;
2217 break;
2218 default:
2219 return -EINVAL;
2220 }
2221 break;
2222 case PR_MCE_KILL_GET:
2223 if (arg2 | arg3 | arg4 | arg5)
2224 return -EINVAL;
2225 if (current->flags & PF_MCE_PROCESS)
2226 error = (current->flags & PF_MCE_EARLY) ?
2227 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2228 else
2229 error = PR_MCE_KILL_DEFAULT;
2230 break;
2231 case PR_SET_MM:
2232 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2233 break;
2234 case PR_GET_TID_ADDRESS:
2235 error = prctl_get_tid_address(me, (int __user **)arg2);
2236 break;
2237 case PR_SET_CHILD_SUBREAPER:
2238 me->signal->is_child_subreaper = !!arg2;
2239 if (!arg2)
2240 break;
2241
2242 walk_process_tree(me, propagate_has_child_subreaper, NULL);
2243 break;
2244 case PR_GET_CHILD_SUBREAPER:
2245 error = put_user(me->signal->is_child_subreaper,
2246 (int __user *)arg2);
2247 break;
2248 case PR_SET_NO_NEW_PRIVS:
2249 if (arg2 != 1 || arg3 || arg4 || arg5)
2250 return -EINVAL;
2251
2252 task_set_no_new_privs(current);
2253 break;
2254 case PR_GET_NO_NEW_PRIVS:
2255 if (arg2 || arg3 || arg4 || arg5)
2256 return -EINVAL;
2257 return task_no_new_privs(current) ? 1 : 0;
2258 case PR_GET_THP_DISABLE:
2259 if (arg2 || arg3 || arg4 || arg5)
2260 return -EINVAL;
2261 error = !!(me->mm->def_flags & VM_NOHUGEPAGE);
2262 break;
2263 case PR_SET_THP_DISABLE:
2264 if (arg3 || arg4 || arg5)
2265 return -EINVAL;
2266 if (down_write_killable(&me->mm->mmap_sem))
2267 return -EINTR;
2268 if (arg2)
2269 me->mm->def_flags |= VM_NOHUGEPAGE;
2270 else
2271 me->mm->def_flags &= ~VM_NOHUGEPAGE;
2272 up_write(&me->mm->mmap_sem);
2273 break;
2274 case PR_MPX_ENABLE_MANAGEMENT:
2275 if (arg2 || arg3 || arg4 || arg5)
2276 return -EINVAL;
2277 error = MPX_ENABLE_MANAGEMENT();
2278 break;
2279 case PR_MPX_DISABLE_MANAGEMENT:
2280 if (arg2 || arg3 || arg4 || arg5)
2281 return -EINVAL;
2282 error = MPX_DISABLE_MANAGEMENT();
2283 break;
2284 case PR_SET_FP_MODE:
2285 error = SET_FP_MODE(me, arg2);
2286 break;
2287 case PR_GET_FP_MODE:
2288 error = GET_FP_MODE(me);
2289 break;
2290 default:
2291 error = -EINVAL;
2292 break;
2293 }
2294 return error;
2295 }
2296
2297 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2298 struct getcpu_cache __user *, unused)
2299 {
2300 int err = 0;
2301 int cpu = raw_smp_processor_id();
2302
2303 if (cpup)
2304 err |= put_user(cpu, cpup);
2305 if (nodep)
2306 err |= put_user(cpu_to_node(cpu), nodep);
2307 return err ? -EFAULT : 0;
2308 }
2309
2310 /**
2311 * do_sysinfo - fill in sysinfo struct
2312 * @info: pointer to buffer to fill
2313 */
2314 static int do_sysinfo(struct sysinfo *info)
2315 {
2316 unsigned long mem_total, sav_total;
2317 unsigned int mem_unit, bitcount;
2318 struct timespec tp;
2319
2320 memset(info, 0, sizeof(struct sysinfo));
2321
2322 get_monotonic_boottime(&tp);
2323 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2324
2325 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2326
2327 info->procs = nr_threads;
2328
2329 si_meminfo(info);
2330 si_swapinfo(info);
2331
2332 /*
2333 * If the sum of all the available memory (i.e. ram + swap)
2334 * is less than can be stored in a 32 bit unsigned long then
2335 * we can be binary compatible with 2.2.x kernels. If not,
2336 * well, in that case 2.2.x was broken anyways...
2337 *
2338 * -Erik Andersen <andersee@debian.org>
2339 */
2340
2341 mem_total = info->totalram + info->totalswap;
2342 if (mem_total < info->totalram || mem_total < info->totalswap)
2343 goto out;
2344 bitcount = 0;
2345 mem_unit = info->mem_unit;
2346 while (mem_unit > 1) {
2347 bitcount++;
2348 mem_unit >>= 1;
2349 sav_total = mem_total;
2350 mem_total <<= 1;
2351 if (mem_total < sav_total)
2352 goto out;
2353 }
2354
2355 /*
2356 * If mem_total did not overflow, multiply all memory values by
2357 * info->mem_unit and set it to 1. This leaves things compatible
2358 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2359 * kernels...
2360 */
2361
2362 info->mem_unit = 1;
2363 info->totalram <<= bitcount;
2364 info->freeram <<= bitcount;
2365 info->sharedram <<= bitcount;
2366 info->bufferram <<= bitcount;
2367 info->totalswap <<= bitcount;
2368 info->freeswap <<= bitcount;
2369 info->totalhigh <<= bitcount;
2370 info->freehigh <<= bitcount;
2371
2372 out:
2373 return 0;
2374 }
2375
2376 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2377 {
2378 struct sysinfo val;
2379
2380 do_sysinfo(&val);
2381
2382 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2383 return -EFAULT;
2384
2385 return 0;
2386 }
2387
2388 #ifdef CONFIG_COMPAT
2389 struct compat_sysinfo {
2390 s32 uptime;
2391 u32 loads[3];
2392 u32 totalram;
2393 u32 freeram;
2394 u32 sharedram;
2395 u32 bufferram;
2396 u32 totalswap;
2397 u32 freeswap;
2398 u16 procs;
2399 u16 pad;
2400 u32 totalhigh;
2401 u32 freehigh;
2402 u32 mem_unit;
2403 char _f[20-2*sizeof(u32)-sizeof(int)];
2404 };
2405
2406 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2407 {
2408 struct sysinfo s;
2409
2410 do_sysinfo(&s);
2411
2412 /* Check to see if any memory value is too large for 32-bit and scale
2413 * down if needed
2414 */
2415 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2416 int bitcount = 0;
2417
2418 while (s.mem_unit < PAGE_SIZE) {
2419 s.mem_unit <<= 1;
2420 bitcount++;
2421 }
2422
2423 s.totalram >>= bitcount;
2424 s.freeram >>= bitcount;
2425 s.sharedram >>= bitcount;
2426 s.bufferram >>= bitcount;
2427 s.totalswap >>= bitcount;
2428 s.freeswap >>= bitcount;
2429 s.totalhigh >>= bitcount;
2430 s.freehigh >>= bitcount;
2431 }
2432
2433 if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) ||
2434 __put_user(s.uptime, &info->uptime) ||
2435 __put_user(s.loads[0], &info->loads[0]) ||
2436 __put_user(s.loads[1], &info->loads[1]) ||
2437 __put_user(s.loads[2], &info->loads[2]) ||
2438 __put_user(s.totalram, &info->totalram) ||
2439 __put_user(s.freeram, &info->freeram) ||
2440 __put_user(s.sharedram, &info->sharedram) ||
2441 __put_user(s.bufferram, &info->bufferram) ||
2442 __put_user(s.totalswap, &info->totalswap) ||
2443 __put_user(s.freeswap, &info->freeswap) ||
2444 __put_user(s.procs, &info->procs) ||
2445 __put_user(s.totalhigh, &info->totalhigh) ||
2446 __put_user(s.freehigh, &info->freehigh) ||
2447 __put_user(s.mem_unit, &info->mem_unit))
2448 return -EFAULT;
2449
2450 return 0;
2451 }
2452 #endif /* CONFIG_COMPAT */