]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/sys.c
KVM: x86/speculation: Disable Fill buffer clear within guests
[mirror_ubuntu-jammy-kernel.git] / kernel / sys.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/kernel/sys.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
15 #include <linux/fs.h>
16 #include <linux/kmod.h>
17 #include <linux/perf_event.h>
18 #include <linux/resource.h>
19 #include <linux/kernel.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/suspend.h>
28 #include <linux/tty.h>
29 #include <linux/signal.h>
30 #include <linux/cn_proc.h>
31 #include <linux/getcpu.h>
32 #include <linux/task_io_accounting_ops.h>
33 #include <linux/seccomp.h>
34 #include <linux/cpu.h>
35 #include <linux/personality.h>
36 #include <linux/ptrace.h>
37 #include <linux/fs_struct.h>
38 #include <linux/file.h>
39 #include <linux/mount.h>
40 #include <linux/gfp.h>
41 #include <linux/syscore_ops.h>
42 #include <linux/version.h>
43 #include <linux/ctype.h>
44 #include <linux/syscall_user_dispatch.h>
45
46 #include <linux/compat.h>
47 #include <linux/syscalls.h>
48 #include <linux/kprobes.h>
49 #include <linux/user_namespace.h>
50 #include <linux/time_namespace.h>
51 #include <linux/binfmts.h>
52
53 #include <linux/sched.h>
54 #include <linux/sched/autogroup.h>
55 #include <linux/sched/loadavg.h>
56 #include <linux/sched/stat.h>
57 #include <linux/sched/mm.h>
58 #include <linux/sched/coredump.h>
59 #include <linux/sched/task.h>
60 #include <linux/sched/cputime.h>
61 #include <linux/rcupdate.h>
62 #include <linux/uidgid.h>
63 #include <linux/cred.h>
64
65 #include <linux/nospec.h>
66
67 #include <linux/kmsg_dump.h>
68 /* Move somewhere else to avoid recompiling? */
69 #include <generated/utsrelease.h>
70
71 #include <linux/uaccess.h>
72 #include <asm/io.h>
73 #include <asm/unistd.h>
74
75 #include "uid16.h"
76
77 #ifndef SET_UNALIGN_CTL
78 # define SET_UNALIGN_CTL(a, b) (-EINVAL)
79 #endif
80 #ifndef GET_UNALIGN_CTL
81 # define GET_UNALIGN_CTL(a, b) (-EINVAL)
82 #endif
83 #ifndef SET_FPEMU_CTL
84 # define SET_FPEMU_CTL(a, b) (-EINVAL)
85 #endif
86 #ifndef GET_FPEMU_CTL
87 # define GET_FPEMU_CTL(a, b) (-EINVAL)
88 #endif
89 #ifndef SET_FPEXC_CTL
90 # define SET_FPEXC_CTL(a, b) (-EINVAL)
91 #endif
92 #ifndef GET_FPEXC_CTL
93 # define GET_FPEXC_CTL(a, b) (-EINVAL)
94 #endif
95 #ifndef GET_ENDIAN
96 # define GET_ENDIAN(a, b) (-EINVAL)
97 #endif
98 #ifndef SET_ENDIAN
99 # define SET_ENDIAN(a, b) (-EINVAL)
100 #endif
101 #ifndef GET_TSC_CTL
102 # define GET_TSC_CTL(a) (-EINVAL)
103 #endif
104 #ifndef SET_TSC_CTL
105 # define SET_TSC_CTL(a) (-EINVAL)
106 #endif
107 #ifndef GET_FP_MODE
108 # define GET_FP_MODE(a) (-EINVAL)
109 #endif
110 #ifndef SET_FP_MODE
111 # define SET_FP_MODE(a,b) (-EINVAL)
112 #endif
113 #ifndef SVE_SET_VL
114 # define SVE_SET_VL(a) (-EINVAL)
115 #endif
116 #ifndef SVE_GET_VL
117 # define SVE_GET_VL() (-EINVAL)
118 #endif
119 #ifndef PAC_RESET_KEYS
120 # define PAC_RESET_KEYS(a, b) (-EINVAL)
121 #endif
122 #ifndef PAC_SET_ENABLED_KEYS
123 # define PAC_SET_ENABLED_KEYS(a, b, c) (-EINVAL)
124 #endif
125 #ifndef PAC_GET_ENABLED_KEYS
126 # define PAC_GET_ENABLED_KEYS(a) (-EINVAL)
127 #endif
128 #ifndef SET_TAGGED_ADDR_CTRL
129 # define SET_TAGGED_ADDR_CTRL(a) (-EINVAL)
130 #endif
131 #ifndef GET_TAGGED_ADDR_CTRL
132 # define GET_TAGGED_ADDR_CTRL() (-EINVAL)
133 #endif
134
135 /*
136 * this is where the system-wide overflow UID and GID are defined, for
137 * architectures that now have 32-bit UID/GID but didn't in the past
138 */
139
140 int overflowuid = DEFAULT_OVERFLOWUID;
141 int overflowgid = DEFAULT_OVERFLOWGID;
142
143 EXPORT_SYMBOL(overflowuid);
144 EXPORT_SYMBOL(overflowgid);
145
146 /*
147 * the same as above, but for filesystems which can only store a 16-bit
148 * UID and GID. as such, this is needed on all architectures
149 */
150
151 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
152 int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
153
154 EXPORT_SYMBOL(fs_overflowuid);
155 EXPORT_SYMBOL(fs_overflowgid);
156
157 /*
158 * Returns true if current's euid is same as p's uid or euid,
159 * or has CAP_SYS_NICE to p's user_ns.
160 *
161 * Called with rcu_read_lock, creds are safe
162 */
163 static bool set_one_prio_perm(struct task_struct *p)
164 {
165 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
166
167 if (uid_eq(pcred->uid, cred->euid) ||
168 uid_eq(pcred->euid, cred->euid))
169 return true;
170 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
171 return true;
172 return false;
173 }
174
175 /*
176 * set the priority of a task
177 * - the caller must hold the RCU read lock
178 */
179 static int set_one_prio(struct task_struct *p, int niceval, int error)
180 {
181 int no_nice;
182
183 if (!set_one_prio_perm(p)) {
184 error = -EPERM;
185 goto out;
186 }
187 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
188 error = -EACCES;
189 goto out;
190 }
191 no_nice = security_task_setnice(p, niceval);
192 if (no_nice) {
193 error = no_nice;
194 goto out;
195 }
196 if (error == -ESRCH)
197 error = 0;
198 set_user_nice(p, niceval);
199 out:
200 return error;
201 }
202
203 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
204 {
205 struct task_struct *g, *p;
206 struct user_struct *user;
207 const struct cred *cred = current_cred();
208 int error = -EINVAL;
209 struct pid *pgrp;
210 kuid_t uid;
211
212 if (which > PRIO_USER || which < PRIO_PROCESS)
213 goto out;
214
215 /* normalize: avoid signed division (rounding problems) */
216 error = -ESRCH;
217 if (niceval < MIN_NICE)
218 niceval = MIN_NICE;
219 if (niceval > MAX_NICE)
220 niceval = MAX_NICE;
221
222 rcu_read_lock();
223 read_lock(&tasklist_lock);
224 switch (which) {
225 case PRIO_PROCESS:
226 if (who)
227 p = find_task_by_vpid(who);
228 else
229 p = current;
230 if (p)
231 error = set_one_prio(p, niceval, error);
232 break;
233 case PRIO_PGRP:
234 if (who)
235 pgrp = find_vpid(who);
236 else
237 pgrp = task_pgrp(current);
238 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
239 error = set_one_prio(p, niceval, error);
240 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
241 break;
242 case PRIO_USER:
243 uid = make_kuid(cred->user_ns, who);
244 user = cred->user;
245 if (!who)
246 uid = cred->uid;
247 else if (!uid_eq(uid, cred->uid)) {
248 user = find_user(uid);
249 if (!user)
250 goto out_unlock; /* No processes for this user */
251 }
252 do_each_thread(g, p) {
253 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
254 error = set_one_prio(p, niceval, error);
255 } while_each_thread(g, p);
256 if (!uid_eq(uid, cred->uid))
257 free_uid(user); /* For find_user() */
258 break;
259 }
260 out_unlock:
261 read_unlock(&tasklist_lock);
262 rcu_read_unlock();
263 out:
264 return error;
265 }
266
267 /*
268 * Ugh. To avoid negative return values, "getpriority()" will
269 * not return the normal nice-value, but a negated value that
270 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
271 * to stay compatible.
272 */
273 SYSCALL_DEFINE2(getpriority, int, which, int, who)
274 {
275 struct task_struct *g, *p;
276 struct user_struct *user;
277 const struct cred *cred = current_cred();
278 long niceval, retval = -ESRCH;
279 struct pid *pgrp;
280 kuid_t uid;
281
282 if (which > PRIO_USER || which < PRIO_PROCESS)
283 return -EINVAL;
284
285 rcu_read_lock();
286 read_lock(&tasklist_lock);
287 switch (which) {
288 case PRIO_PROCESS:
289 if (who)
290 p = find_task_by_vpid(who);
291 else
292 p = current;
293 if (p) {
294 niceval = nice_to_rlimit(task_nice(p));
295 if (niceval > retval)
296 retval = niceval;
297 }
298 break;
299 case PRIO_PGRP:
300 if (who)
301 pgrp = find_vpid(who);
302 else
303 pgrp = task_pgrp(current);
304 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
305 niceval = nice_to_rlimit(task_nice(p));
306 if (niceval > retval)
307 retval = niceval;
308 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
309 break;
310 case PRIO_USER:
311 uid = make_kuid(cred->user_ns, who);
312 user = cred->user;
313 if (!who)
314 uid = cred->uid;
315 else if (!uid_eq(uid, cred->uid)) {
316 user = find_user(uid);
317 if (!user)
318 goto out_unlock; /* No processes for this user */
319 }
320 do_each_thread(g, p) {
321 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
322 niceval = nice_to_rlimit(task_nice(p));
323 if (niceval > retval)
324 retval = niceval;
325 }
326 } while_each_thread(g, p);
327 if (!uid_eq(uid, cred->uid))
328 free_uid(user); /* for find_user() */
329 break;
330 }
331 out_unlock:
332 read_unlock(&tasklist_lock);
333 rcu_read_unlock();
334
335 return retval;
336 }
337
338 /*
339 * Unprivileged users may change the real gid to the effective gid
340 * or vice versa. (BSD-style)
341 *
342 * If you set the real gid at all, or set the effective gid to a value not
343 * equal to the real gid, then the saved gid is set to the new effective gid.
344 *
345 * This makes it possible for a setgid program to completely drop its
346 * privileges, which is often a useful assertion to make when you are doing
347 * a security audit over a program.
348 *
349 * The general idea is that a program which uses just setregid() will be
350 * 100% compatible with BSD. A program which uses just setgid() will be
351 * 100% compatible with POSIX with saved IDs.
352 *
353 * SMP: There are not races, the GIDs are checked only by filesystem
354 * operations (as far as semantic preservation is concerned).
355 */
356 #ifdef CONFIG_MULTIUSER
357 long __sys_setregid(gid_t rgid, gid_t egid)
358 {
359 struct user_namespace *ns = current_user_ns();
360 const struct cred *old;
361 struct cred *new;
362 int retval;
363 kgid_t krgid, kegid;
364
365 krgid = make_kgid(ns, rgid);
366 kegid = make_kgid(ns, egid);
367
368 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
369 return -EINVAL;
370 if ((egid != (gid_t) -1) && !gid_valid(kegid))
371 return -EINVAL;
372
373 new = prepare_creds();
374 if (!new)
375 return -ENOMEM;
376 old = current_cred();
377
378 retval = -EPERM;
379 if (rgid != (gid_t) -1) {
380 if (gid_eq(old->gid, krgid) ||
381 gid_eq(old->egid, krgid) ||
382 ns_capable_setid(old->user_ns, CAP_SETGID))
383 new->gid = krgid;
384 else
385 goto error;
386 }
387 if (egid != (gid_t) -1) {
388 if (gid_eq(old->gid, kegid) ||
389 gid_eq(old->egid, kegid) ||
390 gid_eq(old->sgid, kegid) ||
391 ns_capable_setid(old->user_ns, CAP_SETGID))
392 new->egid = kegid;
393 else
394 goto error;
395 }
396
397 if (rgid != (gid_t) -1 ||
398 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
399 new->sgid = new->egid;
400 new->fsgid = new->egid;
401
402 retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
403 if (retval < 0)
404 goto error;
405
406 return commit_creds(new);
407
408 error:
409 abort_creds(new);
410 return retval;
411 }
412
413 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
414 {
415 return __sys_setregid(rgid, egid);
416 }
417
418 /*
419 * setgid() is implemented like SysV w/ SAVED_IDS
420 *
421 * SMP: Same implicit races as above.
422 */
423 long __sys_setgid(gid_t gid)
424 {
425 struct user_namespace *ns = current_user_ns();
426 const struct cred *old;
427 struct cred *new;
428 int retval;
429 kgid_t kgid;
430
431 kgid = make_kgid(ns, gid);
432 if (!gid_valid(kgid))
433 return -EINVAL;
434
435 new = prepare_creds();
436 if (!new)
437 return -ENOMEM;
438 old = current_cred();
439
440 retval = -EPERM;
441 if (ns_capable_setid(old->user_ns, CAP_SETGID))
442 new->gid = new->egid = new->sgid = new->fsgid = kgid;
443 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
444 new->egid = new->fsgid = kgid;
445 else
446 goto error;
447
448 retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
449 if (retval < 0)
450 goto error;
451
452 return commit_creds(new);
453
454 error:
455 abort_creds(new);
456 return retval;
457 }
458
459 SYSCALL_DEFINE1(setgid, gid_t, gid)
460 {
461 return __sys_setgid(gid);
462 }
463
464 /*
465 * change the user struct in a credentials set to match the new UID
466 */
467 static int set_user(struct cred *new)
468 {
469 struct user_struct *new_user;
470
471 new_user = alloc_uid(new->uid);
472 if (!new_user)
473 return -EAGAIN;
474
475 free_uid(new->user);
476 new->user = new_user;
477 return 0;
478 }
479
480 static void flag_nproc_exceeded(struct cred *new)
481 {
482 if (new->ucounts == current_ucounts())
483 return;
484
485 /*
486 * We don't fail in case of NPROC limit excess here because too many
487 * poorly written programs don't check set*uid() return code, assuming
488 * it never fails if called by root. We may still enforce NPROC limit
489 * for programs doing set*uid()+execve() by harmlessly deferring the
490 * failure to the execve() stage.
491 */
492 if (is_ucounts_overlimit(new->ucounts, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)) &&
493 new->user != INIT_USER)
494 current->flags |= PF_NPROC_EXCEEDED;
495 else
496 current->flags &= ~PF_NPROC_EXCEEDED;
497 }
498
499 /*
500 * Unprivileged users may change the real uid to the effective uid
501 * or vice versa. (BSD-style)
502 *
503 * If you set the real uid at all, or set the effective uid to a value not
504 * equal to the real uid, then the saved uid is set to the new effective uid.
505 *
506 * This makes it possible for a setuid program to completely drop its
507 * privileges, which is often a useful assertion to make when you are doing
508 * a security audit over a program.
509 *
510 * The general idea is that a program which uses just setreuid() will be
511 * 100% compatible with BSD. A program which uses just setuid() will be
512 * 100% compatible with POSIX with saved IDs.
513 */
514 long __sys_setreuid(uid_t ruid, uid_t euid)
515 {
516 struct user_namespace *ns = current_user_ns();
517 const struct cred *old;
518 struct cred *new;
519 int retval;
520 kuid_t kruid, keuid;
521
522 kruid = make_kuid(ns, ruid);
523 keuid = make_kuid(ns, euid);
524
525 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
526 return -EINVAL;
527 if ((euid != (uid_t) -1) && !uid_valid(keuid))
528 return -EINVAL;
529
530 new = prepare_creds();
531 if (!new)
532 return -ENOMEM;
533 old = current_cred();
534
535 retval = -EPERM;
536 if (ruid != (uid_t) -1) {
537 new->uid = kruid;
538 if (!uid_eq(old->uid, kruid) &&
539 !uid_eq(old->euid, kruid) &&
540 !ns_capable_setid(old->user_ns, CAP_SETUID))
541 goto error;
542 }
543
544 if (euid != (uid_t) -1) {
545 new->euid = keuid;
546 if (!uid_eq(old->uid, keuid) &&
547 !uid_eq(old->euid, keuid) &&
548 !uid_eq(old->suid, keuid) &&
549 !ns_capable_setid(old->user_ns, CAP_SETUID))
550 goto error;
551 }
552
553 if (!uid_eq(new->uid, old->uid)) {
554 retval = set_user(new);
555 if (retval < 0)
556 goto error;
557 }
558 if (ruid != (uid_t) -1 ||
559 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
560 new->suid = new->euid;
561 new->fsuid = new->euid;
562
563 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
564 if (retval < 0)
565 goto error;
566
567 retval = set_cred_ucounts(new);
568 if (retval < 0)
569 goto error;
570
571 flag_nproc_exceeded(new);
572 return commit_creds(new);
573
574 error:
575 abort_creds(new);
576 return retval;
577 }
578
579 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
580 {
581 return __sys_setreuid(ruid, euid);
582 }
583
584 /*
585 * setuid() is implemented like SysV with SAVED_IDS
586 *
587 * Note that SAVED_ID's is deficient in that a setuid root program
588 * like sendmail, for example, cannot set its uid to be a normal
589 * user and then switch back, because if you're root, setuid() sets
590 * the saved uid too. If you don't like this, blame the bright people
591 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
592 * will allow a root program to temporarily drop privileges and be able to
593 * regain them by swapping the real and effective uid.
594 */
595 long __sys_setuid(uid_t uid)
596 {
597 struct user_namespace *ns = current_user_ns();
598 const struct cred *old;
599 struct cred *new;
600 int retval;
601 kuid_t kuid;
602
603 kuid = make_kuid(ns, uid);
604 if (!uid_valid(kuid))
605 return -EINVAL;
606
607 new = prepare_creds();
608 if (!new)
609 return -ENOMEM;
610 old = current_cred();
611
612 retval = -EPERM;
613 if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
614 new->suid = new->uid = kuid;
615 if (!uid_eq(kuid, old->uid)) {
616 retval = set_user(new);
617 if (retval < 0)
618 goto error;
619 }
620 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
621 goto error;
622 }
623
624 new->fsuid = new->euid = kuid;
625
626 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
627 if (retval < 0)
628 goto error;
629
630 retval = set_cred_ucounts(new);
631 if (retval < 0)
632 goto error;
633
634 flag_nproc_exceeded(new);
635 return commit_creds(new);
636
637 error:
638 abort_creds(new);
639 return retval;
640 }
641
642 SYSCALL_DEFINE1(setuid, uid_t, uid)
643 {
644 return __sys_setuid(uid);
645 }
646
647
648 /*
649 * This function implements a generic ability to update ruid, euid,
650 * and suid. This allows you to implement the 4.4 compatible seteuid().
651 */
652 long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
653 {
654 struct user_namespace *ns = current_user_ns();
655 const struct cred *old;
656 struct cred *new;
657 int retval;
658 kuid_t kruid, keuid, ksuid;
659
660 kruid = make_kuid(ns, ruid);
661 keuid = make_kuid(ns, euid);
662 ksuid = make_kuid(ns, suid);
663
664 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
665 return -EINVAL;
666
667 if ((euid != (uid_t) -1) && !uid_valid(keuid))
668 return -EINVAL;
669
670 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
671 return -EINVAL;
672
673 new = prepare_creds();
674 if (!new)
675 return -ENOMEM;
676
677 old = current_cred();
678
679 retval = -EPERM;
680 if (!ns_capable_setid(old->user_ns, CAP_SETUID)) {
681 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
682 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
683 goto error;
684 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
685 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
686 goto error;
687 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
688 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
689 goto error;
690 }
691
692 if (ruid != (uid_t) -1) {
693 new->uid = kruid;
694 if (!uid_eq(kruid, old->uid)) {
695 retval = set_user(new);
696 if (retval < 0)
697 goto error;
698 }
699 }
700 if (euid != (uid_t) -1)
701 new->euid = keuid;
702 if (suid != (uid_t) -1)
703 new->suid = ksuid;
704 new->fsuid = new->euid;
705
706 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
707 if (retval < 0)
708 goto error;
709
710 retval = set_cred_ucounts(new);
711 if (retval < 0)
712 goto error;
713
714 flag_nproc_exceeded(new);
715 return commit_creds(new);
716
717 error:
718 abort_creds(new);
719 return retval;
720 }
721
722 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
723 {
724 return __sys_setresuid(ruid, euid, suid);
725 }
726
727 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
728 {
729 const struct cred *cred = current_cred();
730 int retval;
731 uid_t ruid, euid, suid;
732
733 ruid = from_kuid_munged(cred->user_ns, cred->uid);
734 euid = from_kuid_munged(cred->user_ns, cred->euid);
735 suid = from_kuid_munged(cred->user_ns, cred->suid);
736
737 retval = put_user(ruid, ruidp);
738 if (!retval) {
739 retval = put_user(euid, euidp);
740 if (!retval)
741 return put_user(suid, suidp);
742 }
743 return retval;
744 }
745
746 /*
747 * Same as above, but for rgid, egid, sgid.
748 */
749 long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
750 {
751 struct user_namespace *ns = current_user_ns();
752 const struct cred *old;
753 struct cred *new;
754 int retval;
755 kgid_t krgid, kegid, ksgid;
756
757 krgid = make_kgid(ns, rgid);
758 kegid = make_kgid(ns, egid);
759 ksgid = make_kgid(ns, sgid);
760
761 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
762 return -EINVAL;
763 if ((egid != (gid_t) -1) && !gid_valid(kegid))
764 return -EINVAL;
765 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
766 return -EINVAL;
767
768 new = prepare_creds();
769 if (!new)
770 return -ENOMEM;
771 old = current_cred();
772
773 retval = -EPERM;
774 if (!ns_capable_setid(old->user_ns, CAP_SETGID)) {
775 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
776 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
777 goto error;
778 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
779 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
780 goto error;
781 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
782 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
783 goto error;
784 }
785
786 if (rgid != (gid_t) -1)
787 new->gid = krgid;
788 if (egid != (gid_t) -1)
789 new->egid = kegid;
790 if (sgid != (gid_t) -1)
791 new->sgid = ksgid;
792 new->fsgid = new->egid;
793
794 retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
795 if (retval < 0)
796 goto error;
797
798 return commit_creds(new);
799
800 error:
801 abort_creds(new);
802 return retval;
803 }
804
805 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
806 {
807 return __sys_setresgid(rgid, egid, sgid);
808 }
809
810 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
811 {
812 const struct cred *cred = current_cred();
813 int retval;
814 gid_t rgid, egid, sgid;
815
816 rgid = from_kgid_munged(cred->user_ns, cred->gid);
817 egid = from_kgid_munged(cred->user_ns, cred->egid);
818 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
819
820 retval = put_user(rgid, rgidp);
821 if (!retval) {
822 retval = put_user(egid, egidp);
823 if (!retval)
824 retval = put_user(sgid, sgidp);
825 }
826
827 return retval;
828 }
829
830
831 /*
832 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
833 * is used for "access()" and for the NFS daemon (letting nfsd stay at
834 * whatever uid it wants to). It normally shadows "euid", except when
835 * explicitly set by setfsuid() or for access..
836 */
837 long __sys_setfsuid(uid_t uid)
838 {
839 const struct cred *old;
840 struct cred *new;
841 uid_t old_fsuid;
842 kuid_t kuid;
843
844 old = current_cred();
845 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
846
847 kuid = make_kuid(old->user_ns, uid);
848 if (!uid_valid(kuid))
849 return old_fsuid;
850
851 new = prepare_creds();
852 if (!new)
853 return old_fsuid;
854
855 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
856 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
857 ns_capable_setid(old->user_ns, CAP_SETUID)) {
858 if (!uid_eq(kuid, old->fsuid)) {
859 new->fsuid = kuid;
860 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
861 goto change_okay;
862 }
863 }
864
865 abort_creds(new);
866 return old_fsuid;
867
868 change_okay:
869 commit_creds(new);
870 return old_fsuid;
871 }
872
873 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
874 {
875 return __sys_setfsuid(uid);
876 }
877
878 /*
879 * Samma på svenska..
880 */
881 long __sys_setfsgid(gid_t gid)
882 {
883 const struct cred *old;
884 struct cred *new;
885 gid_t old_fsgid;
886 kgid_t kgid;
887
888 old = current_cred();
889 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
890
891 kgid = make_kgid(old->user_ns, gid);
892 if (!gid_valid(kgid))
893 return old_fsgid;
894
895 new = prepare_creds();
896 if (!new)
897 return old_fsgid;
898
899 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
900 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
901 ns_capable_setid(old->user_ns, CAP_SETGID)) {
902 if (!gid_eq(kgid, old->fsgid)) {
903 new->fsgid = kgid;
904 if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
905 goto change_okay;
906 }
907 }
908
909 abort_creds(new);
910 return old_fsgid;
911
912 change_okay:
913 commit_creds(new);
914 return old_fsgid;
915 }
916
917 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
918 {
919 return __sys_setfsgid(gid);
920 }
921 #endif /* CONFIG_MULTIUSER */
922
923 /**
924 * sys_getpid - return the thread group id of the current process
925 *
926 * Note, despite the name, this returns the tgid not the pid. The tgid and
927 * the pid are identical unless CLONE_THREAD was specified on clone() in
928 * which case the tgid is the same in all threads of the same group.
929 *
930 * This is SMP safe as current->tgid does not change.
931 */
932 SYSCALL_DEFINE0(getpid)
933 {
934 return task_tgid_vnr(current);
935 }
936
937 /* Thread ID - the internal kernel "pid" */
938 SYSCALL_DEFINE0(gettid)
939 {
940 return task_pid_vnr(current);
941 }
942
943 /*
944 * Accessing ->real_parent is not SMP-safe, it could
945 * change from under us. However, we can use a stale
946 * value of ->real_parent under rcu_read_lock(), see
947 * release_task()->call_rcu(delayed_put_task_struct).
948 */
949 SYSCALL_DEFINE0(getppid)
950 {
951 int pid;
952
953 rcu_read_lock();
954 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
955 rcu_read_unlock();
956
957 return pid;
958 }
959
960 SYSCALL_DEFINE0(getuid)
961 {
962 /* Only we change this so SMP safe */
963 return from_kuid_munged(current_user_ns(), current_uid());
964 }
965
966 SYSCALL_DEFINE0(geteuid)
967 {
968 /* Only we change this so SMP safe */
969 return from_kuid_munged(current_user_ns(), current_euid());
970 }
971
972 SYSCALL_DEFINE0(getgid)
973 {
974 /* Only we change this so SMP safe */
975 return from_kgid_munged(current_user_ns(), current_gid());
976 }
977
978 SYSCALL_DEFINE0(getegid)
979 {
980 /* Only we change this so SMP safe */
981 return from_kgid_munged(current_user_ns(), current_egid());
982 }
983
984 static void do_sys_times(struct tms *tms)
985 {
986 u64 tgutime, tgstime, cutime, cstime;
987
988 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
989 cutime = current->signal->cutime;
990 cstime = current->signal->cstime;
991 tms->tms_utime = nsec_to_clock_t(tgutime);
992 tms->tms_stime = nsec_to_clock_t(tgstime);
993 tms->tms_cutime = nsec_to_clock_t(cutime);
994 tms->tms_cstime = nsec_to_clock_t(cstime);
995 }
996
997 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
998 {
999 if (tbuf) {
1000 struct tms tmp;
1001
1002 do_sys_times(&tmp);
1003 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1004 return -EFAULT;
1005 }
1006 force_successful_syscall_return();
1007 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1008 }
1009
1010 #ifdef CONFIG_COMPAT
1011 static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
1012 {
1013 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
1014 }
1015
1016 COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
1017 {
1018 if (tbuf) {
1019 struct tms tms;
1020 struct compat_tms tmp;
1021
1022 do_sys_times(&tms);
1023 /* Convert our struct tms to the compat version. */
1024 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
1025 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
1026 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1027 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1028 if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1029 return -EFAULT;
1030 }
1031 force_successful_syscall_return();
1032 return compat_jiffies_to_clock_t(jiffies);
1033 }
1034 #endif
1035
1036 /*
1037 * This needs some heavy checking ...
1038 * I just haven't the stomach for it. I also don't fully
1039 * understand sessions/pgrp etc. Let somebody who does explain it.
1040 *
1041 * OK, I think I have the protection semantics right.... this is really
1042 * only important on a multi-user system anyway, to make sure one user
1043 * can't send a signal to a process owned by another. -TYT, 12/12/91
1044 *
1045 * !PF_FORKNOEXEC check to conform completely to POSIX.
1046 */
1047 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1048 {
1049 struct task_struct *p;
1050 struct task_struct *group_leader = current->group_leader;
1051 struct pid *pgrp;
1052 int err;
1053
1054 if (!pid)
1055 pid = task_pid_vnr(group_leader);
1056 if (!pgid)
1057 pgid = pid;
1058 if (pgid < 0)
1059 return -EINVAL;
1060 rcu_read_lock();
1061
1062 /* From this point forward we keep holding onto the tasklist lock
1063 * so that our parent does not change from under us. -DaveM
1064 */
1065 write_lock_irq(&tasklist_lock);
1066
1067 err = -ESRCH;
1068 p = find_task_by_vpid(pid);
1069 if (!p)
1070 goto out;
1071
1072 err = -EINVAL;
1073 if (!thread_group_leader(p))
1074 goto out;
1075
1076 if (same_thread_group(p->real_parent, group_leader)) {
1077 err = -EPERM;
1078 if (task_session(p) != task_session(group_leader))
1079 goto out;
1080 err = -EACCES;
1081 if (!(p->flags & PF_FORKNOEXEC))
1082 goto out;
1083 } else {
1084 err = -ESRCH;
1085 if (p != group_leader)
1086 goto out;
1087 }
1088
1089 err = -EPERM;
1090 if (p->signal->leader)
1091 goto out;
1092
1093 pgrp = task_pid(p);
1094 if (pgid != pid) {
1095 struct task_struct *g;
1096
1097 pgrp = find_vpid(pgid);
1098 g = pid_task(pgrp, PIDTYPE_PGID);
1099 if (!g || task_session(g) != task_session(group_leader))
1100 goto out;
1101 }
1102
1103 err = security_task_setpgid(p, pgid);
1104 if (err)
1105 goto out;
1106
1107 if (task_pgrp(p) != pgrp)
1108 change_pid(p, PIDTYPE_PGID, pgrp);
1109
1110 err = 0;
1111 out:
1112 /* All paths lead to here, thus we are safe. -DaveM */
1113 write_unlock_irq(&tasklist_lock);
1114 rcu_read_unlock();
1115 return err;
1116 }
1117
1118 static int do_getpgid(pid_t pid)
1119 {
1120 struct task_struct *p;
1121 struct pid *grp;
1122 int retval;
1123
1124 rcu_read_lock();
1125 if (!pid)
1126 grp = task_pgrp(current);
1127 else {
1128 retval = -ESRCH;
1129 p = find_task_by_vpid(pid);
1130 if (!p)
1131 goto out;
1132 grp = task_pgrp(p);
1133 if (!grp)
1134 goto out;
1135
1136 retval = security_task_getpgid(p);
1137 if (retval)
1138 goto out;
1139 }
1140 retval = pid_vnr(grp);
1141 out:
1142 rcu_read_unlock();
1143 return retval;
1144 }
1145
1146 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1147 {
1148 return do_getpgid(pid);
1149 }
1150
1151 #ifdef __ARCH_WANT_SYS_GETPGRP
1152
1153 SYSCALL_DEFINE0(getpgrp)
1154 {
1155 return do_getpgid(0);
1156 }
1157
1158 #endif
1159
1160 SYSCALL_DEFINE1(getsid, pid_t, pid)
1161 {
1162 struct task_struct *p;
1163 struct pid *sid;
1164 int retval;
1165
1166 rcu_read_lock();
1167 if (!pid)
1168 sid = task_session(current);
1169 else {
1170 retval = -ESRCH;
1171 p = find_task_by_vpid(pid);
1172 if (!p)
1173 goto out;
1174 sid = task_session(p);
1175 if (!sid)
1176 goto out;
1177
1178 retval = security_task_getsid(p);
1179 if (retval)
1180 goto out;
1181 }
1182 retval = pid_vnr(sid);
1183 out:
1184 rcu_read_unlock();
1185 return retval;
1186 }
1187
1188 static void set_special_pids(struct pid *pid)
1189 {
1190 struct task_struct *curr = current->group_leader;
1191
1192 if (task_session(curr) != pid)
1193 change_pid(curr, PIDTYPE_SID, pid);
1194
1195 if (task_pgrp(curr) != pid)
1196 change_pid(curr, PIDTYPE_PGID, pid);
1197 }
1198
1199 int ksys_setsid(void)
1200 {
1201 struct task_struct *group_leader = current->group_leader;
1202 struct pid *sid = task_pid(group_leader);
1203 pid_t session = pid_vnr(sid);
1204 int err = -EPERM;
1205
1206 write_lock_irq(&tasklist_lock);
1207 /* Fail if I am already a session leader */
1208 if (group_leader->signal->leader)
1209 goto out;
1210
1211 /* Fail if a process group id already exists that equals the
1212 * proposed session id.
1213 */
1214 if (pid_task(sid, PIDTYPE_PGID))
1215 goto out;
1216
1217 group_leader->signal->leader = 1;
1218 set_special_pids(sid);
1219
1220 proc_clear_tty(group_leader);
1221
1222 err = session;
1223 out:
1224 write_unlock_irq(&tasklist_lock);
1225 if (err > 0) {
1226 proc_sid_connector(group_leader);
1227 sched_autogroup_create_attach(group_leader);
1228 }
1229 return err;
1230 }
1231
1232 SYSCALL_DEFINE0(setsid)
1233 {
1234 return ksys_setsid();
1235 }
1236
1237 DECLARE_RWSEM(uts_sem);
1238
1239 #ifdef COMPAT_UTS_MACHINE
1240 static char compat_uts_machine[__OLD_UTS_LEN+1] = COMPAT_UTS_MACHINE;
1241
1242 static int __init parse_compat_uts_machine(char *arg)
1243 {
1244 strncpy(compat_uts_machine, arg, __OLD_UTS_LEN);
1245 compat_uts_machine[__OLD_UTS_LEN] = 0;
1246 return 0;
1247 }
1248 early_param("compat_uts_machine", parse_compat_uts_machine);
1249
1250 #undef COMPAT_UTS_MACHINE
1251 #define COMPAT_UTS_MACHINE compat_uts_machine
1252 #endif
1253
1254 #ifdef COMPAT_UTS_MACHINE
1255 #define override_architecture(name) \
1256 (personality(current->personality) == PER_LINUX32 && \
1257 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1258 sizeof(COMPAT_UTS_MACHINE)))
1259 #else
1260 #define override_architecture(name) 0
1261 #endif
1262
1263 /*
1264 * Work around broken programs that cannot handle "Linux 3.0".
1265 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1266 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1267 * 2.6.60.
1268 */
1269 static int override_release(char __user *release, size_t len)
1270 {
1271 int ret = 0;
1272
1273 if (current->personality & UNAME26) {
1274 const char *rest = UTS_RELEASE;
1275 char buf[65] = { 0 };
1276 int ndots = 0;
1277 unsigned v;
1278 size_t copy;
1279
1280 while (*rest) {
1281 if (*rest == '.' && ++ndots >= 3)
1282 break;
1283 if (!isdigit(*rest) && *rest != '.')
1284 break;
1285 rest++;
1286 }
1287 v = LINUX_VERSION_PATCHLEVEL + 60;
1288 copy = clamp_t(size_t, len, 1, sizeof(buf));
1289 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1290 ret = copy_to_user(release, buf, copy + 1);
1291 }
1292 return ret;
1293 }
1294
1295 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1296 {
1297 struct new_utsname tmp;
1298
1299 down_read(&uts_sem);
1300 memcpy(&tmp, utsname(), sizeof(tmp));
1301 up_read(&uts_sem);
1302 if (copy_to_user(name, &tmp, sizeof(tmp)))
1303 return -EFAULT;
1304
1305 if (override_release(name->release, sizeof(name->release)))
1306 return -EFAULT;
1307 if (override_architecture(name))
1308 return -EFAULT;
1309 return 0;
1310 }
1311
1312 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1313 /*
1314 * Old cruft
1315 */
1316 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1317 {
1318 struct old_utsname tmp;
1319
1320 if (!name)
1321 return -EFAULT;
1322
1323 down_read(&uts_sem);
1324 memcpy(&tmp, utsname(), sizeof(tmp));
1325 up_read(&uts_sem);
1326 if (copy_to_user(name, &tmp, sizeof(tmp)))
1327 return -EFAULT;
1328
1329 if (override_release(name->release, sizeof(name->release)))
1330 return -EFAULT;
1331 if (override_architecture(name))
1332 return -EFAULT;
1333 return 0;
1334 }
1335
1336 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1337 {
1338 struct oldold_utsname tmp;
1339
1340 if (!name)
1341 return -EFAULT;
1342
1343 memset(&tmp, 0, sizeof(tmp));
1344
1345 down_read(&uts_sem);
1346 memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1347 memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1348 memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1349 memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1350 memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1351 up_read(&uts_sem);
1352 if (copy_to_user(name, &tmp, sizeof(tmp)))
1353 return -EFAULT;
1354
1355 if (override_architecture(name))
1356 return -EFAULT;
1357 if (override_release(name->release, sizeof(name->release)))
1358 return -EFAULT;
1359 return 0;
1360 }
1361 #endif
1362
1363 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1364 {
1365 int errno;
1366 char tmp[__NEW_UTS_LEN];
1367
1368 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1369 return -EPERM;
1370
1371 if (len < 0 || len > __NEW_UTS_LEN)
1372 return -EINVAL;
1373 errno = -EFAULT;
1374 if (!copy_from_user(tmp, name, len)) {
1375 struct new_utsname *u;
1376
1377 down_write(&uts_sem);
1378 u = utsname();
1379 memcpy(u->nodename, tmp, len);
1380 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1381 errno = 0;
1382 uts_proc_notify(UTS_PROC_HOSTNAME);
1383 up_write(&uts_sem);
1384 }
1385 return errno;
1386 }
1387
1388 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1389
1390 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1391 {
1392 int i;
1393 struct new_utsname *u;
1394 char tmp[__NEW_UTS_LEN + 1];
1395
1396 if (len < 0)
1397 return -EINVAL;
1398 down_read(&uts_sem);
1399 u = utsname();
1400 i = 1 + strlen(u->nodename);
1401 if (i > len)
1402 i = len;
1403 memcpy(tmp, u->nodename, i);
1404 up_read(&uts_sem);
1405 if (copy_to_user(name, tmp, i))
1406 return -EFAULT;
1407 return 0;
1408 }
1409
1410 #endif
1411
1412 /*
1413 * Only setdomainname; getdomainname can be implemented by calling
1414 * uname()
1415 */
1416 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1417 {
1418 int errno;
1419 char tmp[__NEW_UTS_LEN];
1420
1421 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1422 return -EPERM;
1423 if (len < 0 || len > __NEW_UTS_LEN)
1424 return -EINVAL;
1425
1426 errno = -EFAULT;
1427 if (!copy_from_user(tmp, name, len)) {
1428 struct new_utsname *u;
1429
1430 down_write(&uts_sem);
1431 u = utsname();
1432 memcpy(u->domainname, tmp, len);
1433 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1434 errno = 0;
1435 uts_proc_notify(UTS_PROC_DOMAINNAME);
1436 up_write(&uts_sem);
1437 }
1438 return errno;
1439 }
1440
1441 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1442 {
1443 struct rlimit value;
1444 int ret;
1445
1446 ret = do_prlimit(current, resource, NULL, &value);
1447 if (!ret)
1448 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1449
1450 return ret;
1451 }
1452
1453 #ifdef CONFIG_COMPAT
1454
1455 COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1456 struct compat_rlimit __user *, rlim)
1457 {
1458 struct rlimit r;
1459 struct compat_rlimit r32;
1460
1461 if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1462 return -EFAULT;
1463
1464 if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1465 r.rlim_cur = RLIM_INFINITY;
1466 else
1467 r.rlim_cur = r32.rlim_cur;
1468 if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1469 r.rlim_max = RLIM_INFINITY;
1470 else
1471 r.rlim_max = r32.rlim_max;
1472 return do_prlimit(current, resource, &r, NULL);
1473 }
1474
1475 COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1476 struct compat_rlimit __user *, rlim)
1477 {
1478 struct rlimit r;
1479 int ret;
1480
1481 ret = do_prlimit(current, resource, NULL, &r);
1482 if (!ret) {
1483 struct compat_rlimit r32;
1484 if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1485 r32.rlim_cur = COMPAT_RLIM_INFINITY;
1486 else
1487 r32.rlim_cur = r.rlim_cur;
1488 if (r.rlim_max > COMPAT_RLIM_INFINITY)
1489 r32.rlim_max = COMPAT_RLIM_INFINITY;
1490 else
1491 r32.rlim_max = r.rlim_max;
1492
1493 if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1494 return -EFAULT;
1495 }
1496 return ret;
1497 }
1498
1499 #endif
1500
1501 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1502
1503 /*
1504 * Back compatibility for getrlimit. Needed for some apps.
1505 */
1506 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1507 struct rlimit __user *, rlim)
1508 {
1509 struct rlimit x;
1510 if (resource >= RLIM_NLIMITS)
1511 return -EINVAL;
1512
1513 resource = array_index_nospec(resource, RLIM_NLIMITS);
1514 task_lock(current->group_leader);
1515 x = current->signal->rlim[resource];
1516 task_unlock(current->group_leader);
1517 if (x.rlim_cur > 0x7FFFFFFF)
1518 x.rlim_cur = 0x7FFFFFFF;
1519 if (x.rlim_max > 0x7FFFFFFF)
1520 x.rlim_max = 0x7FFFFFFF;
1521 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1522 }
1523
1524 #ifdef CONFIG_COMPAT
1525 COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1526 struct compat_rlimit __user *, rlim)
1527 {
1528 struct rlimit r;
1529
1530 if (resource >= RLIM_NLIMITS)
1531 return -EINVAL;
1532
1533 resource = array_index_nospec(resource, RLIM_NLIMITS);
1534 task_lock(current->group_leader);
1535 r = current->signal->rlim[resource];
1536 task_unlock(current->group_leader);
1537 if (r.rlim_cur > 0x7FFFFFFF)
1538 r.rlim_cur = 0x7FFFFFFF;
1539 if (r.rlim_max > 0x7FFFFFFF)
1540 r.rlim_max = 0x7FFFFFFF;
1541
1542 if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1543 put_user(r.rlim_max, &rlim->rlim_max))
1544 return -EFAULT;
1545 return 0;
1546 }
1547 #endif
1548
1549 #endif
1550
1551 static inline bool rlim64_is_infinity(__u64 rlim64)
1552 {
1553 #if BITS_PER_LONG < 64
1554 return rlim64 >= ULONG_MAX;
1555 #else
1556 return rlim64 == RLIM64_INFINITY;
1557 #endif
1558 }
1559
1560 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1561 {
1562 if (rlim->rlim_cur == RLIM_INFINITY)
1563 rlim64->rlim_cur = RLIM64_INFINITY;
1564 else
1565 rlim64->rlim_cur = rlim->rlim_cur;
1566 if (rlim->rlim_max == RLIM_INFINITY)
1567 rlim64->rlim_max = RLIM64_INFINITY;
1568 else
1569 rlim64->rlim_max = rlim->rlim_max;
1570 }
1571
1572 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1573 {
1574 if (rlim64_is_infinity(rlim64->rlim_cur))
1575 rlim->rlim_cur = RLIM_INFINITY;
1576 else
1577 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1578 if (rlim64_is_infinity(rlim64->rlim_max))
1579 rlim->rlim_max = RLIM_INFINITY;
1580 else
1581 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1582 }
1583
1584 /* make sure you are allowed to change @tsk limits before calling this */
1585 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1586 struct rlimit *new_rlim, struct rlimit *old_rlim)
1587 {
1588 struct rlimit *rlim;
1589 int retval = 0;
1590
1591 if (resource >= RLIM_NLIMITS)
1592 return -EINVAL;
1593 if (new_rlim) {
1594 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1595 return -EINVAL;
1596 if (resource == RLIMIT_NOFILE &&
1597 new_rlim->rlim_max > sysctl_nr_open)
1598 return -EPERM;
1599 }
1600
1601 /* protect tsk->signal and tsk->sighand from disappearing */
1602 read_lock(&tasklist_lock);
1603 if (!tsk->sighand) {
1604 retval = -ESRCH;
1605 goto out;
1606 }
1607
1608 rlim = tsk->signal->rlim + resource;
1609 task_lock(tsk->group_leader);
1610 if (new_rlim) {
1611 /* Keep the capable check against init_user_ns until
1612 cgroups can contain all limits */
1613 if (new_rlim->rlim_max > rlim->rlim_max &&
1614 !capable(CAP_SYS_RESOURCE))
1615 retval = -EPERM;
1616 if (!retval)
1617 retval = security_task_setrlimit(tsk, resource, new_rlim);
1618 }
1619 if (!retval) {
1620 if (old_rlim)
1621 *old_rlim = *rlim;
1622 if (new_rlim)
1623 *rlim = *new_rlim;
1624 }
1625 task_unlock(tsk->group_leader);
1626
1627 /*
1628 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1629 * infinite. In case of RLIM_INFINITY the posix CPU timer code
1630 * ignores the rlimit.
1631 */
1632 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1633 new_rlim->rlim_cur != RLIM_INFINITY &&
1634 IS_ENABLED(CONFIG_POSIX_TIMERS))
1635 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1636 out:
1637 read_unlock(&tasklist_lock);
1638 return retval;
1639 }
1640
1641 /* rcu lock must be held */
1642 static int check_prlimit_permission(struct task_struct *task,
1643 unsigned int flags)
1644 {
1645 const struct cred *cred = current_cred(), *tcred;
1646 bool id_match;
1647
1648 if (current == task)
1649 return 0;
1650
1651 tcred = __task_cred(task);
1652 id_match = (uid_eq(cred->uid, tcred->euid) &&
1653 uid_eq(cred->uid, tcred->suid) &&
1654 uid_eq(cred->uid, tcred->uid) &&
1655 gid_eq(cred->gid, tcred->egid) &&
1656 gid_eq(cred->gid, tcred->sgid) &&
1657 gid_eq(cred->gid, tcred->gid));
1658 if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1659 return -EPERM;
1660
1661 return security_task_prlimit(cred, tcred, flags);
1662 }
1663
1664 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1665 const struct rlimit64 __user *, new_rlim,
1666 struct rlimit64 __user *, old_rlim)
1667 {
1668 struct rlimit64 old64, new64;
1669 struct rlimit old, new;
1670 struct task_struct *tsk;
1671 unsigned int checkflags = 0;
1672 int ret;
1673
1674 if (old_rlim)
1675 checkflags |= LSM_PRLIMIT_READ;
1676
1677 if (new_rlim) {
1678 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1679 return -EFAULT;
1680 rlim64_to_rlim(&new64, &new);
1681 checkflags |= LSM_PRLIMIT_WRITE;
1682 }
1683
1684 rcu_read_lock();
1685 tsk = pid ? find_task_by_vpid(pid) : current;
1686 if (!tsk) {
1687 rcu_read_unlock();
1688 return -ESRCH;
1689 }
1690 ret = check_prlimit_permission(tsk, checkflags);
1691 if (ret) {
1692 rcu_read_unlock();
1693 return ret;
1694 }
1695 get_task_struct(tsk);
1696 rcu_read_unlock();
1697
1698 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1699 old_rlim ? &old : NULL);
1700
1701 if (!ret && old_rlim) {
1702 rlim_to_rlim64(&old, &old64);
1703 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1704 ret = -EFAULT;
1705 }
1706
1707 put_task_struct(tsk);
1708 return ret;
1709 }
1710
1711 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1712 {
1713 struct rlimit new_rlim;
1714
1715 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1716 return -EFAULT;
1717 return do_prlimit(current, resource, &new_rlim, NULL);
1718 }
1719
1720 /*
1721 * It would make sense to put struct rusage in the task_struct,
1722 * except that would make the task_struct be *really big*. After
1723 * task_struct gets moved into malloc'ed memory, it would
1724 * make sense to do this. It will make moving the rest of the information
1725 * a lot simpler! (Which we're not doing right now because we're not
1726 * measuring them yet).
1727 *
1728 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1729 * races with threads incrementing their own counters. But since word
1730 * reads are atomic, we either get new values or old values and we don't
1731 * care which for the sums. We always take the siglock to protect reading
1732 * the c* fields from p->signal from races with exit.c updating those
1733 * fields when reaping, so a sample either gets all the additions of a
1734 * given child after it's reaped, or none so this sample is before reaping.
1735 *
1736 * Locking:
1737 * We need to take the siglock for CHILDEREN, SELF and BOTH
1738 * for the cases current multithreaded, non-current single threaded
1739 * non-current multithreaded. Thread traversal is now safe with
1740 * the siglock held.
1741 * Strictly speaking, we donot need to take the siglock if we are current and
1742 * single threaded, as no one else can take our signal_struct away, no one
1743 * else can reap the children to update signal->c* counters, and no one else
1744 * can race with the signal-> fields. If we do not take any lock, the
1745 * signal-> fields could be read out of order while another thread was just
1746 * exiting. So we should place a read memory barrier when we avoid the lock.
1747 * On the writer side, write memory barrier is implied in __exit_signal
1748 * as __exit_signal releases the siglock spinlock after updating the signal->
1749 * fields. But we don't do this yet to keep things simple.
1750 *
1751 */
1752
1753 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1754 {
1755 r->ru_nvcsw += t->nvcsw;
1756 r->ru_nivcsw += t->nivcsw;
1757 r->ru_minflt += t->min_flt;
1758 r->ru_majflt += t->maj_flt;
1759 r->ru_inblock += task_io_get_inblock(t);
1760 r->ru_oublock += task_io_get_oublock(t);
1761 }
1762
1763 void getrusage(struct task_struct *p, int who, struct rusage *r)
1764 {
1765 struct task_struct *t;
1766 unsigned long flags;
1767 u64 tgutime, tgstime, utime, stime;
1768 unsigned long maxrss = 0;
1769
1770 memset((char *)r, 0, sizeof (*r));
1771 utime = stime = 0;
1772
1773 if (who == RUSAGE_THREAD) {
1774 task_cputime_adjusted(current, &utime, &stime);
1775 accumulate_thread_rusage(p, r);
1776 maxrss = p->signal->maxrss;
1777 goto out;
1778 }
1779
1780 if (!lock_task_sighand(p, &flags))
1781 return;
1782
1783 switch (who) {
1784 case RUSAGE_BOTH:
1785 case RUSAGE_CHILDREN:
1786 utime = p->signal->cutime;
1787 stime = p->signal->cstime;
1788 r->ru_nvcsw = p->signal->cnvcsw;
1789 r->ru_nivcsw = p->signal->cnivcsw;
1790 r->ru_minflt = p->signal->cmin_flt;
1791 r->ru_majflt = p->signal->cmaj_flt;
1792 r->ru_inblock = p->signal->cinblock;
1793 r->ru_oublock = p->signal->coublock;
1794 maxrss = p->signal->cmaxrss;
1795
1796 if (who == RUSAGE_CHILDREN)
1797 break;
1798 fallthrough;
1799
1800 case RUSAGE_SELF:
1801 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1802 utime += tgutime;
1803 stime += tgstime;
1804 r->ru_nvcsw += p->signal->nvcsw;
1805 r->ru_nivcsw += p->signal->nivcsw;
1806 r->ru_minflt += p->signal->min_flt;
1807 r->ru_majflt += p->signal->maj_flt;
1808 r->ru_inblock += p->signal->inblock;
1809 r->ru_oublock += p->signal->oublock;
1810 if (maxrss < p->signal->maxrss)
1811 maxrss = p->signal->maxrss;
1812 t = p;
1813 do {
1814 accumulate_thread_rusage(t, r);
1815 } while_each_thread(p, t);
1816 break;
1817
1818 default:
1819 BUG();
1820 }
1821 unlock_task_sighand(p, &flags);
1822
1823 out:
1824 r->ru_utime = ns_to_kernel_old_timeval(utime);
1825 r->ru_stime = ns_to_kernel_old_timeval(stime);
1826
1827 if (who != RUSAGE_CHILDREN) {
1828 struct mm_struct *mm = get_task_mm(p);
1829
1830 if (mm) {
1831 setmax_mm_hiwater_rss(&maxrss, mm);
1832 mmput(mm);
1833 }
1834 }
1835 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1836 }
1837
1838 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1839 {
1840 struct rusage r;
1841
1842 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1843 who != RUSAGE_THREAD)
1844 return -EINVAL;
1845
1846 getrusage(current, who, &r);
1847 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1848 }
1849
1850 #ifdef CONFIG_COMPAT
1851 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1852 {
1853 struct rusage r;
1854
1855 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1856 who != RUSAGE_THREAD)
1857 return -EINVAL;
1858
1859 getrusage(current, who, &r);
1860 return put_compat_rusage(&r, ru);
1861 }
1862 #endif
1863
1864 SYSCALL_DEFINE1(umask, int, mask)
1865 {
1866 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1867 return mask;
1868 }
1869
1870 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1871 {
1872 struct fd exe;
1873 struct inode *inode;
1874 int err;
1875
1876 exe = fdget(fd);
1877 if (!exe.file)
1878 return -EBADF;
1879
1880 inode = file_inode(exe.file);
1881
1882 /*
1883 * Because the original mm->exe_file points to executable file, make
1884 * sure that this one is executable as well, to avoid breaking an
1885 * overall picture.
1886 */
1887 err = -EACCES;
1888 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1889 goto exit;
1890
1891 err = file_permission(exe.file, MAY_EXEC);
1892 if (err)
1893 goto exit;
1894
1895 err = replace_mm_exe_file(mm, exe.file);
1896 exit:
1897 fdput(exe);
1898 return err;
1899 }
1900
1901 /*
1902 * Check arithmetic relations of passed addresses.
1903 *
1904 * WARNING: we don't require any capability here so be very careful
1905 * in what is allowed for modification from userspace.
1906 */
1907 static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1908 {
1909 unsigned long mmap_max_addr = TASK_SIZE;
1910 int error = -EINVAL, i;
1911
1912 static const unsigned char offsets[] = {
1913 offsetof(struct prctl_mm_map, start_code),
1914 offsetof(struct prctl_mm_map, end_code),
1915 offsetof(struct prctl_mm_map, start_data),
1916 offsetof(struct prctl_mm_map, end_data),
1917 offsetof(struct prctl_mm_map, start_brk),
1918 offsetof(struct prctl_mm_map, brk),
1919 offsetof(struct prctl_mm_map, start_stack),
1920 offsetof(struct prctl_mm_map, arg_start),
1921 offsetof(struct prctl_mm_map, arg_end),
1922 offsetof(struct prctl_mm_map, env_start),
1923 offsetof(struct prctl_mm_map, env_end),
1924 };
1925
1926 /*
1927 * Make sure the members are not somewhere outside
1928 * of allowed address space.
1929 */
1930 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1931 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1932
1933 if ((unsigned long)val >= mmap_max_addr ||
1934 (unsigned long)val < mmap_min_addr)
1935 goto out;
1936 }
1937
1938 /*
1939 * Make sure the pairs are ordered.
1940 */
1941 #define __prctl_check_order(__m1, __op, __m2) \
1942 ((unsigned long)prctl_map->__m1 __op \
1943 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1944 error = __prctl_check_order(start_code, <, end_code);
1945 error |= __prctl_check_order(start_data,<=, end_data);
1946 error |= __prctl_check_order(start_brk, <=, brk);
1947 error |= __prctl_check_order(arg_start, <=, arg_end);
1948 error |= __prctl_check_order(env_start, <=, env_end);
1949 if (error)
1950 goto out;
1951 #undef __prctl_check_order
1952
1953 error = -EINVAL;
1954
1955 /*
1956 * Neither we should allow to override limits if they set.
1957 */
1958 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1959 prctl_map->start_brk, prctl_map->end_data,
1960 prctl_map->start_data))
1961 goto out;
1962
1963 error = 0;
1964 out:
1965 return error;
1966 }
1967
1968 #ifdef CONFIG_CHECKPOINT_RESTORE
1969 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1970 {
1971 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1972 unsigned long user_auxv[AT_VECTOR_SIZE];
1973 struct mm_struct *mm = current->mm;
1974 int error;
1975
1976 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1977 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1978
1979 if (opt == PR_SET_MM_MAP_SIZE)
1980 return put_user((unsigned int)sizeof(prctl_map),
1981 (unsigned int __user *)addr);
1982
1983 if (data_size != sizeof(prctl_map))
1984 return -EINVAL;
1985
1986 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1987 return -EFAULT;
1988
1989 error = validate_prctl_map_addr(&prctl_map);
1990 if (error)
1991 return error;
1992
1993 if (prctl_map.auxv_size) {
1994 /*
1995 * Someone is trying to cheat the auxv vector.
1996 */
1997 if (!prctl_map.auxv ||
1998 prctl_map.auxv_size > sizeof(mm->saved_auxv))
1999 return -EINVAL;
2000
2001 memset(user_auxv, 0, sizeof(user_auxv));
2002 if (copy_from_user(user_auxv,
2003 (const void __user *)prctl_map.auxv,
2004 prctl_map.auxv_size))
2005 return -EFAULT;
2006
2007 /* Last entry must be AT_NULL as specification requires */
2008 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2009 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2010 }
2011
2012 if (prctl_map.exe_fd != (u32)-1) {
2013 /*
2014 * Check if the current user is checkpoint/restore capable.
2015 * At the time of this writing, it checks for CAP_SYS_ADMIN
2016 * or CAP_CHECKPOINT_RESTORE.
2017 * Note that a user with access to ptrace can masquerade an
2018 * arbitrary program as any executable, even setuid ones.
2019 * This may have implications in the tomoyo subsystem.
2020 */
2021 if (!checkpoint_restore_ns_capable(current_user_ns()))
2022 return -EPERM;
2023
2024 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2025 if (error)
2026 return error;
2027 }
2028
2029 /*
2030 * arg_lock protects concurrent updates but we still need mmap_lock for
2031 * read to exclude races with sys_brk.
2032 */
2033 mmap_read_lock(mm);
2034
2035 /*
2036 * We don't validate if these members are pointing to
2037 * real present VMAs because application may have correspond
2038 * VMAs already unmapped and kernel uses these members for statistics
2039 * output in procfs mostly, except
2040 *
2041 * - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2042 * for VMAs when updating these members so anything wrong written
2043 * here cause kernel to swear at userspace program but won't lead
2044 * to any problem in kernel itself
2045 */
2046
2047 spin_lock(&mm->arg_lock);
2048 mm->start_code = prctl_map.start_code;
2049 mm->end_code = prctl_map.end_code;
2050 mm->start_data = prctl_map.start_data;
2051 mm->end_data = prctl_map.end_data;
2052 mm->start_brk = prctl_map.start_brk;
2053 mm->brk = prctl_map.brk;
2054 mm->start_stack = prctl_map.start_stack;
2055 mm->arg_start = prctl_map.arg_start;
2056 mm->arg_end = prctl_map.arg_end;
2057 mm->env_start = prctl_map.env_start;
2058 mm->env_end = prctl_map.env_end;
2059 spin_unlock(&mm->arg_lock);
2060
2061 /*
2062 * Note this update of @saved_auxv is lockless thus
2063 * if someone reads this member in procfs while we're
2064 * updating -- it may get partly updated results. It's
2065 * known and acceptable trade off: we leave it as is to
2066 * not introduce additional locks here making the kernel
2067 * more complex.
2068 */
2069 if (prctl_map.auxv_size)
2070 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2071
2072 mmap_read_unlock(mm);
2073 return 0;
2074 }
2075 #endif /* CONFIG_CHECKPOINT_RESTORE */
2076
2077 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2078 unsigned long len)
2079 {
2080 /*
2081 * This doesn't move the auxiliary vector itself since it's pinned to
2082 * mm_struct, but it permits filling the vector with new values. It's
2083 * up to the caller to provide sane values here, otherwise userspace
2084 * tools which use this vector might be unhappy.
2085 */
2086 unsigned long user_auxv[AT_VECTOR_SIZE] = {};
2087
2088 if (len > sizeof(user_auxv))
2089 return -EINVAL;
2090
2091 if (copy_from_user(user_auxv, (const void __user *)addr, len))
2092 return -EFAULT;
2093
2094 /* Make sure the last entry is always AT_NULL */
2095 user_auxv[AT_VECTOR_SIZE - 2] = 0;
2096 user_auxv[AT_VECTOR_SIZE - 1] = 0;
2097
2098 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2099
2100 task_lock(current);
2101 memcpy(mm->saved_auxv, user_auxv, len);
2102 task_unlock(current);
2103
2104 return 0;
2105 }
2106
2107 static int prctl_set_mm(int opt, unsigned long addr,
2108 unsigned long arg4, unsigned long arg5)
2109 {
2110 struct mm_struct *mm = current->mm;
2111 struct prctl_mm_map prctl_map = {
2112 .auxv = NULL,
2113 .auxv_size = 0,
2114 .exe_fd = -1,
2115 };
2116 struct vm_area_struct *vma;
2117 int error;
2118
2119 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2120 opt != PR_SET_MM_MAP &&
2121 opt != PR_SET_MM_MAP_SIZE)))
2122 return -EINVAL;
2123
2124 #ifdef CONFIG_CHECKPOINT_RESTORE
2125 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2126 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2127 #endif
2128
2129 if (!capable(CAP_SYS_RESOURCE))
2130 return -EPERM;
2131
2132 if (opt == PR_SET_MM_EXE_FILE)
2133 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2134
2135 if (opt == PR_SET_MM_AUXV)
2136 return prctl_set_auxv(mm, addr, arg4);
2137
2138 if (addr >= TASK_SIZE || addr < mmap_min_addr)
2139 return -EINVAL;
2140
2141 error = -EINVAL;
2142
2143 /*
2144 * arg_lock protects concurrent updates of arg boundaries, we need
2145 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2146 * validation.
2147 */
2148 mmap_read_lock(mm);
2149 vma = find_vma(mm, addr);
2150
2151 spin_lock(&mm->arg_lock);
2152 prctl_map.start_code = mm->start_code;
2153 prctl_map.end_code = mm->end_code;
2154 prctl_map.start_data = mm->start_data;
2155 prctl_map.end_data = mm->end_data;
2156 prctl_map.start_brk = mm->start_brk;
2157 prctl_map.brk = mm->brk;
2158 prctl_map.start_stack = mm->start_stack;
2159 prctl_map.arg_start = mm->arg_start;
2160 prctl_map.arg_end = mm->arg_end;
2161 prctl_map.env_start = mm->env_start;
2162 prctl_map.env_end = mm->env_end;
2163
2164 switch (opt) {
2165 case PR_SET_MM_START_CODE:
2166 prctl_map.start_code = addr;
2167 break;
2168 case PR_SET_MM_END_CODE:
2169 prctl_map.end_code = addr;
2170 break;
2171 case PR_SET_MM_START_DATA:
2172 prctl_map.start_data = addr;
2173 break;
2174 case PR_SET_MM_END_DATA:
2175 prctl_map.end_data = addr;
2176 break;
2177 case PR_SET_MM_START_STACK:
2178 prctl_map.start_stack = addr;
2179 break;
2180 case PR_SET_MM_START_BRK:
2181 prctl_map.start_brk = addr;
2182 break;
2183 case PR_SET_MM_BRK:
2184 prctl_map.brk = addr;
2185 break;
2186 case PR_SET_MM_ARG_START:
2187 prctl_map.arg_start = addr;
2188 break;
2189 case PR_SET_MM_ARG_END:
2190 prctl_map.arg_end = addr;
2191 break;
2192 case PR_SET_MM_ENV_START:
2193 prctl_map.env_start = addr;
2194 break;
2195 case PR_SET_MM_ENV_END:
2196 prctl_map.env_end = addr;
2197 break;
2198 default:
2199 goto out;
2200 }
2201
2202 error = validate_prctl_map_addr(&prctl_map);
2203 if (error)
2204 goto out;
2205
2206 switch (opt) {
2207 /*
2208 * If command line arguments and environment
2209 * are placed somewhere else on stack, we can
2210 * set them up here, ARG_START/END to setup
2211 * command line arguments and ENV_START/END
2212 * for environment.
2213 */
2214 case PR_SET_MM_START_STACK:
2215 case PR_SET_MM_ARG_START:
2216 case PR_SET_MM_ARG_END:
2217 case PR_SET_MM_ENV_START:
2218 case PR_SET_MM_ENV_END:
2219 if (!vma) {
2220 error = -EFAULT;
2221 goto out;
2222 }
2223 }
2224
2225 mm->start_code = prctl_map.start_code;
2226 mm->end_code = prctl_map.end_code;
2227 mm->start_data = prctl_map.start_data;
2228 mm->end_data = prctl_map.end_data;
2229 mm->start_brk = prctl_map.start_brk;
2230 mm->brk = prctl_map.brk;
2231 mm->start_stack = prctl_map.start_stack;
2232 mm->arg_start = prctl_map.arg_start;
2233 mm->arg_end = prctl_map.arg_end;
2234 mm->env_start = prctl_map.env_start;
2235 mm->env_end = prctl_map.env_end;
2236
2237 error = 0;
2238 out:
2239 spin_unlock(&mm->arg_lock);
2240 mmap_read_unlock(mm);
2241 return error;
2242 }
2243
2244 #ifdef CONFIG_CHECKPOINT_RESTORE
2245 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2246 {
2247 return put_user(me->clear_child_tid, tid_addr);
2248 }
2249 #else
2250 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2251 {
2252 return -EINVAL;
2253 }
2254 #endif
2255
2256 static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2257 {
2258 /*
2259 * If task has has_child_subreaper - all its descendants
2260 * already have these flag too and new descendants will
2261 * inherit it on fork, skip them.
2262 *
2263 * If we've found child_reaper - skip descendants in
2264 * it's subtree as they will never get out pidns.
2265 */
2266 if (p->signal->has_child_subreaper ||
2267 is_child_reaper(task_pid(p)))
2268 return 0;
2269
2270 p->signal->has_child_subreaper = 1;
2271 return 1;
2272 }
2273
2274 int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2275 {
2276 return -EINVAL;
2277 }
2278
2279 int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2280 unsigned long ctrl)
2281 {
2282 return -EINVAL;
2283 }
2284
2285 #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2286
2287 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2288 unsigned long, arg4, unsigned long, arg5)
2289 {
2290 struct task_struct *me = current;
2291 unsigned char comm[sizeof(me->comm)];
2292 long error;
2293
2294 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2295 if (error != -ENOSYS)
2296 return error;
2297
2298 error = 0;
2299 switch (option) {
2300 case PR_SET_PDEATHSIG:
2301 if (!valid_signal(arg2)) {
2302 error = -EINVAL;
2303 break;
2304 }
2305 me->pdeath_signal = arg2;
2306 break;
2307 case PR_GET_PDEATHSIG:
2308 error = put_user(me->pdeath_signal, (int __user *)arg2);
2309 break;
2310 case PR_GET_DUMPABLE:
2311 error = get_dumpable(me->mm);
2312 break;
2313 case PR_SET_DUMPABLE:
2314 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2315 error = -EINVAL;
2316 break;
2317 }
2318 set_dumpable(me->mm, arg2);
2319 break;
2320
2321 case PR_SET_UNALIGN:
2322 error = SET_UNALIGN_CTL(me, arg2);
2323 break;
2324 case PR_GET_UNALIGN:
2325 error = GET_UNALIGN_CTL(me, arg2);
2326 break;
2327 case PR_SET_FPEMU:
2328 error = SET_FPEMU_CTL(me, arg2);
2329 break;
2330 case PR_GET_FPEMU:
2331 error = GET_FPEMU_CTL(me, arg2);
2332 break;
2333 case PR_SET_FPEXC:
2334 error = SET_FPEXC_CTL(me, arg2);
2335 break;
2336 case PR_GET_FPEXC:
2337 error = GET_FPEXC_CTL(me, arg2);
2338 break;
2339 case PR_GET_TIMING:
2340 error = PR_TIMING_STATISTICAL;
2341 break;
2342 case PR_SET_TIMING:
2343 if (arg2 != PR_TIMING_STATISTICAL)
2344 error = -EINVAL;
2345 break;
2346 case PR_SET_NAME:
2347 comm[sizeof(me->comm) - 1] = 0;
2348 if (strncpy_from_user(comm, (char __user *)arg2,
2349 sizeof(me->comm) - 1) < 0)
2350 return -EFAULT;
2351 set_task_comm(me, comm);
2352 proc_comm_connector(me);
2353 break;
2354 case PR_GET_NAME:
2355 get_task_comm(comm, me);
2356 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2357 return -EFAULT;
2358 break;
2359 case PR_GET_ENDIAN:
2360 error = GET_ENDIAN(me, arg2);
2361 break;
2362 case PR_SET_ENDIAN:
2363 error = SET_ENDIAN(me, arg2);
2364 break;
2365 case PR_GET_SECCOMP:
2366 error = prctl_get_seccomp();
2367 break;
2368 case PR_SET_SECCOMP:
2369 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2370 break;
2371 case PR_GET_TSC:
2372 error = GET_TSC_CTL(arg2);
2373 break;
2374 case PR_SET_TSC:
2375 error = SET_TSC_CTL(arg2);
2376 break;
2377 case PR_TASK_PERF_EVENTS_DISABLE:
2378 error = perf_event_task_disable();
2379 break;
2380 case PR_TASK_PERF_EVENTS_ENABLE:
2381 error = perf_event_task_enable();
2382 break;
2383 case PR_GET_TIMERSLACK:
2384 if (current->timer_slack_ns > ULONG_MAX)
2385 error = ULONG_MAX;
2386 else
2387 error = current->timer_slack_ns;
2388 break;
2389 case PR_SET_TIMERSLACK:
2390 if (arg2 <= 0)
2391 current->timer_slack_ns =
2392 current->default_timer_slack_ns;
2393 else
2394 current->timer_slack_ns = arg2;
2395 break;
2396 case PR_MCE_KILL:
2397 if (arg4 | arg5)
2398 return -EINVAL;
2399 switch (arg2) {
2400 case PR_MCE_KILL_CLEAR:
2401 if (arg3 != 0)
2402 return -EINVAL;
2403 current->flags &= ~PF_MCE_PROCESS;
2404 break;
2405 case PR_MCE_KILL_SET:
2406 current->flags |= PF_MCE_PROCESS;
2407 if (arg3 == PR_MCE_KILL_EARLY)
2408 current->flags |= PF_MCE_EARLY;
2409 else if (arg3 == PR_MCE_KILL_LATE)
2410 current->flags &= ~PF_MCE_EARLY;
2411 else if (arg3 == PR_MCE_KILL_DEFAULT)
2412 current->flags &=
2413 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2414 else
2415 return -EINVAL;
2416 break;
2417 default:
2418 return -EINVAL;
2419 }
2420 break;
2421 case PR_MCE_KILL_GET:
2422 if (arg2 | arg3 | arg4 | arg5)
2423 return -EINVAL;
2424 if (current->flags & PF_MCE_PROCESS)
2425 error = (current->flags & PF_MCE_EARLY) ?
2426 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2427 else
2428 error = PR_MCE_KILL_DEFAULT;
2429 break;
2430 case PR_SET_MM:
2431 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2432 break;
2433 case PR_GET_TID_ADDRESS:
2434 error = prctl_get_tid_address(me, (int __user * __user *)arg2);
2435 break;
2436 case PR_SET_CHILD_SUBREAPER:
2437 me->signal->is_child_subreaper = !!arg2;
2438 if (!arg2)
2439 break;
2440
2441 walk_process_tree(me, propagate_has_child_subreaper, NULL);
2442 break;
2443 case PR_GET_CHILD_SUBREAPER:
2444 error = put_user(me->signal->is_child_subreaper,
2445 (int __user *)arg2);
2446 break;
2447 case PR_SET_NO_NEW_PRIVS:
2448 if (arg2 != 1 || arg3 || arg4 || arg5)
2449 return -EINVAL;
2450
2451 task_set_no_new_privs(current);
2452 break;
2453 case PR_GET_NO_NEW_PRIVS:
2454 if (arg2 || arg3 || arg4 || arg5)
2455 return -EINVAL;
2456 return task_no_new_privs(current) ? 1 : 0;
2457 case PR_GET_THP_DISABLE:
2458 if (arg2 || arg3 || arg4 || arg5)
2459 return -EINVAL;
2460 error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2461 break;
2462 case PR_SET_THP_DISABLE:
2463 if (arg3 || arg4 || arg5)
2464 return -EINVAL;
2465 if (mmap_write_lock_killable(me->mm))
2466 return -EINTR;
2467 if (arg2)
2468 set_bit(MMF_DISABLE_THP, &me->mm->flags);
2469 else
2470 clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2471 mmap_write_unlock(me->mm);
2472 break;
2473 case PR_MPX_ENABLE_MANAGEMENT:
2474 case PR_MPX_DISABLE_MANAGEMENT:
2475 /* No longer implemented: */
2476 return -EINVAL;
2477 case PR_SET_FP_MODE:
2478 error = SET_FP_MODE(me, arg2);
2479 break;
2480 case PR_GET_FP_MODE:
2481 error = GET_FP_MODE(me);
2482 break;
2483 case PR_SVE_SET_VL:
2484 error = SVE_SET_VL(arg2);
2485 break;
2486 case PR_SVE_GET_VL:
2487 error = SVE_GET_VL();
2488 break;
2489 case PR_GET_SPECULATION_CTRL:
2490 if (arg3 || arg4 || arg5)
2491 return -EINVAL;
2492 error = arch_prctl_spec_ctrl_get(me, arg2);
2493 break;
2494 case PR_SET_SPECULATION_CTRL:
2495 if (arg4 || arg5)
2496 return -EINVAL;
2497 error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2498 break;
2499 case PR_PAC_RESET_KEYS:
2500 if (arg3 || arg4 || arg5)
2501 return -EINVAL;
2502 error = PAC_RESET_KEYS(me, arg2);
2503 break;
2504 case PR_PAC_SET_ENABLED_KEYS:
2505 if (arg4 || arg5)
2506 return -EINVAL;
2507 error = PAC_SET_ENABLED_KEYS(me, arg2, arg3);
2508 break;
2509 case PR_PAC_GET_ENABLED_KEYS:
2510 if (arg2 || arg3 || arg4 || arg5)
2511 return -EINVAL;
2512 error = PAC_GET_ENABLED_KEYS(me);
2513 break;
2514 case PR_SET_TAGGED_ADDR_CTRL:
2515 if (arg3 || arg4 || arg5)
2516 return -EINVAL;
2517 error = SET_TAGGED_ADDR_CTRL(arg2);
2518 break;
2519 case PR_GET_TAGGED_ADDR_CTRL:
2520 if (arg2 || arg3 || arg4 || arg5)
2521 return -EINVAL;
2522 error = GET_TAGGED_ADDR_CTRL();
2523 break;
2524 case PR_SET_IO_FLUSHER:
2525 if (!capable(CAP_SYS_RESOURCE))
2526 return -EPERM;
2527
2528 if (arg3 || arg4 || arg5)
2529 return -EINVAL;
2530
2531 if (arg2 == 1)
2532 current->flags |= PR_IO_FLUSHER;
2533 else if (!arg2)
2534 current->flags &= ~PR_IO_FLUSHER;
2535 else
2536 return -EINVAL;
2537 break;
2538 case PR_GET_IO_FLUSHER:
2539 if (!capable(CAP_SYS_RESOURCE))
2540 return -EPERM;
2541
2542 if (arg2 || arg3 || arg4 || arg5)
2543 return -EINVAL;
2544
2545 error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2546 break;
2547 case PR_SET_SYSCALL_USER_DISPATCH:
2548 error = set_syscall_user_dispatch(arg2, arg3, arg4,
2549 (char __user *) arg5);
2550 break;
2551 #ifdef CONFIG_SCHED_CORE
2552 case PR_SCHED_CORE:
2553 error = sched_core_share_pid(arg2, arg3, arg4, arg5);
2554 break;
2555 #endif
2556 default:
2557 error = -EINVAL;
2558 break;
2559 }
2560 return error;
2561 }
2562
2563 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2564 struct getcpu_cache __user *, unused)
2565 {
2566 int err = 0;
2567 int cpu = raw_smp_processor_id();
2568
2569 if (cpup)
2570 err |= put_user(cpu, cpup);
2571 if (nodep)
2572 err |= put_user(cpu_to_node(cpu), nodep);
2573 return err ? -EFAULT : 0;
2574 }
2575
2576 /**
2577 * do_sysinfo - fill in sysinfo struct
2578 * @info: pointer to buffer to fill
2579 */
2580 static int do_sysinfo(struct sysinfo *info)
2581 {
2582 unsigned long mem_total, sav_total;
2583 unsigned int mem_unit, bitcount;
2584 struct timespec64 tp;
2585
2586 memset(info, 0, sizeof(struct sysinfo));
2587
2588 ktime_get_boottime_ts64(&tp);
2589 timens_add_boottime(&tp);
2590 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2591
2592 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2593
2594 info->procs = nr_threads;
2595
2596 si_meminfo(info);
2597 si_swapinfo(info);
2598
2599 /*
2600 * If the sum of all the available memory (i.e. ram + swap)
2601 * is less than can be stored in a 32 bit unsigned long then
2602 * we can be binary compatible with 2.2.x kernels. If not,
2603 * well, in that case 2.2.x was broken anyways...
2604 *
2605 * -Erik Andersen <andersee@debian.org>
2606 */
2607
2608 mem_total = info->totalram + info->totalswap;
2609 if (mem_total < info->totalram || mem_total < info->totalswap)
2610 goto out;
2611 bitcount = 0;
2612 mem_unit = info->mem_unit;
2613 while (mem_unit > 1) {
2614 bitcount++;
2615 mem_unit >>= 1;
2616 sav_total = mem_total;
2617 mem_total <<= 1;
2618 if (mem_total < sav_total)
2619 goto out;
2620 }
2621
2622 /*
2623 * If mem_total did not overflow, multiply all memory values by
2624 * info->mem_unit and set it to 1. This leaves things compatible
2625 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2626 * kernels...
2627 */
2628
2629 info->mem_unit = 1;
2630 info->totalram <<= bitcount;
2631 info->freeram <<= bitcount;
2632 info->sharedram <<= bitcount;
2633 info->bufferram <<= bitcount;
2634 info->totalswap <<= bitcount;
2635 info->freeswap <<= bitcount;
2636 info->totalhigh <<= bitcount;
2637 info->freehigh <<= bitcount;
2638
2639 out:
2640 return 0;
2641 }
2642
2643 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2644 {
2645 struct sysinfo val;
2646
2647 do_sysinfo(&val);
2648
2649 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2650 return -EFAULT;
2651
2652 return 0;
2653 }
2654
2655 #ifdef CONFIG_COMPAT
2656 struct compat_sysinfo {
2657 s32 uptime;
2658 u32 loads[3];
2659 u32 totalram;
2660 u32 freeram;
2661 u32 sharedram;
2662 u32 bufferram;
2663 u32 totalswap;
2664 u32 freeswap;
2665 u16 procs;
2666 u16 pad;
2667 u32 totalhigh;
2668 u32 freehigh;
2669 u32 mem_unit;
2670 char _f[20-2*sizeof(u32)-sizeof(int)];
2671 };
2672
2673 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2674 {
2675 struct sysinfo s;
2676 struct compat_sysinfo s_32;
2677
2678 do_sysinfo(&s);
2679
2680 /* Check to see if any memory value is too large for 32-bit and scale
2681 * down if needed
2682 */
2683 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2684 int bitcount = 0;
2685
2686 while (s.mem_unit < PAGE_SIZE) {
2687 s.mem_unit <<= 1;
2688 bitcount++;
2689 }
2690
2691 s.totalram >>= bitcount;
2692 s.freeram >>= bitcount;
2693 s.sharedram >>= bitcount;
2694 s.bufferram >>= bitcount;
2695 s.totalswap >>= bitcount;
2696 s.freeswap >>= bitcount;
2697 s.totalhigh >>= bitcount;
2698 s.freehigh >>= bitcount;
2699 }
2700
2701 memset(&s_32, 0, sizeof(s_32));
2702 s_32.uptime = s.uptime;
2703 s_32.loads[0] = s.loads[0];
2704 s_32.loads[1] = s.loads[1];
2705 s_32.loads[2] = s.loads[2];
2706 s_32.totalram = s.totalram;
2707 s_32.freeram = s.freeram;
2708 s_32.sharedram = s.sharedram;
2709 s_32.bufferram = s.bufferram;
2710 s_32.totalswap = s.totalswap;
2711 s_32.freeswap = s.freeswap;
2712 s_32.procs = s.procs;
2713 s_32.totalhigh = s.totalhigh;
2714 s_32.freehigh = s.freehigh;
2715 s_32.mem_unit = s.mem_unit;
2716 if (copy_to_user(info, &s_32, sizeof(s_32)))
2717 return -EFAULT;
2718 return 0;
2719 }
2720 #endif /* CONFIG_COMPAT */