]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/sys.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-2.6
[mirror_ubuntu-jammy-kernel.git] / kernel / sys.c
1 /*
2 * linux/kernel/sys.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/smp_lock.h>
12 #include <linux/notifier.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
16 #include <linux/fs.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/ptrace.h>
37
38 #include <linux/compat.h>
39 #include <linux/syscalls.h>
40 #include <linux/kprobes.h>
41 #include <linux/user_namespace.h>
42
43 #include <asm/uaccess.h>
44 #include <asm/io.h>
45 #include <asm/unistd.h>
46
47 #ifndef SET_UNALIGN_CTL
48 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
49 #endif
50 #ifndef GET_UNALIGN_CTL
51 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
52 #endif
53 #ifndef SET_FPEMU_CTL
54 # define SET_FPEMU_CTL(a,b) (-EINVAL)
55 #endif
56 #ifndef GET_FPEMU_CTL
57 # define GET_FPEMU_CTL(a,b) (-EINVAL)
58 #endif
59 #ifndef SET_FPEXC_CTL
60 # define SET_FPEXC_CTL(a,b) (-EINVAL)
61 #endif
62 #ifndef GET_FPEXC_CTL
63 # define GET_FPEXC_CTL(a,b) (-EINVAL)
64 #endif
65 #ifndef GET_ENDIAN
66 # define GET_ENDIAN(a,b) (-EINVAL)
67 #endif
68 #ifndef SET_ENDIAN
69 # define SET_ENDIAN(a,b) (-EINVAL)
70 #endif
71 #ifndef GET_TSC_CTL
72 # define GET_TSC_CTL(a) (-EINVAL)
73 #endif
74 #ifndef SET_TSC_CTL
75 # define SET_TSC_CTL(a) (-EINVAL)
76 #endif
77
78 /*
79 * this is where the system-wide overflow UID and GID are defined, for
80 * architectures that now have 32-bit UID/GID but didn't in the past
81 */
82
83 int overflowuid = DEFAULT_OVERFLOWUID;
84 int overflowgid = DEFAULT_OVERFLOWGID;
85
86 #ifdef CONFIG_UID16
87 EXPORT_SYMBOL(overflowuid);
88 EXPORT_SYMBOL(overflowgid);
89 #endif
90
91 /*
92 * the same as above, but for filesystems which can only store a 16-bit
93 * UID and GID. as such, this is needed on all architectures
94 */
95
96 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
97 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
98
99 EXPORT_SYMBOL(fs_overflowuid);
100 EXPORT_SYMBOL(fs_overflowgid);
101
102 /*
103 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
104 */
105
106 int C_A_D = 1;
107 struct pid *cad_pid;
108 EXPORT_SYMBOL(cad_pid);
109
110 /*
111 * If set, this is used for preparing the system to power off.
112 */
113
114 void (*pm_power_off_prepare)(void);
115
116 /*
117 * set the priority of a task
118 * - the caller must hold the RCU read lock
119 */
120 static int set_one_prio(struct task_struct *p, int niceval, int error)
121 {
122 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
123 int no_nice;
124
125 if (pcred->uid != cred->euid &&
126 pcred->euid != cred->euid && !capable(CAP_SYS_NICE)) {
127 error = -EPERM;
128 goto out;
129 }
130 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
131 error = -EACCES;
132 goto out;
133 }
134 no_nice = security_task_setnice(p, niceval);
135 if (no_nice) {
136 error = no_nice;
137 goto out;
138 }
139 if (error == -ESRCH)
140 error = 0;
141 set_user_nice(p, niceval);
142 out:
143 return error;
144 }
145
146 asmlinkage long sys_setpriority(int which, int who, int niceval)
147 {
148 struct task_struct *g, *p;
149 struct user_struct *user;
150 const struct cred *cred = current_cred();
151 int error = -EINVAL;
152 struct pid *pgrp;
153
154 if (which > PRIO_USER || which < PRIO_PROCESS)
155 goto out;
156
157 /* normalize: avoid signed division (rounding problems) */
158 error = -ESRCH;
159 if (niceval < -20)
160 niceval = -20;
161 if (niceval > 19)
162 niceval = 19;
163
164 read_lock(&tasklist_lock);
165 switch (which) {
166 case PRIO_PROCESS:
167 if (who)
168 p = find_task_by_vpid(who);
169 else
170 p = current;
171 if (p)
172 error = set_one_prio(p, niceval, error);
173 break;
174 case PRIO_PGRP:
175 if (who)
176 pgrp = find_vpid(who);
177 else
178 pgrp = task_pgrp(current);
179 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
180 error = set_one_prio(p, niceval, error);
181 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
182 break;
183 case PRIO_USER:
184 user = (struct user_struct *) cred->user;
185 if (!who)
186 who = cred->uid;
187 else if ((who != cred->uid) &&
188 !(user = find_user(who)))
189 goto out_unlock; /* No processes for this user */
190
191 do_each_thread(g, p)
192 if (__task_cred(p)->uid == who)
193 error = set_one_prio(p, niceval, error);
194 while_each_thread(g, p);
195 if (who != cred->uid)
196 free_uid(user); /* For find_user() */
197 break;
198 }
199 out_unlock:
200 read_unlock(&tasklist_lock);
201 out:
202 return error;
203 }
204
205 /*
206 * Ugh. To avoid negative return values, "getpriority()" will
207 * not return the normal nice-value, but a negated value that
208 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
209 * to stay compatible.
210 */
211 asmlinkage long sys_getpriority(int which, int who)
212 {
213 struct task_struct *g, *p;
214 struct user_struct *user;
215 const struct cred *cred = current_cred();
216 long niceval, retval = -ESRCH;
217 struct pid *pgrp;
218
219 if (which > PRIO_USER || which < PRIO_PROCESS)
220 return -EINVAL;
221
222 read_lock(&tasklist_lock);
223 switch (which) {
224 case PRIO_PROCESS:
225 if (who)
226 p = find_task_by_vpid(who);
227 else
228 p = current;
229 if (p) {
230 niceval = 20 - task_nice(p);
231 if (niceval > retval)
232 retval = niceval;
233 }
234 break;
235 case PRIO_PGRP:
236 if (who)
237 pgrp = find_vpid(who);
238 else
239 pgrp = task_pgrp(current);
240 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
241 niceval = 20 - task_nice(p);
242 if (niceval > retval)
243 retval = niceval;
244 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
245 break;
246 case PRIO_USER:
247 user = (struct user_struct *) cred->user;
248 if (!who)
249 who = cred->uid;
250 else if ((who != cred->uid) &&
251 !(user = find_user(who)))
252 goto out_unlock; /* No processes for this user */
253
254 do_each_thread(g, p)
255 if (__task_cred(p)->uid == who) {
256 niceval = 20 - task_nice(p);
257 if (niceval > retval)
258 retval = niceval;
259 }
260 while_each_thread(g, p);
261 if (who != cred->uid)
262 free_uid(user); /* for find_user() */
263 break;
264 }
265 out_unlock:
266 read_unlock(&tasklist_lock);
267
268 return retval;
269 }
270
271 /**
272 * emergency_restart - reboot the system
273 *
274 * Without shutting down any hardware or taking any locks
275 * reboot the system. This is called when we know we are in
276 * trouble so this is our best effort to reboot. This is
277 * safe to call in interrupt context.
278 */
279 void emergency_restart(void)
280 {
281 machine_emergency_restart();
282 }
283 EXPORT_SYMBOL_GPL(emergency_restart);
284
285 void kernel_restart_prepare(char *cmd)
286 {
287 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
288 system_state = SYSTEM_RESTART;
289 device_shutdown();
290 sysdev_shutdown();
291 }
292
293 /**
294 * kernel_restart - reboot the system
295 * @cmd: pointer to buffer containing command to execute for restart
296 * or %NULL
297 *
298 * Shutdown everything and perform a clean reboot.
299 * This is not safe to call in interrupt context.
300 */
301 void kernel_restart(char *cmd)
302 {
303 kernel_restart_prepare(cmd);
304 if (!cmd)
305 printk(KERN_EMERG "Restarting system.\n");
306 else
307 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
308 machine_restart(cmd);
309 }
310 EXPORT_SYMBOL_GPL(kernel_restart);
311
312 static void kernel_shutdown_prepare(enum system_states state)
313 {
314 blocking_notifier_call_chain(&reboot_notifier_list,
315 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
316 system_state = state;
317 device_shutdown();
318 }
319 /**
320 * kernel_halt - halt the system
321 *
322 * Shutdown everything and perform a clean system halt.
323 */
324 void kernel_halt(void)
325 {
326 kernel_shutdown_prepare(SYSTEM_HALT);
327 sysdev_shutdown();
328 printk(KERN_EMERG "System halted.\n");
329 machine_halt();
330 }
331
332 EXPORT_SYMBOL_GPL(kernel_halt);
333
334 /**
335 * kernel_power_off - power_off the system
336 *
337 * Shutdown everything and perform a clean system power_off.
338 */
339 void kernel_power_off(void)
340 {
341 kernel_shutdown_prepare(SYSTEM_POWER_OFF);
342 if (pm_power_off_prepare)
343 pm_power_off_prepare();
344 disable_nonboot_cpus();
345 sysdev_shutdown();
346 printk(KERN_EMERG "Power down.\n");
347 machine_power_off();
348 }
349 EXPORT_SYMBOL_GPL(kernel_power_off);
350 /*
351 * Reboot system call: for obvious reasons only root may call it,
352 * and even root needs to set up some magic numbers in the registers
353 * so that some mistake won't make this reboot the whole machine.
354 * You can also set the meaning of the ctrl-alt-del-key here.
355 *
356 * reboot doesn't sync: do that yourself before calling this.
357 */
358 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
359 {
360 char buffer[256];
361
362 /* We only trust the superuser with rebooting the system. */
363 if (!capable(CAP_SYS_BOOT))
364 return -EPERM;
365
366 /* For safety, we require "magic" arguments. */
367 if (magic1 != LINUX_REBOOT_MAGIC1 ||
368 (magic2 != LINUX_REBOOT_MAGIC2 &&
369 magic2 != LINUX_REBOOT_MAGIC2A &&
370 magic2 != LINUX_REBOOT_MAGIC2B &&
371 magic2 != LINUX_REBOOT_MAGIC2C))
372 return -EINVAL;
373
374 /* Instead of trying to make the power_off code look like
375 * halt when pm_power_off is not set do it the easy way.
376 */
377 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
378 cmd = LINUX_REBOOT_CMD_HALT;
379
380 lock_kernel();
381 switch (cmd) {
382 case LINUX_REBOOT_CMD_RESTART:
383 kernel_restart(NULL);
384 break;
385
386 case LINUX_REBOOT_CMD_CAD_ON:
387 C_A_D = 1;
388 break;
389
390 case LINUX_REBOOT_CMD_CAD_OFF:
391 C_A_D = 0;
392 break;
393
394 case LINUX_REBOOT_CMD_HALT:
395 kernel_halt();
396 unlock_kernel();
397 do_exit(0);
398 break;
399
400 case LINUX_REBOOT_CMD_POWER_OFF:
401 kernel_power_off();
402 unlock_kernel();
403 do_exit(0);
404 break;
405
406 case LINUX_REBOOT_CMD_RESTART2:
407 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
408 unlock_kernel();
409 return -EFAULT;
410 }
411 buffer[sizeof(buffer) - 1] = '\0';
412
413 kernel_restart(buffer);
414 break;
415
416 #ifdef CONFIG_KEXEC
417 case LINUX_REBOOT_CMD_KEXEC:
418 {
419 int ret;
420 ret = kernel_kexec();
421 unlock_kernel();
422 return ret;
423 }
424 #endif
425
426 #ifdef CONFIG_HIBERNATION
427 case LINUX_REBOOT_CMD_SW_SUSPEND:
428 {
429 int ret = hibernate();
430 unlock_kernel();
431 return ret;
432 }
433 #endif
434
435 default:
436 unlock_kernel();
437 return -EINVAL;
438 }
439 unlock_kernel();
440 return 0;
441 }
442
443 static void deferred_cad(struct work_struct *dummy)
444 {
445 kernel_restart(NULL);
446 }
447
448 /*
449 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
450 * As it's called within an interrupt, it may NOT sync: the only choice
451 * is whether to reboot at once, or just ignore the ctrl-alt-del.
452 */
453 void ctrl_alt_del(void)
454 {
455 static DECLARE_WORK(cad_work, deferred_cad);
456
457 if (C_A_D)
458 schedule_work(&cad_work);
459 else
460 kill_cad_pid(SIGINT, 1);
461 }
462
463 /*
464 * Unprivileged users may change the real gid to the effective gid
465 * or vice versa. (BSD-style)
466 *
467 * If you set the real gid at all, or set the effective gid to a value not
468 * equal to the real gid, then the saved gid is set to the new effective gid.
469 *
470 * This makes it possible for a setgid program to completely drop its
471 * privileges, which is often a useful assertion to make when you are doing
472 * a security audit over a program.
473 *
474 * The general idea is that a program which uses just setregid() will be
475 * 100% compatible with BSD. A program which uses just setgid() will be
476 * 100% compatible with POSIX with saved IDs.
477 *
478 * SMP: There are not races, the GIDs are checked only by filesystem
479 * operations (as far as semantic preservation is concerned).
480 */
481 asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
482 {
483 const struct cred *old;
484 struct cred *new;
485 int retval;
486
487 new = prepare_creds();
488 if (!new)
489 return -ENOMEM;
490 old = current_cred();
491
492 retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
493 if (retval)
494 goto error;
495
496 retval = -EPERM;
497 if (rgid != (gid_t) -1) {
498 if (old->gid == rgid ||
499 old->egid == rgid ||
500 capable(CAP_SETGID))
501 new->gid = rgid;
502 else
503 goto error;
504 }
505 if (egid != (gid_t) -1) {
506 if (old->gid == egid ||
507 old->egid == egid ||
508 old->sgid == egid ||
509 capable(CAP_SETGID))
510 new->egid = egid;
511 else
512 goto error;
513 }
514
515 if (rgid != (gid_t) -1 ||
516 (egid != (gid_t) -1 && egid != old->gid))
517 new->sgid = new->egid;
518 new->fsgid = new->egid;
519
520 return commit_creds(new);
521
522 error:
523 abort_creds(new);
524 return retval;
525 }
526
527 /*
528 * setgid() is implemented like SysV w/ SAVED_IDS
529 *
530 * SMP: Same implicit races as above.
531 */
532 asmlinkage long sys_setgid(gid_t gid)
533 {
534 const struct cred *old;
535 struct cred *new;
536 int retval;
537
538 new = prepare_creds();
539 if (!new)
540 return -ENOMEM;
541 old = current_cred();
542
543 retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
544 if (retval)
545 goto error;
546
547 retval = -EPERM;
548 if (capable(CAP_SETGID))
549 new->gid = new->egid = new->sgid = new->fsgid = gid;
550 else if (gid == old->gid || gid == old->sgid)
551 new->egid = new->fsgid = gid;
552 else
553 goto error;
554
555 return commit_creds(new);
556
557 error:
558 abort_creds(new);
559 return retval;
560 }
561
562 /*
563 * change the user struct in a credentials set to match the new UID
564 */
565 static int set_user(struct cred *new)
566 {
567 struct user_struct *new_user;
568
569 new_user = alloc_uid(current_user_ns(), new->uid);
570 if (!new_user)
571 return -EAGAIN;
572
573 if (atomic_read(&new_user->processes) >=
574 current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
575 new_user != INIT_USER) {
576 free_uid(new_user);
577 return -EAGAIN;
578 }
579
580 free_uid(new->user);
581 new->user = new_user;
582 return 0;
583 }
584
585 /*
586 * Unprivileged users may change the real uid to the effective uid
587 * or vice versa. (BSD-style)
588 *
589 * If you set the real uid at all, or set the effective uid to a value not
590 * equal to the real uid, then the saved uid is set to the new effective uid.
591 *
592 * This makes it possible for a setuid program to completely drop its
593 * privileges, which is often a useful assertion to make when you are doing
594 * a security audit over a program.
595 *
596 * The general idea is that a program which uses just setreuid() will be
597 * 100% compatible with BSD. A program which uses just setuid() will be
598 * 100% compatible with POSIX with saved IDs.
599 */
600 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
601 {
602 const struct cred *old;
603 struct cred *new;
604 int retval;
605
606 new = prepare_creds();
607 if (!new)
608 return -ENOMEM;
609 old = current_cred();
610
611 retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
612 if (retval)
613 goto error;
614
615 retval = -EPERM;
616 if (ruid != (uid_t) -1) {
617 new->uid = ruid;
618 if (old->uid != ruid &&
619 old->euid != ruid &&
620 !capable(CAP_SETUID))
621 goto error;
622 }
623
624 if (euid != (uid_t) -1) {
625 new->euid = euid;
626 if (old->uid != euid &&
627 old->euid != euid &&
628 old->suid != euid &&
629 !capable(CAP_SETUID))
630 goto error;
631 }
632
633 retval = -EAGAIN;
634 if (new->uid != old->uid && set_user(new) < 0)
635 goto error;
636
637 if (ruid != (uid_t) -1 ||
638 (euid != (uid_t) -1 && euid != old->uid))
639 new->suid = new->euid;
640 new->fsuid = new->euid;
641
642 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
643 if (retval < 0)
644 goto error;
645
646 return commit_creds(new);
647
648 error:
649 abort_creds(new);
650 return retval;
651 }
652
653 /*
654 * setuid() is implemented like SysV with SAVED_IDS
655 *
656 * Note that SAVED_ID's is deficient in that a setuid root program
657 * like sendmail, for example, cannot set its uid to be a normal
658 * user and then switch back, because if you're root, setuid() sets
659 * the saved uid too. If you don't like this, blame the bright people
660 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
661 * will allow a root program to temporarily drop privileges and be able to
662 * regain them by swapping the real and effective uid.
663 */
664 asmlinkage long sys_setuid(uid_t uid)
665 {
666 const struct cred *old;
667 struct cred *new;
668 int retval;
669
670 new = prepare_creds();
671 if (!new)
672 return -ENOMEM;
673 old = current_cred();
674
675 retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
676 if (retval)
677 goto error;
678
679 retval = -EPERM;
680 if (capable(CAP_SETUID)) {
681 new->suid = new->uid = uid;
682 if (uid != old->uid && set_user(new) < 0) {
683 retval = -EAGAIN;
684 goto error;
685 }
686 } else if (uid != old->uid && uid != new->suid) {
687 goto error;
688 }
689
690 new->fsuid = new->euid = uid;
691
692 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
693 if (retval < 0)
694 goto error;
695
696 return commit_creds(new);
697
698 error:
699 abort_creds(new);
700 return retval;
701 }
702
703
704 /*
705 * This function implements a generic ability to update ruid, euid,
706 * and suid. This allows you to implement the 4.4 compatible seteuid().
707 */
708 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
709 {
710 const struct cred *old;
711 struct cred *new;
712 int retval;
713
714 new = prepare_creds();
715 if (!new)
716 return -ENOMEM;
717
718 retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
719 if (retval)
720 goto error;
721 old = current_cred();
722
723 retval = -EPERM;
724 if (!capable(CAP_SETUID)) {
725 if (ruid != (uid_t) -1 && ruid != old->uid &&
726 ruid != old->euid && ruid != old->suid)
727 goto error;
728 if (euid != (uid_t) -1 && euid != old->uid &&
729 euid != old->euid && euid != old->suid)
730 goto error;
731 if (suid != (uid_t) -1 && suid != old->uid &&
732 suid != old->euid && suid != old->suid)
733 goto error;
734 }
735
736 retval = -EAGAIN;
737 if (ruid != (uid_t) -1) {
738 new->uid = ruid;
739 if (ruid != old->uid && set_user(new) < 0)
740 goto error;
741 }
742 if (euid != (uid_t) -1)
743 new->euid = euid;
744 if (suid != (uid_t) -1)
745 new->suid = suid;
746 new->fsuid = new->euid;
747
748 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
749 if (retval < 0)
750 goto error;
751
752 return commit_creds(new);
753
754 error:
755 abort_creds(new);
756 return retval;
757 }
758
759 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
760 {
761 const struct cred *cred = current_cred();
762 int retval;
763
764 if (!(retval = put_user(cred->uid, ruid)) &&
765 !(retval = put_user(cred->euid, euid)))
766 retval = put_user(cred->suid, suid);
767
768 return retval;
769 }
770
771 /*
772 * Same as above, but for rgid, egid, sgid.
773 */
774 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
775 {
776 const struct cred *old;
777 struct cred *new;
778 int retval;
779
780 new = prepare_creds();
781 if (!new)
782 return -ENOMEM;
783 old = current_cred();
784
785 retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
786 if (retval)
787 goto error;
788
789 retval = -EPERM;
790 if (!capable(CAP_SETGID)) {
791 if (rgid != (gid_t) -1 && rgid != old->gid &&
792 rgid != old->egid && rgid != old->sgid)
793 goto error;
794 if (egid != (gid_t) -1 && egid != old->gid &&
795 egid != old->egid && egid != old->sgid)
796 goto error;
797 if (sgid != (gid_t) -1 && sgid != old->gid &&
798 sgid != old->egid && sgid != old->sgid)
799 goto error;
800 }
801
802 if (rgid != (gid_t) -1)
803 new->gid = rgid;
804 if (egid != (gid_t) -1)
805 new->egid = egid;
806 if (sgid != (gid_t) -1)
807 new->sgid = sgid;
808 new->fsgid = new->egid;
809
810 return commit_creds(new);
811
812 error:
813 abort_creds(new);
814 return retval;
815 }
816
817 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
818 {
819 const struct cred *cred = current_cred();
820 int retval;
821
822 if (!(retval = put_user(cred->gid, rgid)) &&
823 !(retval = put_user(cred->egid, egid)))
824 retval = put_user(cred->sgid, sgid);
825
826 return retval;
827 }
828
829
830 /*
831 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
832 * is used for "access()" and for the NFS daemon (letting nfsd stay at
833 * whatever uid it wants to). It normally shadows "euid", except when
834 * explicitly set by setfsuid() or for access..
835 */
836 asmlinkage long sys_setfsuid(uid_t uid)
837 {
838 const struct cred *old;
839 struct cred *new;
840 uid_t old_fsuid;
841
842 new = prepare_creds();
843 if (!new)
844 return current_fsuid();
845 old = current_cred();
846 old_fsuid = old->fsuid;
847
848 if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS) < 0)
849 goto error;
850
851 if (uid == old->uid || uid == old->euid ||
852 uid == old->suid || uid == old->fsuid ||
853 capable(CAP_SETUID)) {
854 if (uid != old_fsuid) {
855 new->fsuid = uid;
856 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
857 goto change_okay;
858 }
859 }
860
861 error:
862 abort_creds(new);
863 return old_fsuid;
864
865 change_okay:
866 commit_creds(new);
867 return old_fsuid;
868 }
869
870 /*
871 * Samma på svenska..
872 */
873 asmlinkage long sys_setfsgid(gid_t gid)
874 {
875 const struct cred *old;
876 struct cred *new;
877 gid_t old_fsgid;
878
879 new = prepare_creds();
880 if (!new)
881 return current_fsgid();
882 old = current_cred();
883 old_fsgid = old->fsgid;
884
885 if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
886 goto error;
887
888 if (gid == old->gid || gid == old->egid ||
889 gid == old->sgid || gid == old->fsgid ||
890 capable(CAP_SETGID)) {
891 if (gid != old_fsgid) {
892 new->fsgid = gid;
893 goto change_okay;
894 }
895 }
896
897 error:
898 abort_creds(new);
899 return old_fsgid;
900
901 change_okay:
902 commit_creds(new);
903 return old_fsgid;
904 }
905
906 void do_sys_times(struct tms *tms)
907 {
908 struct task_cputime cputime;
909 cputime_t cutime, cstime;
910
911 thread_group_cputime(current, &cputime);
912 spin_lock_irq(&current->sighand->siglock);
913 cutime = current->signal->cutime;
914 cstime = current->signal->cstime;
915 spin_unlock_irq(&current->sighand->siglock);
916 tms->tms_utime = cputime_to_clock_t(cputime.utime);
917 tms->tms_stime = cputime_to_clock_t(cputime.stime);
918 tms->tms_cutime = cputime_to_clock_t(cutime);
919 tms->tms_cstime = cputime_to_clock_t(cstime);
920 }
921
922 asmlinkage long sys_times(struct tms __user * tbuf)
923 {
924 if (tbuf) {
925 struct tms tmp;
926
927 do_sys_times(&tmp);
928 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
929 return -EFAULT;
930 }
931 force_successful_syscall_return();
932 return (long) jiffies_64_to_clock_t(get_jiffies_64());
933 }
934
935 /*
936 * This needs some heavy checking ...
937 * I just haven't the stomach for it. I also don't fully
938 * understand sessions/pgrp etc. Let somebody who does explain it.
939 *
940 * OK, I think I have the protection semantics right.... this is really
941 * only important on a multi-user system anyway, to make sure one user
942 * can't send a signal to a process owned by another. -TYT, 12/12/91
943 *
944 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
945 * LBT 04.03.94
946 */
947 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
948 {
949 struct task_struct *p;
950 struct task_struct *group_leader = current->group_leader;
951 struct pid *pgrp;
952 int err;
953
954 if (!pid)
955 pid = task_pid_vnr(group_leader);
956 if (!pgid)
957 pgid = pid;
958 if (pgid < 0)
959 return -EINVAL;
960
961 /* From this point forward we keep holding onto the tasklist lock
962 * so that our parent does not change from under us. -DaveM
963 */
964 write_lock_irq(&tasklist_lock);
965
966 err = -ESRCH;
967 p = find_task_by_vpid(pid);
968 if (!p)
969 goto out;
970
971 err = -EINVAL;
972 if (!thread_group_leader(p))
973 goto out;
974
975 if (same_thread_group(p->real_parent, group_leader)) {
976 err = -EPERM;
977 if (task_session(p) != task_session(group_leader))
978 goto out;
979 err = -EACCES;
980 if (p->did_exec)
981 goto out;
982 } else {
983 err = -ESRCH;
984 if (p != group_leader)
985 goto out;
986 }
987
988 err = -EPERM;
989 if (p->signal->leader)
990 goto out;
991
992 pgrp = task_pid(p);
993 if (pgid != pid) {
994 struct task_struct *g;
995
996 pgrp = find_vpid(pgid);
997 g = pid_task(pgrp, PIDTYPE_PGID);
998 if (!g || task_session(g) != task_session(group_leader))
999 goto out;
1000 }
1001
1002 err = security_task_setpgid(p, pgid);
1003 if (err)
1004 goto out;
1005
1006 if (task_pgrp(p) != pgrp) {
1007 change_pid(p, PIDTYPE_PGID, pgrp);
1008 set_task_pgrp(p, pid_nr(pgrp));
1009 }
1010
1011 err = 0;
1012 out:
1013 /* All paths lead to here, thus we are safe. -DaveM */
1014 write_unlock_irq(&tasklist_lock);
1015 return err;
1016 }
1017
1018 asmlinkage long sys_getpgid(pid_t pid)
1019 {
1020 struct task_struct *p;
1021 struct pid *grp;
1022 int retval;
1023
1024 rcu_read_lock();
1025 if (!pid)
1026 grp = task_pgrp(current);
1027 else {
1028 retval = -ESRCH;
1029 p = find_task_by_vpid(pid);
1030 if (!p)
1031 goto out;
1032 grp = task_pgrp(p);
1033 if (!grp)
1034 goto out;
1035
1036 retval = security_task_getpgid(p);
1037 if (retval)
1038 goto out;
1039 }
1040 retval = pid_vnr(grp);
1041 out:
1042 rcu_read_unlock();
1043 return retval;
1044 }
1045
1046 #ifdef __ARCH_WANT_SYS_GETPGRP
1047
1048 asmlinkage long sys_getpgrp(void)
1049 {
1050 return sys_getpgid(0);
1051 }
1052
1053 #endif
1054
1055 asmlinkage long sys_getsid(pid_t pid)
1056 {
1057 struct task_struct *p;
1058 struct pid *sid;
1059 int retval;
1060
1061 rcu_read_lock();
1062 if (!pid)
1063 sid = task_session(current);
1064 else {
1065 retval = -ESRCH;
1066 p = find_task_by_vpid(pid);
1067 if (!p)
1068 goto out;
1069 sid = task_session(p);
1070 if (!sid)
1071 goto out;
1072
1073 retval = security_task_getsid(p);
1074 if (retval)
1075 goto out;
1076 }
1077 retval = pid_vnr(sid);
1078 out:
1079 rcu_read_unlock();
1080 return retval;
1081 }
1082
1083 asmlinkage long sys_setsid(void)
1084 {
1085 struct task_struct *group_leader = current->group_leader;
1086 struct pid *sid = task_pid(group_leader);
1087 pid_t session = pid_vnr(sid);
1088 int err = -EPERM;
1089
1090 write_lock_irq(&tasklist_lock);
1091 /* Fail if I am already a session leader */
1092 if (group_leader->signal->leader)
1093 goto out;
1094
1095 /* Fail if a process group id already exists that equals the
1096 * proposed session id.
1097 */
1098 if (pid_task(sid, PIDTYPE_PGID))
1099 goto out;
1100
1101 group_leader->signal->leader = 1;
1102 __set_special_pids(sid);
1103
1104 proc_clear_tty(group_leader);
1105
1106 err = session;
1107 out:
1108 write_unlock_irq(&tasklist_lock);
1109 return err;
1110 }
1111
1112 /*
1113 * Supplementary group IDs
1114 */
1115
1116 /* init to 2 - one for init_task, one to ensure it is never freed */
1117 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1118
1119 struct group_info *groups_alloc(int gidsetsize)
1120 {
1121 struct group_info *group_info;
1122 int nblocks;
1123 int i;
1124
1125 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1126 /* Make sure we always allocate at least one indirect block pointer */
1127 nblocks = nblocks ? : 1;
1128 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1129 if (!group_info)
1130 return NULL;
1131 group_info->ngroups = gidsetsize;
1132 group_info->nblocks = nblocks;
1133 atomic_set(&group_info->usage, 1);
1134
1135 if (gidsetsize <= NGROUPS_SMALL)
1136 group_info->blocks[0] = group_info->small_block;
1137 else {
1138 for (i = 0; i < nblocks; i++) {
1139 gid_t *b;
1140 b = (void *)__get_free_page(GFP_USER);
1141 if (!b)
1142 goto out_undo_partial_alloc;
1143 group_info->blocks[i] = b;
1144 }
1145 }
1146 return group_info;
1147
1148 out_undo_partial_alloc:
1149 while (--i >= 0) {
1150 free_page((unsigned long)group_info->blocks[i]);
1151 }
1152 kfree(group_info);
1153 return NULL;
1154 }
1155
1156 EXPORT_SYMBOL(groups_alloc);
1157
1158 void groups_free(struct group_info *group_info)
1159 {
1160 if (group_info->blocks[0] != group_info->small_block) {
1161 int i;
1162 for (i = 0; i < group_info->nblocks; i++)
1163 free_page((unsigned long)group_info->blocks[i]);
1164 }
1165 kfree(group_info);
1166 }
1167
1168 EXPORT_SYMBOL(groups_free);
1169
1170 /* export the group_info to a user-space array */
1171 static int groups_to_user(gid_t __user *grouplist,
1172 const struct group_info *group_info)
1173 {
1174 int i;
1175 unsigned int count = group_info->ngroups;
1176
1177 for (i = 0; i < group_info->nblocks; i++) {
1178 unsigned int cp_count = min(NGROUPS_PER_BLOCK, count);
1179 unsigned int len = cp_count * sizeof(*grouplist);
1180
1181 if (copy_to_user(grouplist, group_info->blocks[i], len))
1182 return -EFAULT;
1183
1184 grouplist += NGROUPS_PER_BLOCK;
1185 count -= cp_count;
1186 }
1187 return 0;
1188 }
1189
1190 /* fill a group_info from a user-space array - it must be allocated already */
1191 static int groups_from_user(struct group_info *group_info,
1192 gid_t __user *grouplist)
1193 {
1194 int i;
1195 unsigned int count = group_info->ngroups;
1196
1197 for (i = 0; i < group_info->nblocks; i++) {
1198 unsigned int cp_count = min(NGROUPS_PER_BLOCK, count);
1199 unsigned int len = cp_count * sizeof(*grouplist);
1200
1201 if (copy_from_user(group_info->blocks[i], grouplist, len))
1202 return -EFAULT;
1203
1204 grouplist += NGROUPS_PER_BLOCK;
1205 count -= cp_count;
1206 }
1207 return 0;
1208 }
1209
1210 /* a simple Shell sort */
1211 static void groups_sort(struct group_info *group_info)
1212 {
1213 int base, max, stride;
1214 int gidsetsize = group_info->ngroups;
1215
1216 for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1217 ; /* nothing */
1218 stride /= 3;
1219
1220 while (stride) {
1221 max = gidsetsize - stride;
1222 for (base = 0; base < max; base++) {
1223 int left = base;
1224 int right = left + stride;
1225 gid_t tmp = GROUP_AT(group_info, right);
1226
1227 while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1228 GROUP_AT(group_info, right) =
1229 GROUP_AT(group_info, left);
1230 right = left;
1231 left -= stride;
1232 }
1233 GROUP_AT(group_info, right) = tmp;
1234 }
1235 stride /= 3;
1236 }
1237 }
1238
1239 /* a simple bsearch */
1240 int groups_search(const struct group_info *group_info, gid_t grp)
1241 {
1242 unsigned int left, right;
1243
1244 if (!group_info)
1245 return 0;
1246
1247 left = 0;
1248 right = group_info->ngroups;
1249 while (left < right) {
1250 unsigned int mid = (left+right)/2;
1251 int cmp = grp - GROUP_AT(group_info, mid);
1252 if (cmp > 0)
1253 left = mid + 1;
1254 else if (cmp < 0)
1255 right = mid;
1256 else
1257 return 1;
1258 }
1259 return 0;
1260 }
1261
1262 /**
1263 * set_groups - Change a group subscription in a set of credentials
1264 * @new: The newly prepared set of credentials to alter
1265 * @group_info: The group list to install
1266 *
1267 * Validate a group subscription and, if valid, insert it into a set
1268 * of credentials.
1269 */
1270 int set_groups(struct cred *new, struct group_info *group_info)
1271 {
1272 int retval;
1273
1274 retval = security_task_setgroups(group_info);
1275 if (retval)
1276 return retval;
1277
1278 put_group_info(new->group_info);
1279 groups_sort(group_info);
1280 get_group_info(group_info);
1281 new->group_info = group_info;
1282 return 0;
1283 }
1284
1285 EXPORT_SYMBOL(set_groups);
1286
1287 /**
1288 * set_current_groups - Change current's group subscription
1289 * @group_info: The group list to impose
1290 *
1291 * Validate a group subscription and, if valid, impose it upon current's task
1292 * security record.
1293 */
1294 int set_current_groups(struct group_info *group_info)
1295 {
1296 struct cred *new;
1297 int ret;
1298
1299 new = prepare_creds();
1300 if (!new)
1301 return -ENOMEM;
1302
1303 ret = set_groups(new, group_info);
1304 if (ret < 0) {
1305 abort_creds(new);
1306 return ret;
1307 }
1308
1309 return commit_creds(new);
1310 }
1311
1312 EXPORT_SYMBOL(set_current_groups);
1313
1314 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1315 {
1316 const struct cred *cred = current_cred();
1317 int i;
1318
1319 if (gidsetsize < 0)
1320 return -EINVAL;
1321
1322 /* no need to grab task_lock here; it cannot change */
1323 i = cred->group_info->ngroups;
1324 if (gidsetsize) {
1325 if (i > gidsetsize) {
1326 i = -EINVAL;
1327 goto out;
1328 }
1329 if (groups_to_user(grouplist, cred->group_info)) {
1330 i = -EFAULT;
1331 goto out;
1332 }
1333 }
1334 out:
1335 return i;
1336 }
1337
1338 /*
1339 * SMP: Our groups are copy-on-write. We can set them safely
1340 * without another task interfering.
1341 */
1342
1343 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1344 {
1345 struct group_info *group_info;
1346 int retval;
1347
1348 if (!capable(CAP_SETGID))
1349 return -EPERM;
1350 if ((unsigned)gidsetsize > NGROUPS_MAX)
1351 return -EINVAL;
1352
1353 group_info = groups_alloc(gidsetsize);
1354 if (!group_info)
1355 return -ENOMEM;
1356 retval = groups_from_user(group_info, grouplist);
1357 if (retval) {
1358 put_group_info(group_info);
1359 return retval;
1360 }
1361
1362 retval = set_current_groups(group_info);
1363 put_group_info(group_info);
1364
1365 return retval;
1366 }
1367
1368 /*
1369 * Check whether we're fsgid/egid or in the supplemental group..
1370 */
1371 int in_group_p(gid_t grp)
1372 {
1373 const struct cred *cred = current_cred();
1374 int retval = 1;
1375
1376 if (grp != cred->fsgid)
1377 retval = groups_search(cred->group_info, grp);
1378 return retval;
1379 }
1380
1381 EXPORT_SYMBOL(in_group_p);
1382
1383 int in_egroup_p(gid_t grp)
1384 {
1385 const struct cred *cred = current_cred();
1386 int retval = 1;
1387
1388 if (grp != cred->egid)
1389 retval = groups_search(cred->group_info, grp);
1390 return retval;
1391 }
1392
1393 EXPORT_SYMBOL(in_egroup_p);
1394
1395 DECLARE_RWSEM(uts_sem);
1396
1397 asmlinkage long sys_newuname(struct new_utsname __user * name)
1398 {
1399 int errno = 0;
1400
1401 down_read(&uts_sem);
1402 if (copy_to_user(name, utsname(), sizeof *name))
1403 errno = -EFAULT;
1404 up_read(&uts_sem);
1405 return errno;
1406 }
1407
1408 asmlinkage long sys_sethostname(char __user *name, int len)
1409 {
1410 int errno;
1411 char tmp[__NEW_UTS_LEN];
1412
1413 if (!capable(CAP_SYS_ADMIN))
1414 return -EPERM;
1415 if (len < 0 || len > __NEW_UTS_LEN)
1416 return -EINVAL;
1417 down_write(&uts_sem);
1418 errno = -EFAULT;
1419 if (!copy_from_user(tmp, name, len)) {
1420 struct new_utsname *u = utsname();
1421
1422 memcpy(u->nodename, tmp, len);
1423 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1424 errno = 0;
1425 }
1426 up_write(&uts_sem);
1427 return errno;
1428 }
1429
1430 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1431
1432 asmlinkage long sys_gethostname(char __user *name, int len)
1433 {
1434 int i, errno;
1435 struct new_utsname *u;
1436
1437 if (len < 0)
1438 return -EINVAL;
1439 down_read(&uts_sem);
1440 u = utsname();
1441 i = 1 + strlen(u->nodename);
1442 if (i > len)
1443 i = len;
1444 errno = 0;
1445 if (copy_to_user(name, u->nodename, i))
1446 errno = -EFAULT;
1447 up_read(&uts_sem);
1448 return errno;
1449 }
1450
1451 #endif
1452
1453 /*
1454 * Only setdomainname; getdomainname can be implemented by calling
1455 * uname()
1456 */
1457 asmlinkage long sys_setdomainname(char __user *name, int len)
1458 {
1459 int errno;
1460 char tmp[__NEW_UTS_LEN];
1461
1462 if (!capable(CAP_SYS_ADMIN))
1463 return -EPERM;
1464 if (len < 0 || len > __NEW_UTS_LEN)
1465 return -EINVAL;
1466
1467 down_write(&uts_sem);
1468 errno = -EFAULT;
1469 if (!copy_from_user(tmp, name, len)) {
1470 struct new_utsname *u = utsname();
1471
1472 memcpy(u->domainname, tmp, len);
1473 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1474 errno = 0;
1475 }
1476 up_write(&uts_sem);
1477 return errno;
1478 }
1479
1480 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1481 {
1482 if (resource >= RLIM_NLIMITS)
1483 return -EINVAL;
1484 else {
1485 struct rlimit value;
1486 task_lock(current->group_leader);
1487 value = current->signal->rlim[resource];
1488 task_unlock(current->group_leader);
1489 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1490 }
1491 }
1492
1493 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1494
1495 /*
1496 * Back compatibility for getrlimit. Needed for some apps.
1497 */
1498
1499 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1500 {
1501 struct rlimit x;
1502 if (resource >= RLIM_NLIMITS)
1503 return -EINVAL;
1504
1505 task_lock(current->group_leader);
1506 x = current->signal->rlim[resource];
1507 task_unlock(current->group_leader);
1508 if (x.rlim_cur > 0x7FFFFFFF)
1509 x.rlim_cur = 0x7FFFFFFF;
1510 if (x.rlim_max > 0x7FFFFFFF)
1511 x.rlim_max = 0x7FFFFFFF;
1512 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1513 }
1514
1515 #endif
1516
1517 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1518 {
1519 struct rlimit new_rlim, *old_rlim;
1520 int retval;
1521
1522 if (resource >= RLIM_NLIMITS)
1523 return -EINVAL;
1524 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1525 return -EFAULT;
1526 old_rlim = current->signal->rlim + resource;
1527 if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1528 !capable(CAP_SYS_RESOURCE))
1529 return -EPERM;
1530
1531 if (resource == RLIMIT_NOFILE) {
1532 if (new_rlim.rlim_max == RLIM_INFINITY)
1533 new_rlim.rlim_max = sysctl_nr_open;
1534 if (new_rlim.rlim_cur == RLIM_INFINITY)
1535 new_rlim.rlim_cur = sysctl_nr_open;
1536 if (new_rlim.rlim_max > sysctl_nr_open)
1537 return -EPERM;
1538 }
1539
1540 if (new_rlim.rlim_cur > new_rlim.rlim_max)
1541 return -EINVAL;
1542
1543 retval = security_task_setrlimit(resource, &new_rlim);
1544 if (retval)
1545 return retval;
1546
1547 if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) {
1548 /*
1549 * The caller is asking for an immediate RLIMIT_CPU
1550 * expiry. But we use the zero value to mean "it was
1551 * never set". So let's cheat and make it one second
1552 * instead
1553 */
1554 new_rlim.rlim_cur = 1;
1555 }
1556
1557 task_lock(current->group_leader);
1558 *old_rlim = new_rlim;
1559 task_unlock(current->group_leader);
1560
1561 if (resource != RLIMIT_CPU)
1562 goto out;
1563
1564 /*
1565 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1566 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1567 * very long-standing error, and fixing it now risks breakage of
1568 * applications, so we live with it
1569 */
1570 if (new_rlim.rlim_cur == RLIM_INFINITY)
1571 goto out;
1572
1573 update_rlimit_cpu(new_rlim.rlim_cur);
1574 out:
1575 return 0;
1576 }
1577
1578 /*
1579 * It would make sense to put struct rusage in the task_struct,
1580 * except that would make the task_struct be *really big*. After
1581 * task_struct gets moved into malloc'ed memory, it would
1582 * make sense to do this. It will make moving the rest of the information
1583 * a lot simpler! (Which we're not doing right now because we're not
1584 * measuring them yet).
1585 *
1586 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1587 * races with threads incrementing their own counters. But since word
1588 * reads are atomic, we either get new values or old values and we don't
1589 * care which for the sums. We always take the siglock to protect reading
1590 * the c* fields from p->signal from races with exit.c updating those
1591 * fields when reaping, so a sample either gets all the additions of a
1592 * given child after it's reaped, or none so this sample is before reaping.
1593 *
1594 * Locking:
1595 * We need to take the siglock for CHILDEREN, SELF and BOTH
1596 * for the cases current multithreaded, non-current single threaded
1597 * non-current multithreaded. Thread traversal is now safe with
1598 * the siglock held.
1599 * Strictly speaking, we donot need to take the siglock if we are current and
1600 * single threaded, as no one else can take our signal_struct away, no one
1601 * else can reap the children to update signal->c* counters, and no one else
1602 * can race with the signal-> fields. If we do not take any lock, the
1603 * signal-> fields could be read out of order while another thread was just
1604 * exiting. So we should place a read memory barrier when we avoid the lock.
1605 * On the writer side, write memory barrier is implied in __exit_signal
1606 * as __exit_signal releases the siglock spinlock after updating the signal->
1607 * fields. But we don't do this yet to keep things simple.
1608 *
1609 */
1610
1611 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1612 {
1613 r->ru_nvcsw += t->nvcsw;
1614 r->ru_nivcsw += t->nivcsw;
1615 r->ru_minflt += t->min_flt;
1616 r->ru_majflt += t->maj_flt;
1617 r->ru_inblock += task_io_get_inblock(t);
1618 r->ru_oublock += task_io_get_oublock(t);
1619 }
1620
1621 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1622 {
1623 struct task_struct *t;
1624 unsigned long flags;
1625 cputime_t utime, stime;
1626 struct task_cputime cputime;
1627
1628 memset((char *) r, 0, sizeof *r);
1629 utime = stime = cputime_zero;
1630
1631 if (who == RUSAGE_THREAD) {
1632 utime = task_utime(current);
1633 stime = task_stime(current);
1634 accumulate_thread_rusage(p, r);
1635 goto out;
1636 }
1637
1638 if (!lock_task_sighand(p, &flags))
1639 return;
1640
1641 switch (who) {
1642 case RUSAGE_BOTH:
1643 case RUSAGE_CHILDREN:
1644 utime = p->signal->cutime;
1645 stime = p->signal->cstime;
1646 r->ru_nvcsw = p->signal->cnvcsw;
1647 r->ru_nivcsw = p->signal->cnivcsw;
1648 r->ru_minflt = p->signal->cmin_flt;
1649 r->ru_majflt = p->signal->cmaj_flt;
1650 r->ru_inblock = p->signal->cinblock;
1651 r->ru_oublock = p->signal->coublock;
1652
1653 if (who == RUSAGE_CHILDREN)
1654 break;
1655
1656 case RUSAGE_SELF:
1657 thread_group_cputime(p, &cputime);
1658 utime = cputime_add(utime, cputime.utime);
1659 stime = cputime_add(stime, cputime.stime);
1660 r->ru_nvcsw += p->signal->nvcsw;
1661 r->ru_nivcsw += p->signal->nivcsw;
1662 r->ru_minflt += p->signal->min_flt;
1663 r->ru_majflt += p->signal->maj_flt;
1664 r->ru_inblock += p->signal->inblock;
1665 r->ru_oublock += p->signal->oublock;
1666 t = p;
1667 do {
1668 accumulate_thread_rusage(t, r);
1669 t = next_thread(t);
1670 } while (t != p);
1671 break;
1672
1673 default:
1674 BUG();
1675 }
1676 unlock_task_sighand(p, &flags);
1677
1678 out:
1679 cputime_to_timeval(utime, &r->ru_utime);
1680 cputime_to_timeval(stime, &r->ru_stime);
1681 }
1682
1683 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1684 {
1685 struct rusage r;
1686 k_getrusage(p, who, &r);
1687 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1688 }
1689
1690 asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
1691 {
1692 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1693 who != RUSAGE_THREAD)
1694 return -EINVAL;
1695 return getrusage(current, who, ru);
1696 }
1697
1698 asmlinkage long sys_umask(int mask)
1699 {
1700 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1701 return mask;
1702 }
1703
1704 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
1705 unsigned long arg4, unsigned long arg5)
1706 {
1707 struct task_struct *me = current;
1708 unsigned char comm[sizeof(me->comm)];
1709 long error;
1710
1711 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1712 if (error != -ENOSYS)
1713 return error;
1714
1715 error = 0;
1716 switch (option) {
1717 case PR_SET_PDEATHSIG:
1718 if (!valid_signal(arg2)) {
1719 error = -EINVAL;
1720 break;
1721 }
1722 me->pdeath_signal = arg2;
1723 error = 0;
1724 break;
1725 case PR_GET_PDEATHSIG:
1726 error = put_user(me->pdeath_signal, (int __user *)arg2);
1727 break;
1728 case PR_GET_DUMPABLE:
1729 error = get_dumpable(me->mm);
1730 break;
1731 case PR_SET_DUMPABLE:
1732 if (arg2 < 0 || arg2 > 1) {
1733 error = -EINVAL;
1734 break;
1735 }
1736 set_dumpable(me->mm, arg2);
1737 error = 0;
1738 break;
1739
1740 case PR_SET_UNALIGN:
1741 error = SET_UNALIGN_CTL(me, arg2);
1742 break;
1743 case PR_GET_UNALIGN:
1744 error = GET_UNALIGN_CTL(me, arg2);
1745 break;
1746 case PR_SET_FPEMU:
1747 error = SET_FPEMU_CTL(me, arg2);
1748 break;
1749 case PR_GET_FPEMU:
1750 error = GET_FPEMU_CTL(me, arg2);
1751 break;
1752 case PR_SET_FPEXC:
1753 error = SET_FPEXC_CTL(me, arg2);
1754 break;
1755 case PR_GET_FPEXC:
1756 error = GET_FPEXC_CTL(me, arg2);
1757 break;
1758 case PR_GET_TIMING:
1759 error = PR_TIMING_STATISTICAL;
1760 break;
1761 case PR_SET_TIMING:
1762 if (arg2 != PR_TIMING_STATISTICAL)
1763 error = -EINVAL;
1764 else
1765 error = 0;
1766 break;
1767
1768 case PR_SET_NAME:
1769 comm[sizeof(me->comm)-1] = 0;
1770 if (strncpy_from_user(comm, (char __user *)arg2,
1771 sizeof(me->comm) - 1) < 0)
1772 return -EFAULT;
1773 set_task_comm(me, comm);
1774 return 0;
1775 case PR_GET_NAME:
1776 get_task_comm(comm, me);
1777 if (copy_to_user((char __user *)arg2, comm,
1778 sizeof(comm)))
1779 return -EFAULT;
1780 return 0;
1781 case PR_GET_ENDIAN:
1782 error = GET_ENDIAN(me, arg2);
1783 break;
1784 case PR_SET_ENDIAN:
1785 error = SET_ENDIAN(me, arg2);
1786 break;
1787
1788 case PR_GET_SECCOMP:
1789 error = prctl_get_seccomp();
1790 break;
1791 case PR_SET_SECCOMP:
1792 error = prctl_set_seccomp(arg2);
1793 break;
1794 case PR_GET_TSC:
1795 error = GET_TSC_CTL(arg2);
1796 break;
1797 case PR_SET_TSC:
1798 error = SET_TSC_CTL(arg2);
1799 break;
1800 case PR_GET_TIMERSLACK:
1801 error = current->timer_slack_ns;
1802 break;
1803 case PR_SET_TIMERSLACK:
1804 if (arg2 <= 0)
1805 current->timer_slack_ns =
1806 current->default_timer_slack_ns;
1807 else
1808 current->timer_slack_ns = arg2;
1809 error = 0;
1810 break;
1811 default:
1812 error = -EINVAL;
1813 break;
1814 }
1815 return error;
1816 }
1817
1818 asmlinkage long sys_getcpu(unsigned __user *cpup, unsigned __user *nodep,
1819 struct getcpu_cache __user *unused)
1820 {
1821 int err = 0;
1822 int cpu = raw_smp_processor_id();
1823 if (cpup)
1824 err |= put_user(cpu, cpup);
1825 if (nodep)
1826 err |= put_user(cpu_to_node(cpu), nodep);
1827 return err ? -EFAULT : 0;
1828 }
1829
1830 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1831
1832 static void argv_cleanup(char **argv, char **envp)
1833 {
1834 argv_free(argv);
1835 }
1836
1837 /**
1838 * orderly_poweroff - Trigger an orderly system poweroff
1839 * @force: force poweroff if command execution fails
1840 *
1841 * This may be called from any context to trigger a system shutdown.
1842 * If the orderly shutdown fails, it will force an immediate shutdown.
1843 */
1844 int orderly_poweroff(bool force)
1845 {
1846 int argc;
1847 char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1848 static char *envp[] = {
1849 "HOME=/",
1850 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1851 NULL
1852 };
1853 int ret = -ENOMEM;
1854 struct subprocess_info *info;
1855
1856 if (argv == NULL) {
1857 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1858 __func__, poweroff_cmd);
1859 goto out;
1860 }
1861
1862 info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
1863 if (info == NULL) {
1864 argv_free(argv);
1865 goto out;
1866 }
1867
1868 call_usermodehelper_setcleanup(info, argv_cleanup);
1869
1870 ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
1871
1872 out:
1873 if (ret && force) {
1874 printk(KERN_WARNING "Failed to start orderly shutdown: "
1875 "forcing the issue\n");
1876
1877 /* I guess this should try to kick off some daemon to
1878 sync and poweroff asap. Or not even bother syncing
1879 if we're doing an emergency shutdown? */
1880 emergency_sync();
1881 kernel_power_off();
1882 }
1883
1884 return ret;
1885 }
1886 EXPORT_SYMBOL_GPL(orderly_poweroff);