]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/time/alarmtimer.c
Merge tag 'csky-for-linus-5.2-fixup-gcc-unwind' of git://github.com/c-sky/csky-linux
[mirror_ubuntu-jammy-kernel.git] / kernel / time / alarmtimer.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Alarmtimer interface
4 *
5 * This interface provides a timer which is similarto hrtimers,
6 * but triggers a RTC alarm if the box is suspend.
7 *
8 * This interface is influenced by the Android RTC Alarm timer
9 * interface.
10 *
11 * Copyright (C) 2010 IBM Corperation
12 *
13 * Author: John Stultz <john.stultz@linaro.org>
14 */
15 #include <linux/time.h>
16 #include <linux/hrtimer.h>
17 #include <linux/timerqueue.h>
18 #include <linux/rtc.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/debug.h>
21 #include <linux/alarmtimer.h>
22 #include <linux/mutex.h>
23 #include <linux/platform_device.h>
24 #include <linux/posix-timers.h>
25 #include <linux/workqueue.h>
26 #include <linux/freezer.h>
27 #include <linux/compat.h>
28 #include <linux/module.h>
29
30 #include "posix-timers.h"
31
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/alarmtimer.h>
34
35 /**
36 * struct alarm_base - Alarm timer bases
37 * @lock: Lock for syncrhonized access to the base
38 * @timerqueue: Timerqueue head managing the list of events
39 * @gettime: Function to read the time correlating to the base
40 * @base_clockid: clockid for the base
41 */
42 static struct alarm_base {
43 spinlock_t lock;
44 struct timerqueue_head timerqueue;
45 ktime_t (*gettime)(void);
46 clockid_t base_clockid;
47 } alarm_bases[ALARM_NUMTYPE];
48
49 #if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
50 /* freezer information to handle clock_nanosleep triggered wakeups */
51 static enum alarmtimer_type freezer_alarmtype;
52 static ktime_t freezer_expires;
53 static ktime_t freezer_delta;
54 static DEFINE_SPINLOCK(freezer_delta_lock);
55 #endif
56
57 #ifdef CONFIG_RTC_CLASS
58 static struct wakeup_source *ws;
59
60 /* rtc timer and device for setting alarm wakeups at suspend */
61 static struct rtc_timer rtctimer;
62 static struct rtc_device *rtcdev;
63 static DEFINE_SPINLOCK(rtcdev_lock);
64
65 /**
66 * alarmtimer_get_rtcdev - Return selected rtcdevice
67 *
68 * This function returns the rtc device to use for wakealarms.
69 * If one has not already been chosen, it checks to see if a
70 * functional rtc device is available.
71 */
72 struct rtc_device *alarmtimer_get_rtcdev(void)
73 {
74 unsigned long flags;
75 struct rtc_device *ret;
76
77 spin_lock_irqsave(&rtcdev_lock, flags);
78 ret = rtcdev;
79 spin_unlock_irqrestore(&rtcdev_lock, flags);
80
81 return ret;
82 }
83 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
84
85 static int alarmtimer_rtc_add_device(struct device *dev,
86 struct class_interface *class_intf)
87 {
88 unsigned long flags;
89 struct rtc_device *rtc = to_rtc_device(dev);
90 struct wakeup_source *__ws;
91
92 if (rtcdev)
93 return -EBUSY;
94
95 if (!rtc->ops->set_alarm)
96 return -1;
97 if (!device_may_wakeup(rtc->dev.parent))
98 return -1;
99
100 __ws = wakeup_source_register("alarmtimer");
101
102 spin_lock_irqsave(&rtcdev_lock, flags);
103 if (!rtcdev) {
104 if (!try_module_get(rtc->owner)) {
105 spin_unlock_irqrestore(&rtcdev_lock, flags);
106 return -1;
107 }
108
109 rtcdev = rtc;
110 /* hold a reference so it doesn't go away */
111 get_device(dev);
112 ws = __ws;
113 __ws = NULL;
114 }
115 spin_unlock_irqrestore(&rtcdev_lock, flags);
116
117 wakeup_source_unregister(__ws);
118
119 return 0;
120 }
121
122 static inline void alarmtimer_rtc_timer_init(void)
123 {
124 rtc_timer_init(&rtctimer, NULL, NULL);
125 }
126
127 static struct class_interface alarmtimer_rtc_interface = {
128 .add_dev = &alarmtimer_rtc_add_device,
129 };
130
131 static int alarmtimer_rtc_interface_setup(void)
132 {
133 alarmtimer_rtc_interface.class = rtc_class;
134 return class_interface_register(&alarmtimer_rtc_interface);
135 }
136 static void alarmtimer_rtc_interface_remove(void)
137 {
138 class_interface_unregister(&alarmtimer_rtc_interface);
139 }
140 #else
141 struct rtc_device *alarmtimer_get_rtcdev(void)
142 {
143 return NULL;
144 }
145 #define rtcdev (NULL)
146 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
147 static inline void alarmtimer_rtc_interface_remove(void) { }
148 static inline void alarmtimer_rtc_timer_init(void) { }
149 #endif
150
151 /**
152 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
153 * @base: pointer to the base where the timer is being run
154 * @alarm: pointer to alarm being enqueued.
155 *
156 * Adds alarm to a alarm_base timerqueue
157 *
158 * Must hold base->lock when calling.
159 */
160 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
161 {
162 if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
163 timerqueue_del(&base->timerqueue, &alarm->node);
164
165 timerqueue_add(&base->timerqueue, &alarm->node);
166 alarm->state |= ALARMTIMER_STATE_ENQUEUED;
167 }
168
169 /**
170 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
171 * @base: pointer to the base where the timer is running
172 * @alarm: pointer to alarm being removed
173 *
174 * Removes alarm to a alarm_base timerqueue
175 *
176 * Must hold base->lock when calling.
177 */
178 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
179 {
180 if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
181 return;
182
183 timerqueue_del(&base->timerqueue, &alarm->node);
184 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
185 }
186
187
188 /**
189 * alarmtimer_fired - Handles alarm hrtimer being fired.
190 * @timer: pointer to hrtimer being run
191 *
192 * When a alarm timer fires, this runs through the timerqueue to
193 * see which alarms expired, and runs those. If there are more alarm
194 * timers queued for the future, we set the hrtimer to fire when
195 * when the next future alarm timer expires.
196 */
197 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
198 {
199 struct alarm *alarm = container_of(timer, struct alarm, timer);
200 struct alarm_base *base = &alarm_bases[alarm->type];
201 unsigned long flags;
202 int ret = HRTIMER_NORESTART;
203 int restart = ALARMTIMER_NORESTART;
204
205 spin_lock_irqsave(&base->lock, flags);
206 alarmtimer_dequeue(base, alarm);
207 spin_unlock_irqrestore(&base->lock, flags);
208
209 if (alarm->function)
210 restart = alarm->function(alarm, base->gettime());
211
212 spin_lock_irqsave(&base->lock, flags);
213 if (restart != ALARMTIMER_NORESTART) {
214 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
215 alarmtimer_enqueue(base, alarm);
216 ret = HRTIMER_RESTART;
217 }
218 spin_unlock_irqrestore(&base->lock, flags);
219
220 trace_alarmtimer_fired(alarm, base->gettime());
221 return ret;
222
223 }
224
225 ktime_t alarm_expires_remaining(const struct alarm *alarm)
226 {
227 struct alarm_base *base = &alarm_bases[alarm->type];
228 return ktime_sub(alarm->node.expires, base->gettime());
229 }
230 EXPORT_SYMBOL_GPL(alarm_expires_remaining);
231
232 #ifdef CONFIG_RTC_CLASS
233 /**
234 * alarmtimer_suspend - Suspend time callback
235 * @dev: unused
236 * @state: unused
237 *
238 * When we are going into suspend, we look through the bases
239 * to see which is the soonest timer to expire. We then
240 * set an rtc timer to fire that far into the future, which
241 * will wake us from suspend.
242 */
243 static int alarmtimer_suspend(struct device *dev)
244 {
245 ktime_t min, now, expires;
246 int i, ret, type;
247 struct rtc_device *rtc;
248 unsigned long flags;
249 struct rtc_time tm;
250
251 spin_lock_irqsave(&freezer_delta_lock, flags);
252 min = freezer_delta;
253 expires = freezer_expires;
254 type = freezer_alarmtype;
255 freezer_delta = 0;
256 spin_unlock_irqrestore(&freezer_delta_lock, flags);
257
258 rtc = alarmtimer_get_rtcdev();
259 /* If we have no rtcdev, just return */
260 if (!rtc)
261 return 0;
262
263 /* Find the soonest timer to expire*/
264 for (i = 0; i < ALARM_NUMTYPE; i++) {
265 struct alarm_base *base = &alarm_bases[i];
266 struct timerqueue_node *next;
267 ktime_t delta;
268
269 spin_lock_irqsave(&base->lock, flags);
270 next = timerqueue_getnext(&base->timerqueue);
271 spin_unlock_irqrestore(&base->lock, flags);
272 if (!next)
273 continue;
274 delta = ktime_sub(next->expires, base->gettime());
275 if (!min || (delta < min)) {
276 expires = next->expires;
277 min = delta;
278 type = i;
279 }
280 }
281 if (min == 0)
282 return 0;
283
284 if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
285 __pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
286 return -EBUSY;
287 }
288
289 trace_alarmtimer_suspend(expires, type);
290
291 /* Setup an rtc timer to fire that far in the future */
292 rtc_timer_cancel(rtc, &rtctimer);
293 rtc_read_time(rtc, &tm);
294 now = rtc_tm_to_ktime(tm);
295 now = ktime_add(now, min);
296
297 /* Set alarm, if in the past reject suspend briefly to handle */
298 ret = rtc_timer_start(rtc, &rtctimer, now, 0);
299 if (ret < 0)
300 __pm_wakeup_event(ws, MSEC_PER_SEC);
301 return ret;
302 }
303
304 static int alarmtimer_resume(struct device *dev)
305 {
306 struct rtc_device *rtc;
307
308 rtc = alarmtimer_get_rtcdev();
309 if (rtc)
310 rtc_timer_cancel(rtc, &rtctimer);
311 return 0;
312 }
313
314 #else
315 static int alarmtimer_suspend(struct device *dev)
316 {
317 return 0;
318 }
319
320 static int alarmtimer_resume(struct device *dev)
321 {
322 return 0;
323 }
324 #endif
325
326 static void
327 __alarm_init(struct alarm *alarm, enum alarmtimer_type type,
328 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
329 {
330 timerqueue_init(&alarm->node);
331 alarm->timer.function = alarmtimer_fired;
332 alarm->function = function;
333 alarm->type = type;
334 alarm->state = ALARMTIMER_STATE_INACTIVE;
335 }
336
337 /**
338 * alarm_init - Initialize an alarm structure
339 * @alarm: ptr to alarm to be initialized
340 * @type: the type of the alarm
341 * @function: callback that is run when the alarm fires
342 */
343 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
344 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
345 {
346 hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
347 HRTIMER_MODE_ABS);
348 __alarm_init(alarm, type, function);
349 }
350 EXPORT_SYMBOL_GPL(alarm_init);
351
352 /**
353 * alarm_start - Sets an absolute alarm to fire
354 * @alarm: ptr to alarm to set
355 * @start: time to run the alarm
356 */
357 void alarm_start(struct alarm *alarm, ktime_t start)
358 {
359 struct alarm_base *base = &alarm_bases[alarm->type];
360 unsigned long flags;
361
362 spin_lock_irqsave(&base->lock, flags);
363 alarm->node.expires = start;
364 alarmtimer_enqueue(base, alarm);
365 hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
366 spin_unlock_irqrestore(&base->lock, flags);
367
368 trace_alarmtimer_start(alarm, base->gettime());
369 }
370 EXPORT_SYMBOL_GPL(alarm_start);
371
372 /**
373 * alarm_start_relative - Sets a relative alarm to fire
374 * @alarm: ptr to alarm to set
375 * @start: time relative to now to run the alarm
376 */
377 void alarm_start_relative(struct alarm *alarm, ktime_t start)
378 {
379 struct alarm_base *base = &alarm_bases[alarm->type];
380
381 start = ktime_add_safe(start, base->gettime());
382 alarm_start(alarm, start);
383 }
384 EXPORT_SYMBOL_GPL(alarm_start_relative);
385
386 void alarm_restart(struct alarm *alarm)
387 {
388 struct alarm_base *base = &alarm_bases[alarm->type];
389 unsigned long flags;
390
391 spin_lock_irqsave(&base->lock, flags);
392 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
393 hrtimer_restart(&alarm->timer);
394 alarmtimer_enqueue(base, alarm);
395 spin_unlock_irqrestore(&base->lock, flags);
396 }
397 EXPORT_SYMBOL_GPL(alarm_restart);
398
399 /**
400 * alarm_try_to_cancel - Tries to cancel an alarm timer
401 * @alarm: ptr to alarm to be canceled
402 *
403 * Returns 1 if the timer was canceled, 0 if it was not running,
404 * and -1 if the callback was running
405 */
406 int alarm_try_to_cancel(struct alarm *alarm)
407 {
408 struct alarm_base *base = &alarm_bases[alarm->type];
409 unsigned long flags;
410 int ret;
411
412 spin_lock_irqsave(&base->lock, flags);
413 ret = hrtimer_try_to_cancel(&alarm->timer);
414 if (ret >= 0)
415 alarmtimer_dequeue(base, alarm);
416 spin_unlock_irqrestore(&base->lock, flags);
417
418 trace_alarmtimer_cancel(alarm, base->gettime());
419 return ret;
420 }
421 EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
422
423
424 /**
425 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
426 * @alarm: ptr to alarm to be canceled
427 *
428 * Returns 1 if the timer was canceled, 0 if it was not active.
429 */
430 int alarm_cancel(struct alarm *alarm)
431 {
432 for (;;) {
433 int ret = alarm_try_to_cancel(alarm);
434 if (ret >= 0)
435 return ret;
436 cpu_relax();
437 }
438 }
439 EXPORT_SYMBOL_GPL(alarm_cancel);
440
441
442 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
443 {
444 u64 overrun = 1;
445 ktime_t delta;
446
447 delta = ktime_sub(now, alarm->node.expires);
448
449 if (delta < 0)
450 return 0;
451
452 if (unlikely(delta >= interval)) {
453 s64 incr = ktime_to_ns(interval);
454
455 overrun = ktime_divns(delta, incr);
456
457 alarm->node.expires = ktime_add_ns(alarm->node.expires,
458 incr*overrun);
459
460 if (alarm->node.expires > now)
461 return overrun;
462 /*
463 * This (and the ktime_add() below) is the
464 * correction for exact:
465 */
466 overrun++;
467 }
468
469 alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
470 return overrun;
471 }
472 EXPORT_SYMBOL_GPL(alarm_forward);
473
474 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
475 {
476 struct alarm_base *base = &alarm_bases[alarm->type];
477
478 return alarm_forward(alarm, base->gettime(), interval);
479 }
480 EXPORT_SYMBOL_GPL(alarm_forward_now);
481
482 #ifdef CONFIG_POSIX_TIMERS
483
484 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
485 {
486 struct alarm_base *base;
487 unsigned long flags;
488 ktime_t delta;
489
490 switch(type) {
491 case ALARM_REALTIME:
492 base = &alarm_bases[ALARM_REALTIME];
493 type = ALARM_REALTIME_FREEZER;
494 break;
495 case ALARM_BOOTTIME:
496 base = &alarm_bases[ALARM_BOOTTIME];
497 type = ALARM_BOOTTIME_FREEZER;
498 break;
499 default:
500 WARN_ONCE(1, "Invalid alarm type: %d\n", type);
501 return;
502 }
503
504 delta = ktime_sub(absexp, base->gettime());
505
506 spin_lock_irqsave(&freezer_delta_lock, flags);
507 if (!freezer_delta || (delta < freezer_delta)) {
508 freezer_delta = delta;
509 freezer_expires = absexp;
510 freezer_alarmtype = type;
511 }
512 spin_unlock_irqrestore(&freezer_delta_lock, flags);
513 }
514
515 /**
516 * clock2alarm - helper that converts from clockid to alarmtypes
517 * @clockid: clockid.
518 */
519 static enum alarmtimer_type clock2alarm(clockid_t clockid)
520 {
521 if (clockid == CLOCK_REALTIME_ALARM)
522 return ALARM_REALTIME;
523 if (clockid == CLOCK_BOOTTIME_ALARM)
524 return ALARM_BOOTTIME;
525 return -1;
526 }
527
528 /**
529 * alarm_handle_timer - Callback for posix timers
530 * @alarm: alarm that fired
531 *
532 * Posix timer callback for expired alarm timers.
533 */
534 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
535 ktime_t now)
536 {
537 struct k_itimer *ptr = container_of(alarm, struct k_itimer,
538 it.alarm.alarmtimer);
539 enum alarmtimer_restart result = ALARMTIMER_NORESTART;
540 unsigned long flags;
541 int si_private = 0;
542
543 spin_lock_irqsave(&ptr->it_lock, flags);
544
545 ptr->it_active = 0;
546 if (ptr->it_interval)
547 si_private = ++ptr->it_requeue_pending;
548
549 if (posix_timer_event(ptr, si_private) && ptr->it_interval) {
550 /*
551 * Handle ignored signals and rearm the timer. This will go
552 * away once we handle ignored signals proper.
553 */
554 ptr->it_overrun += alarm_forward_now(alarm, ptr->it_interval);
555 ++ptr->it_requeue_pending;
556 ptr->it_active = 1;
557 result = ALARMTIMER_RESTART;
558 }
559 spin_unlock_irqrestore(&ptr->it_lock, flags);
560
561 return result;
562 }
563
564 /**
565 * alarm_timer_rearm - Posix timer callback for rearming timer
566 * @timr: Pointer to the posixtimer data struct
567 */
568 static void alarm_timer_rearm(struct k_itimer *timr)
569 {
570 struct alarm *alarm = &timr->it.alarm.alarmtimer;
571
572 timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
573 alarm_start(alarm, alarm->node.expires);
574 }
575
576 /**
577 * alarm_timer_forward - Posix timer callback for forwarding timer
578 * @timr: Pointer to the posixtimer data struct
579 * @now: Current time to forward the timer against
580 */
581 static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now)
582 {
583 struct alarm *alarm = &timr->it.alarm.alarmtimer;
584
585 return alarm_forward(alarm, timr->it_interval, now);
586 }
587
588 /**
589 * alarm_timer_remaining - Posix timer callback to retrieve remaining time
590 * @timr: Pointer to the posixtimer data struct
591 * @now: Current time to calculate against
592 */
593 static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
594 {
595 struct alarm *alarm = &timr->it.alarm.alarmtimer;
596
597 return ktime_sub(alarm->node.expires, now);
598 }
599
600 /**
601 * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
602 * @timr: Pointer to the posixtimer data struct
603 */
604 static int alarm_timer_try_to_cancel(struct k_itimer *timr)
605 {
606 return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
607 }
608
609 /**
610 * alarm_timer_arm - Posix timer callback to arm a timer
611 * @timr: Pointer to the posixtimer data struct
612 * @expires: The new expiry time
613 * @absolute: Expiry value is absolute time
614 * @sigev_none: Posix timer does not deliver signals
615 */
616 static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
617 bool absolute, bool sigev_none)
618 {
619 struct alarm *alarm = &timr->it.alarm.alarmtimer;
620 struct alarm_base *base = &alarm_bases[alarm->type];
621
622 if (!absolute)
623 expires = ktime_add_safe(expires, base->gettime());
624 if (sigev_none)
625 alarm->node.expires = expires;
626 else
627 alarm_start(&timr->it.alarm.alarmtimer, expires);
628 }
629
630 /**
631 * alarm_clock_getres - posix getres interface
632 * @which_clock: clockid
633 * @tp: timespec to fill
634 *
635 * Returns the granularity of underlying alarm base clock
636 */
637 static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
638 {
639 if (!alarmtimer_get_rtcdev())
640 return -EINVAL;
641
642 tp->tv_sec = 0;
643 tp->tv_nsec = hrtimer_resolution;
644 return 0;
645 }
646
647 /**
648 * alarm_clock_get - posix clock_get interface
649 * @which_clock: clockid
650 * @tp: timespec to fill.
651 *
652 * Provides the underlying alarm base time.
653 */
654 static int alarm_clock_get(clockid_t which_clock, struct timespec64 *tp)
655 {
656 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
657
658 if (!alarmtimer_get_rtcdev())
659 return -EINVAL;
660
661 *tp = ktime_to_timespec64(base->gettime());
662 return 0;
663 }
664
665 /**
666 * alarm_timer_create - posix timer_create interface
667 * @new_timer: k_itimer pointer to manage
668 *
669 * Initializes the k_itimer structure.
670 */
671 static int alarm_timer_create(struct k_itimer *new_timer)
672 {
673 enum alarmtimer_type type;
674
675 if (!alarmtimer_get_rtcdev())
676 return -ENOTSUPP;
677
678 if (!capable(CAP_WAKE_ALARM))
679 return -EPERM;
680
681 type = clock2alarm(new_timer->it_clock);
682 alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
683 return 0;
684 }
685
686 /**
687 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
688 * @alarm: ptr to alarm that fired
689 *
690 * Wakes up the task that set the alarmtimer
691 */
692 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
693 ktime_t now)
694 {
695 struct task_struct *task = (struct task_struct *)alarm->data;
696
697 alarm->data = NULL;
698 if (task)
699 wake_up_process(task);
700 return ALARMTIMER_NORESTART;
701 }
702
703 /**
704 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
705 * @alarm: ptr to alarmtimer
706 * @absexp: absolute expiration time
707 *
708 * Sets the alarm timer and sleeps until it is fired or interrupted.
709 */
710 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
711 enum alarmtimer_type type)
712 {
713 struct restart_block *restart;
714 alarm->data = (void *)current;
715 do {
716 set_current_state(TASK_INTERRUPTIBLE);
717 alarm_start(alarm, absexp);
718 if (likely(alarm->data))
719 schedule();
720
721 alarm_cancel(alarm);
722 } while (alarm->data && !signal_pending(current));
723
724 __set_current_state(TASK_RUNNING);
725
726 destroy_hrtimer_on_stack(&alarm->timer);
727
728 if (!alarm->data)
729 return 0;
730
731 if (freezing(current))
732 alarmtimer_freezerset(absexp, type);
733 restart = &current->restart_block;
734 if (restart->nanosleep.type != TT_NONE) {
735 struct timespec64 rmt;
736 ktime_t rem;
737
738 rem = ktime_sub(absexp, alarm_bases[type].gettime());
739
740 if (rem <= 0)
741 return 0;
742 rmt = ktime_to_timespec64(rem);
743
744 return nanosleep_copyout(restart, &rmt);
745 }
746 return -ERESTART_RESTARTBLOCK;
747 }
748
749 static void
750 alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
751 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
752 {
753 hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid,
754 HRTIMER_MODE_ABS);
755 __alarm_init(alarm, type, function);
756 }
757
758 /**
759 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
760 * @restart: ptr to restart block
761 *
762 * Handles restarted clock_nanosleep calls
763 */
764 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
765 {
766 enum alarmtimer_type type = restart->nanosleep.clockid;
767 ktime_t exp = restart->nanosleep.expires;
768 struct alarm alarm;
769
770 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
771
772 return alarmtimer_do_nsleep(&alarm, exp, type);
773 }
774
775 /**
776 * alarm_timer_nsleep - alarmtimer nanosleep
777 * @which_clock: clockid
778 * @flags: determins abstime or relative
779 * @tsreq: requested sleep time (abs or rel)
780 * @rmtp: remaining sleep time saved
781 *
782 * Handles clock_nanosleep calls against _ALARM clockids
783 */
784 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
785 const struct timespec64 *tsreq)
786 {
787 enum alarmtimer_type type = clock2alarm(which_clock);
788 struct restart_block *restart = &current->restart_block;
789 struct alarm alarm;
790 ktime_t exp;
791 int ret = 0;
792
793 if (!alarmtimer_get_rtcdev())
794 return -ENOTSUPP;
795
796 if (flags & ~TIMER_ABSTIME)
797 return -EINVAL;
798
799 if (!capable(CAP_WAKE_ALARM))
800 return -EPERM;
801
802 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup);
803
804 exp = timespec64_to_ktime(*tsreq);
805 /* Convert (if necessary) to absolute time */
806 if (flags != TIMER_ABSTIME) {
807 ktime_t now = alarm_bases[type].gettime();
808
809 exp = ktime_add_safe(now, exp);
810 }
811
812 ret = alarmtimer_do_nsleep(&alarm, exp, type);
813 if (ret != -ERESTART_RESTARTBLOCK)
814 return ret;
815
816 /* abs timers don't set remaining time or restart */
817 if (flags == TIMER_ABSTIME)
818 return -ERESTARTNOHAND;
819
820 restart->fn = alarm_timer_nsleep_restart;
821 restart->nanosleep.clockid = type;
822 restart->nanosleep.expires = exp;
823 return ret;
824 }
825
826 const struct k_clock alarm_clock = {
827 .clock_getres = alarm_clock_getres,
828 .clock_get = alarm_clock_get,
829 .timer_create = alarm_timer_create,
830 .timer_set = common_timer_set,
831 .timer_del = common_timer_del,
832 .timer_get = common_timer_get,
833 .timer_arm = alarm_timer_arm,
834 .timer_rearm = alarm_timer_rearm,
835 .timer_forward = alarm_timer_forward,
836 .timer_remaining = alarm_timer_remaining,
837 .timer_try_to_cancel = alarm_timer_try_to_cancel,
838 .nsleep = alarm_timer_nsleep,
839 };
840 #endif /* CONFIG_POSIX_TIMERS */
841
842
843 /* Suspend hook structures */
844 static const struct dev_pm_ops alarmtimer_pm_ops = {
845 .suspend = alarmtimer_suspend,
846 .resume = alarmtimer_resume,
847 };
848
849 static struct platform_driver alarmtimer_driver = {
850 .driver = {
851 .name = "alarmtimer",
852 .pm = &alarmtimer_pm_ops,
853 }
854 };
855
856 /**
857 * alarmtimer_init - Initialize alarm timer code
858 *
859 * This function initializes the alarm bases and registers
860 * the posix clock ids.
861 */
862 static int __init alarmtimer_init(void)
863 {
864 struct platform_device *pdev;
865 int error = 0;
866 int i;
867
868 alarmtimer_rtc_timer_init();
869
870 /* Initialize alarm bases */
871 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
872 alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
873 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
874 alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
875 for (i = 0; i < ALARM_NUMTYPE; i++) {
876 timerqueue_init_head(&alarm_bases[i].timerqueue);
877 spin_lock_init(&alarm_bases[i].lock);
878 }
879
880 error = alarmtimer_rtc_interface_setup();
881 if (error)
882 return error;
883
884 error = platform_driver_register(&alarmtimer_driver);
885 if (error)
886 goto out_if;
887
888 pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
889 if (IS_ERR(pdev)) {
890 error = PTR_ERR(pdev);
891 goto out_drv;
892 }
893 return 0;
894
895 out_drv:
896 platform_driver_unregister(&alarmtimer_driver);
897 out_if:
898 alarmtimer_rtc_interface_remove();
899 return error;
900 }
901 device_initcall(alarmtimer_init);