]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/time/alarmtimer.c
alarmtimers: Remove interval cap limit hack
[mirror_ubuntu-artful-kernel.git] / kernel / time / alarmtimer.c
1 /*
2 * Alarmtimer interface
3 *
4 * This interface provides a timer which is similarto hrtimers,
5 * but triggers a RTC alarm if the box is suspend.
6 *
7 * This interface is influenced by the Android RTC Alarm timer
8 * interface.
9 *
10 * Copyright (C) 2010 IBM Corperation
11 *
12 * Author: John Stultz <john.stultz@linaro.org>
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
17 */
18 #include <linux/time.h>
19 #include <linux/hrtimer.h>
20 #include <linux/timerqueue.h>
21 #include <linux/rtc.h>
22 #include <linux/alarmtimer.h>
23 #include <linux/mutex.h>
24 #include <linux/platform_device.h>
25 #include <linux/posix-timers.h>
26 #include <linux/workqueue.h>
27 #include <linux/freezer.h>
28
29 /**
30 * struct alarm_base - Alarm timer bases
31 * @lock: Lock for syncrhonized access to the base
32 * @timerqueue: Timerqueue head managing the list of events
33 * @timer: hrtimer used to schedule events while running
34 * @gettime: Function to read the time correlating to the base
35 * @base_clockid: clockid for the base
36 */
37 static struct alarm_base {
38 spinlock_t lock;
39 struct timerqueue_head timerqueue;
40 struct hrtimer timer;
41 ktime_t (*gettime)(void);
42 clockid_t base_clockid;
43 } alarm_bases[ALARM_NUMTYPE];
44
45 /* freezer delta & lock used to handle clock_nanosleep triggered wakeups */
46 static ktime_t freezer_delta;
47 static DEFINE_SPINLOCK(freezer_delta_lock);
48
49 #ifdef CONFIG_RTC_CLASS
50 /* rtc timer and device for setting alarm wakeups at suspend */
51 static struct rtc_timer rtctimer;
52 static struct rtc_device *rtcdev;
53 static DEFINE_SPINLOCK(rtcdev_lock);
54
55 /**
56 * has_wakealarm - check rtc device has wakealarm ability
57 * @dev: current device
58 * @name_ptr: name to be returned
59 *
60 * This helper function checks to see if the rtc device can wake
61 * from suspend.
62 */
63 static int has_wakealarm(struct device *dev, void *name_ptr)
64 {
65 struct rtc_device *candidate = to_rtc_device(dev);
66
67 if (!candidate->ops->set_alarm)
68 return 0;
69 if (!device_may_wakeup(candidate->dev.parent))
70 return 0;
71
72 *(const char **)name_ptr = dev_name(dev);
73 return 1;
74 }
75
76 /**
77 * alarmtimer_get_rtcdev - Return selected rtcdevice
78 *
79 * This function returns the rtc device to use for wakealarms.
80 * If one has not already been chosen, it checks to see if a
81 * functional rtc device is available.
82 */
83 static struct rtc_device *alarmtimer_get_rtcdev(void)
84 {
85 struct device *dev;
86 char *str;
87 unsigned long flags;
88 struct rtc_device *ret;
89
90 spin_lock_irqsave(&rtcdev_lock, flags);
91 if (!rtcdev) {
92 /* Find an rtc device and init the rtc_timer */
93 dev = class_find_device(rtc_class, NULL, &str, has_wakealarm);
94 /* If we have a device then str is valid. See has_wakealarm() */
95 if (dev) {
96 rtcdev = rtc_class_open(str);
97 /*
98 * Drop the reference we got in class_find_device,
99 * rtc_open takes its own.
100 */
101 put_device(dev);
102 rtc_timer_init(&rtctimer, NULL, NULL);
103 }
104 }
105 ret = rtcdev;
106 spin_unlock_irqrestore(&rtcdev_lock, flags);
107
108 return ret;
109 }
110 #else
111 #define alarmtimer_get_rtcdev() (0)
112 #define rtcdev (0)
113 #endif
114
115
116 /**
117 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
118 * @base: pointer to the base where the timer is being run
119 * @alarm: pointer to alarm being enqueued.
120 *
121 * Adds alarm to a alarm_base timerqueue and if necessary sets
122 * an hrtimer to run.
123 *
124 * Must hold base->lock when calling.
125 */
126 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
127 {
128 timerqueue_add(&base->timerqueue, &alarm->node);
129 if (&alarm->node == timerqueue_getnext(&base->timerqueue)) {
130 hrtimer_try_to_cancel(&base->timer);
131 hrtimer_start(&base->timer, alarm->node.expires,
132 HRTIMER_MODE_ABS);
133 }
134 }
135
136 /**
137 * alarmtimer_remove - Removes an alarm timer from an alarm_base timerqueue
138 * @base: pointer to the base where the timer is running
139 * @alarm: pointer to alarm being removed
140 *
141 * Removes alarm to a alarm_base timerqueue and if necessary sets
142 * a new timer to run.
143 *
144 * Must hold base->lock when calling.
145 */
146 static void alarmtimer_remove(struct alarm_base *base, struct alarm *alarm)
147 {
148 struct timerqueue_node *next = timerqueue_getnext(&base->timerqueue);
149
150 timerqueue_del(&base->timerqueue, &alarm->node);
151 if (next == &alarm->node) {
152 hrtimer_try_to_cancel(&base->timer);
153 next = timerqueue_getnext(&base->timerqueue);
154 if (!next)
155 return;
156 hrtimer_start(&base->timer, next->expires, HRTIMER_MODE_ABS);
157 }
158 }
159
160
161 /**
162 * alarmtimer_fired - Handles alarm hrtimer being fired.
163 * @timer: pointer to hrtimer being run
164 *
165 * When a alarm timer fires, this runs through the timerqueue to
166 * see which alarms expired, and runs those. If there are more alarm
167 * timers queued for the future, we set the hrtimer to fire when
168 * when the next future alarm timer expires.
169 */
170 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
171 {
172 struct alarm_base *base = container_of(timer, struct alarm_base, timer);
173 struct timerqueue_node *next;
174 unsigned long flags;
175 ktime_t now;
176 int ret = HRTIMER_NORESTART;
177 int restart = ALARMTIMER_NORESTART;
178
179 spin_lock_irqsave(&base->lock, flags);
180 now = base->gettime();
181 while ((next = timerqueue_getnext(&base->timerqueue))) {
182 struct alarm *alarm;
183 ktime_t expired = next->expires;
184
185 if (expired.tv64 >= now.tv64)
186 break;
187
188 alarm = container_of(next, struct alarm, node);
189
190 timerqueue_del(&base->timerqueue, &alarm->node);
191 alarm->enabled = 0;
192
193 spin_unlock_irqrestore(&base->lock, flags);
194 if (alarm->function)
195 restart = alarm->function(alarm, now);
196 spin_lock_irqsave(&base->lock, flags);
197
198 if (restart != ALARMTIMER_NORESTART) {
199 timerqueue_add(&base->timerqueue, &alarm->node);
200 alarm->enabled = 1;
201 }
202 }
203
204 if (next) {
205 hrtimer_set_expires(&base->timer, next->expires);
206 ret = HRTIMER_RESTART;
207 }
208 spin_unlock_irqrestore(&base->lock, flags);
209
210 return ret;
211
212 }
213
214 #ifdef CONFIG_RTC_CLASS
215 /**
216 * alarmtimer_suspend - Suspend time callback
217 * @dev: unused
218 * @state: unused
219 *
220 * When we are going into suspend, we look through the bases
221 * to see which is the soonest timer to expire. We then
222 * set an rtc timer to fire that far into the future, which
223 * will wake us from suspend.
224 */
225 static int alarmtimer_suspend(struct device *dev)
226 {
227 struct rtc_time tm;
228 ktime_t min, now;
229 unsigned long flags;
230 struct rtc_device *rtc;
231 int i;
232
233 spin_lock_irqsave(&freezer_delta_lock, flags);
234 min = freezer_delta;
235 freezer_delta = ktime_set(0, 0);
236 spin_unlock_irqrestore(&freezer_delta_lock, flags);
237
238 rtc = rtcdev;
239 /* If we have no rtcdev, just return */
240 if (!rtc)
241 return 0;
242
243 /* Find the soonest timer to expire*/
244 for (i = 0; i < ALARM_NUMTYPE; i++) {
245 struct alarm_base *base = &alarm_bases[i];
246 struct timerqueue_node *next;
247 ktime_t delta;
248
249 spin_lock_irqsave(&base->lock, flags);
250 next = timerqueue_getnext(&base->timerqueue);
251 spin_unlock_irqrestore(&base->lock, flags);
252 if (!next)
253 continue;
254 delta = ktime_sub(next->expires, base->gettime());
255 if (!min.tv64 || (delta.tv64 < min.tv64))
256 min = delta;
257 }
258 if (min.tv64 == 0)
259 return 0;
260
261 /* XXX - Should we enforce a minimum sleep time? */
262 WARN_ON(min.tv64 < NSEC_PER_SEC);
263
264 /* Setup an rtc timer to fire that far in the future */
265 rtc_timer_cancel(rtc, &rtctimer);
266 rtc_read_time(rtc, &tm);
267 now = rtc_tm_to_ktime(tm);
268 now = ktime_add(now, min);
269
270 rtc_timer_start(rtc, &rtctimer, now, ktime_set(0, 0));
271
272 return 0;
273 }
274 #else
275 static int alarmtimer_suspend(struct device *dev)
276 {
277 return 0;
278 }
279 #endif
280
281 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
282 {
283 ktime_t delta;
284 unsigned long flags;
285 struct alarm_base *base = &alarm_bases[type];
286
287 delta = ktime_sub(absexp, base->gettime());
288
289 spin_lock_irqsave(&freezer_delta_lock, flags);
290 if (!freezer_delta.tv64 || (delta.tv64 < freezer_delta.tv64))
291 freezer_delta = delta;
292 spin_unlock_irqrestore(&freezer_delta_lock, flags);
293 }
294
295
296 /**
297 * alarm_init - Initialize an alarm structure
298 * @alarm: ptr to alarm to be initialized
299 * @type: the type of the alarm
300 * @function: callback that is run when the alarm fires
301 */
302 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
303 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
304 {
305 timerqueue_init(&alarm->node);
306 alarm->period = ktime_set(0, 0);
307 alarm->function = function;
308 alarm->type = type;
309 alarm->enabled = 0;
310 }
311
312 /**
313 * alarm_start - Sets an alarm to fire
314 * @alarm: ptr to alarm to set
315 * @start: time to run the alarm
316 * @period: period at which the alarm will recur
317 */
318 void alarm_start(struct alarm *alarm, ktime_t start, ktime_t period)
319 {
320 struct alarm_base *base = &alarm_bases[alarm->type];
321 unsigned long flags;
322
323 spin_lock_irqsave(&base->lock, flags);
324 if (alarm->enabled)
325 alarmtimer_remove(base, alarm);
326 alarm->node.expires = start;
327 alarm->period = period;
328 alarmtimer_enqueue(base, alarm);
329 alarm->enabled = 1;
330 spin_unlock_irqrestore(&base->lock, flags);
331 }
332
333 /**
334 * alarm_cancel - Tries to cancel an alarm timer
335 * @alarm: ptr to alarm to be canceled
336 */
337 void alarm_cancel(struct alarm *alarm)
338 {
339 struct alarm_base *base = &alarm_bases[alarm->type];
340 unsigned long flags;
341
342 spin_lock_irqsave(&base->lock, flags);
343 if (alarm->enabled)
344 alarmtimer_remove(base, alarm);
345 alarm->enabled = 0;
346 spin_unlock_irqrestore(&base->lock, flags);
347 }
348
349
350
351 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
352 {
353 u64 overrun = 1;
354 ktime_t delta;
355
356 delta = ktime_sub(now, alarm->node.expires);
357
358 if (delta.tv64 < 0)
359 return 0;
360
361 if (unlikely(delta.tv64 >= interval.tv64)) {
362 s64 incr = ktime_to_ns(interval);
363
364 overrun = ktime_divns(delta, incr);
365
366 alarm->node.expires = ktime_add_ns(alarm->node.expires,
367 incr*overrun);
368
369 if (alarm->node.expires.tv64 > now.tv64)
370 return overrun;
371 /*
372 * This (and the ktime_add() below) is the
373 * correction for exact:
374 */
375 overrun++;
376 }
377
378 alarm->node.expires = ktime_add(alarm->node.expires, interval);
379 return overrun;
380 }
381
382
383
384
385 /**
386 * clock2alarm - helper that converts from clockid to alarmtypes
387 * @clockid: clockid.
388 */
389 static enum alarmtimer_type clock2alarm(clockid_t clockid)
390 {
391 if (clockid == CLOCK_REALTIME_ALARM)
392 return ALARM_REALTIME;
393 if (clockid == CLOCK_BOOTTIME_ALARM)
394 return ALARM_BOOTTIME;
395 return -1;
396 }
397
398 /**
399 * alarm_handle_timer - Callback for posix timers
400 * @alarm: alarm that fired
401 *
402 * Posix timer callback for expired alarm timers.
403 */
404 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
405 ktime_t now)
406 {
407 struct k_itimer *ptr = container_of(alarm, struct k_itimer,
408 it.alarmtimer);
409 if (posix_timer_event(ptr, 0) != 0)
410 ptr->it_overrun++;
411
412 /* Re-add periodic timers */
413 if (alarm->period.tv64) {
414 ptr->it_overrun += alarm_forward(alarm, now, alarm->period);
415 return ALARMTIMER_RESTART;
416 }
417 return ALARMTIMER_NORESTART;
418 }
419
420 /**
421 * alarm_clock_getres - posix getres interface
422 * @which_clock: clockid
423 * @tp: timespec to fill
424 *
425 * Returns the granularity of underlying alarm base clock
426 */
427 static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp)
428 {
429 clockid_t baseid = alarm_bases[clock2alarm(which_clock)].base_clockid;
430
431 if (!alarmtimer_get_rtcdev())
432 return -ENOTSUPP;
433
434 return hrtimer_get_res(baseid, tp);
435 }
436
437 /**
438 * alarm_clock_get - posix clock_get interface
439 * @which_clock: clockid
440 * @tp: timespec to fill.
441 *
442 * Provides the underlying alarm base time.
443 */
444 static int alarm_clock_get(clockid_t which_clock, struct timespec *tp)
445 {
446 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
447
448 if (!alarmtimer_get_rtcdev())
449 return -ENOTSUPP;
450
451 *tp = ktime_to_timespec(base->gettime());
452 return 0;
453 }
454
455 /**
456 * alarm_timer_create - posix timer_create interface
457 * @new_timer: k_itimer pointer to manage
458 *
459 * Initializes the k_itimer structure.
460 */
461 static int alarm_timer_create(struct k_itimer *new_timer)
462 {
463 enum alarmtimer_type type;
464 struct alarm_base *base;
465
466 if (!alarmtimer_get_rtcdev())
467 return -ENOTSUPP;
468
469 if (!capable(CAP_WAKE_ALARM))
470 return -EPERM;
471
472 type = clock2alarm(new_timer->it_clock);
473 base = &alarm_bases[type];
474 alarm_init(&new_timer->it.alarmtimer, type, alarm_handle_timer);
475 return 0;
476 }
477
478 /**
479 * alarm_timer_get - posix timer_get interface
480 * @new_timer: k_itimer pointer
481 * @cur_setting: itimerspec data to fill
482 *
483 * Copies the itimerspec data out from the k_itimer
484 */
485 static void alarm_timer_get(struct k_itimer *timr,
486 struct itimerspec *cur_setting)
487 {
488 memset(cur_setting, 0, sizeof(struct itimerspec));
489
490 cur_setting->it_interval =
491 ktime_to_timespec(timr->it.alarmtimer.period);
492 cur_setting->it_value =
493 ktime_to_timespec(timr->it.alarmtimer.node.expires);
494 return;
495 }
496
497 /**
498 * alarm_timer_del - posix timer_del interface
499 * @timr: k_itimer pointer to be deleted
500 *
501 * Cancels any programmed alarms for the given timer.
502 */
503 static int alarm_timer_del(struct k_itimer *timr)
504 {
505 if (!rtcdev)
506 return -ENOTSUPP;
507
508 alarm_cancel(&timr->it.alarmtimer);
509 return 0;
510 }
511
512 /**
513 * alarm_timer_set - posix timer_set interface
514 * @timr: k_itimer pointer to be deleted
515 * @flags: timer flags
516 * @new_setting: itimerspec to be used
517 * @old_setting: itimerspec being replaced
518 *
519 * Sets the timer to new_setting, and starts the timer.
520 */
521 static int alarm_timer_set(struct k_itimer *timr, int flags,
522 struct itimerspec *new_setting,
523 struct itimerspec *old_setting)
524 {
525 if (!rtcdev)
526 return -ENOTSUPP;
527
528 if (old_setting)
529 alarm_timer_get(timr, old_setting);
530
531 /* If the timer was already set, cancel it */
532 alarm_cancel(&timr->it.alarmtimer);
533
534 /* start the timer */
535 alarm_start(&timr->it.alarmtimer,
536 timespec_to_ktime(new_setting->it_value),
537 timespec_to_ktime(new_setting->it_interval));
538 return 0;
539 }
540
541 /**
542 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
543 * @alarm: ptr to alarm that fired
544 *
545 * Wakes up the task that set the alarmtimer
546 */
547 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
548 ktime_t now)
549 {
550 struct task_struct *task = (struct task_struct *)alarm->data;
551
552 alarm->data = NULL;
553 if (task)
554 wake_up_process(task);
555 return ALARMTIMER_NORESTART;
556 }
557
558 /**
559 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
560 * @alarm: ptr to alarmtimer
561 * @absexp: absolute expiration time
562 *
563 * Sets the alarm timer and sleeps until it is fired or interrupted.
564 */
565 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp)
566 {
567 alarm->data = (void *)current;
568 do {
569 set_current_state(TASK_INTERRUPTIBLE);
570 alarm_start(alarm, absexp, ktime_set(0, 0));
571 if (likely(alarm->data))
572 schedule();
573
574 alarm_cancel(alarm);
575 } while (alarm->data && !signal_pending(current));
576
577 __set_current_state(TASK_RUNNING);
578
579 return (alarm->data == NULL);
580 }
581
582
583 /**
584 * update_rmtp - Update remaining timespec value
585 * @exp: expiration time
586 * @type: timer type
587 * @rmtp: user pointer to remaining timepsec value
588 *
589 * Helper function that fills in rmtp value with time between
590 * now and the exp value
591 */
592 static int update_rmtp(ktime_t exp, enum alarmtimer_type type,
593 struct timespec __user *rmtp)
594 {
595 struct timespec rmt;
596 ktime_t rem;
597
598 rem = ktime_sub(exp, alarm_bases[type].gettime());
599
600 if (rem.tv64 <= 0)
601 return 0;
602 rmt = ktime_to_timespec(rem);
603
604 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
605 return -EFAULT;
606
607 return 1;
608
609 }
610
611 /**
612 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
613 * @restart: ptr to restart block
614 *
615 * Handles restarted clock_nanosleep calls
616 */
617 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
618 {
619 enum alarmtimer_type type = restart->nanosleep.clockid;
620 ktime_t exp;
621 struct timespec __user *rmtp;
622 struct alarm alarm;
623 int ret = 0;
624
625 exp.tv64 = restart->nanosleep.expires;
626 alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
627
628 if (alarmtimer_do_nsleep(&alarm, exp))
629 goto out;
630
631 if (freezing(current))
632 alarmtimer_freezerset(exp, type);
633
634 rmtp = restart->nanosleep.rmtp;
635 if (rmtp) {
636 ret = update_rmtp(exp, type, rmtp);
637 if (ret <= 0)
638 goto out;
639 }
640
641
642 /* The other values in restart are already filled in */
643 ret = -ERESTART_RESTARTBLOCK;
644 out:
645 return ret;
646 }
647
648 /**
649 * alarm_timer_nsleep - alarmtimer nanosleep
650 * @which_clock: clockid
651 * @flags: determins abstime or relative
652 * @tsreq: requested sleep time (abs or rel)
653 * @rmtp: remaining sleep time saved
654 *
655 * Handles clock_nanosleep calls against _ALARM clockids
656 */
657 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
658 struct timespec *tsreq, struct timespec __user *rmtp)
659 {
660 enum alarmtimer_type type = clock2alarm(which_clock);
661 struct alarm alarm;
662 ktime_t exp;
663 int ret = 0;
664 struct restart_block *restart;
665
666 if (!alarmtimer_get_rtcdev())
667 return -ENOTSUPP;
668
669 if (!capable(CAP_WAKE_ALARM))
670 return -EPERM;
671
672 alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
673
674 exp = timespec_to_ktime(*tsreq);
675 /* Convert (if necessary) to absolute time */
676 if (flags != TIMER_ABSTIME) {
677 ktime_t now = alarm_bases[type].gettime();
678 exp = ktime_add(now, exp);
679 }
680
681 if (alarmtimer_do_nsleep(&alarm, exp))
682 goto out;
683
684 if (freezing(current))
685 alarmtimer_freezerset(exp, type);
686
687 /* abs timers don't set remaining time or restart */
688 if (flags == TIMER_ABSTIME) {
689 ret = -ERESTARTNOHAND;
690 goto out;
691 }
692
693 if (rmtp) {
694 ret = update_rmtp(exp, type, rmtp);
695 if (ret <= 0)
696 goto out;
697 }
698
699 restart = &current_thread_info()->restart_block;
700 restart->fn = alarm_timer_nsleep_restart;
701 restart->nanosleep.clockid = type;
702 restart->nanosleep.expires = exp.tv64;
703 restart->nanosleep.rmtp = rmtp;
704 ret = -ERESTART_RESTARTBLOCK;
705
706 out:
707 return ret;
708 }
709
710
711 /* Suspend hook structures */
712 static const struct dev_pm_ops alarmtimer_pm_ops = {
713 .suspend = alarmtimer_suspend,
714 };
715
716 static struct platform_driver alarmtimer_driver = {
717 .driver = {
718 .name = "alarmtimer",
719 .pm = &alarmtimer_pm_ops,
720 }
721 };
722
723 /**
724 * alarmtimer_init - Initialize alarm timer code
725 *
726 * This function initializes the alarm bases and registers
727 * the posix clock ids.
728 */
729 static int __init alarmtimer_init(void)
730 {
731 int error = 0;
732 int i;
733 struct k_clock alarm_clock = {
734 .clock_getres = alarm_clock_getres,
735 .clock_get = alarm_clock_get,
736 .timer_create = alarm_timer_create,
737 .timer_set = alarm_timer_set,
738 .timer_del = alarm_timer_del,
739 .timer_get = alarm_timer_get,
740 .nsleep = alarm_timer_nsleep,
741 };
742
743 posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock);
744 posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock);
745
746 /* Initialize alarm bases */
747 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
748 alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
749 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
750 alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
751 for (i = 0; i < ALARM_NUMTYPE; i++) {
752 timerqueue_init_head(&alarm_bases[i].timerqueue);
753 spin_lock_init(&alarm_bases[i].lock);
754 hrtimer_init(&alarm_bases[i].timer,
755 alarm_bases[i].base_clockid,
756 HRTIMER_MODE_ABS);
757 alarm_bases[i].timer.function = alarmtimer_fired;
758 }
759 error = platform_driver_register(&alarmtimer_driver);
760 platform_device_register_simple("alarmtimer", -1, NULL, 0);
761
762 return error;
763 }
764 device_initcall(alarmtimer_init);
765