]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/time/hrtimer.c
Merge tag 'dmaengine-5.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vkoul...
[mirror_ubuntu-jammy-kernel.git] / kernel / time / hrtimer.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
6 *
7 * High-resolution kernel timers
8 *
9 * In contrast to the low-resolution timeout API, aka timer wheel,
10 * hrtimers provide finer resolution and accuracy depending on system
11 * configuration and capabilities.
12 *
13 * Started by: Thomas Gleixner and Ingo Molnar
14 *
15 * Credits:
16 * Based on the original timer wheel code
17 *
18 * Help, testing, suggestions, bugfixes, improvements were
19 * provided by:
20 *
21 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
22 * et. al.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/export.h>
27 #include <linux/percpu.h>
28 #include <linux/hrtimer.h>
29 #include <linux/notifier.h>
30 #include <linux/syscalls.h>
31 #include <linux/interrupt.h>
32 #include <linux/tick.h>
33 #include <linux/err.h>
34 #include <linux/debugobjects.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/sched/rt.h>
38 #include <linux/sched/deadline.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/debug.h>
41 #include <linux/timer.h>
42 #include <linux/freezer.h>
43 #include <linux/compat.h>
44
45 #include <linux/uaccess.h>
46
47 #include <trace/events/timer.h>
48
49 #include "tick-internal.h"
50
51 /*
52 * Masks for selecting the soft and hard context timers from
53 * cpu_base->active
54 */
55 #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT)
56 #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1)
57 #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT)
58 #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
59
60 /*
61 * The timer bases:
62 *
63 * There are more clockids than hrtimer bases. Thus, we index
64 * into the timer bases by the hrtimer_base_type enum. When trying
65 * to reach a base using a clockid, hrtimer_clockid_to_base()
66 * is used to convert from clockid to the proper hrtimer_base_type.
67 */
68 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
69 {
70 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
71 .clock_base =
72 {
73 {
74 .index = HRTIMER_BASE_MONOTONIC,
75 .clockid = CLOCK_MONOTONIC,
76 .get_time = &ktime_get,
77 },
78 {
79 .index = HRTIMER_BASE_REALTIME,
80 .clockid = CLOCK_REALTIME,
81 .get_time = &ktime_get_real,
82 },
83 {
84 .index = HRTIMER_BASE_BOOTTIME,
85 .clockid = CLOCK_BOOTTIME,
86 .get_time = &ktime_get_boottime,
87 },
88 {
89 .index = HRTIMER_BASE_TAI,
90 .clockid = CLOCK_TAI,
91 .get_time = &ktime_get_clocktai,
92 },
93 {
94 .index = HRTIMER_BASE_MONOTONIC_SOFT,
95 .clockid = CLOCK_MONOTONIC,
96 .get_time = &ktime_get,
97 },
98 {
99 .index = HRTIMER_BASE_REALTIME_SOFT,
100 .clockid = CLOCK_REALTIME,
101 .get_time = &ktime_get_real,
102 },
103 {
104 .index = HRTIMER_BASE_BOOTTIME_SOFT,
105 .clockid = CLOCK_BOOTTIME,
106 .get_time = &ktime_get_boottime,
107 },
108 {
109 .index = HRTIMER_BASE_TAI_SOFT,
110 .clockid = CLOCK_TAI,
111 .get_time = &ktime_get_clocktai,
112 },
113 }
114 };
115
116 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
117 /* Make sure we catch unsupported clockids */
118 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES,
119
120 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
121 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
122 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
123 [CLOCK_TAI] = HRTIMER_BASE_TAI,
124 };
125
126 /*
127 * Functions and macros which are different for UP/SMP systems are kept in a
128 * single place
129 */
130 #ifdef CONFIG_SMP
131
132 /*
133 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
134 * such that hrtimer_callback_running() can unconditionally dereference
135 * timer->base->cpu_base
136 */
137 static struct hrtimer_cpu_base migration_cpu_base = {
138 .clock_base = { {
139 .cpu_base = &migration_cpu_base,
140 .seq = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq,
141 &migration_cpu_base.lock),
142 }, },
143 };
144
145 #define migration_base migration_cpu_base.clock_base[0]
146
147 static inline bool is_migration_base(struct hrtimer_clock_base *base)
148 {
149 return base == &migration_base;
150 }
151
152 /*
153 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
154 * means that all timers which are tied to this base via timer->base are
155 * locked, and the base itself is locked too.
156 *
157 * So __run_timers/migrate_timers can safely modify all timers which could
158 * be found on the lists/queues.
159 *
160 * When the timer's base is locked, and the timer removed from list, it is
161 * possible to set timer->base = &migration_base and drop the lock: the timer
162 * remains locked.
163 */
164 static
165 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
166 unsigned long *flags)
167 {
168 struct hrtimer_clock_base *base;
169
170 for (;;) {
171 base = READ_ONCE(timer->base);
172 if (likely(base != &migration_base)) {
173 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
174 if (likely(base == timer->base))
175 return base;
176 /* The timer has migrated to another CPU: */
177 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
178 }
179 cpu_relax();
180 }
181 }
182
183 /*
184 * We do not migrate the timer when it is expiring before the next
185 * event on the target cpu. When high resolution is enabled, we cannot
186 * reprogram the target cpu hardware and we would cause it to fire
187 * late. To keep it simple, we handle the high resolution enabled and
188 * disabled case similar.
189 *
190 * Called with cpu_base->lock of target cpu held.
191 */
192 static int
193 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
194 {
195 ktime_t expires;
196
197 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
198 return expires < new_base->cpu_base->expires_next;
199 }
200
201 static inline
202 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
203 int pinned)
204 {
205 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
206 if (static_branch_likely(&timers_migration_enabled) && !pinned)
207 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
208 #endif
209 return base;
210 }
211
212 /*
213 * We switch the timer base to a power-optimized selected CPU target,
214 * if:
215 * - NO_HZ_COMMON is enabled
216 * - timer migration is enabled
217 * - the timer callback is not running
218 * - the timer is not the first expiring timer on the new target
219 *
220 * If one of the above requirements is not fulfilled we move the timer
221 * to the current CPU or leave it on the previously assigned CPU if
222 * the timer callback is currently running.
223 */
224 static inline struct hrtimer_clock_base *
225 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
226 int pinned)
227 {
228 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
229 struct hrtimer_clock_base *new_base;
230 int basenum = base->index;
231
232 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
233 new_cpu_base = get_target_base(this_cpu_base, pinned);
234 again:
235 new_base = &new_cpu_base->clock_base[basenum];
236
237 if (base != new_base) {
238 /*
239 * We are trying to move timer to new_base.
240 * However we can't change timer's base while it is running,
241 * so we keep it on the same CPU. No hassle vs. reprogramming
242 * the event source in the high resolution case. The softirq
243 * code will take care of this when the timer function has
244 * completed. There is no conflict as we hold the lock until
245 * the timer is enqueued.
246 */
247 if (unlikely(hrtimer_callback_running(timer)))
248 return base;
249
250 /* See the comment in lock_hrtimer_base() */
251 WRITE_ONCE(timer->base, &migration_base);
252 raw_spin_unlock(&base->cpu_base->lock);
253 raw_spin_lock(&new_base->cpu_base->lock);
254
255 if (new_cpu_base != this_cpu_base &&
256 hrtimer_check_target(timer, new_base)) {
257 raw_spin_unlock(&new_base->cpu_base->lock);
258 raw_spin_lock(&base->cpu_base->lock);
259 new_cpu_base = this_cpu_base;
260 WRITE_ONCE(timer->base, base);
261 goto again;
262 }
263 WRITE_ONCE(timer->base, new_base);
264 } else {
265 if (new_cpu_base != this_cpu_base &&
266 hrtimer_check_target(timer, new_base)) {
267 new_cpu_base = this_cpu_base;
268 goto again;
269 }
270 }
271 return new_base;
272 }
273
274 #else /* CONFIG_SMP */
275
276 static inline bool is_migration_base(struct hrtimer_clock_base *base)
277 {
278 return false;
279 }
280
281 static inline struct hrtimer_clock_base *
282 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
283 {
284 struct hrtimer_clock_base *base = timer->base;
285
286 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
287
288 return base;
289 }
290
291 # define switch_hrtimer_base(t, b, p) (b)
292
293 #endif /* !CONFIG_SMP */
294
295 /*
296 * Functions for the union type storage format of ktime_t which are
297 * too large for inlining:
298 */
299 #if BITS_PER_LONG < 64
300 /*
301 * Divide a ktime value by a nanosecond value
302 */
303 s64 __ktime_divns(const ktime_t kt, s64 div)
304 {
305 int sft = 0;
306 s64 dclc;
307 u64 tmp;
308
309 dclc = ktime_to_ns(kt);
310 tmp = dclc < 0 ? -dclc : dclc;
311
312 /* Make sure the divisor is less than 2^32: */
313 while (div >> 32) {
314 sft++;
315 div >>= 1;
316 }
317 tmp >>= sft;
318 do_div(tmp, (u32) div);
319 return dclc < 0 ? -tmp : tmp;
320 }
321 EXPORT_SYMBOL_GPL(__ktime_divns);
322 #endif /* BITS_PER_LONG >= 64 */
323
324 /*
325 * Add two ktime values and do a safety check for overflow:
326 */
327 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
328 {
329 ktime_t res = ktime_add_unsafe(lhs, rhs);
330
331 /*
332 * We use KTIME_SEC_MAX here, the maximum timeout which we can
333 * return to user space in a timespec:
334 */
335 if (res < 0 || res < lhs || res < rhs)
336 res = ktime_set(KTIME_SEC_MAX, 0);
337
338 return res;
339 }
340
341 EXPORT_SYMBOL_GPL(ktime_add_safe);
342
343 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
344
345 static const struct debug_obj_descr hrtimer_debug_descr;
346
347 static void *hrtimer_debug_hint(void *addr)
348 {
349 return ((struct hrtimer *) addr)->function;
350 }
351
352 /*
353 * fixup_init is called when:
354 * - an active object is initialized
355 */
356 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
357 {
358 struct hrtimer *timer = addr;
359
360 switch (state) {
361 case ODEBUG_STATE_ACTIVE:
362 hrtimer_cancel(timer);
363 debug_object_init(timer, &hrtimer_debug_descr);
364 return true;
365 default:
366 return false;
367 }
368 }
369
370 /*
371 * fixup_activate is called when:
372 * - an active object is activated
373 * - an unknown non-static object is activated
374 */
375 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
376 {
377 switch (state) {
378 case ODEBUG_STATE_ACTIVE:
379 WARN_ON(1);
380 fallthrough;
381 default:
382 return false;
383 }
384 }
385
386 /*
387 * fixup_free is called when:
388 * - an active object is freed
389 */
390 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
391 {
392 struct hrtimer *timer = addr;
393
394 switch (state) {
395 case ODEBUG_STATE_ACTIVE:
396 hrtimer_cancel(timer);
397 debug_object_free(timer, &hrtimer_debug_descr);
398 return true;
399 default:
400 return false;
401 }
402 }
403
404 static const struct debug_obj_descr hrtimer_debug_descr = {
405 .name = "hrtimer",
406 .debug_hint = hrtimer_debug_hint,
407 .fixup_init = hrtimer_fixup_init,
408 .fixup_activate = hrtimer_fixup_activate,
409 .fixup_free = hrtimer_fixup_free,
410 };
411
412 static inline void debug_hrtimer_init(struct hrtimer *timer)
413 {
414 debug_object_init(timer, &hrtimer_debug_descr);
415 }
416
417 static inline void debug_hrtimer_activate(struct hrtimer *timer,
418 enum hrtimer_mode mode)
419 {
420 debug_object_activate(timer, &hrtimer_debug_descr);
421 }
422
423 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
424 {
425 debug_object_deactivate(timer, &hrtimer_debug_descr);
426 }
427
428 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
429 enum hrtimer_mode mode);
430
431 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
432 enum hrtimer_mode mode)
433 {
434 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
435 __hrtimer_init(timer, clock_id, mode);
436 }
437 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
438
439 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
440 clockid_t clock_id, enum hrtimer_mode mode);
441
442 void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
443 clockid_t clock_id, enum hrtimer_mode mode)
444 {
445 debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
446 __hrtimer_init_sleeper(sl, clock_id, mode);
447 }
448 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);
449
450 void destroy_hrtimer_on_stack(struct hrtimer *timer)
451 {
452 debug_object_free(timer, &hrtimer_debug_descr);
453 }
454 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
455
456 #else
457
458 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
459 static inline void debug_hrtimer_activate(struct hrtimer *timer,
460 enum hrtimer_mode mode) { }
461 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
462 #endif
463
464 static inline void
465 debug_init(struct hrtimer *timer, clockid_t clockid,
466 enum hrtimer_mode mode)
467 {
468 debug_hrtimer_init(timer);
469 trace_hrtimer_init(timer, clockid, mode);
470 }
471
472 static inline void debug_activate(struct hrtimer *timer,
473 enum hrtimer_mode mode)
474 {
475 debug_hrtimer_activate(timer, mode);
476 trace_hrtimer_start(timer, mode);
477 }
478
479 static inline void debug_deactivate(struct hrtimer *timer)
480 {
481 debug_hrtimer_deactivate(timer);
482 trace_hrtimer_cancel(timer);
483 }
484
485 static struct hrtimer_clock_base *
486 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
487 {
488 unsigned int idx;
489
490 if (!*active)
491 return NULL;
492
493 idx = __ffs(*active);
494 *active &= ~(1U << idx);
495
496 return &cpu_base->clock_base[idx];
497 }
498
499 #define for_each_active_base(base, cpu_base, active) \
500 while ((base = __next_base((cpu_base), &(active))))
501
502 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
503 const struct hrtimer *exclude,
504 unsigned int active,
505 ktime_t expires_next)
506 {
507 struct hrtimer_clock_base *base;
508 ktime_t expires;
509
510 for_each_active_base(base, cpu_base, active) {
511 struct timerqueue_node *next;
512 struct hrtimer *timer;
513
514 next = timerqueue_getnext(&base->active);
515 timer = container_of(next, struct hrtimer, node);
516 if (timer == exclude) {
517 /* Get to the next timer in the queue. */
518 next = timerqueue_iterate_next(next);
519 if (!next)
520 continue;
521
522 timer = container_of(next, struct hrtimer, node);
523 }
524 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
525 if (expires < expires_next) {
526 expires_next = expires;
527
528 /* Skip cpu_base update if a timer is being excluded. */
529 if (exclude)
530 continue;
531
532 if (timer->is_soft)
533 cpu_base->softirq_next_timer = timer;
534 else
535 cpu_base->next_timer = timer;
536 }
537 }
538 /*
539 * clock_was_set() might have changed base->offset of any of
540 * the clock bases so the result might be negative. Fix it up
541 * to prevent a false positive in clockevents_program_event().
542 */
543 if (expires_next < 0)
544 expires_next = 0;
545 return expires_next;
546 }
547
548 /*
549 * Recomputes cpu_base::*next_timer and returns the earliest expires_next but
550 * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram.
551 *
552 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
553 * those timers will get run whenever the softirq gets handled, at the end of
554 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
555 *
556 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
557 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
558 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
559 *
560 * @active_mask must be one of:
561 * - HRTIMER_ACTIVE_ALL,
562 * - HRTIMER_ACTIVE_SOFT, or
563 * - HRTIMER_ACTIVE_HARD.
564 */
565 static ktime_t
566 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
567 {
568 unsigned int active;
569 struct hrtimer *next_timer = NULL;
570 ktime_t expires_next = KTIME_MAX;
571
572 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
573 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
574 cpu_base->softirq_next_timer = NULL;
575 expires_next = __hrtimer_next_event_base(cpu_base, NULL,
576 active, KTIME_MAX);
577
578 next_timer = cpu_base->softirq_next_timer;
579 }
580
581 if (active_mask & HRTIMER_ACTIVE_HARD) {
582 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
583 cpu_base->next_timer = next_timer;
584 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
585 expires_next);
586 }
587
588 return expires_next;
589 }
590
591 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
592 {
593 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
594 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
595 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
596
597 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
598 offs_real, offs_boot, offs_tai);
599
600 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
601 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
602 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
603
604 return now;
605 }
606
607 /*
608 * Is the high resolution mode active ?
609 */
610 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
611 {
612 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
613 cpu_base->hres_active : 0;
614 }
615
616 static inline int hrtimer_hres_active(void)
617 {
618 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
619 }
620
621 /*
622 * Reprogram the event source with checking both queues for the
623 * next event
624 * Called with interrupts disabled and base->lock held
625 */
626 static void
627 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
628 {
629 ktime_t expires_next;
630
631 /*
632 * Find the current next expiration time.
633 */
634 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
635
636 if (cpu_base->next_timer && cpu_base->next_timer->is_soft) {
637 /*
638 * When the softirq is activated, hrtimer has to be
639 * programmed with the first hard hrtimer because soft
640 * timer interrupt could occur too late.
641 */
642 if (cpu_base->softirq_activated)
643 expires_next = __hrtimer_get_next_event(cpu_base,
644 HRTIMER_ACTIVE_HARD);
645 else
646 cpu_base->softirq_expires_next = expires_next;
647 }
648
649 if (skip_equal && expires_next == cpu_base->expires_next)
650 return;
651
652 cpu_base->expires_next = expires_next;
653
654 /*
655 * If hres is not active, hardware does not have to be
656 * reprogrammed yet.
657 *
658 * If a hang was detected in the last timer interrupt then we
659 * leave the hang delay active in the hardware. We want the
660 * system to make progress. That also prevents the following
661 * scenario:
662 * T1 expires 50ms from now
663 * T2 expires 5s from now
664 *
665 * T1 is removed, so this code is called and would reprogram
666 * the hardware to 5s from now. Any hrtimer_start after that
667 * will not reprogram the hardware due to hang_detected being
668 * set. So we'd effectivly block all timers until the T2 event
669 * fires.
670 */
671 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
672 return;
673
674 tick_program_event(cpu_base->expires_next, 1);
675 }
676
677 /* High resolution timer related functions */
678 #ifdef CONFIG_HIGH_RES_TIMERS
679
680 /*
681 * High resolution timer enabled ?
682 */
683 static bool hrtimer_hres_enabled __read_mostly = true;
684 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
685 EXPORT_SYMBOL_GPL(hrtimer_resolution);
686
687 /*
688 * Enable / Disable high resolution mode
689 */
690 static int __init setup_hrtimer_hres(char *str)
691 {
692 return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
693 }
694
695 __setup("highres=", setup_hrtimer_hres);
696
697 /*
698 * hrtimer_high_res_enabled - query, if the highres mode is enabled
699 */
700 static inline int hrtimer_is_hres_enabled(void)
701 {
702 return hrtimer_hres_enabled;
703 }
704
705 /*
706 * Retrigger next event is called after clock was set
707 *
708 * Called with interrupts disabled via on_each_cpu()
709 */
710 static void retrigger_next_event(void *arg)
711 {
712 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
713
714 if (!__hrtimer_hres_active(base))
715 return;
716
717 raw_spin_lock(&base->lock);
718 hrtimer_update_base(base);
719 hrtimer_force_reprogram(base, 0);
720 raw_spin_unlock(&base->lock);
721 }
722
723 /*
724 * Switch to high resolution mode
725 */
726 static void hrtimer_switch_to_hres(void)
727 {
728 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
729
730 if (tick_init_highres()) {
731 pr_warn("Could not switch to high resolution mode on CPU %u\n",
732 base->cpu);
733 return;
734 }
735 base->hres_active = 1;
736 hrtimer_resolution = HIGH_RES_NSEC;
737
738 tick_setup_sched_timer();
739 /* "Retrigger" the interrupt to get things going */
740 retrigger_next_event(NULL);
741 }
742
743 static void clock_was_set_work(struct work_struct *work)
744 {
745 clock_was_set();
746 }
747
748 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
749
750 /*
751 * Called from timekeeping and resume code to reprogram the hrtimer
752 * interrupt device on all cpus.
753 */
754 void clock_was_set_delayed(void)
755 {
756 schedule_work(&hrtimer_work);
757 }
758
759 #else
760
761 static inline int hrtimer_is_hres_enabled(void) { return 0; }
762 static inline void hrtimer_switch_to_hres(void) { }
763 static inline void retrigger_next_event(void *arg) { }
764
765 #endif /* CONFIG_HIGH_RES_TIMERS */
766
767 /*
768 * When a timer is enqueued and expires earlier than the already enqueued
769 * timers, we have to check, whether it expires earlier than the timer for
770 * which the clock event device was armed.
771 *
772 * Called with interrupts disabled and base->cpu_base.lock held
773 */
774 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
775 {
776 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
777 struct hrtimer_clock_base *base = timer->base;
778 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
779
780 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
781
782 /*
783 * CLOCK_REALTIME timer might be requested with an absolute
784 * expiry time which is less than base->offset. Set it to 0.
785 */
786 if (expires < 0)
787 expires = 0;
788
789 if (timer->is_soft) {
790 /*
791 * soft hrtimer could be started on a remote CPU. In this
792 * case softirq_expires_next needs to be updated on the
793 * remote CPU. The soft hrtimer will not expire before the
794 * first hard hrtimer on the remote CPU -
795 * hrtimer_check_target() prevents this case.
796 */
797 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
798
799 if (timer_cpu_base->softirq_activated)
800 return;
801
802 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
803 return;
804
805 timer_cpu_base->softirq_next_timer = timer;
806 timer_cpu_base->softirq_expires_next = expires;
807
808 if (!ktime_before(expires, timer_cpu_base->expires_next) ||
809 !reprogram)
810 return;
811 }
812
813 /*
814 * If the timer is not on the current cpu, we cannot reprogram
815 * the other cpus clock event device.
816 */
817 if (base->cpu_base != cpu_base)
818 return;
819
820 /*
821 * If the hrtimer interrupt is running, then it will
822 * reevaluate the clock bases and reprogram the clock event
823 * device. The callbacks are always executed in hard interrupt
824 * context so we don't need an extra check for a running
825 * callback.
826 */
827 if (cpu_base->in_hrtirq)
828 return;
829
830 if (expires >= cpu_base->expires_next)
831 return;
832
833 /* Update the pointer to the next expiring timer */
834 cpu_base->next_timer = timer;
835 cpu_base->expires_next = expires;
836
837 /*
838 * If hres is not active, hardware does not have to be
839 * programmed yet.
840 *
841 * If a hang was detected in the last timer interrupt then we
842 * do not schedule a timer which is earlier than the expiry
843 * which we enforced in the hang detection. We want the system
844 * to make progress.
845 */
846 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
847 return;
848
849 /*
850 * Program the timer hardware. We enforce the expiry for
851 * events which are already in the past.
852 */
853 tick_program_event(expires, 1);
854 }
855
856 /*
857 * Clock realtime was set
858 *
859 * Change the offset of the realtime clock vs. the monotonic
860 * clock.
861 *
862 * We might have to reprogram the high resolution timer interrupt. On
863 * SMP we call the architecture specific code to retrigger _all_ high
864 * resolution timer interrupts. On UP we just disable interrupts and
865 * call the high resolution interrupt code.
866 */
867 void clock_was_set(void)
868 {
869 #ifdef CONFIG_HIGH_RES_TIMERS
870 /* Retrigger the CPU local events everywhere */
871 on_each_cpu(retrigger_next_event, NULL, 1);
872 #endif
873 timerfd_clock_was_set();
874 }
875
876 /*
877 * During resume we might have to reprogram the high resolution timer
878 * interrupt on all online CPUs. However, all other CPUs will be
879 * stopped with IRQs interrupts disabled so the clock_was_set() call
880 * must be deferred.
881 */
882 void hrtimers_resume(void)
883 {
884 lockdep_assert_irqs_disabled();
885 /* Retrigger on the local CPU */
886 retrigger_next_event(NULL);
887 /* And schedule a retrigger for all others */
888 clock_was_set_delayed();
889 }
890
891 /*
892 * Counterpart to lock_hrtimer_base above:
893 */
894 static inline
895 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
896 {
897 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
898 }
899
900 /**
901 * hrtimer_forward - forward the timer expiry
902 * @timer: hrtimer to forward
903 * @now: forward past this time
904 * @interval: the interval to forward
905 *
906 * Forward the timer expiry so it will expire in the future.
907 * Returns the number of overruns.
908 *
909 * Can be safely called from the callback function of @timer. If
910 * called from other contexts @timer must neither be enqueued nor
911 * running the callback and the caller needs to take care of
912 * serialization.
913 *
914 * Note: This only updates the timer expiry value and does not requeue
915 * the timer.
916 */
917 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
918 {
919 u64 orun = 1;
920 ktime_t delta;
921
922 delta = ktime_sub(now, hrtimer_get_expires(timer));
923
924 if (delta < 0)
925 return 0;
926
927 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
928 return 0;
929
930 if (interval < hrtimer_resolution)
931 interval = hrtimer_resolution;
932
933 if (unlikely(delta >= interval)) {
934 s64 incr = ktime_to_ns(interval);
935
936 orun = ktime_divns(delta, incr);
937 hrtimer_add_expires_ns(timer, incr * orun);
938 if (hrtimer_get_expires_tv64(timer) > now)
939 return orun;
940 /*
941 * This (and the ktime_add() below) is the
942 * correction for exact:
943 */
944 orun++;
945 }
946 hrtimer_add_expires(timer, interval);
947
948 return orun;
949 }
950 EXPORT_SYMBOL_GPL(hrtimer_forward);
951
952 /*
953 * enqueue_hrtimer - internal function to (re)start a timer
954 *
955 * The timer is inserted in expiry order. Insertion into the
956 * red black tree is O(log(n)). Must hold the base lock.
957 *
958 * Returns 1 when the new timer is the leftmost timer in the tree.
959 */
960 static int enqueue_hrtimer(struct hrtimer *timer,
961 struct hrtimer_clock_base *base,
962 enum hrtimer_mode mode)
963 {
964 debug_activate(timer, mode);
965
966 base->cpu_base->active_bases |= 1 << base->index;
967
968 /* Pairs with the lockless read in hrtimer_is_queued() */
969 WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
970
971 return timerqueue_add(&base->active, &timer->node);
972 }
973
974 /*
975 * __remove_hrtimer - internal function to remove a timer
976 *
977 * Caller must hold the base lock.
978 *
979 * High resolution timer mode reprograms the clock event device when the
980 * timer is the one which expires next. The caller can disable this by setting
981 * reprogram to zero. This is useful, when the context does a reprogramming
982 * anyway (e.g. timer interrupt)
983 */
984 static void __remove_hrtimer(struct hrtimer *timer,
985 struct hrtimer_clock_base *base,
986 u8 newstate, int reprogram)
987 {
988 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
989 u8 state = timer->state;
990
991 /* Pairs with the lockless read in hrtimer_is_queued() */
992 WRITE_ONCE(timer->state, newstate);
993 if (!(state & HRTIMER_STATE_ENQUEUED))
994 return;
995
996 if (!timerqueue_del(&base->active, &timer->node))
997 cpu_base->active_bases &= ~(1 << base->index);
998
999 /*
1000 * Note: If reprogram is false we do not update
1001 * cpu_base->next_timer. This happens when we remove the first
1002 * timer on a remote cpu. No harm as we never dereference
1003 * cpu_base->next_timer. So the worst thing what can happen is
1004 * an superflous call to hrtimer_force_reprogram() on the
1005 * remote cpu later on if the same timer gets enqueued again.
1006 */
1007 if (reprogram && timer == cpu_base->next_timer)
1008 hrtimer_force_reprogram(cpu_base, 1);
1009 }
1010
1011 /*
1012 * remove hrtimer, called with base lock held
1013 */
1014 static inline int
1015 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
1016 {
1017 u8 state = timer->state;
1018
1019 if (state & HRTIMER_STATE_ENQUEUED) {
1020 int reprogram;
1021
1022 /*
1023 * Remove the timer and force reprogramming when high
1024 * resolution mode is active and the timer is on the current
1025 * CPU. If we remove a timer on another CPU, reprogramming is
1026 * skipped. The interrupt event on this CPU is fired and
1027 * reprogramming happens in the interrupt handler. This is a
1028 * rare case and less expensive than a smp call.
1029 */
1030 debug_deactivate(timer);
1031 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1032
1033 if (!restart)
1034 state = HRTIMER_STATE_INACTIVE;
1035
1036 __remove_hrtimer(timer, base, state, reprogram);
1037 return 1;
1038 }
1039 return 0;
1040 }
1041
1042 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1043 const enum hrtimer_mode mode)
1044 {
1045 #ifdef CONFIG_TIME_LOW_RES
1046 /*
1047 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1048 * granular time values. For relative timers we add hrtimer_resolution
1049 * (i.e. one jiffie) to prevent short timeouts.
1050 */
1051 timer->is_rel = mode & HRTIMER_MODE_REL;
1052 if (timer->is_rel)
1053 tim = ktime_add_safe(tim, hrtimer_resolution);
1054 #endif
1055 return tim;
1056 }
1057
1058 static void
1059 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1060 {
1061 ktime_t expires;
1062
1063 /*
1064 * Find the next SOFT expiration.
1065 */
1066 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1067
1068 /*
1069 * reprogramming needs to be triggered, even if the next soft
1070 * hrtimer expires at the same time than the next hard
1071 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1072 */
1073 if (expires == KTIME_MAX)
1074 return;
1075
1076 /*
1077 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1078 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1079 */
1080 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1081 }
1082
1083 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1084 u64 delta_ns, const enum hrtimer_mode mode,
1085 struct hrtimer_clock_base *base)
1086 {
1087 struct hrtimer_clock_base *new_base;
1088
1089 /* Remove an active timer from the queue: */
1090 remove_hrtimer(timer, base, true);
1091
1092 if (mode & HRTIMER_MODE_REL)
1093 tim = ktime_add_safe(tim, base->get_time());
1094
1095 tim = hrtimer_update_lowres(timer, tim, mode);
1096
1097 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1098
1099 /* Switch the timer base, if necessary: */
1100 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1101
1102 return enqueue_hrtimer(timer, new_base, mode);
1103 }
1104
1105 /**
1106 * hrtimer_start_range_ns - (re)start an hrtimer
1107 * @timer: the timer to be added
1108 * @tim: expiry time
1109 * @delta_ns: "slack" range for the timer
1110 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or
1111 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1112 * softirq based mode is considered for debug purpose only!
1113 */
1114 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1115 u64 delta_ns, const enum hrtimer_mode mode)
1116 {
1117 struct hrtimer_clock_base *base;
1118 unsigned long flags;
1119
1120 /*
1121 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1122 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1123 * expiry mode because unmarked timers are moved to softirq expiry.
1124 */
1125 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1126 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1127 else
1128 WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
1129
1130 base = lock_hrtimer_base(timer, &flags);
1131
1132 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1133 hrtimer_reprogram(timer, true);
1134
1135 unlock_hrtimer_base(timer, &flags);
1136 }
1137 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1138
1139 /**
1140 * hrtimer_try_to_cancel - try to deactivate a timer
1141 * @timer: hrtimer to stop
1142 *
1143 * Returns:
1144 *
1145 * * 0 when the timer was not active
1146 * * 1 when the timer was active
1147 * * -1 when the timer is currently executing the callback function and
1148 * cannot be stopped
1149 */
1150 int hrtimer_try_to_cancel(struct hrtimer *timer)
1151 {
1152 struct hrtimer_clock_base *base;
1153 unsigned long flags;
1154 int ret = -1;
1155
1156 /*
1157 * Check lockless first. If the timer is not active (neither
1158 * enqueued nor running the callback, nothing to do here. The
1159 * base lock does not serialize against a concurrent enqueue,
1160 * so we can avoid taking it.
1161 */
1162 if (!hrtimer_active(timer))
1163 return 0;
1164
1165 base = lock_hrtimer_base(timer, &flags);
1166
1167 if (!hrtimer_callback_running(timer))
1168 ret = remove_hrtimer(timer, base, false);
1169
1170 unlock_hrtimer_base(timer, &flags);
1171
1172 return ret;
1173
1174 }
1175 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1176
1177 #ifdef CONFIG_PREEMPT_RT
1178 static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1179 {
1180 spin_lock_init(&base->softirq_expiry_lock);
1181 }
1182
1183 static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
1184 {
1185 spin_lock(&base->softirq_expiry_lock);
1186 }
1187
1188 static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
1189 {
1190 spin_unlock(&base->softirq_expiry_lock);
1191 }
1192
1193 /*
1194 * The counterpart to hrtimer_cancel_wait_running().
1195 *
1196 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1197 * the timer callback to finish. Drop expiry_lock and reaquire it. That
1198 * allows the waiter to acquire the lock and make progress.
1199 */
1200 static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1201 unsigned long flags)
1202 {
1203 if (atomic_read(&cpu_base->timer_waiters)) {
1204 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1205 spin_unlock(&cpu_base->softirq_expiry_lock);
1206 spin_lock(&cpu_base->softirq_expiry_lock);
1207 raw_spin_lock_irq(&cpu_base->lock);
1208 }
1209 }
1210
1211 /*
1212 * This function is called on PREEMPT_RT kernels when the fast path
1213 * deletion of a timer failed because the timer callback function was
1214 * running.
1215 *
1216 * This prevents priority inversion: if the soft irq thread is preempted
1217 * in the middle of a timer callback, then calling del_timer_sync() can
1218 * lead to two issues:
1219 *
1220 * - If the caller is on a remote CPU then it has to spin wait for the timer
1221 * handler to complete. This can result in unbound priority inversion.
1222 *
1223 * - If the caller originates from the task which preempted the timer
1224 * handler on the same CPU, then spin waiting for the timer handler to
1225 * complete is never going to end.
1226 */
1227 void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1228 {
1229 /* Lockless read. Prevent the compiler from reloading it below */
1230 struct hrtimer_clock_base *base = READ_ONCE(timer->base);
1231
1232 /*
1233 * Just relax if the timer expires in hard interrupt context or if
1234 * it is currently on the migration base.
1235 */
1236 if (!timer->is_soft || is_migration_base(base)) {
1237 cpu_relax();
1238 return;
1239 }
1240
1241 /*
1242 * Mark the base as contended and grab the expiry lock, which is
1243 * held by the softirq across the timer callback. Drop the lock
1244 * immediately so the softirq can expire the next timer. In theory
1245 * the timer could already be running again, but that's more than
1246 * unlikely and just causes another wait loop.
1247 */
1248 atomic_inc(&base->cpu_base->timer_waiters);
1249 spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1250 atomic_dec(&base->cpu_base->timer_waiters);
1251 spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1252 }
1253 #else
1254 static inline void
1255 hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1256 static inline void
1257 hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1258 static inline void
1259 hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
1260 static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1261 unsigned long flags) { }
1262 #endif
1263
1264 /**
1265 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1266 * @timer: the timer to be cancelled
1267 *
1268 * Returns:
1269 * 0 when the timer was not active
1270 * 1 when the timer was active
1271 */
1272 int hrtimer_cancel(struct hrtimer *timer)
1273 {
1274 int ret;
1275
1276 do {
1277 ret = hrtimer_try_to_cancel(timer);
1278
1279 if (ret < 0)
1280 hrtimer_cancel_wait_running(timer);
1281 } while (ret < 0);
1282 return ret;
1283 }
1284 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1285
1286 /**
1287 * __hrtimer_get_remaining - get remaining time for the timer
1288 * @timer: the timer to read
1289 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
1290 */
1291 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1292 {
1293 unsigned long flags;
1294 ktime_t rem;
1295
1296 lock_hrtimer_base(timer, &flags);
1297 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1298 rem = hrtimer_expires_remaining_adjusted(timer);
1299 else
1300 rem = hrtimer_expires_remaining(timer);
1301 unlock_hrtimer_base(timer, &flags);
1302
1303 return rem;
1304 }
1305 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1306
1307 #ifdef CONFIG_NO_HZ_COMMON
1308 /**
1309 * hrtimer_get_next_event - get the time until next expiry event
1310 *
1311 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1312 */
1313 u64 hrtimer_get_next_event(void)
1314 {
1315 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1316 u64 expires = KTIME_MAX;
1317 unsigned long flags;
1318
1319 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1320
1321 if (!__hrtimer_hres_active(cpu_base))
1322 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1323
1324 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1325
1326 return expires;
1327 }
1328
1329 /**
1330 * hrtimer_next_event_without - time until next expiry event w/o one timer
1331 * @exclude: timer to exclude
1332 *
1333 * Returns the next expiry time over all timers except for the @exclude one or
1334 * KTIME_MAX if none of them is pending.
1335 */
1336 u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1337 {
1338 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1339 u64 expires = KTIME_MAX;
1340 unsigned long flags;
1341
1342 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1343
1344 if (__hrtimer_hres_active(cpu_base)) {
1345 unsigned int active;
1346
1347 if (!cpu_base->softirq_activated) {
1348 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1349 expires = __hrtimer_next_event_base(cpu_base, exclude,
1350 active, KTIME_MAX);
1351 }
1352 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1353 expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1354 expires);
1355 }
1356
1357 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1358
1359 return expires;
1360 }
1361 #endif
1362
1363 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1364 {
1365 if (likely(clock_id < MAX_CLOCKS)) {
1366 int base = hrtimer_clock_to_base_table[clock_id];
1367
1368 if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1369 return base;
1370 }
1371 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1372 return HRTIMER_BASE_MONOTONIC;
1373 }
1374
1375 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1376 enum hrtimer_mode mode)
1377 {
1378 bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1379 struct hrtimer_cpu_base *cpu_base;
1380 int base;
1381
1382 /*
1383 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1384 * marked for hard interrupt expiry mode are moved into soft
1385 * interrupt context for latency reasons and because the callbacks
1386 * can invoke functions which might sleep on RT, e.g. spin_lock().
1387 */
1388 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1389 softtimer = true;
1390
1391 memset(timer, 0, sizeof(struct hrtimer));
1392
1393 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1394
1395 /*
1396 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1397 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1398 * ensure POSIX compliance.
1399 */
1400 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1401 clock_id = CLOCK_MONOTONIC;
1402
1403 base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1404 base += hrtimer_clockid_to_base(clock_id);
1405 timer->is_soft = softtimer;
1406 timer->is_hard = !!(mode & HRTIMER_MODE_HARD);
1407 timer->base = &cpu_base->clock_base[base];
1408 timerqueue_init(&timer->node);
1409 }
1410
1411 /**
1412 * hrtimer_init - initialize a timer to the given clock
1413 * @timer: the timer to be initialized
1414 * @clock_id: the clock to be used
1415 * @mode: The modes which are relevant for intitialization:
1416 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1417 * HRTIMER_MODE_REL_SOFT
1418 *
1419 * The PINNED variants of the above can be handed in,
1420 * but the PINNED bit is ignored as pinning happens
1421 * when the hrtimer is started
1422 */
1423 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1424 enum hrtimer_mode mode)
1425 {
1426 debug_init(timer, clock_id, mode);
1427 __hrtimer_init(timer, clock_id, mode);
1428 }
1429 EXPORT_SYMBOL_GPL(hrtimer_init);
1430
1431 /*
1432 * A timer is active, when it is enqueued into the rbtree or the
1433 * callback function is running or it's in the state of being migrated
1434 * to another cpu.
1435 *
1436 * It is important for this function to not return a false negative.
1437 */
1438 bool hrtimer_active(const struct hrtimer *timer)
1439 {
1440 struct hrtimer_clock_base *base;
1441 unsigned int seq;
1442
1443 do {
1444 base = READ_ONCE(timer->base);
1445 seq = raw_read_seqcount_begin(&base->seq);
1446
1447 if (timer->state != HRTIMER_STATE_INACTIVE ||
1448 base->running == timer)
1449 return true;
1450
1451 } while (read_seqcount_retry(&base->seq, seq) ||
1452 base != READ_ONCE(timer->base));
1453
1454 return false;
1455 }
1456 EXPORT_SYMBOL_GPL(hrtimer_active);
1457
1458 /*
1459 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1460 * distinct sections:
1461 *
1462 * - queued: the timer is queued
1463 * - callback: the timer is being ran
1464 * - post: the timer is inactive or (re)queued
1465 *
1466 * On the read side we ensure we observe timer->state and cpu_base->running
1467 * from the same section, if anything changed while we looked at it, we retry.
1468 * This includes timer->base changing because sequence numbers alone are
1469 * insufficient for that.
1470 *
1471 * The sequence numbers are required because otherwise we could still observe
1472 * a false negative if the read side got smeared over multiple consequtive
1473 * __run_hrtimer() invocations.
1474 */
1475
1476 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1477 struct hrtimer_clock_base *base,
1478 struct hrtimer *timer, ktime_t *now,
1479 unsigned long flags) __must_hold(&cpu_base->lock)
1480 {
1481 enum hrtimer_restart (*fn)(struct hrtimer *);
1482 bool expires_in_hardirq;
1483 int restart;
1484
1485 lockdep_assert_held(&cpu_base->lock);
1486
1487 debug_deactivate(timer);
1488 base->running = timer;
1489
1490 /*
1491 * Separate the ->running assignment from the ->state assignment.
1492 *
1493 * As with a regular write barrier, this ensures the read side in
1494 * hrtimer_active() cannot observe base->running == NULL &&
1495 * timer->state == INACTIVE.
1496 */
1497 raw_write_seqcount_barrier(&base->seq);
1498
1499 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1500 fn = timer->function;
1501
1502 /*
1503 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1504 * timer is restarted with a period then it becomes an absolute
1505 * timer. If its not restarted it does not matter.
1506 */
1507 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1508 timer->is_rel = false;
1509
1510 /*
1511 * The timer is marked as running in the CPU base, so it is
1512 * protected against migration to a different CPU even if the lock
1513 * is dropped.
1514 */
1515 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1516 trace_hrtimer_expire_entry(timer, now);
1517 expires_in_hardirq = lockdep_hrtimer_enter(timer);
1518
1519 restart = fn(timer);
1520
1521 lockdep_hrtimer_exit(expires_in_hardirq);
1522 trace_hrtimer_expire_exit(timer);
1523 raw_spin_lock_irq(&cpu_base->lock);
1524
1525 /*
1526 * Note: We clear the running state after enqueue_hrtimer and
1527 * we do not reprogram the event hardware. Happens either in
1528 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1529 *
1530 * Note: Because we dropped the cpu_base->lock above,
1531 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1532 * for us already.
1533 */
1534 if (restart != HRTIMER_NORESTART &&
1535 !(timer->state & HRTIMER_STATE_ENQUEUED))
1536 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1537
1538 /*
1539 * Separate the ->running assignment from the ->state assignment.
1540 *
1541 * As with a regular write barrier, this ensures the read side in
1542 * hrtimer_active() cannot observe base->running.timer == NULL &&
1543 * timer->state == INACTIVE.
1544 */
1545 raw_write_seqcount_barrier(&base->seq);
1546
1547 WARN_ON_ONCE(base->running != timer);
1548 base->running = NULL;
1549 }
1550
1551 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1552 unsigned long flags, unsigned int active_mask)
1553 {
1554 struct hrtimer_clock_base *base;
1555 unsigned int active = cpu_base->active_bases & active_mask;
1556
1557 for_each_active_base(base, cpu_base, active) {
1558 struct timerqueue_node *node;
1559 ktime_t basenow;
1560
1561 basenow = ktime_add(now, base->offset);
1562
1563 while ((node = timerqueue_getnext(&base->active))) {
1564 struct hrtimer *timer;
1565
1566 timer = container_of(node, struct hrtimer, node);
1567
1568 /*
1569 * The immediate goal for using the softexpires is
1570 * minimizing wakeups, not running timers at the
1571 * earliest interrupt after their soft expiration.
1572 * This allows us to avoid using a Priority Search
1573 * Tree, which can answer a stabbing querry for
1574 * overlapping intervals and instead use the simple
1575 * BST we already have.
1576 * We don't add extra wakeups by delaying timers that
1577 * are right-of a not yet expired timer, because that
1578 * timer will have to trigger a wakeup anyway.
1579 */
1580 if (basenow < hrtimer_get_softexpires_tv64(timer))
1581 break;
1582
1583 __run_hrtimer(cpu_base, base, timer, &basenow, flags);
1584 if (active_mask == HRTIMER_ACTIVE_SOFT)
1585 hrtimer_sync_wait_running(cpu_base, flags);
1586 }
1587 }
1588 }
1589
1590 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1591 {
1592 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1593 unsigned long flags;
1594 ktime_t now;
1595
1596 hrtimer_cpu_base_lock_expiry(cpu_base);
1597 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1598
1599 now = hrtimer_update_base(cpu_base);
1600 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1601
1602 cpu_base->softirq_activated = 0;
1603 hrtimer_update_softirq_timer(cpu_base, true);
1604
1605 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1606 hrtimer_cpu_base_unlock_expiry(cpu_base);
1607 }
1608
1609 #ifdef CONFIG_HIGH_RES_TIMERS
1610
1611 /*
1612 * High resolution timer interrupt
1613 * Called with interrupts disabled
1614 */
1615 void hrtimer_interrupt(struct clock_event_device *dev)
1616 {
1617 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1618 ktime_t expires_next, now, entry_time, delta;
1619 unsigned long flags;
1620 int retries = 0;
1621
1622 BUG_ON(!cpu_base->hres_active);
1623 cpu_base->nr_events++;
1624 dev->next_event = KTIME_MAX;
1625
1626 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1627 entry_time = now = hrtimer_update_base(cpu_base);
1628 retry:
1629 cpu_base->in_hrtirq = 1;
1630 /*
1631 * We set expires_next to KTIME_MAX here with cpu_base->lock
1632 * held to prevent that a timer is enqueued in our queue via
1633 * the migration code. This does not affect enqueueing of
1634 * timers which run their callback and need to be requeued on
1635 * this CPU.
1636 */
1637 cpu_base->expires_next = KTIME_MAX;
1638
1639 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1640 cpu_base->softirq_expires_next = KTIME_MAX;
1641 cpu_base->softirq_activated = 1;
1642 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1643 }
1644
1645 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1646
1647 /* Reevaluate the clock bases for the next expiry */
1648 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1649 /*
1650 * Store the new expiry value so the migration code can verify
1651 * against it.
1652 */
1653 cpu_base->expires_next = expires_next;
1654 cpu_base->in_hrtirq = 0;
1655 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1656
1657 /* Reprogramming necessary ? */
1658 if (!tick_program_event(expires_next, 0)) {
1659 cpu_base->hang_detected = 0;
1660 return;
1661 }
1662
1663 /*
1664 * The next timer was already expired due to:
1665 * - tracing
1666 * - long lasting callbacks
1667 * - being scheduled away when running in a VM
1668 *
1669 * We need to prevent that we loop forever in the hrtimer
1670 * interrupt routine. We give it 3 attempts to avoid
1671 * overreacting on some spurious event.
1672 *
1673 * Acquire base lock for updating the offsets and retrieving
1674 * the current time.
1675 */
1676 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1677 now = hrtimer_update_base(cpu_base);
1678 cpu_base->nr_retries++;
1679 if (++retries < 3)
1680 goto retry;
1681 /*
1682 * Give the system a chance to do something else than looping
1683 * here. We stored the entry time, so we know exactly how long
1684 * we spent here. We schedule the next event this amount of
1685 * time away.
1686 */
1687 cpu_base->nr_hangs++;
1688 cpu_base->hang_detected = 1;
1689 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1690
1691 delta = ktime_sub(now, entry_time);
1692 if ((unsigned int)delta > cpu_base->max_hang_time)
1693 cpu_base->max_hang_time = (unsigned int) delta;
1694 /*
1695 * Limit it to a sensible value as we enforce a longer
1696 * delay. Give the CPU at least 100ms to catch up.
1697 */
1698 if (delta > 100 * NSEC_PER_MSEC)
1699 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1700 else
1701 expires_next = ktime_add(now, delta);
1702 tick_program_event(expires_next, 1);
1703 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1704 }
1705
1706 /* called with interrupts disabled */
1707 static inline void __hrtimer_peek_ahead_timers(void)
1708 {
1709 struct tick_device *td;
1710
1711 if (!hrtimer_hres_active())
1712 return;
1713
1714 td = this_cpu_ptr(&tick_cpu_device);
1715 if (td && td->evtdev)
1716 hrtimer_interrupt(td->evtdev);
1717 }
1718
1719 #else /* CONFIG_HIGH_RES_TIMERS */
1720
1721 static inline void __hrtimer_peek_ahead_timers(void) { }
1722
1723 #endif /* !CONFIG_HIGH_RES_TIMERS */
1724
1725 /*
1726 * Called from run_local_timers in hardirq context every jiffy
1727 */
1728 void hrtimer_run_queues(void)
1729 {
1730 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1731 unsigned long flags;
1732 ktime_t now;
1733
1734 if (__hrtimer_hres_active(cpu_base))
1735 return;
1736
1737 /*
1738 * This _is_ ugly: We have to check periodically, whether we
1739 * can switch to highres and / or nohz mode. The clocksource
1740 * switch happens with xtime_lock held. Notification from
1741 * there only sets the check bit in the tick_oneshot code,
1742 * otherwise we might deadlock vs. xtime_lock.
1743 */
1744 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1745 hrtimer_switch_to_hres();
1746 return;
1747 }
1748
1749 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1750 now = hrtimer_update_base(cpu_base);
1751
1752 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1753 cpu_base->softirq_expires_next = KTIME_MAX;
1754 cpu_base->softirq_activated = 1;
1755 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1756 }
1757
1758 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1759 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1760 }
1761
1762 /*
1763 * Sleep related functions:
1764 */
1765 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1766 {
1767 struct hrtimer_sleeper *t =
1768 container_of(timer, struct hrtimer_sleeper, timer);
1769 struct task_struct *task = t->task;
1770
1771 t->task = NULL;
1772 if (task)
1773 wake_up_process(task);
1774
1775 return HRTIMER_NORESTART;
1776 }
1777
1778 /**
1779 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
1780 * @sl: sleeper to be started
1781 * @mode: timer mode abs/rel
1782 *
1783 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
1784 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
1785 */
1786 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
1787 enum hrtimer_mode mode)
1788 {
1789 /*
1790 * Make the enqueue delivery mode check work on RT. If the sleeper
1791 * was initialized for hard interrupt delivery, force the mode bit.
1792 * This is a special case for hrtimer_sleepers because
1793 * hrtimer_init_sleeper() determines the delivery mode on RT so the
1794 * fiddling with this decision is avoided at the call sites.
1795 */
1796 if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
1797 mode |= HRTIMER_MODE_HARD;
1798
1799 hrtimer_start_expires(&sl->timer, mode);
1800 }
1801 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
1802
1803 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
1804 clockid_t clock_id, enum hrtimer_mode mode)
1805 {
1806 /*
1807 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1808 * marked for hard interrupt expiry mode are moved into soft
1809 * interrupt context either for latency reasons or because the
1810 * hrtimer callback takes regular spinlocks or invokes other
1811 * functions which are not suitable for hard interrupt context on
1812 * PREEMPT_RT.
1813 *
1814 * The hrtimer_sleeper callback is RT compatible in hard interrupt
1815 * context, but there is a latency concern: Untrusted userspace can
1816 * spawn many threads which arm timers for the same expiry time on
1817 * the same CPU. That causes a latency spike due to the wakeup of
1818 * a gazillion threads.
1819 *
1820 * OTOH, priviledged real-time user space applications rely on the
1821 * low latency of hard interrupt wakeups. If the current task is in
1822 * a real-time scheduling class, mark the mode for hard interrupt
1823 * expiry.
1824 */
1825 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1826 if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT))
1827 mode |= HRTIMER_MODE_HARD;
1828 }
1829
1830 __hrtimer_init(&sl->timer, clock_id, mode);
1831 sl->timer.function = hrtimer_wakeup;
1832 sl->task = current;
1833 }
1834
1835 /**
1836 * hrtimer_init_sleeper - initialize sleeper to the given clock
1837 * @sl: sleeper to be initialized
1838 * @clock_id: the clock to be used
1839 * @mode: timer mode abs/rel
1840 */
1841 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
1842 enum hrtimer_mode mode)
1843 {
1844 debug_init(&sl->timer, clock_id, mode);
1845 __hrtimer_init_sleeper(sl, clock_id, mode);
1846
1847 }
1848 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1849
1850 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1851 {
1852 switch(restart->nanosleep.type) {
1853 #ifdef CONFIG_COMPAT_32BIT_TIME
1854 case TT_COMPAT:
1855 if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
1856 return -EFAULT;
1857 break;
1858 #endif
1859 case TT_NATIVE:
1860 if (put_timespec64(ts, restart->nanosleep.rmtp))
1861 return -EFAULT;
1862 break;
1863 default:
1864 BUG();
1865 }
1866 return -ERESTART_RESTARTBLOCK;
1867 }
1868
1869 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1870 {
1871 struct restart_block *restart;
1872
1873 do {
1874 set_current_state(TASK_INTERRUPTIBLE);
1875 hrtimer_sleeper_start_expires(t, mode);
1876
1877 if (likely(t->task))
1878 freezable_schedule();
1879
1880 hrtimer_cancel(&t->timer);
1881 mode = HRTIMER_MODE_ABS;
1882
1883 } while (t->task && !signal_pending(current));
1884
1885 __set_current_state(TASK_RUNNING);
1886
1887 if (!t->task)
1888 return 0;
1889
1890 restart = &current->restart_block;
1891 if (restart->nanosleep.type != TT_NONE) {
1892 ktime_t rem = hrtimer_expires_remaining(&t->timer);
1893 struct timespec64 rmt;
1894
1895 if (rem <= 0)
1896 return 0;
1897 rmt = ktime_to_timespec64(rem);
1898
1899 return nanosleep_copyout(restart, &rmt);
1900 }
1901 return -ERESTART_RESTARTBLOCK;
1902 }
1903
1904 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1905 {
1906 struct hrtimer_sleeper t;
1907 int ret;
1908
1909 hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
1910 HRTIMER_MODE_ABS);
1911 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1912 ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1913 destroy_hrtimer_on_stack(&t.timer);
1914 return ret;
1915 }
1916
1917 long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode,
1918 const clockid_t clockid)
1919 {
1920 struct restart_block *restart;
1921 struct hrtimer_sleeper t;
1922 int ret = 0;
1923 u64 slack;
1924
1925 slack = current->timer_slack_ns;
1926 if (dl_task(current) || rt_task(current))
1927 slack = 0;
1928
1929 hrtimer_init_sleeper_on_stack(&t, clockid, mode);
1930 hrtimer_set_expires_range_ns(&t.timer, rqtp, slack);
1931 ret = do_nanosleep(&t, mode);
1932 if (ret != -ERESTART_RESTARTBLOCK)
1933 goto out;
1934
1935 /* Absolute timers do not update the rmtp value and restart: */
1936 if (mode == HRTIMER_MODE_ABS) {
1937 ret = -ERESTARTNOHAND;
1938 goto out;
1939 }
1940
1941 restart = &current->restart_block;
1942 restart->fn = hrtimer_nanosleep_restart;
1943 restart->nanosleep.clockid = t.timer.base->clockid;
1944 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1945 out:
1946 destroy_hrtimer_on_stack(&t.timer);
1947 return ret;
1948 }
1949
1950 #ifdef CONFIG_64BIT
1951
1952 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
1953 struct __kernel_timespec __user *, rmtp)
1954 {
1955 struct timespec64 tu;
1956
1957 if (get_timespec64(&tu, rqtp))
1958 return -EFAULT;
1959
1960 if (!timespec64_valid(&tu))
1961 return -EINVAL;
1962
1963 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1964 current->restart_block.nanosleep.rmtp = rmtp;
1965 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
1966 CLOCK_MONOTONIC);
1967 }
1968
1969 #endif
1970
1971 #ifdef CONFIG_COMPAT_32BIT_TIME
1972
1973 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
1974 struct old_timespec32 __user *, rmtp)
1975 {
1976 struct timespec64 tu;
1977
1978 if (get_old_timespec32(&tu, rqtp))
1979 return -EFAULT;
1980
1981 if (!timespec64_valid(&tu))
1982 return -EINVAL;
1983
1984 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1985 current->restart_block.nanosleep.compat_rmtp = rmtp;
1986 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
1987 CLOCK_MONOTONIC);
1988 }
1989 #endif
1990
1991 /*
1992 * Functions related to boot-time initialization:
1993 */
1994 int hrtimers_prepare_cpu(unsigned int cpu)
1995 {
1996 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1997 int i;
1998
1999 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2000 struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i];
2001
2002 clock_b->cpu_base = cpu_base;
2003 seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock);
2004 timerqueue_init_head(&clock_b->active);
2005 }
2006
2007 cpu_base->cpu = cpu;
2008 cpu_base->active_bases = 0;
2009 cpu_base->hres_active = 0;
2010 cpu_base->hang_detected = 0;
2011 cpu_base->next_timer = NULL;
2012 cpu_base->softirq_next_timer = NULL;
2013 cpu_base->expires_next = KTIME_MAX;
2014 cpu_base->softirq_expires_next = KTIME_MAX;
2015 hrtimer_cpu_base_init_expiry_lock(cpu_base);
2016 return 0;
2017 }
2018
2019 #ifdef CONFIG_HOTPLUG_CPU
2020
2021 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
2022 struct hrtimer_clock_base *new_base)
2023 {
2024 struct hrtimer *timer;
2025 struct timerqueue_node *node;
2026
2027 while ((node = timerqueue_getnext(&old_base->active))) {
2028 timer = container_of(node, struct hrtimer, node);
2029 BUG_ON(hrtimer_callback_running(timer));
2030 debug_deactivate(timer);
2031
2032 /*
2033 * Mark it as ENQUEUED not INACTIVE otherwise the
2034 * timer could be seen as !active and just vanish away
2035 * under us on another CPU
2036 */
2037 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
2038 timer->base = new_base;
2039 /*
2040 * Enqueue the timers on the new cpu. This does not
2041 * reprogram the event device in case the timer
2042 * expires before the earliest on this CPU, but we run
2043 * hrtimer_interrupt after we migrated everything to
2044 * sort out already expired timers and reprogram the
2045 * event device.
2046 */
2047 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
2048 }
2049 }
2050
2051 int hrtimers_dead_cpu(unsigned int scpu)
2052 {
2053 struct hrtimer_cpu_base *old_base, *new_base;
2054 int i;
2055
2056 BUG_ON(cpu_online(scpu));
2057 tick_cancel_sched_timer(scpu);
2058
2059 /*
2060 * this BH disable ensures that raise_softirq_irqoff() does
2061 * not wakeup ksoftirqd (and acquire the pi-lock) while
2062 * holding the cpu_base lock
2063 */
2064 local_bh_disable();
2065 local_irq_disable();
2066 old_base = &per_cpu(hrtimer_bases, scpu);
2067 new_base = this_cpu_ptr(&hrtimer_bases);
2068 /*
2069 * The caller is globally serialized and nobody else
2070 * takes two locks at once, deadlock is not possible.
2071 */
2072 raw_spin_lock(&new_base->lock);
2073 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2074
2075 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2076 migrate_hrtimer_list(&old_base->clock_base[i],
2077 &new_base->clock_base[i]);
2078 }
2079
2080 /*
2081 * The migration might have changed the first expiring softirq
2082 * timer on this CPU. Update it.
2083 */
2084 hrtimer_update_softirq_timer(new_base, false);
2085
2086 raw_spin_unlock(&old_base->lock);
2087 raw_spin_unlock(&new_base->lock);
2088
2089 /* Check, if we got expired work to do */
2090 __hrtimer_peek_ahead_timers();
2091 local_irq_enable();
2092 local_bh_enable();
2093 return 0;
2094 }
2095
2096 #endif /* CONFIG_HOTPLUG_CPU */
2097
2098 void __init hrtimers_init(void)
2099 {
2100 hrtimers_prepare_cpu(smp_processor_id());
2101 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
2102 }
2103
2104 /**
2105 * schedule_hrtimeout_range_clock - sleep until timeout
2106 * @expires: timeout value (ktime_t)
2107 * @delta: slack in expires timeout (ktime_t)
2108 * @mode: timer mode
2109 * @clock_id: timer clock to be used
2110 */
2111 int __sched
2112 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
2113 const enum hrtimer_mode mode, clockid_t clock_id)
2114 {
2115 struct hrtimer_sleeper t;
2116
2117 /*
2118 * Optimize when a zero timeout value is given. It does not
2119 * matter whether this is an absolute or a relative time.
2120 */
2121 if (expires && *expires == 0) {
2122 __set_current_state(TASK_RUNNING);
2123 return 0;
2124 }
2125
2126 /*
2127 * A NULL parameter means "infinite"
2128 */
2129 if (!expires) {
2130 schedule();
2131 return -EINTR;
2132 }
2133
2134 hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
2135 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
2136 hrtimer_sleeper_start_expires(&t, mode);
2137
2138 if (likely(t.task))
2139 schedule();
2140
2141 hrtimer_cancel(&t.timer);
2142 destroy_hrtimer_on_stack(&t.timer);
2143
2144 __set_current_state(TASK_RUNNING);
2145
2146 return !t.task ? 0 : -EINTR;
2147 }
2148
2149 /**
2150 * schedule_hrtimeout_range - sleep until timeout
2151 * @expires: timeout value (ktime_t)
2152 * @delta: slack in expires timeout (ktime_t)
2153 * @mode: timer mode
2154 *
2155 * Make the current task sleep until the given expiry time has
2156 * elapsed. The routine will return immediately unless
2157 * the current task state has been set (see set_current_state()).
2158 *
2159 * The @delta argument gives the kernel the freedom to schedule the
2160 * actual wakeup to a time that is both power and performance friendly.
2161 * The kernel give the normal best effort behavior for "@expires+@delta",
2162 * but may decide to fire the timer earlier, but no earlier than @expires.
2163 *
2164 * You can set the task state as follows -
2165 *
2166 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2167 * pass before the routine returns unless the current task is explicitly
2168 * woken up, (e.g. by wake_up_process()).
2169 *
2170 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2171 * delivered to the current task or the current task is explicitly woken
2172 * up.
2173 *
2174 * The current task state is guaranteed to be TASK_RUNNING when this
2175 * routine returns.
2176 *
2177 * Returns 0 when the timer has expired. If the task was woken before the
2178 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2179 * by an explicit wakeup, it returns -EINTR.
2180 */
2181 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
2182 const enum hrtimer_mode mode)
2183 {
2184 return schedule_hrtimeout_range_clock(expires, delta, mode,
2185 CLOCK_MONOTONIC);
2186 }
2187 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
2188
2189 /**
2190 * schedule_hrtimeout - sleep until timeout
2191 * @expires: timeout value (ktime_t)
2192 * @mode: timer mode
2193 *
2194 * Make the current task sleep until the given expiry time has
2195 * elapsed. The routine will return immediately unless
2196 * the current task state has been set (see set_current_state()).
2197 *
2198 * You can set the task state as follows -
2199 *
2200 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2201 * pass before the routine returns unless the current task is explicitly
2202 * woken up, (e.g. by wake_up_process()).
2203 *
2204 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2205 * delivered to the current task or the current task is explicitly woken
2206 * up.
2207 *
2208 * The current task state is guaranteed to be TASK_RUNNING when this
2209 * routine returns.
2210 *
2211 * Returns 0 when the timer has expired. If the task was woken before the
2212 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2213 * by an explicit wakeup, it returns -EINTR.
2214 */
2215 int __sched schedule_hrtimeout(ktime_t *expires,
2216 const enum hrtimer_mode mode)
2217 {
2218 return schedule_hrtimeout_range(expires, 0, mode);
2219 }
2220 EXPORT_SYMBOL_GPL(schedule_hrtimeout);