]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/time/hrtimer.c
efi/arm: Fix boot crash with CONFIG_CPUMASK_OFFSTACK=y
[mirror_ubuntu-artful-kernel.git] / kernel / time / hrtimer.c
1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/timer.h>
51 #include <linux/freezer.h>
52
53 #include <linux/uaccess.h>
54
55 #include <trace/events/timer.h>
56
57 #include "tick-internal.h"
58
59 /*
60 * The timer bases:
61 *
62 * There are more clockids than hrtimer bases. Thus, we index
63 * into the timer bases by the hrtimer_base_type enum. When trying
64 * to reach a base using a clockid, hrtimer_clockid_to_base()
65 * is used to convert from clockid to the proper hrtimer_base_type.
66 */
67 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68 {
69 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
70 .seq = SEQCNT_ZERO(hrtimer_bases.seq),
71 .clock_base =
72 {
73 {
74 .index = HRTIMER_BASE_MONOTONIC,
75 .clockid = CLOCK_MONOTONIC,
76 .get_time = &ktime_get,
77 },
78 {
79 .index = HRTIMER_BASE_REALTIME,
80 .clockid = CLOCK_REALTIME,
81 .get_time = &ktime_get_real,
82 },
83 {
84 .index = HRTIMER_BASE_BOOTTIME,
85 .clockid = CLOCK_BOOTTIME,
86 .get_time = &ktime_get_boottime,
87 },
88 {
89 .index = HRTIMER_BASE_TAI,
90 .clockid = CLOCK_TAI,
91 .get_time = &ktime_get_clocktai,
92 },
93 }
94 };
95
96 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
97 /* Make sure we catch unsupported clockids */
98 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES,
99
100 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
101 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
102 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
103 [CLOCK_TAI] = HRTIMER_BASE_TAI,
104 };
105
106 /*
107 * Functions and macros which are different for UP/SMP systems are kept in a
108 * single place
109 */
110 #ifdef CONFIG_SMP
111
112 /*
113 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
114 * such that hrtimer_callback_running() can unconditionally dereference
115 * timer->base->cpu_base
116 */
117 static struct hrtimer_cpu_base migration_cpu_base = {
118 .seq = SEQCNT_ZERO(migration_cpu_base),
119 .clock_base = { { .cpu_base = &migration_cpu_base, }, },
120 };
121
122 #define migration_base migration_cpu_base.clock_base[0]
123
124 /*
125 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
126 * means that all timers which are tied to this base via timer->base are
127 * locked, and the base itself is locked too.
128 *
129 * So __run_timers/migrate_timers can safely modify all timers which could
130 * be found on the lists/queues.
131 *
132 * When the timer's base is locked, and the timer removed from list, it is
133 * possible to set timer->base = &migration_base and drop the lock: the timer
134 * remains locked.
135 */
136 static
137 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
138 unsigned long *flags)
139 {
140 struct hrtimer_clock_base *base;
141
142 for (;;) {
143 base = timer->base;
144 if (likely(base != &migration_base)) {
145 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
146 if (likely(base == timer->base))
147 return base;
148 /* The timer has migrated to another CPU: */
149 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
150 }
151 cpu_relax();
152 }
153 }
154
155 /*
156 * With HIGHRES=y we do not migrate the timer when it is expiring
157 * before the next event on the target cpu because we cannot reprogram
158 * the target cpu hardware and we would cause it to fire late.
159 *
160 * Called with cpu_base->lock of target cpu held.
161 */
162 static int
163 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
164 {
165 #ifdef CONFIG_HIGH_RES_TIMERS
166 ktime_t expires;
167
168 if (!new_base->cpu_base->hres_active)
169 return 0;
170
171 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
172 return expires <= new_base->cpu_base->expires_next;
173 #else
174 return 0;
175 #endif
176 }
177
178 #ifdef CONFIG_NO_HZ_COMMON
179 static inline
180 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
181 int pinned)
182 {
183 if (pinned || !base->migration_enabled)
184 return base;
185 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
186 }
187 #else
188 static inline
189 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
190 int pinned)
191 {
192 return base;
193 }
194 #endif
195
196 /*
197 * We switch the timer base to a power-optimized selected CPU target,
198 * if:
199 * - NO_HZ_COMMON is enabled
200 * - timer migration is enabled
201 * - the timer callback is not running
202 * - the timer is not the first expiring timer on the new target
203 *
204 * If one of the above requirements is not fulfilled we move the timer
205 * to the current CPU or leave it on the previously assigned CPU if
206 * the timer callback is currently running.
207 */
208 static inline struct hrtimer_clock_base *
209 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
210 int pinned)
211 {
212 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
213 struct hrtimer_clock_base *new_base;
214 int basenum = base->index;
215
216 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
217 new_cpu_base = get_target_base(this_cpu_base, pinned);
218 again:
219 new_base = &new_cpu_base->clock_base[basenum];
220
221 if (base != new_base) {
222 /*
223 * We are trying to move timer to new_base.
224 * However we can't change timer's base while it is running,
225 * so we keep it on the same CPU. No hassle vs. reprogramming
226 * the event source in the high resolution case. The softirq
227 * code will take care of this when the timer function has
228 * completed. There is no conflict as we hold the lock until
229 * the timer is enqueued.
230 */
231 if (unlikely(hrtimer_callback_running(timer)))
232 return base;
233
234 /* See the comment in lock_hrtimer_base() */
235 timer->base = &migration_base;
236 raw_spin_unlock(&base->cpu_base->lock);
237 raw_spin_lock(&new_base->cpu_base->lock);
238
239 if (new_cpu_base != this_cpu_base &&
240 hrtimer_check_target(timer, new_base)) {
241 raw_spin_unlock(&new_base->cpu_base->lock);
242 raw_spin_lock(&base->cpu_base->lock);
243 new_cpu_base = this_cpu_base;
244 timer->base = base;
245 goto again;
246 }
247 timer->base = new_base;
248 } else {
249 if (new_cpu_base != this_cpu_base &&
250 hrtimer_check_target(timer, new_base)) {
251 new_cpu_base = this_cpu_base;
252 goto again;
253 }
254 }
255 return new_base;
256 }
257
258 #else /* CONFIG_SMP */
259
260 static inline struct hrtimer_clock_base *
261 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
262 {
263 struct hrtimer_clock_base *base = timer->base;
264
265 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
266
267 return base;
268 }
269
270 # define switch_hrtimer_base(t, b, p) (b)
271
272 #endif /* !CONFIG_SMP */
273
274 /*
275 * Functions for the union type storage format of ktime_t which are
276 * too large for inlining:
277 */
278 #if BITS_PER_LONG < 64
279 /*
280 * Divide a ktime value by a nanosecond value
281 */
282 s64 __ktime_divns(const ktime_t kt, s64 div)
283 {
284 int sft = 0;
285 s64 dclc;
286 u64 tmp;
287
288 dclc = ktime_to_ns(kt);
289 tmp = dclc < 0 ? -dclc : dclc;
290
291 /* Make sure the divisor is less than 2^32: */
292 while (div >> 32) {
293 sft++;
294 div >>= 1;
295 }
296 tmp >>= sft;
297 do_div(tmp, (unsigned long) div);
298 return dclc < 0 ? -tmp : tmp;
299 }
300 EXPORT_SYMBOL_GPL(__ktime_divns);
301 #endif /* BITS_PER_LONG >= 64 */
302
303 /*
304 * Add two ktime values and do a safety check for overflow:
305 */
306 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
307 {
308 ktime_t res = ktime_add_unsafe(lhs, rhs);
309
310 /*
311 * We use KTIME_SEC_MAX here, the maximum timeout which we can
312 * return to user space in a timespec:
313 */
314 if (res < 0 || res < lhs || res < rhs)
315 res = ktime_set(KTIME_SEC_MAX, 0);
316
317 return res;
318 }
319
320 EXPORT_SYMBOL_GPL(ktime_add_safe);
321
322 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
323
324 static struct debug_obj_descr hrtimer_debug_descr;
325
326 static void *hrtimer_debug_hint(void *addr)
327 {
328 return ((struct hrtimer *) addr)->function;
329 }
330
331 /*
332 * fixup_init is called when:
333 * - an active object is initialized
334 */
335 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
336 {
337 struct hrtimer *timer = addr;
338
339 switch (state) {
340 case ODEBUG_STATE_ACTIVE:
341 hrtimer_cancel(timer);
342 debug_object_init(timer, &hrtimer_debug_descr);
343 return true;
344 default:
345 return false;
346 }
347 }
348
349 /*
350 * fixup_activate is called when:
351 * - an active object is activated
352 * - an unknown non-static object is activated
353 */
354 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
355 {
356 switch (state) {
357 case ODEBUG_STATE_ACTIVE:
358 WARN_ON(1);
359
360 default:
361 return false;
362 }
363 }
364
365 /*
366 * fixup_free is called when:
367 * - an active object is freed
368 */
369 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
370 {
371 struct hrtimer *timer = addr;
372
373 switch (state) {
374 case ODEBUG_STATE_ACTIVE:
375 hrtimer_cancel(timer);
376 debug_object_free(timer, &hrtimer_debug_descr);
377 return true;
378 default:
379 return false;
380 }
381 }
382
383 static struct debug_obj_descr hrtimer_debug_descr = {
384 .name = "hrtimer",
385 .debug_hint = hrtimer_debug_hint,
386 .fixup_init = hrtimer_fixup_init,
387 .fixup_activate = hrtimer_fixup_activate,
388 .fixup_free = hrtimer_fixup_free,
389 };
390
391 static inline void debug_hrtimer_init(struct hrtimer *timer)
392 {
393 debug_object_init(timer, &hrtimer_debug_descr);
394 }
395
396 static inline void debug_hrtimer_activate(struct hrtimer *timer)
397 {
398 debug_object_activate(timer, &hrtimer_debug_descr);
399 }
400
401 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
402 {
403 debug_object_deactivate(timer, &hrtimer_debug_descr);
404 }
405
406 static inline void debug_hrtimer_free(struct hrtimer *timer)
407 {
408 debug_object_free(timer, &hrtimer_debug_descr);
409 }
410
411 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
412 enum hrtimer_mode mode);
413
414 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
415 enum hrtimer_mode mode)
416 {
417 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
418 __hrtimer_init(timer, clock_id, mode);
419 }
420 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
421
422 void destroy_hrtimer_on_stack(struct hrtimer *timer)
423 {
424 debug_object_free(timer, &hrtimer_debug_descr);
425 }
426 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
427
428 #else
429 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
430 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
431 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
432 #endif
433
434 static inline void
435 debug_init(struct hrtimer *timer, clockid_t clockid,
436 enum hrtimer_mode mode)
437 {
438 debug_hrtimer_init(timer);
439 trace_hrtimer_init(timer, clockid, mode);
440 }
441
442 static inline void debug_activate(struct hrtimer *timer)
443 {
444 debug_hrtimer_activate(timer);
445 trace_hrtimer_start(timer);
446 }
447
448 static inline void debug_deactivate(struct hrtimer *timer)
449 {
450 debug_hrtimer_deactivate(timer);
451 trace_hrtimer_cancel(timer);
452 }
453
454 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
455 static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
456 struct hrtimer *timer)
457 {
458 #ifdef CONFIG_HIGH_RES_TIMERS
459 cpu_base->next_timer = timer;
460 #endif
461 }
462
463 static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
464 {
465 struct hrtimer_clock_base *base = cpu_base->clock_base;
466 unsigned int active = cpu_base->active_bases;
467 ktime_t expires, expires_next = KTIME_MAX;
468
469 hrtimer_update_next_timer(cpu_base, NULL);
470 for (; active; base++, active >>= 1) {
471 struct timerqueue_node *next;
472 struct hrtimer *timer;
473
474 if (!(active & 0x01))
475 continue;
476
477 next = timerqueue_getnext(&base->active);
478 timer = container_of(next, struct hrtimer, node);
479 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
480 if (expires < expires_next) {
481 expires_next = expires;
482 hrtimer_update_next_timer(cpu_base, timer);
483 }
484 }
485 /*
486 * clock_was_set() might have changed base->offset of any of
487 * the clock bases so the result might be negative. Fix it up
488 * to prevent a false positive in clockevents_program_event().
489 */
490 if (expires_next < 0)
491 expires_next = 0;
492 return expires_next;
493 }
494 #endif
495
496 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
497 {
498 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
499 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
500 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
501
502 return ktime_get_update_offsets_now(&base->clock_was_set_seq,
503 offs_real, offs_boot, offs_tai);
504 }
505
506 /* High resolution timer related functions */
507 #ifdef CONFIG_HIGH_RES_TIMERS
508
509 /*
510 * High resolution timer enabled ?
511 */
512 static bool hrtimer_hres_enabled __read_mostly = true;
513 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
514 EXPORT_SYMBOL_GPL(hrtimer_resolution);
515
516 /*
517 * Enable / Disable high resolution mode
518 */
519 static int __init setup_hrtimer_hres(char *str)
520 {
521 return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
522 }
523
524 __setup("highres=", setup_hrtimer_hres);
525
526 /*
527 * hrtimer_high_res_enabled - query, if the highres mode is enabled
528 */
529 static inline int hrtimer_is_hres_enabled(void)
530 {
531 return hrtimer_hres_enabled;
532 }
533
534 /*
535 * Is the high resolution mode active ?
536 */
537 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
538 {
539 return cpu_base->hres_active;
540 }
541
542 static inline int hrtimer_hres_active(void)
543 {
544 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
545 }
546
547 /*
548 * Reprogram the event source with checking both queues for the
549 * next event
550 * Called with interrupts disabled and base->lock held
551 */
552 static void
553 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
554 {
555 ktime_t expires_next;
556
557 if (!cpu_base->hres_active)
558 return;
559
560 expires_next = __hrtimer_get_next_event(cpu_base);
561
562 if (skip_equal && expires_next == cpu_base->expires_next)
563 return;
564
565 cpu_base->expires_next = expires_next;
566
567 /*
568 * If a hang was detected in the last timer interrupt then we
569 * leave the hang delay active in the hardware. We want the
570 * system to make progress. That also prevents the following
571 * scenario:
572 * T1 expires 50ms from now
573 * T2 expires 5s from now
574 *
575 * T1 is removed, so this code is called and would reprogram
576 * the hardware to 5s from now. Any hrtimer_start after that
577 * will not reprogram the hardware due to hang_detected being
578 * set. So we'd effectivly block all timers until the T2 event
579 * fires.
580 */
581 if (cpu_base->hang_detected)
582 return;
583
584 tick_program_event(cpu_base->expires_next, 1);
585 }
586
587 /*
588 * When a timer is enqueued and expires earlier than the already enqueued
589 * timers, we have to check, whether it expires earlier than the timer for
590 * which the clock event device was armed.
591 *
592 * Called with interrupts disabled and base->cpu_base.lock held
593 */
594 static void hrtimer_reprogram(struct hrtimer *timer,
595 struct hrtimer_clock_base *base)
596 {
597 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
598 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
599
600 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
601
602 /*
603 * If the timer is not on the current cpu, we cannot reprogram
604 * the other cpus clock event device.
605 */
606 if (base->cpu_base != cpu_base)
607 return;
608
609 /*
610 * If the hrtimer interrupt is running, then it will
611 * reevaluate the clock bases and reprogram the clock event
612 * device. The callbacks are always executed in hard interrupt
613 * context so we don't need an extra check for a running
614 * callback.
615 */
616 if (cpu_base->in_hrtirq)
617 return;
618
619 /*
620 * CLOCK_REALTIME timer might be requested with an absolute
621 * expiry time which is less than base->offset. Set it to 0.
622 */
623 if (expires < 0)
624 expires = 0;
625
626 if (expires >= cpu_base->expires_next)
627 return;
628
629 /* Update the pointer to the next expiring timer */
630 cpu_base->next_timer = timer;
631
632 /*
633 * If a hang was detected in the last timer interrupt then we
634 * do not schedule a timer which is earlier than the expiry
635 * which we enforced in the hang detection. We want the system
636 * to make progress.
637 */
638 if (cpu_base->hang_detected)
639 return;
640
641 /*
642 * Program the timer hardware. We enforce the expiry for
643 * events which are already in the past.
644 */
645 cpu_base->expires_next = expires;
646 tick_program_event(expires, 1);
647 }
648
649 /*
650 * Initialize the high resolution related parts of cpu_base
651 */
652 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
653 {
654 base->expires_next = KTIME_MAX;
655 base->hres_active = 0;
656 }
657
658 /*
659 * Retrigger next event is called after clock was set
660 *
661 * Called with interrupts disabled via on_each_cpu()
662 */
663 static void retrigger_next_event(void *arg)
664 {
665 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
666
667 if (!base->hres_active)
668 return;
669
670 raw_spin_lock(&base->lock);
671 hrtimer_update_base(base);
672 hrtimer_force_reprogram(base, 0);
673 raw_spin_unlock(&base->lock);
674 }
675
676 /*
677 * Switch to high resolution mode
678 */
679 static void hrtimer_switch_to_hres(void)
680 {
681 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
682
683 if (tick_init_highres()) {
684 printk(KERN_WARNING "Could not switch to high resolution "
685 "mode on CPU %d\n", base->cpu);
686 return;
687 }
688 base->hres_active = 1;
689 hrtimer_resolution = HIGH_RES_NSEC;
690
691 tick_setup_sched_timer();
692 /* "Retrigger" the interrupt to get things going */
693 retrigger_next_event(NULL);
694 }
695
696 static void clock_was_set_work(struct work_struct *work)
697 {
698 clock_was_set();
699 }
700
701 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
702
703 /*
704 * Called from timekeeping and resume code to reprogram the hrtimer
705 * interrupt device on all cpus.
706 */
707 void clock_was_set_delayed(void)
708 {
709 schedule_work(&hrtimer_work);
710 }
711
712 #else
713
714 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
715 static inline int hrtimer_hres_active(void) { return 0; }
716 static inline int hrtimer_is_hres_enabled(void) { return 0; }
717 static inline void hrtimer_switch_to_hres(void) { }
718 static inline void
719 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
720 static inline int hrtimer_reprogram(struct hrtimer *timer,
721 struct hrtimer_clock_base *base)
722 {
723 return 0;
724 }
725 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
726 static inline void retrigger_next_event(void *arg) { }
727
728 #endif /* CONFIG_HIGH_RES_TIMERS */
729
730 /*
731 * Clock realtime was set
732 *
733 * Change the offset of the realtime clock vs. the monotonic
734 * clock.
735 *
736 * We might have to reprogram the high resolution timer interrupt. On
737 * SMP we call the architecture specific code to retrigger _all_ high
738 * resolution timer interrupts. On UP we just disable interrupts and
739 * call the high resolution interrupt code.
740 */
741 void clock_was_set(void)
742 {
743 #ifdef CONFIG_HIGH_RES_TIMERS
744 /* Retrigger the CPU local events everywhere */
745 on_each_cpu(retrigger_next_event, NULL, 1);
746 #endif
747 timerfd_clock_was_set();
748 }
749
750 /*
751 * During resume we might have to reprogram the high resolution timer
752 * interrupt on all online CPUs. However, all other CPUs will be
753 * stopped with IRQs interrupts disabled so the clock_was_set() call
754 * must be deferred.
755 */
756 void hrtimers_resume(void)
757 {
758 WARN_ONCE(!irqs_disabled(),
759 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
760
761 /* Retrigger on the local CPU */
762 retrigger_next_event(NULL);
763 /* And schedule a retrigger for all others */
764 clock_was_set_delayed();
765 }
766
767 /*
768 * Counterpart to lock_hrtimer_base above:
769 */
770 static inline
771 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
772 {
773 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
774 }
775
776 /**
777 * hrtimer_forward - forward the timer expiry
778 * @timer: hrtimer to forward
779 * @now: forward past this time
780 * @interval: the interval to forward
781 *
782 * Forward the timer expiry so it will expire in the future.
783 * Returns the number of overruns.
784 *
785 * Can be safely called from the callback function of @timer. If
786 * called from other contexts @timer must neither be enqueued nor
787 * running the callback and the caller needs to take care of
788 * serialization.
789 *
790 * Note: This only updates the timer expiry value and does not requeue
791 * the timer.
792 */
793 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
794 {
795 u64 orun = 1;
796 ktime_t delta;
797
798 delta = ktime_sub(now, hrtimer_get_expires(timer));
799
800 if (delta < 0)
801 return 0;
802
803 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
804 return 0;
805
806 if (interval < hrtimer_resolution)
807 interval = hrtimer_resolution;
808
809 if (unlikely(delta >= interval)) {
810 s64 incr = ktime_to_ns(interval);
811
812 orun = ktime_divns(delta, incr);
813 hrtimer_add_expires_ns(timer, incr * orun);
814 if (hrtimer_get_expires_tv64(timer) > now)
815 return orun;
816 /*
817 * This (and the ktime_add() below) is the
818 * correction for exact:
819 */
820 orun++;
821 }
822 hrtimer_add_expires(timer, interval);
823
824 return orun;
825 }
826 EXPORT_SYMBOL_GPL(hrtimer_forward);
827
828 /*
829 * enqueue_hrtimer - internal function to (re)start a timer
830 *
831 * The timer is inserted in expiry order. Insertion into the
832 * red black tree is O(log(n)). Must hold the base lock.
833 *
834 * Returns 1 when the new timer is the leftmost timer in the tree.
835 */
836 static int enqueue_hrtimer(struct hrtimer *timer,
837 struct hrtimer_clock_base *base)
838 {
839 debug_activate(timer);
840
841 base->cpu_base->active_bases |= 1 << base->index;
842
843 timer->state = HRTIMER_STATE_ENQUEUED;
844
845 return timerqueue_add(&base->active, &timer->node);
846 }
847
848 /*
849 * __remove_hrtimer - internal function to remove a timer
850 *
851 * Caller must hold the base lock.
852 *
853 * High resolution timer mode reprograms the clock event device when the
854 * timer is the one which expires next. The caller can disable this by setting
855 * reprogram to zero. This is useful, when the context does a reprogramming
856 * anyway (e.g. timer interrupt)
857 */
858 static void __remove_hrtimer(struct hrtimer *timer,
859 struct hrtimer_clock_base *base,
860 u8 newstate, int reprogram)
861 {
862 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
863 u8 state = timer->state;
864
865 timer->state = newstate;
866 if (!(state & HRTIMER_STATE_ENQUEUED))
867 return;
868
869 if (!timerqueue_del(&base->active, &timer->node))
870 cpu_base->active_bases &= ~(1 << base->index);
871
872 #ifdef CONFIG_HIGH_RES_TIMERS
873 /*
874 * Note: If reprogram is false we do not update
875 * cpu_base->next_timer. This happens when we remove the first
876 * timer on a remote cpu. No harm as we never dereference
877 * cpu_base->next_timer. So the worst thing what can happen is
878 * an superflous call to hrtimer_force_reprogram() on the
879 * remote cpu later on if the same timer gets enqueued again.
880 */
881 if (reprogram && timer == cpu_base->next_timer)
882 hrtimer_force_reprogram(cpu_base, 1);
883 #endif
884 }
885
886 /*
887 * remove hrtimer, called with base lock held
888 */
889 static inline int
890 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
891 {
892 if (hrtimer_is_queued(timer)) {
893 u8 state = timer->state;
894 int reprogram;
895
896 /*
897 * Remove the timer and force reprogramming when high
898 * resolution mode is active and the timer is on the current
899 * CPU. If we remove a timer on another CPU, reprogramming is
900 * skipped. The interrupt event on this CPU is fired and
901 * reprogramming happens in the interrupt handler. This is a
902 * rare case and less expensive than a smp call.
903 */
904 debug_deactivate(timer);
905 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
906
907 if (!restart)
908 state = HRTIMER_STATE_INACTIVE;
909
910 __remove_hrtimer(timer, base, state, reprogram);
911 return 1;
912 }
913 return 0;
914 }
915
916 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
917 const enum hrtimer_mode mode)
918 {
919 #ifdef CONFIG_TIME_LOW_RES
920 /*
921 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
922 * granular time values. For relative timers we add hrtimer_resolution
923 * (i.e. one jiffie) to prevent short timeouts.
924 */
925 timer->is_rel = mode & HRTIMER_MODE_REL;
926 if (timer->is_rel)
927 tim = ktime_add_safe(tim, hrtimer_resolution);
928 #endif
929 return tim;
930 }
931
932 /**
933 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
934 * @timer: the timer to be added
935 * @tim: expiry time
936 * @delta_ns: "slack" range for the timer
937 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
938 * relative (HRTIMER_MODE_REL)
939 */
940 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
941 u64 delta_ns, const enum hrtimer_mode mode)
942 {
943 struct hrtimer_clock_base *base, *new_base;
944 unsigned long flags;
945 int leftmost;
946
947 base = lock_hrtimer_base(timer, &flags);
948
949 /* Remove an active timer from the queue: */
950 remove_hrtimer(timer, base, true);
951
952 if (mode & HRTIMER_MODE_REL)
953 tim = ktime_add_safe(tim, base->get_time());
954
955 tim = hrtimer_update_lowres(timer, tim, mode);
956
957 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
958
959 /* Switch the timer base, if necessary: */
960 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
961
962 leftmost = enqueue_hrtimer(timer, new_base);
963 if (!leftmost)
964 goto unlock;
965
966 if (!hrtimer_is_hres_active(timer)) {
967 /*
968 * Kick to reschedule the next tick to handle the new timer
969 * on dynticks target.
970 */
971 if (new_base->cpu_base->nohz_active)
972 wake_up_nohz_cpu(new_base->cpu_base->cpu);
973 } else {
974 hrtimer_reprogram(timer, new_base);
975 }
976 unlock:
977 unlock_hrtimer_base(timer, &flags);
978 }
979 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
980
981 /**
982 * hrtimer_try_to_cancel - try to deactivate a timer
983 * @timer: hrtimer to stop
984 *
985 * Returns:
986 * 0 when the timer was not active
987 * 1 when the timer was active
988 * -1 when the timer is currently excuting the callback function and
989 * cannot be stopped
990 */
991 int hrtimer_try_to_cancel(struct hrtimer *timer)
992 {
993 struct hrtimer_clock_base *base;
994 unsigned long flags;
995 int ret = -1;
996
997 /*
998 * Check lockless first. If the timer is not active (neither
999 * enqueued nor running the callback, nothing to do here. The
1000 * base lock does not serialize against a concurrent enqueue,
1001 * so we can avoid taking it.
1002 */
1003 if (!hrtimer_active(timer))
1004 return 0;
1005
1006 base = lock_hrtimer_base(timer, &flags);
1007
1008 if (!hrtimer_callback_running(timer))
1009 ret = remove_hrtimer(timer, base, false);
1010
1011 unlock_hrtimer_base(timer, &flags);
1012
1013 return ret;
1014
1015 }
1016 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1017
1018 /**
1019 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1020 * @timer: the timer to be cancelled
1021 *
1022 * Returns:
1023 * 0 when the timer was not active
1024 * 1 when the timer was active
1025 */
1026 int hrtimer_cancel(struct hrtimer *timer)
1027 {
1028 for (;;) {
1029 int ret = hrtimer_try_to_cancel(timer);
1030
1031 if (ret >= 0)
1032 return ret;
1033 cpu_relax();
1034 }
1035 }
1036 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1037
1038 /**
1039 * hrtimer_get_remaining - get remaining time for the timer
1040 * @timer: the timer to read
1041 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
1042 */
1043 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1044 {
1045 unsigned long flags;
1046 ktime_t rem;
1047
1048 lock_hrtimer_base(timer, &flags);
1049 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1050 rem = hrtimer_expires_remaining_adjusted(timer);
1051 else
1052 rem = hrtimer_expires_remaining(timer);
1053 unlock_hrtimer_base(timer, &flags);
1054
1055 return rem;
1056 }
1057 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1058
1059 #ifdef CONFIG_NO_HZ_COMMON
1060 /**
1061 * hrtimer_get_next_event - get the time until next expiry event
1062 *
1063 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1064 */
1065 u64 hrtimer_get_next_event(void)
1066 {
1067 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1068 u64 expires = KTIME_MAX;
1069 unsigned long flags;
1070
1071 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1072
1073 if (!__hrtimer_hres_active(cpu_base))
1074 expires = __hrtimer_get_next_event(cpu_base);
1075
1076 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1077
1078 return expires;
1079 }
1080 #endif
1081
1082 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1083 {
1084 if (likely(clock_id < MAX_CLOCKS)) {
1085 int base = hrtimer_clock_to_base_table[clock_id];
1086
1087 if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1088 return base;
1089 }
1090 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1091 return HRTIMER_BASE_MONOTONIC;
1092 }
1093
1094 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1095 enum hrtimer_mode mode)
1096 {
1097 struct hrtimer_cpu_base *cpu_base;
1098 int base;
1099
1100 memset(timer, 0, sizeof(struct hrtimer));
1101
1102 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1103
1104 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1105 clock_id = CLOCK_MONOTONIC;
1106
1107 base = hrtimer_clockid_to_base(clock_id);
1108 timer->base = &cpu_base->clock_base[base];
1109 timerqueue_init(&timer->node);
1110 }
1111
1112 /**
1113 * hrtimer_init - initialize a timer to the given clock
1114 * @timer: the timer to be initialized
1115 * @clock_id: the clock to be used
1116 * @mode: timer mode abs/rel
1117 */
1118 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1119 enum hrtimer_mode mode)
1120 {
1121 debug_init(timer, clock_id, mode);
1122 __hrtimer_init(timer, clock_id, mode);
1123 }
1124 EXPORT_SYMBOL_GPL(hrtimer_init);
1125
1126 /*
1127 * A timer is active, when it is enqueued into the rbtree or the
1128 * callback function is running or it's in the state of being migrated
1129 * to another cpu.
1130 *
1131 * It is important for this function to not return a false negative.
1132 */
1133 bool hrtimer_active(const struct hrtimer *timer)
1134 {
1135 struct hrtimer_cpu_base *cpu_base;
1136 unsigned int seq;
1137
1138 do {
1139 cpu_base = READ_ONCE(timer->base->cpu_base);
1140 seq = raw_read_seqcount_begin(&cpu_base->seq);
1141
1142 if (timer->state != HRTIMER_STATE_INACTIVE ||
1143 cpu_base->running == timer)
1144 return true;
1145
1146 } while (read_seqcount_retry(&cpu_base->seq, seq) ||
1147 cpu_base != READ_ONCE(timer->base->cpu_base));
1148
1149 return false;
1150 }
1151 EXPORT_SYMBOL_GPL(hrtimer_active);
1152
1153 /*
1154 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1155 * distinct sections:
1156 *
1157 * - queued: the timer is queued
1158 * - callback: the timer is being ran
1159 * - post: the timer is inactive or (re)queued
1160 *
1161 * On the read side we ensure we observe timer->state and cpu_base->running
1162 * from the same section, if anything changed while we looked at it, we retry.
1163 * This includes timer->base changing because sequence numbers alone are
1164 * insufficient for that.
1165 *
1166 * The sequence numbers are required because otherwise we could still observe
1167 * a false negative if the read side got smeared over multiple consequtive
1168 * __run_hrtimer() invocations.
1169 */
1170
1171 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1172 struct hrtimer_clock_base *base,
1173 struct hrtimer *timer, ktime_t *now)
1174 {
1175 enum hrtimer_restart (*fn)(struct hrtimer *);
1176 int restart;
1177
1178 lockdep_assert_held(&cpu_base->lock);
1179
1180 debug_deactivate(timer);
1181 cpu_base->running = timer;
1182
1183 /*
1184 * Separate the ->running assignment from the ->state assignment.
1185 *
1186 * As with a regular write barrier, this ensures the read side in
1187 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1188 * timer->state == INACTIVE.
1189 */
1190 raw_write_seqcount_barrier(&cpu_base->seq);
1191
1192 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1193 fn = timer->function;
1194
1195 /*
1196 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1197 * timer is restarted with a period then it becomes an absolute
1198 * timer. If its not restarted it does not matter.
1199 */
1200 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1201 timer->is_rel = false;
1202
1203 /*
1204 * Because we run timers from hardirq context, there is no chance
1205 * they get migrated to another cpu, therefore its safe to unlock
1206 * the timer base.
1207 */
1208 raw_spin_unlock(&cpu_base->lock);
1209 trace_hrtimer_expire_entry(timer, now);
1210 restart = fn(timer);
1211 trace_hrtimer_expire_exit(timer);
1212 raw_spin_lock(&cpu_base->lock);
1213
1214 /*
1215 * Note: We clear the running state after enqueue_hrtimer and
1216 * we do not reprogram the event hardware. Happens either in
1217 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1218 *
1219 * Note: Because we dropped the cpu_base->lock above,
1220 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1221 * for us already.
1222 */
1223 if (restart != HRTIMER_NORESTART &&
1224 !(timer->state & HRTIMER_STATE_ENQUEUED))
1225 enqueue_hrtimer(timer, base);
1226
1227 /*
1228 * Separate the ->running assignment from the ->state assignment.
1229 *
1230 * As with a regular write barrier, this ensures the read side in
1231 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1232 * timer->state == INACTIVE.
1233 */
1234 raw_write_seqcount_barrier(&cpu_base->seq);
1235
1236 WARN_ON_ONCE(cpu_base->running != timer);
1237 cpu_base->running = NULL;
1238 }
1239
1240 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1241 {
1242 struct hrtimer_clock_base *base = cpu_base->clock_base;
1243 unsigned int active = cpu_base->active_bases;
1244
1245 for (; active; base++, active >>= 1) {
1246 struct timerqueue_node *node;
1247 ktime_t basenow;
1248
1249 if (!(active & 0x01))
1250 continue;
1251
1252 basenow = ktime_add(now, base->offset);
1253
1254 while ((node = timerqueue_getnext(&base->active))) {
1255 struct hrtimer *timer;
1256
1257 timer = container_of(node, struct hrtimer, node);
1258
1259 /*
1260 * The immediate goal for using the softexpires is
1261 * minimizing wakeups, not running timers at the
1262 * earliest interrupt after their soft expiration.
1263 * This allows us to avoid using a Priority Search
1264 * Tree, which can answer a stabbing querry for
1265 * overlapping intervals and instead use the simple
1266 * BST we already have.
1267 * We don't add extra wakeups by delaying timers that
1268 * are right-of a not yet expired timer, because that
1269 * timer will have to trigger a wakeup anyway.
1270 */
1271 if (basenow < hrtimer_get_softexpires_tv64(timer))
1272 break;
1273
1274 __run_hrtimer(cpu_base, base, timer, &basenow);
1275 }
1276 }
1277 }
1278
1279 #ifdef CONFIG_HIGH_RES_TIMERS
1280
1281 /*
1282 * High resolution timer interrupt
1283 * Called with interrupts disabled
1284 */
1285 void hrtimer_interrupt(struct clock_event_device *dev)
1286 {
1287 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1288 ktime_t expires_next, now, entry_time, delta;
1289 int retries = 0;
1290
1291 BUG_ON(!cpu_base->hres_active);
1292 cpu_base->nr_events++;
1293 dev->next_event = KTIME_MAX;
1294
1295 raw_spin_lock(&cpu_base->lock);
1296 entry_time = now = hrtimer_update_base(cpu_base);
1297 retry:
1298 cpu_base->in_hrtirq = 1;
1299 /*
1300 * We set expires_next to KTIME_MAX here with cpu_base->lock
1301 * held to prevent that a timer is enqueued in our queue via
1302 * the migration code. This does not affect enqueueing of
1303 * timers which run their callback and need to be requeued on
1304 * this CPU.
1305 */
1306 cpu_base->expires_next = KTIME_MAX;
1307
1308 __hrtimer_run_queues(cpu_base, now);
1309
1310 /* Reevaluate the clock bases for the next expiry */
1311 expires_next = __hrtimer_get_next_event(cpu_base);
1312 /*
1313 * Store the new expiry value so the migration code can verify
1314 * against it.
1315 */
1316 cpu_base->expires_next = expires_next;
1317 cpu_base->in_hrtirq = 0;
1318 raw_spin_unlock(&cpu_base->lock);
1319
1320 /* Reprogramming necessary ? */
1321 if (!tick_program_event(expires_next, 0)) {
1322 cpu_base->hang_detected = 0;
1323 return;
1324 }
1325
1326 /*
1327 * The next timer was already expired due to:
1328 * - tracing
1329 * - long lasting callbacks
1330 * - being scheduled away when running in a VM
1331 *
1332 * We need to prevent that we loop forever in the hrtimer
1333 * interrupt routine. We give it 3 attempts to avoid
1334 * overreacting on some spurious event.
1335 *
1336 * Acquire base lock for updating the offsets and retrieving
1337 * the current time.
1338 */
1339 raw_spin_lock(&cpu_base->lock);
1340 now = hrtimer_update_base(cpu_base);
1341 cpu_base->nr_retries++;
1342 if (++retries < 3)
1343 goto retry;
1344 /*
1345 * Give the system a chance to do something else than looping
1346 * here. We stored the entry time, so we know exactly how long
1347 * we spent here. We schedule the next event this amount of
1348 * time away.
1349 */
1350 cpu_base->nr_hangs++;
1351 cpu_base->hang_detected = 1;
1352 raw_spin_unlock(&cpu_base->lock);
1353 delta = ktime_sub(now, entry_time);
1354 if ((unsigned int)delta > cpu_base->max_hang_time)
1355 cpu_base->max_hang_time = (unsigned int) delta;
1356 /*
1357 * Limit it to a sensible value as we enforce a longer
1358 * delay. Give the CPU at least 100ms to catch up.
1359 */
1360 if (delta > 100 * NSEC_PER_MSEC)
1361 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1362 else
1363 expires_next = ktime_add(now, delta);
1364 tick_program_event(expires_next, 1);
1365 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1366 ktime_to_ns(delta));
1367 }
1368
1369 /*
1370 * local version of hrtimer_peek_ahead_timers() called with interrupts
1371 * disabled.
1372 */
1373 static inline void __hrtimer_peek_ahead_timers(void)
1374 {
1375 struct tick_device *td;
1376
1377 if (!hrtimer_hres_active())
1378 return;
1379
1380 td = this_cpu_ptr(&tick_cpu_device);
1381 if (td && td->evtdev)
1382 hrtimer_interrupt(td->evtdev);
1383 }
1384
1385 #else /* CONFIG_HIGH_RES_TIMERS */
1386
1387 static inline void __hrtimer_peek_ahead_timers(void) { }
1388
1389 #endif /* !CONFIG_HIGH_RES_TIMERS */
1390
1391 /*
1392 * Called from run_local_timers in hardirq context every jiffy
1393 */
1394 void hrtimer_run_queues(void)
1395 {
1396 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1397 ktime_t now;
1398
1399 if (__hrtimer_hres_active(cpu_base))
1400 return;
1401
1402 /*
1403 * This _is_ ugly: We have to check periodically, whether we
1404 * can switch to highres and / or nohz mode. The clocksource
1405 * switch happens with xtime_lock held. Notification from
1406 * there only sets the check bit in the tick_oneshot code,
1407 * otherwise we might deadlock vs. xtime_lock.
1408 */
1409 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1410 hrtimer_switch_to_hres();
1411 return;
1412 }
1413
1414 raw_spin_lock(&cpu_base->lock);
1415 now = hrtimer_update_base(cpu_base);
1416 __hrtimer_run_queues(cpu_base, now);
1417 raw_spin_unlock(&cpu_base->lock);
1418 }
1419
1420 /*
1421 * Sleep related functions:
1422 */
1423 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1424 {
1425 struct hrtimer_sleeper *t =
1426 container_of(timer, struct hrtimer_sleeper, timer);
1427 struct task_struct *task = t->task;
1428
1429 t->task = NULL;
1430 if (task)
1431 wake_up_process(task);
1432
1433 return HRTIMER_NORESTART;
1434 }
1435
1436 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1437 {
1438 sl->timer.function = hrtimer_wakeup;
1439 sl->task = task;
1440 }
1441 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1442
1443 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1444 {
1445 hrtimer_init_sleeper(t, current);
1446
1447 do {
1448 set_current_state(TASK_INTERRUPTIBLE);
1449 hrtimer_start_expires(&t->timer, mode);
1450
1451 if (likely(t->task))
1452 freezable_schedule();
1453
1454 hrtimer_cancel(&t->timer);
1455 mode = HRTIMER_MODE_ABS;
1456
1457 } while (t->task && !signal_pending(current));
1458
1459 __set_current_state(TASK_RUNNING);
1460
1461 return t->task == NULL;
1462 }
1463
1464 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1465 {
1466 struct timespec rmt;
1467 ktime_t rem;
1468
1469 rem = hrtimer_expires_remaining(timer);
1470 if (rem <= 0)
1471 return 0;
1472 rmt = ktime_to_timespec(rem);
1473
1474 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1475 return -EFAULT;
1476
1477 return 1;
1478 }
1479
1480 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1481 {
1482 struct hrtimer_sleeper t;
1483 struct timespec __user *rmtp;
1484 int ret = 0;
1485
1486 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1487 HRTIMER_MODE_ABS);
1488 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1489
1490 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1491 goto out;
1492
1493 rmtp = restart->nanosleep.rmtp;
1494 if (rmtp) {
1495 ret = update_rmtp(&t.timer, rmtp);
1496 if (ret <= 0)
1497 goto out;
1498 }
1499
1500 /* The other values in restart are already filled in */
1501 ret = -ERESTART_RESTARTBLOCK;
1502 out:
1503 destroy_hrtimer_on_stack(&t.timer);
1504 return ret;
1505 }
1506
1507 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1508 const enum hrtimer_mode mode, const clockid_t clockid)
1509 {
1510 struct restart_block *restart;
1511 struct hrtimer_sleeper t;
1512 int ret = 0;
1513 u64 slack;
1514
1515 slack = current->timer_slack_ns;
1516 if (dl_task(current) || rt_task(current))
1517 slack = 0;
1518
1519 hrtimer_init_on_stack(&t.timer, clockid, mode);
1520 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1521 if (do_nanosleep(&t, mode))
1522 goto out;
1523
1524 /* Absolute timers do not update the rmtp value and restart: */
1525 if (mode == HRTIMER_MODE_ABS) {
1526 ret = -ERESTARTNOHAND;
1527 goto out;
1528 }
1529
1530 if (rmtp) {
1531 ret = update_rmtp(&t.timer, rmtp);
1532 if (ret <= 0)
1533 goto out;
1534 }
1535
1536 restart = &current->restart_block;
1537 restart->fn = hrtimer_nanosleep_restart;
1538 restart->nanosleep.clockid = t.timer.base->clockid;
1539 restart->nanosleep.rmtp = rmtp;
1540 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1541
1542 ret = -ERESTART_RESTARTBLOCK;
1543 out:
1544 destroy_hrtimer_on_stack(&t.timer);
1545 return ret;
1546 }
1547
1548 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1549 struct timespec __user *, rmtp)
1550 {
1551 struct timespec tu;
1552
1553 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1554 return -EFAULT;
1555
1556 if (!timespec_valid(&tu))
1557 return -EINVAL;
1558
1559 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1560 }
1561
1562 /*
1563 * Functions related to boot-time initialization:
1564 */
1565 int hrtimers_prepare_cpu(unsigned int cpu)
1566 {
1567 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1568 int i;
1569
1570 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1571 cpu_base->clock_base[i].cpu_base = cpu_base;
1572 timerqueue_init_head(&cpu_base->clock_base[i].active);
1573 }
1574
1575 cpu_base->cpu = cpu;
1576 hrtimer_init_hres(cpu_base);
1577 return 0;
1578 }
1579
1580 #ifdef CONFIG_HOTPLUG_CPU
1581
1582 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1583 struct hrtimer_clock_base *new_base)
1584 {
1585 struct hrtimer *timer;
1586 struct timerqueue_node *node;
1587
1588 while ((node = timerqueue_getnext(&old_base->active))) {
1589 timer = container_of(node, struct hrtimer, node);
1590 BUG_ON(hrtimer_callback_running(timer));
1591 debug_deactivate(timer);
1592
1593 /*
1594 * Mark it as ENQUEUED not INACTIVE otherwise the
1595 * timer could be seen as !active and just vanish away
1596 * under us on another CPU
1597 */
1598 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1599 timer->base = new_base;
1600 /*
1601 * Enqueue the timers on the new cpu. This does not
1602 * reprogram the event device in case the timer
1603 * expires before the earliest on this CPU, but we run
1604 * hrtimer_interrupt after we migrated everything to
1605 * sort out already expired timers and reprogram the
1606 * event device.
1607 */
1608 enqueue_hrtimer(timer, new_base);
1609 }
1610 }
1611
1612 int hrtimers_dead_cpu(unsigned int scpu)
1613 {
1614 struct hrtimer_cpu_base *old_base, *new_base;
1615 int i;
1616
1617 BUG_ON(cpu_online(scpu));
1618 tick_cancel_sched_timer(scpu);
1619
1620 local_irq_disable();
1621 old_base = &per_cpu(hrtimer_bases, scpu);
1622 new_base = this_cpu_ptr(&hrtimer_bases);
1623 /*
1624 * The caller is globally serialized and nobody else
1625 * takes two locks at once, deadlock is not possible.
1626 */
1627 raw_spin_lock(&new_base->lock);
1628 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1629
1630 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1631 migrate_hrtimer_list(&old_base->clock_base[i],
1632 &new_base->clock_base[i]);
1633 }
1634
1635 raw_spin_unlock(&old_base->lock);
1636 raw_spin_unlock(&new_base->lock);
1637
1638 /* Check, if we got expired work to do */
1639 __hrtimer_peek_ahead_timers();
1640 local_irq_enable();
1641 return 0;
1642 }
1643
1644 #endif /* CONFIG_HOTPLUG_CPU */
1645
1646 void __init hrtimers_init(void)
1647 {
1648 hrtimers_prepare_cpu(smp_processor_id());
1649 }
1650
1651 /**
1652 * schedule_hrtimeout_range_clock - sleep until timeout
1653 * @expires: timeout value (ktime_t)
1654 * @delta: slack in expires timeout (ktime_t)
1655 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1656 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1657 */
1658 int __sched
1659 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1660 const enum hrtimer_mode mode, int clock)
1661 {
1662 struct hrtimer_sleeper t;
1663
1664 /*
1665 * Optimize when a zero timeout value is given. It does not
1666 * matter whether this is an absolute or a relative time.
1667 */
1668 if (expires && *expires == 0) {
1669 __set_current_state(TASK_RUNNING);
1670 return 0;
1671 }
1672
1673 /*
1674 * A NULL parameter means "infinite"
1675 */
1676 if (!expires) {
1677 schedule();
1678 return -EINTR;
1679 }
1680
1681 hrtimer_init_on_stack(&t.timer, clock, mode);
1682 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1683
1684 hrtimer_init_sleeper(&t, current);
1685
1686 hrtimer_start_expires(&t.timer, mode);
1687
1688 if (likely(t.task))
1689 schedule();
1690
1691 hrtimer_cancel(&t.timer);
1692 destroy_hrtimer_on_stack(&t.timer);
1693
1694 __set_current_state(TASK_RUNNING);
1695
1696 return !t.task ? 0 : -EINTR;
1697 }
1698
1699 /**
1700 * schedule_hrtimeout_range - sleep until timeout
1701 * @expires: timeout value (ktime_t)
1702 * @delta: slack in expires timeout (ktime_t)
1703 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1704 *
1705 * Make the current task sleep until the given expiry time has
1706 * elapsed. The routine will return immediately unless
1707 * the current task state has been set (see set_current_state()).
1708 *
1709 * The @delta argument gives the kernel the freedom to schedule the
1710 * actual wakeup to a time that is both power and performance friendly.
1711 * The kernel give the normal best effort behavior for "@expires+@delta",
1712 * but may decide to fire the timer earlier, but no earlier than @expires.
1713 *
1714 * You can set the task state as follows -
1715 *
1716 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1717 * pass before the routine returns unless the current task is explicitly
1718 * woken up, (e.g. by wake_up_process()).
1719 *
1720 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1721 * delivered to the current task or the current task is explicitly woken
1722 * up.
1723 *
1724 * The current task state is guaranteed to be TASK_RUNNING when this
1725 * routine returns.
1726 *
1727 * Returns 0 when the timer has expired. If the task was woken before the
1728 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1729 * by an explicit wakeup, it returns -EINTR.
1730 */
1731 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1732 const enum hrtimer_mode mode)
1733 {
1734 return schedule_hrtimeout_range_clock(expires, delta, mode,
1735 CLOCK_MONOTONIC);
1736 }
1737 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1738
1739 /**
1740 * schedule_hrtimeout - sleep until timeout
1741 * @expires: timeout value (ktime_t)
1742 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1743 *
1744 * Make the current task sleep until the given expiry time has
1745 * elapsed. The routine will return immediately unless
1746 * the current task state has been set (see set_current_state()).
1747 *
1748 * You can set the task state as follows -
1749 *
1750 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1751 * pass before the routine returns unless the current task is explicitly
1752 * woken up, (e.g. by wake_up_process()).
1753 *
1754 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1755 * delivered to the current task or the current task is explicitly woken
1756 * up.
1757 *
1758 * The current task state is guaranteed to be TASK_RUNNING when this
1759 * routine returns.
1760 *
1761 * Returns 0 when the timer has expired. If the task was woken before the
1762 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1763 * by an explicit wakeup, it returns -EINTR.
1764 */
1765 int __sched schedule_hrtimeout(ktime_t *expires,
1766 const enum hrtimer_mode mode)
1767 {
1768 return schedule_hrtimeout_range(expires, 0, mode);
1769 }
1770 EXPORT_SYMBOL_GPL(schedule_hrtimeout);