]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/time/hrtimer.c
ktime: Get rid of the union
[mirror_ubuntu-artful-kernel.git] / kernel / time / hrtimer.c
1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/timer.h>
51 #include <linux/freezer.h>
52
53 #include <linux/uaccess.h>
54
55 #include <trace/events/timer.h>
56
57 #include "tick-internal.h"
58
59 /*
60 * The timer bases:
61 *
62 * There are more clockids than hrtimer bases. Thus, we index
63 * into the timer bases by the hrtimer_base_type enum. When trying
64 * to reach a base using a clockid, hrtimer_clockid_to_base()
65 * is used to convert from clockid to the proper hrtimer_base_type.
66 */
67 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68 {
69 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
70 .seq = SEQCNT_ZERO(hrtimer_bases.seq),
71 .clock_base =
72 {
73 {
74 .index = HRTIMER_BASE_MONOTONIC,
75 .clockid = CLOCK_MONOTONIC,
76 .get_time = &ktime_get,
77 },
78 {
79 .index = HRTIMER_BASE_REALTIME,
80 .clockid = CLOCK_REALTIME,
81 .get_time = &ktime_get_real,
82 },
83 {
84 .index = HRTIMER_BASE_BOOTTIME,
85 .clockid = CLOCK_BOOTTIME,
86 .get_time = &ktime_get_boottime,
87 },
88 {
89 .index = HRTIMER_BASE_TAI,
90 .clockid = CLOCK_TAI,
91 .get_time = &ktime_get_clocktai,
92 },
93 }
94 };
95
96 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
97 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
98 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
99 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
100 [CLOCK_TAI] = HRTIMER_BASE_TAI,
101 };
102
103 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
104 {
105 return hrtimer_clock_to_base_table[clock_id];
106 }
107
108 /*
109 * Functions and macros which are different for UP/SMP systems are kept in a
110 * single place
111 */
112 #ifdef CONFIG_SMP
113
114 /*
115 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
116 * such that hrtimer_callback_running() can unconditionally dereference
117 * timer->base->cpu_base
118 */
119 static struct hrtimer_cpu_base migration_cpu_base = {
120 .seq = SEQCNT_ZERO(migration_cpu_base),
121 .clock_base = { { .cpu_base = &migration_cpu_base, }, },
122 };
123
124 #define migration_base migration_cpu_base.clock_base[0]
125
126 /*
127 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
128 * means that all timers which are tied to this base via timer->base are
129 * locked, and the base itself is locked too.
130 *
131 * So __run_timers/migrate_timers can safely modify all timers which could
132 * be found on the lists/queues.
133 *
134 * When the timer's base is locked, and the timer removed from list, it is
135 * possible to set timer->base = &migration_base and drop the lock: the timer
136 * remains locked.
137 */
138 static
139 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
140 unsigned long *flags)
141 {
142 struct hrtimer_clock_base *base;
143
144 for (;;) {
145 base = timer->base;
146 if (likely(base != &migration_base)) {
147 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
148 if (likely(base == timer->base))
149 return base;
150 /* The timer has migrated to another CPU: */
151 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
152 }
153 cpu_relax();
154 }
155 }
156
157 /*
158 * With HIGHRES=y we do not migrate the timer when it is expiring
159 * before the next event on the target cpu because we cannot reprogram
160 * the target cpu hardware and we would cause it to fire late.
161 *
162 * Called with cpu_base->lock of target cpu held.
163 */
164 static int
165 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
166 {
167 #ifdef CONFIG_HIGH_RES_TIMERS
168 ktime_t expires;
169
170 if (!new_base->cpu_base->hres_active)
171 return 0;
172
173 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
174 return expires <= new_base->cpu_base->expires_next;
175 #else
176 return 0;
177 #endif
178 }
179
180 #ifdef CONFIG_NO_HZ_COMMON
181 static inline
182 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
183 int pinned)
184 {
185 if (pinned || !base->migration_enabled)
186 return base;
187 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
188 }
189 #else
190 static inline
191 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
192 int pinned)
193 {
194 return base;
195 }
196 #endif
197
198 /*
199 * We switch the timer base to a power-optimized selected CPU target,
200 * if:
201 * - NO_HZ_COMMON is enabled
202 * - timer migration is enabled
203 * - the timer callback is not running
204 * - the timer is not the first expiring timer on the new target
205 *
206 * If one of the above requirements is not fulfilled we move the timer
207 * to the current CPU or leave it on the previously assigned CPU if
208 * the timer callback is currently running.
209 */
210 static inline struct hrtimer_clock_base *
211 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
212 int pinned)
213 {
214 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
215 struct hrtimer_clock_base *new_base;
216 int basenum = base->index;
217
218 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
219 new_cpu_base = get_target_base(this_cpu_base, pinned);
220 again:
221 new_base = &new_cpu_base->clock_base[basenum];
222
223 if (base != new_base) {
224 /*
225 * We are trying to move timer to new_base.
226 * However we can't change timer's base while it is running,
227 * so we keep it on the same CPU. No hassle vs. reprogramming
228 * the event source in the high resolution case. The softirq
229 * code will take care of this when the timer function has
230 * completed. There is no conflict as we hold the lock until
231 * the timer is enqueued.
232 */
233 if (unlikely(hrtimer_callback_running(timer)))
234 return base;
235
236 /* See the comment in lock_hrtimer_base() */
237 timer->base = &migration_base;
238 raw_spin_unlock(&base->cpu_base->lock);
239 raw_spin_lock(&new_base->cpu_base->lock);
240
241 if (new_cpu_base != this_cpu_base &&
242 hrtimer_check_target(timer, new_base)) {
243 raw_spin_unlock(&new_base->cpu_base->lock);
244 raw_spin_lock(&base->cpu_base->lock);
245 new_cpu_base = this_cpu_base;
246 timer->base = base;
247 goto again;
248 }
249 timer->base = new_base;
250 } else {
251 if (new_cpu_base != this_cpu_base &&
252 hrtimer_check_target(timer, new_base)) {
253 new_cpu_base = this_cpu_base;
254 goto again;
255 }
256 }
257 return new_base;
258 }
259
260 #else /* CONFIG_SMP */
261
262 static inline struct hrtimer_clock_base *
263 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
264 {
265 struct hrtimer_clock_base *base = timer->base;
266
267 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
268
269 return base;
270 }
271
272 # define switch_hrtimer_base(t, b, p) (b)
273
274 #endif /* !CONFIG_SMP */
275
276 /*
277 * Functions for the union type storage format of ktime_t which are
278 * too large for inlining:
279 */
280 #if BITS_PER_LONG < 64
281 /*
282 * Divide a ktime value by a nanosecond value
283 */
284 s64 __ktime_divns(const ktime_t kt, s64 div)
285 {
286 int sft = 0;
287 s64 dclc;
288 u64 tmp;
289
290 dclc = ktime_to_ns(kt);
291 tmp = dclc < 0 ? -dclc : dclc;
292
293 /* Make sure the divisor is less than 2^32: */
294 while (div >> 32) {
295 sft++;
296 div >>= 1;
297 }
298 tmp >>= sft;
299 do_div(tmp, (unsigned long) div);
300 return dclc < 0 ? -tmp : tmp;
301 }
302 EXPORT_SYMBOL_GPL(__ktime_divns);
303 #endif /* BITS_PER_LONG >= 64 */
304
305 /*
306 * Add two ktime values and do a safety check for overflow:
307 */
308 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
309 {
310 ktime_t res = ktime_add_unsafe(lhs, rhs);
311
312 /*
313 * We use KTIME_SEC_MAX here, the maximum timeout which we can
314 * return to user space in a timespec:
315 */
316 if (res < 0 || res < lhs || res < rhs)
317 res = ktime_set(KTIME_SEC_MAX, 0);
318
319 return res;
320 }
321
322 EXPORT_SYMBOL_GPL(ktime_add_safe);
323
324 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
325
326 static struct debug_obj_descr hrtimer_debug_descr;
327
328 static void *hrtimer_debug_hint(void *addr)
329 {
330 return ((struct hrtimer *) addr)->function;
331 }
332
333 /*
334 * fixup_init is called when:
335 * - an active object is initialized
336 */
337 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
338 {
339 struct hrtimer *timer = addr;
340
341 switch (state) {
342 case ODEBUG_STATE_ACTIVE:
343 hrtimer_cancel(timer);
344 debug_object_init(timer, &hrtimer_debug_descr);
345 return true;
346 default:
347 return false;
348 }
349 }
350
351 /*
352 * fixup_activate is called when:
353 * - an active object is activated
354 * - an unknown non-static object is activated
355 */
356 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
357 {
358 switch (state) {
359 case ODEBUG_STATE_ACTIVE:
360 WARN_ON(1);
361
362 default:
363 return false;
364 }
365 }
366
367 /*
368 * fixup_free is called when:
369 * - an active object is freed
370 */
371 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
372 {
373 struct hrtimer *timer = addr;
374
375 switch (state) {
376 case ODEBUG_STATE_ACTIVE:
377 hrtimer_cancel(timer);
378 debug_object_free(timer, &hrtimer_debug_descr);
379 return true;
380 default:
381 return false;
382 }
383 }
384
385 static struct debug_obj_descr hrtimer_debug_descr = {
386 .name = "hrtimer",
387 .debug_hint = hrtimer_debug_hint,
388 .fixup_init = hrtimer_fixup_init,
389 .fixup_activate = hrtimer_fixup_activate,
390 .fixup_free = hrtimer_fixup_free,
391 };
392
393 static inline void debug_hrtimer_init(struct hrtimer *timer)
394 {
395 debug_object_init(timer, &hrtimer_debug_descr);
396 }
397
398 static inline void debug_hrtimer_activate(struct hrtimer *timer)
399 {
400 debug_object_activate(timer, &hrtimer_debug_descr);
401 }
402
403 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
404 {
405 debug_object_deactivate(timer, &hrtimer_debug_descr);
406 }
407
408 static inline void debug_hrtimer_free(struct hrtimer *timer)
409 {
410 debug_object_free(timer, &hrtimer_debug_descr);
411 }
412
413 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
414 enum hrtimer_mode mode);
415
416 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
417 enum hrtimer_mode mode)
418 {
419 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
420 __hrtimer_init(timer, clock_id, mode);
421 }
422 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
423
424 void destroy_hrtimer_on_stack(struct hrtimer *timer)
425 {
426 debug_object_free(timer, &hrtimer_debug_descr);
427 }
428 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
429
430 #else
431 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
432 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
433 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
434 #endif
435
436 static inline void
437 debug_init(struct hrtimer *timer, clockid_t clockid,
438 enum hrtimer_mode mode)
439 {
440 debug_hrtimer_init(timer);
441 trace_hrtimer_init(timer, clockid, mode);
442 }
443
444 static inline void debug_activate(struct hrtimer *timer)
445 {
446 debug_hrtimer_activate(timer);
447 trace_hrtimer_start(timer);
448 }
449
450 static inline void debug_deactivate(struct hrtimer *timer)
451 {
452 debug_hrtimer_deactivate(timer);
453 trace_hrtimer_cancel(timer);
454 }
455
456 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
457 static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
458 struct hrtimer *timer)
459 {
460 #ifdef CONFIG_HIGH_RES_TIMERS
461 cpu_base->next_timer = timer;
462 #endif
463 }
464
465 static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
466 {
467 struct hrtimer_clock_base *base = cpu_base->clock_base;
468 unsigned int active = cpu_base->active_bases;
469 ktime_t expires, expires_next = KTIME_MAX;
470
471 hrtimer_update_next_timer(cpu_base, NULL);
472 for (; active; base++, active >>= 1) {
473 struct timerqueue_node *next;
474 struct hrtimer *timer;
475
476 if (!(active & 0x01))
477 continue;
478
479 next = timerqueue_getnext(&base->active);
480 timer = container_of(next, struct hrtimer, node);
481 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
482 if (expires < expires_next) {
483 expires_next = expires;
484 hrtimer_update_next_timer(cpu_base, timer);
485 }
486 }
487 /*
488 * clock_was_set() might have changed base->offset of any of
489 * the clock bases so the result might be negative. Fix it up
490 * to prevent a false positive in clockevents_program_event().
491 */
492 if (expires_next < 0)
493 expires_next = 0;
494 return expires_next;
495 }
496 #endif
497
498 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
499 {
500 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
501 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
502 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
503
504 return ktime_get_update_offsets_now(&base->clock_was_set_seq,
505 offs_real, offs_boot, offs_tai);
506 }
507
508 /* High resolution timer related functions */
509 #ifdef CONFIG_HIGH_RES_TIMERS
510
511 /*
512 * High resolution timer enabled ?
513 */
514 static bool hrtimer_hres_enabled __read_mostly = true;
515 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
516 EXPORT_SYMBOL_GPL(hrtimer_resolution);
517
518 /*
519 * Enable / Disable high resolution mode
520 */
521 static int __init setup_hrtimer_hres(char *str)
522 {
523 return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
524 }
525
526 __setup("highres=", setup_hrtimer_hres);
527
528 /*
529 * hrtimer_high_res_enabled - query, if the highres mode is enabled
530 */
531 static inline int hrtimer_is_hres_enabled(void)
532 {
533 return hrtimer_hres_enabled;
534 }
535
536 /*
537 * Is the high resolution mode active ?
538 */
539 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
540 {
541 return cpu_base->hres_active;
542 }
543
544 static inline int hrtimer_hres_active(void)
545 {
546 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
547 }
548
549 /*
550 * Reprogram the event source with checking both queues for the
551 * next event
552 * Called with interrupts disabled and base->lock held
553 */
554 static void
555 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
556 {
557 ktime_t expires_next;
558
559 if (!cpu_base->hres_active)
560 return;
561
562 expires_next = __hrtimer_get_next_event(cpu_base);
563
564 if (skip_equal && expires_next == cpu_base->expires_next)
565 return;
566
567 cpu_base->expires_next = expires_next;
568
569 /*
570 * If a hang was detected in the last timer interrupt then we
571 * leave the hang delay active in the hardware. We want the
572 * system to make progress. That also prevents the following
573 * scenario:
574 * T1 expires 50ms from now
575 * T2 expires 5s from now
576 *
577 * T1 is removed, so this code is called and would reprogram
578 * the hardware to 5s from now. Any hrtimer_start after that
579 * will not reprogram the hardware due to hang_detected being
580 * set. So we'd effectivly block all timers until the T2 event
581 * fires.
582 */
583 if (cpu_base->hang_detected)
584 return;
585
586 tick_program_event(cpu_base->expires_next, 1);
587 }
588
589 /*
590 * When a timer is enqueued and expires earlier than the already enqueued
591 * timers, we have to check, whether it expires earlier than the timer for
592 * which the clock event device was armed.
593 *
594 * Called with interrupts disabled and base->cpu_base.lock held
595 */
596 static void hrtimer_reprogram(struct hrtimer *timer,
597 struct hrtimer_clock_base *base)
598 {
599 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
600 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
601
602 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
603
604 /*
605 * If the timer is not on the current cpu, we cannot reprogram
606 * the other cpus clock event device.
607 */
608 if (base->cpu_base != cpu_base)
609 return;
610
611 /*
612 * If the hrtimer interrupt is running, then it will
613 * reevaluate the clock bases and reprogram the clock event
614 * device. The callbacks are always executed in hard interrupt
615 * context so we don't need an extra check for a running
616 * callback.
617 */
618 if (cpu_base->in_hrtirq)
619 return;
620
621 /*
622 * CLOCK_REALTIME timer might be requested with an absolute
623 * expiry time which is less than base->offset. Set it to 0.
624 */
625 if (expires < 0)
626 expires = 0;
627
628 if (expires >= cpu_base->expires_next)
629 return;
630
631 /* Update the pointer to the next expiring timer */
632 cpu_base->next_timer = timer;
633
634 /*
635 * If a hang was detected in the last timer interrupt then we
636 * do not schedule a timer which is earlier than the expiry
637 * which we enforced in the hang detection. We want the system
638 * to make progress.
639 */
640 if (cpu_base->hang_detected)
641 return;
642
643 /*
644 * Program the timer hardware. We enforce the expiry for
645 * events which are already in the past.
646 */
647 cpu_base->expires_next = expires;
648 tick_program_event(expires, 1);
649 }
650
651 /*
652 * Initialize the high resolution related parts of cpu_base
653 */
654 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
655 {
656 base->expires_next = KTIME_MAX;
657 base->hres_active = 0;
658 }
659
660 /*
661 * Retrigger next event is called after clock was set
662 *
663 * Called with interrupts disabled via on_each_cpu()
664 */
665 static void retrigger_next_event(void *arg)
666 {
667 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
668
669 if (!base->hres_active)
670 return;
671
672 raw_spin_lock(&base->lock);
673 hrtimer_update_base(base);
674 hrtimer_force_reprogram(base, 0);
675 raw_spin_unlock(&base->lock);
676 }
677
678 /*
679 * Switch to high resolution mode
680 */
681 static void hrtimer_switch_to_hres(void)
682 {
683 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
684
685 if (tick_init_highres()) {
686 printk(KERN_WARNING "Could not switch to high resolution "
687 "mode on CPU %d\n", base->cpu);
688 return;
689 }
690 base->hres_active = 1;
691 hrtimer_resolution = HIGH_RES_NSEC;
692
693 tick_setup_sched_timer();
694 /* "Retrigger" the interrupt to get things going */
695 retrigger_next_event(NULL);
696 }
697
698 static void clock_was_set_work(struct work_struct *work)
699 {
700 clock_was_set();
701 }
702
703 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
704
705 /*
706 * Called from timekeeping and resume code to reprogram the hrtimer
707 * interrupt device on all cpus.
708 */
709 void clock_was_set_delayed(void)
710 {
711 schedule_work(&hrtimer_work);
712 }
713
714 #else
715
716 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
717 static inline int hrtimer_hres_active(void) { return 0; }
718 static inline int hrtimer_is_hres_enabled(void) { return 0; }
719 static inline void hrtimer_switch_to_hres(void) { }
720 static inline void
721 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
722 static inline int hrtimer_reprogram(struct hrtimer *timer,
723 struct hrtimer_clock_base *base)
724 {
725 return 0;
726 }
727 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
728 static inline void retrigger_next_event(void *arg) { }
729
730 #endif /* CONFIG_HIGH_RES_TIMERS */
731
732 /*
733 * Clock realtime was set
734 *
735 * Change the offset of the realtime clock vs. the monotonic
736 * clock.
737 *
738 * We might have to reprogram the high resolution timer interrupt. On
739 * SMP we call the architecture specific code to retrigger _all_ high
740 * resolution timer interrupts. On UP we just disable interrupts and
741 * call the high resolution interrupt code.
742 */
743 void clock_was_set(void)
744 {
745 #ifdef CONFIG_HIGH_RES_TIMERS
746 /* Retrigger the CPU local events everywhere */
747 on_each_cpu(retrigger_next_event, NULL, 1);
748 #endif
749 timerfd_clock_was_set();
750 }
751
752 /*
753 * During resume we might have to reprogram the high resolution timer
754 * interrupt on all online CPUs. However, all other CPUs will be
755 * stopped with IRQs interrupts disabled so the clock_was_set() call
756 * must be deferred.
757 */
758 void hrtimers_resume(void)
759 {
760 WARN_ONCE(!irqs_disabled(),
761 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
762
763 /* Retrigger on the local CPU */
764 retrigger_next_event(NULL);
765 /* And schedule a retrigger for all others */
766 clock_was_set_delayed();
767 }
768
769 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
770 {
771 #ifdef CONFIG_TIMER_STATS
772 if (timer->start_site)
773 return;
774 timer->start_site = __builtin_return_address(0);
775 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
776 timer->start_pid = current->pid;
777 #endif
778 }
779
780 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
781 {
782 #ifdef CONFIG_TIMER_STATS
783 timer->start_site = NULL;
784 #endif
785 }
786
787 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
788 {
789 #ifdef CONFIG_TIMER_STATS
790 if (likely(!timer_stats_active))
791 return;
792 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
793 timer->function, timer->start_comm, 0);
794 #endif
795 }
796
797 /*
798 * Counterpart to lock_hrtimer_base above:
799 */
800 static inline
801 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
802 {
803 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
804 }
805
806 /**
807 * hrtimer_forward - forward the timer expiry
808 * @timer: hrtimer to forward
809 * @now: forward past this time
810 * @interval: the interval to forward
811 *
812 * Forward the timer expiry so it will expire in the future.
813 * Returns the number of overruns.
814 *
815 * Can be safely called from the callback function of @timer. If
816 * called from other contexts @timer must neither be enqueued nor
817 * running the callback and the caller needs to take care of
818 * serialization.
819 *
820 * Note: This only updates the timer expiry value and does not requeue
821 * the timer.
822 */
823 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
824 {
825 u64 orun = 1;
826 ktime_t delta;
827
828 delta = ktime_sub(now, hrtimer_get_expires(timer));
829
830 if (delta < 0)
831 return 0;
832
833 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
834 return 0;
835
836 if (interval < hrtimer_resolution)
837 interval = hrtimer_resolution;
838
839 if (unlikely(delta >= interval)) {
840 s64 incr = ktime_to_ns(interval);
841
842 orun = ktime_divns(delta, incr);
843 hrtimer_add_expires_ns(timer, incr * orun);
844 if (hrtimer_get_expires_tv64(timer) > now)
845 return orun;
846 /*
847 * This (and the ktime_add() below) is the
848 * correction for exact:
849 */
850 orun++;
851 }
852 hrtimer_add_expires(timer, interval);
853
854 return orun;
855 }
856 EXPORT_SYMBOL_GPL(hrtimer_forward);
857
858 /*
859 * enqueue_hrtimer - internal function to (re)start a timer
860 *
861 * The timer is inserted in expiry order. Insertion into the
862 * red black tree is O(log(n)). Must hold the base lock.
863 *
864 * Returns 1 when the new timer is the leftmost timer in the tree.
865 */
866 static int enqueue_hrtimer(struct hrtimer *timer,
867 struct hrtimer_clock_base *base)
868 {
869 debug_activate(timer);
870
871 base->cpu_base->active_bases |= 1 << base->index;
872
873 timer->state = HRTIMER_STATE_ENQUEUED;
874
875 return timerqueue_add(&base->active, &timer->node);
876 }
877
878 /*
879 * __remove_hrtimer - internal function to remove a timer
880 *
881 * Caller must hold the base lock.
882 *
883 * High resolution timer mode reprograms the clock event device when the
884 * timer is the one which expires next. The caller can disable this by setting
885 * reprogram to zero. This is useful, when the context does a reprogramming
886 * anyway (e.g. timer interrupt)
887 */
888 static void __remove_hrtimer(struct hrtimer *timer,
889 struct hrtimer_clock_base *base,
890 u8 newstate, int reprogram)
891 {
892 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
893 u8 state = timer->state;
894
895 timer->state = newstate;
896 if (!(state & HRTIMER_STATE_ENQUEUED))
897 return;
898
899 if (!timerqueue_del(&base->active, &timer->node))
900 cpu_base->active_bases &= ~(1 << base->index);
901
902 #ifdef CONFIG_HIGH_RES_TIMERS
903 /*
904 * Note: If reprogram is false we do not update
905 * cpu_base->next_timer. This happens when we remove the first
906 * timer on a remote cpu. No harm as we never dereference
907 * cpu_base->next_timer. So the worst thing what can happen is
908 * an superflous call to hrtimer_force_reprogram() on the
909 * remote cpu later on if the same timer gets enqueued again.
910 */
911 if (reprogram && timer == cpu_base->next_timer)
912 hrtimer_force_reprogram(cpu_base, 1);
913 #endif
914 }
915
916 /*
917 * remove hrtimer, called with base lock held
918 */
919 static inline int
920 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
921 {
922 if (hrtimer_is_queued(timer)) {
923 u8 state = timer->state;
924 int reprogram;
925
926 /*
927 * Remove the timer and force reprogramming when high
928 * resolution mode is active and the timer is on the current
929 * CPU. If we remove a timer on another CPU, reprogramming is
930 * skipped. The interrupt event on this CPU is fired and
931 * reprogramming happens in the interrupt handler. This is a
932 * rare case and less expensive than a smp call.
933 */
934 debug_deactivate(timer);
935 timer_stats_hrtimer_clear_start_info(timer);
936 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
937
938 if (!restart)
939 state = HRTIMER_STATE_INACTIVE;
940
941 __remove_hrtimer(timer, base, state, reprogram);
942 return 1;
943 }
944 return 0;
945 }
946
947 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
948 const enum hrtimer_mode mode)
949 {
950 #ifdef CONFIG_TIME_LOW_RES
951 /*
952 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
953 * granular time values. For relative timers we add hrtimer_resolution
954 * (i.e. one jiffie) to prevent short timeouts.
955 */
956 timer->is_rel = mode & HRTIMER_MODE_REL;
957 if (timer->is_rel)
958 tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
959 #endif
960 return tim;
961 }
962
963 /**
964 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
965 * @timer: the timer to be added
966 * @tim: expiry time
967 * @delta_ns: "slack" range for the timer
968 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
969 * relative (HRTIMER_MODE_REL)
970 */
971 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
972 u64 delta_ns, const enum hrtimer_mode mode)
973 {
974 struct hrtimer_clock_base *base, *new_base;
975 unsigned long flags;
976 int leftmost;
977
978 base = lock_hrtimer_base(timer, &flags);
979
980 /* Remove an active timer from the queue: */
981 remove_hrtimer(timer, base, true);
982
983 if (mode & HRTIMER_MODE_REL)
984 tim = ktime_add_safe(tim, base->get_time());
985
986 tim = hrtimer_update_lowres(timer, tim, mode);
987
988 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
989
990 /* Switch the timer base, if necessary: */
991 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
992
993 timer_stats_hrtimer_set_start_info(timer);
994
995 leftmost = enqueue_hrtimer(timer, new_base);
996 if (!leftmost)
997 goto unlock;
998
999 if (!hrtimer_is_hres_active(timer)) {
1000 /*
1001 * Kick to reschedule the next tick to handle the new timer
1002 * on dynticks target.
1003 */
1004 if (new_base->cpu_base->nohz_active)
1005 wake_up_nohz_cpu(new_base->cpu_base->cpu);
1006 } else {
1007 hrtimer_reprogram(timer, new_base);
1008 }
1009 unlock:
1010 unlock_hrtimer_base(timer, &flags);
1011 }
1012 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1013
1014 /**
1015 * hrtimer_try_to_cancel - try to deactivate a timer
1016 * @timer: hrtimer to stop
1017 *
1018 * Returns:
1019 * 0 when the timer was not active
1020 * 1 when the timer was active
1021 * -1 when the timer is currently excuting the callback function and
1022 * cannot be stopped
1023 */
1024 int hrtimer_try_to_cancel(struct hrtimer *timer)
1025 {
1026 struct hrtimer_clock_base *base;
1027 unsigned long flags;
1028 int ret = -1;
1029
1030 /*
1031 * Check lockless first. If the timer is not active (neither
1032 * enqueued nor running the callback, nothing to do here. The
1033 * base lock does not serialize against a concurrent enqueue,
1034 * so we can avoid taking it.
1035 */
1036 if (!hrtimer_active(timer))
1037 return 0;
1038
1039 base = lock_hrtimer_base(timer, &flags);
1040
1041 if (!hrtimer_callback_running(timer))
1042 ret = remove_hrtimer(timer, base, false);
1043
1044 unlock_hrtimer_base(timer, &flags);
1045
1046 return ret;
1047
1048 }
1049 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1050
1051 /**
1052 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1053 * @timer: the timer to be cancelled
1054 *
1055 * Returns:
1056 * 0 when the timer was not active
1057 * 1 when the timer was active
1058 */
1059 int hrtimer_cancel(struct hrtimer *timer)
1060 {
1061 for (;;) {
1062 int ret = hrtimer_try_to_cancel(timer);
1063
1064 if (ret >= 0)
1065 return ret;
1066 cpu_relax();
1067 }
1068 }
1069 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1070
1071 /**
1072 * hrtimer_get_remaining - get remaining time for the timer
1073 * @timer: the timer to read
1074 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
1075 */
1076 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1077 {
1078 unsigned long flags;
1079 ktime_t rem;
1080
1081 lock_hrtimer_base(timer, &flags);
1082 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1083 rem = hrtimer_expires_remaining_adjusted(timer);
1084 else
1085 rem = hrtimer_expires_remaining(timer);
1086 unlock_hrtimer_base(timer, &flags);
1087
1088 return rem;
1089 }
1090 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1091
1092 #ifdef CONFIG_NO_HZ_COMMON
1093 /**
1094 * hrtimer_get_next_event - get the time until next expiry event
1095 *
1096 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1097 */
1098 u64 hrtimer_get_next_event(void)
1099 {
1100 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1101 u64 expires = KTIME_MAX;
1102 unsigned long flags;
1103
1104 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1105
1106 if (!__hrtimer_hres_active(cpu_base))
1107 expires = __hrtimer_get_next_event(cpu_base);
1108
1109 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1110
1111 return expires;
1112 }
1113 #endif
1114
1115 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1116 enum hrtimer_mode mode)
1117 {
1118 struct hrtimer_cpu_base *cpu_base;
1119 int base;
1120
1121 memset(timer, 0, sizeof(struct hrtimer));
1122
1123 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1124
1125 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1126 clock_id = CLOCK_MONOTONIC;
1127
1128 base = hrtimer_clockid_to_base(clock_id);
1129 timer->base = &cpu_base->clock_base[base];
1130 timerqueue_init(&timer->node);
1131
1132 #ifdef CONFIG_TIMER_STATS
1133 timer->start_site = NULL;
1134 timer->start_pid = -1;
1135 memset(timer->start_comm, 0, TASK_COMM_LEN);
1136 #endif
1137 }
1138
1139 /**
1140 * hrtimer_init - initialize a timer to the given clock
1141 * @timer: the timer to be initialized
1142 * @clock_id: the clock to be used
1143 * @mode: timer mode abs/rel
1144 */
1145 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1146 enum hrtimer_mode mode)
1147 {
1148 debug_init(timer, clock_id, mode);
1149 __hrtimer_init(timer, clock_id, mode);
1150 }
1151 EXPORT_SYMBOL_GPL(hrtimer_init);
1152
1153 /*
1154 * A timer is active, when it is enqueued into the rbtree or the
1155 * callback function is running or it's in the state of being migrated
1156 * to another cpu.
1157 *
1158 * It is important for this function to not return a false negative.
1159 */
1160 bool hrtimer_active(const struct hrtimer *timer)
1161 {
1162 struct hrtimer_cpu_base *cpu_base;
1163 unsigned int seq;
1164
1165 do {
1166 cpu_base = READ_ONCE(timer->base->cpu_base);
1167 seq = raw_read_seqcount_begin(&cpu_base->seq);
1168
1169 if (timer->state != HRTIMER_STATE_INACTIVE ||
1170 cpu_base->running == timer)
1171 return true;
1172
1173 } while (read_seqcount_retry(&cpu_base->seq, seq) ||
1174 cpu_base != READ_ONCE(timer->base->cpu_base));
1175
1176 return false;
1177 }
1178 EXPORT_SYMBOL_GPL(hrtimer_active);
1179
1180 /*
1181 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1182 * distinct sections:
1183 *
1184 * - queued: the timer is queued
1185 * - callback: the timer is being ran
1186 * - post: the timer is inactive or (re)queued
1187 *
1188 * On the read side we ensure we observe timer->state and cpu_base->running
1189 * from the same section, if anything changed while we looked at it, we retry.
1190 * This includes timer->base changing because sequence numbers alone are
1191 * insufficient for that.
1192 *
1193 * The sequence numbers are required because otherwise we could still observe
1194 * a false negative if the read side got smeared over multiple consequtive
1195 * __run_hrtimer() invocations.
1196 */
1197
1198 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1199 struct hrtimer_clock_base *base,
1200 struct hrtimer *timer, ktime_t *now)
1201 {
1202 enum hrtimer_restart (*fn)(struct hrtimer *);
1203 int restart;
1204
1205 lockdep_assert_held(&cpu_base->lock);
1206
1207 debug_deactivate(timer);
1208 cpu_base->running = timer;
1209
1210 /*
1211 * Separate the ->running assignment from the ->state assignment.
1212 *
1213 * As with a regular write barrier, this ensures the read side in
1214 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1215 * timer->state == INACTIVE.
1216 */
1217 raw_write_seqcount_barrier(&cpu_base->seq);
1218
1219 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1220 timer_stats_account_hrtimer(timer);
1221 fn = timer->function;
1222
1223 /*
1224 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1225 * timer is restarted with a period then it becomes an absolute
1226 * timer. If its not restarted it does not matter.
1227 */
1228 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1229 timer->is_rel = false;
1230
1231 /*
1232 * Because we run timers from hardirq context, there is no chance
1233 * they get migrated to another cpu, therefore its safe to unlock
1234 * the timer base.
1235 */
1236 raw_spin_unlock(&cpu_base->lock);
1237 trace_hrtimer_expire_entry(timer, now);
1238 restart = fn(timer);
1239 trace_hrtimer_expire_exit(timer);
1240 raw_spin_lock(&cpu_base->lock);
1241
1242 /*
1243 * Note: We clear the running state after enqueue_hrtimer and
1244 * we do not reprogram the event hardware. Happens either in
1245 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1246 *
1247 * Note: Because we dropped the cpu_base->lock above,
1248 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1249 * for us already.
1250 */
1251 if (restart != HRTIMER_NORESTART &&
1252 !(timer->state & HRTIMER_STATE_ENQUEUED))
1253 enqueue_hrtimer(timer, base);
1254
1255 /*
1256 * Separate the ->running assignment from the ->state assignment.
1257 *
1258 * As with a regular write barrier, this ensures the read side in
1259 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1260 * timer->state == INACTIVE.
1261 */
1262 raw_write_seqcount_barrier(&cpu_base->seq);
1263
1264 WARN_ON_ONCE(cpu_base->running != timer);
1265 cpu_base->running = NULL;
1266 }
1267
1268 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1269 {
1270 struct hrtimer_clock_base *base = cpu_base->clock_base;
1271 unsigned int active = cpu_base->active_bases;
1272
1273 for (; active; base++, active >>= 1) {
1274 struct timerqueue_node *node;
1275 ktime_t basenow;
1276
1277 if (!(active & 0x01))
1278 continue;
1279
1280 basenow = ktime_add(now, base->offset);
1281
1282 while ((node = timerqueue_getnext(&base->active))) {
1283 struct hrtimer *timer;
1284
1285 timer = container_of(node, struct hrtimer, node);
1286
1287 /*
1288 * The immediate goal for using the softexpires is
1289 * minimizing wakeups, not running timers at the
1290 * earliest interrupt after their soft expiration.
1291 * This allows us to avoid using a Priority Search
1292 * Tree, which can answer a stabbing querry for
1293 * overlapping intervals and instead use the simple
1294 * BST we already have.
1295 * We don't add extra wakeups by delaying timers that
1296 * are right-of a not yet expired timer, because that
1297 * timer will have to trigger a wakeup anyway.
1298 */
1299 if (basenow < hrtimer_get_softexpires_tv64(timer))
1300 break;
1301
1302 __run_hrtimer(cpu_base, base, timer, &basenow);
1303 }
1304 }
1305 }
1306
1307 #ifdef CONFIG_HIGH_RES_TIMERS
1308
1309 /*
1310 * High resolution timer interrupt
1311 * Called with interrupts disabled
1312 */
1313 void hrtimer_interrupt(struct clock_event_device *dev)
1314 {
1315 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1316 ktime_t expires_next, now, entry_time, delta;
1317 int retries = 0;
1318
1319 BUG_ON(!cpu_base->hres_active);
1320 cpu_base->nr_events++;
1321 dev->next_event = KTIME_MAX;
1322
1323 raw_spin_lock(&cpu_base->lock);
1324 entry_time = now = hrtimer_update_base(cpu_base);
1325 retry:
1326 cpu_base->in_hrtirq = 1;
1327 /*
1328 * We set expires_next to KTIME_MAX here with cpu_base->lock
1329 * held to prevent that a timer is enqueued in our queue via
1330 * the migration code. This does not affect enqueueing of
1331 * timers which run their callback and need to be requeued on
1332 * this CPU.
1333 */
1334 cpu_base->expires_next = KTIME_MAX;
1335
1336 __hrtimer_run_queues(cpu_base, now);
1337
1338 /* Reevaluate the clock bases for the next expiry */
1339 expires_next = __hrtimer_get_next_event(cpu_base);
1340 /*
1341 * Store the new expiry value so the migration code can verify
1342 * against it.
1343 */
1344 cpu_base->expires_next = expires_next;
1345 cpu_base->in_hrtirq = 0;
1346 raw_spin_unlock(&cpu_base->lock);
1347
1348 /* Reprogramming necessary ? */
1349 if (!tick_program_event(expires_next, 0)) {
1350 cpu_base->hang_detected = 0;
1351 return;
1352 }
1353
1354 /*
1355 * The next timer was already expired due to:
1356 * - tracing
1357 * - long lasting callbacks
1358 * - being scheduled away when running in a VM
1359 *
1360 * We need to prevent that we loop forever in the hrtimer
1361 * interrupt routine. We give it 3 attempts to avoid
1362 * overreacting on some spurious event.
1363 *
1364 * Acquire base lock for updating the offsets and retrieving
1365 * the current time.
1366 */
1367 raw_spin_lock(&cpu_base->lock);
1368 now = hrtimer_update_base(cpu_base);
1369 cpu_base->nr_retries++;
1370 if (++retries < 3)
1371 goto retry;
1372 /*
1373 * Give the system a chance to do something else than looping
1374 * here. We stored the entry time, so we know exactly how long
1375 * we spent here. We schedule the next event this amount of
1376 * time away.
1377 */
1378 cpu_base->nr_hangs++;
1379 cpu_base->hang_detected = 1;
1380 raw_spin_unlock(&cpu_base->lock);
1381 delta = ktime_sub(now, entry_time);
1382 if ((unsigned int)delta > cpu_base->max_hang_time)
1383 cpu_base->max_hang_time = (unsigned int) delta;
1384 /*
1385 * Limit it to a sensible value as we enforce a longer
1386 * delay. Give the CPU at least 100ms to catch up.
1387 */
1388 if (delta > 100 * NSEC_PER_MSEC)
1389 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1390 else
1391 expires_next = ktime_add(now, delta);
1392 tick_program_event(expires_next, 1);
1393 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1394 ktime_to_ns(delta));
1395 }
1396
1397 /*
1398 * local version of hrtimer_peek_ahead_timers() called with interrupts
1399 * disabled.
1400 */
1401 static inline void __hrtimer_peek_ahead_timers(void)
1402 {
1403 struct tick_device *td;
1404
1405 if (!hrtimer_hres_active())
1406 return;
1407
1408 td = this_cpu_ptr(&tick_cpu_device);
1409 if (td && td->evtdev)
1410 hrtimer_interrupt(td->evtdev);
1411 }
1412
1413 #else /* CONFIG_HIGH_RES_TIMERS */
1414
1415 static inline void __hrtimer_peek_ahead_timers(void) { }
1416
1417 #endif /* !CONFIG_HIGH_RES_TIMERS */
1418
1419 /*
1420 * Called from run_local_timers in hardirq context every jiffy
1421 */
1422 void hrtimer_run_queues(void)
1423 {
1424 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1425 ktime_t now;
1426
1427 if (__hrtimer_hres_active(cpu_base))
1428 return;
1429
1430 /*
1431 * This _is_ ugly: We have to check periodically, whether we
1432 * can switch to highres and / or nohz mode. The clocksource
1433 * switch happens with xtime_lock held. Notification from
1434 * there only sets the check bit in the tick_oneshot code,
1435 * otherwise we might deadlock vs. xtime_lock.
1436 */
1437 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1438 hrtimer_switch_to_hres();
1439 return;
1440 }
1441
1442 raw_spin_lock(&cpu_base->lock);
1443 now = hrtimer_update_base(cpu_base);
1444 __hrtimer_run_queues(cpu_base, now);
1445 raw_spin_unlock(&cpu_base->lock);
1446 }
1447
1448 /*
1449 * Sleep related functions:
1450 */
1451 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1452 {
1453 struct hrtimer_sleeper *t =
1454 container_of(timer, struct hrtimer_sleeper, timer);
1455 struct task_struct *task = t->task;
1456
1457 t->task = NULL;
1458 if (task)
1459 wake_up_process(task);
1460
1461 return HRTIMER_NORESTART;
1462 }
1463
1464 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1465 {
1466 sl->timer.function = hrtimer_wakeup;
1467 sl->task = task;
1468 }
1469 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1470
1471 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1472 {
1473 hrtimer_init_sleeper(t, current);
1474
1475 do {
1476 set_current_state(TASK_INTERRUPTIBLE);
1477 hrtimer_start_expires(&t->timer, mode);
1478
1479 if (likely(t->task))
1480 freezable_schedule();
1481
1482 hrtimer_cancel(&t->timer);
1483 mode = HRTIMER_MODE_ABS;
1484
1485 } while (t->task && !signal_pending(current));
1486
1487 __set_current_state(TASK_RUNNING);
1488
1489 return t->task == NULL;
1490 }
1491
1492 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1493 {
1494 struct timespec rmt;
1495 ktime_t rem;
1496
1497 rem = hrtimer_expires_remaining(timer);
1498 if (rem <= 0)
1499 return 0;
1500 rmt = ktime_to_timespec(rem);
1501
1502 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1503 return -EFAULT;
1504
1505 return 1;
1506 }
1507
1508 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1509 {
1510 struct hrtimer_sleeper t;
1511 struct timespec __user *rmtp;
1512 int ret = 0;
1513
1514 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1515 HRTIMER_MODE_ABS);
1516 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1517
1518 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1519 goto out;
1520
1521 rmtp = restart->nanosleep.rmtp;
1522 if (rmtp) {
1523 ret = update_rmtp(&t.timer, rmtp);
1524 if (ret <= 0)
1525 goto out;
1526 }
1527
1528 /* The other values in restart are already filled in */
1529 ret = -ERESTART_RESTARTBLOCK;
1530 out:
1531 destroy_hrtimer_on_stack(&t.timer);
1532 return ret;
1533 }
1534
1535 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1536 const enum hrtimer_mode mode, const clockid_t clockid)
1537 {
1538 struct restart_block *restart;
1539 struct hrtimer_sleeper t;
1540 int ret = 0;
1541 u64 slack;
1542
1543 slack = current->timer_slack_ns;
1544 if (dl_task(current) || rt_task(current))
1545 slack = 0;
1546
1547 hrtimer_init_on_stack(&t.timer, clockid, mode);
1548 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1549 if (do_nanosleep(&t, mode))
1550 goto out;
1551
1552 /* Absolute timers do not update the rmtp value and restart: */
1553 if (mode == HRTIMER_MODE_ABS) {
1554 ret = -ERESTARTNOHAND;
1555 goto out;
1556 }
1557
1558 if (rmtp) {
1559 ret = update_rmtp(&t.timer, rmtp);
1560 if (ret <= 0)
1561 goto out;
1562 }
1563
1564 restart = &current->restart_block;
1565 restart->fn = hrtimer_nanosleep_restart;
1566 restart->nanosleep.clockid = t.timer.base->clockid;
1567 restart->nanosleep.rmtp = rmtp;
1568 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1569
1570 ret = -ERESTART_RESTARTBLOCK;
1571 out:
1572 destroy_hrtimer_on_stack(&t.timer);
1573 return ret;
1574 }
1575
1576 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1577 struct timespec __user *, rmtp)
1578 {
1579 struct timespec tu;
1580
1581 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1582 return -EFAULT;
1583
1584 if (!timespec_valid(&tu))
1585 return -EINVAL;
1586
1587 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1588 }
1589
1590 /*
1591 * Functions related to boot-time initialization:
1592 */
1593 int hrtimers_prepare_cpu(unsigned int cpu)
1594 {
1595 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1596 int i;
1597
1598 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1599 cpu_base->clock_base[i].cpu_base = cpu_base;
1600 timerqueue_init_head(&cpu_base->clock_base[i].active);
1601 }
1602
1603 cpu_base->cpu = cpu;
1604 hrtimer_init_hres(cpu_base);
1605 return 0;
1606 }
1607
1608 #ifdef CONFIG_HOTPLUG_CPU
1609
1610 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1611 struct hrtimer_clock_base *new_base)
1612 {
1613 struct hrtimer *timer;
1614 struct timerqueue_node *node;
1615
1616 while ((node = timerqueue_getnext(&old_base->active))) {
1617 timer = container_of(node, struct hrtimer, node);
1618 BUG_ON(hrtimer_callback_running(timer));
1619 debug_deactivate(timer);
1620
1621 /*
1622 * Mark it as ENQUEUED not INACTIVE otherwise the
1623 * timer could be seen as !active and just vanish away
1624 * under us on another CPU
1625 */
1626 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1627 timer->base = new_base;
1628 /*
1629 * Enqueue the timers on the new cpu. This does not
1630 * reprogram the event device in case the timer
1631 * expires before the earliest on this CPU, but we run
1632 * hrtimer_interrupt after we migrated everything to
1633 * sort out already expired timers and reprogram the
1634 * event device.
1635 */
1636 enqueue_hrtimer(timer, new_base);
1637 }
1638 }
1639
1640 int hrtimers_dead_cpu(unsigned int scpu)
1641 {
1642 struct hrtimer_cpu_base *old_base, *new_base;
1643 int i;
1644
1645 BUG_ON(cpu_online(scpu));
1646 tick_cancel_sched_timer(scpu);
1647
1648 local_irq_disable();
1649 old_base = &per_cpu(hrtimer_bases, scpu);
1650 new_base = this_cpu_ptr(&hrtimer_bases);
1651 /*
1652 * The caller is globally serialized and nobody else
1653 * takes two locks at once, deadlock is not possible.
1654 */
1655 raw_spin_lock(&new_base->lock);
1656 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1657
1658 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1659 migrate_hrtimer_list(&old_base->clock_base[i],
1660 &new_base->clock_base[i]);
1661 }
1662
1663 raw_spin_unlock(&old_base->lock);
1664 raw_spin_unlock(&new_base->lock);
1665
1666 /* Check, if we got expired work to do */
1667 __hrtimer_peek_ahead_timers();
1668 local_irq_enable();
1669 return 0;
1670 }
1671
1672 #endif /* CONFIG_HOTPLUG_CPU */
1673
1674 void __init hrtimers_init(void)
1675 {
1676 hrtimers_prepare_cpu(smp_processor_id());
1677 }
1678
1679 /**
1680 * schedule_hrtimeout_range_clock - sleep until timeout
1681 * @expires: timeout value (ktime_t)
1682 * @delta: slack in expires timeout (ktime_t)
1683 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1684 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1685 */
1686 int __sched
1687 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1688 const enum hrtimer_mode mode, int clock)
1689 {
1690 struct hrtimer_sleeper t;
1691
1692 /*
1693 * Optimize when a zero timeout value is given. It does not
1694 * matter whether this is an absolute or a relative time.
1695 */
1696 if (expires && *expires == 0) {
1697 __set_current_state(TASK_RUNNING);
1698 return 0;
1699 }
1700
1701 /*
1702 * A NULL parameter means "infinite"
1703 */
1704 if (!expires) {
1705 schedule();
1706 return -EINTR;
1707 }
1708
1709 hrtimer_init_on_stack(&t.timer, clock, mode);
1710 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1711
1712 hrtimer_init_sleeper(&t, current);
1713
1714 hrtimer_start_expires(&t.timer, mode);
1715
1716 if (likely(t.task))
1717 schedule();
1718
1719 hrtimer_cancel(&t.timer);
1720 destroy_hrtimer_on_stack(&t.timer);
1721
1722 __set_current_state(TASK_RUNNING);
1723
1724 return !t.task ? 0 : -EINTR;
1725 }
1726
1727 /**
1728 * schedule_hrtimeout_range - sleep until timeout
1729 * @expires: timeout value (ktime_t)
1730 * @delta: slack in expires timeout (ktime_t)
1731 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1732 *
1733 * Make the current task sleep until the given expiry time has
1734 * elapsed. The routine will return immediately unless
1735 * the current task state has been set (see set_current_state()).
1736 *
1737 * The @delta argument gives the kernel the freedom to schedule the
1738 * actual wakeup to a time that is both power and performance friendly.
1739 * The kernel give the normal best effort behavior for "@expires+@delta",
1740 * but may decide to fire the timer earlier, but no earlier than @expires.
1741 *
1742 * You can set the task state as follows -
1743 *
1744 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1745 * pass before the routine returns unless the current task is explicitly
1746 * woken up, (e.g. by wake_up_process()).
1747 *
1748 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1749 * delivered to the current task or the current task is explicitly woken
1750 * up.
1751 *
1752 * The current task state is guaranteed to be TASK_RUNNING when this
1753 * routine returns.
1754 *
1755 * Returns 0 when the timer has expired. If the task was woken before the
1756 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1757 * by an explicit wakeup, it returns -EINTR.
1758 */
1759 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1760 const enum hrtimer_mode mode)
1761 {
1762 return schedule_hrtimeout_range_clock(expires, delta, mode,
1763 CLOCK_MONOTONIC);
1764 }
1765 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1766
1767 /**
1768 * schedule_hrtimeout - sleep until timeout
1769 * @expires: timeout value (ktime_t)
1770 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1771 *
1772 * Make the current task sleep until the given expiry time has
1773 * elapsed. The routine will return immediately unless
1774 * the current task state has been set (see set_current_state()).
1775 *
1776 * You can set the task state as follows -
1777 *
1778 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1779 * pass before the routine returns unless the current task is explicitly
1780 * woken up, (e.g. by wake_up_process()).
1781 *
1782 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1783 * delivered to the current task or the current task is explicitly woken
1784 * up.
1785 *
1786 * The current task state is guaranteed to be TASK_RUNNING when this
1787 * routine returns.
1788 *
1789 * Returns 0 when the timer has expired. If the task was woken before the
1790 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1791 * by an explicit wakeup, it returns -EINTR.
1792 */
1793 int __sched schedule_hrtimeout(ktime_t *expires,
1794 const enum hrtimer_mode mode)
1795 {
1796 return schedule_hrtimeout_range(expires, 0, mode);
1797 }
1798 EXPORT_SYMBOL_GPL(schedule_hrtimeout);