]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/time/hrtimer.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-artful-kernel.git] / kernel / time / hrtimer.c
1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/timer.h>
51 #include <linux/freezer.h>
52
53 #include <asm/uaccess.h>
54
55 #include <trace/events/timer.h>
56
57 #include "timekeeping.h"
58
59 /*
60 * The timer bases:
61 *
62 * There are more clockids then hrtimer bases. Thus, we index
63 * into the timer bases by the hrtimer_base_type enum. When trying
64 * to reach a base using a clockid, hrtimer_clockid_to_base()
65 * is used to convert from clockid to the proper hrtimer_base_type.
66 */
67 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68 {
69
70 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
71 .clock_base =
72 {
73 {
74 .index = HRTIMER_BASE_MONOTONIC,
75 .clockid = CLOCK_MONOTONIC,
76 .get_time = &ktime_get,
77 .resolution = KTIME_LOW_RES,
78 },
79 {
80 .index = HRTIMER_BASE_REALTIME,
81 .clockid = CLOCK_REALTIME,
82 .get_time = &ktime_get_real,
83 .resolution = KTIME_LOW_RES,
84 },
85 {
86 .index = HRTIMER_BASE_BOOTTIME,
87 .clockid = CLOCK_BOOTTIME,
88 .get_time = &ktime_get_boottime,
89 .resolution = KTIME_LOW_RES,
90 },
91 {
92 .index = HRTIMER_BASE_TAI,
93 .clockid = CLOCK_TAI,
94 .get_time = &ktime_get_clocktai,
95 .resolution = KTIME_LOW_RES,
96 },
97 }
98 };
99
100 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
101 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
102 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
103 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
104 [CLOCK_TAI] = HRTIMER_BASE_TAI,
105 };
106
107 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
108 {
109 return hrtimer_clock_to_base_table[clock_id];
110 }
111
112
113 /*
114 * Get the coarse grained time at the softirq based on xtime and
115 * wall_to_monotonic.
116 */
117 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
118 {
119 ktime_t xtim, mono, boot, tai;
120 ktime_t off_real, off_boot, off_tai;
121
122 mono = ktime_get_update_offsets_tick(&off_real, &off_boot, &off_tai);
123 boot = ktime_add(mono, off_boot);
124 xtim = ktime_add(mono, off_real);
125 tai = ktime_add(xtim, off_tai);
126
127 base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
128 base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
129 base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
130 base->clock_base[HRTIMER_BASE_TAI].softirq_time = tai;
131 }
132
133 /*
134 * Functions and macros which are different for UP/SMP systems are kept in a
135 * single place
136 */
137 #ifdef CONFIG_SMP
138
139 /*
140 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
141 * means that all timers which are tied to this base via timer->base are
142 * locked, and the base itself is locked too.
143 *
144 * So __run_timers/migrate_timers can safely modify all timers which could
145 * be found on the lists/queues.
146 *
147 * When the timer's base is locked, and the timer removed from list, it is
148 * possible to set timer->base = NULL and drop the lock: the timer remains
149 * locked.
150 */
151 static
152 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
153 unsigned long *flags)
154 {
155 struct hrtimer_clock_base *base;
156
157 for (;;) {
158 base = timer->base;
159 if (likely(base != NULL)) {
160 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
161 if (likely(base == timer->base))
162 return base;
163 /* The timer has migrated to another CPU: */
164 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
165 }
166 cpu_relax();
167 }
168 }
169
170 /*
171 * With HIGHRES=y we do not migrate the timer when it is expiring
172 * before the next event on the target cpu because we cannot reprogram
173 * the target cpu hardware and we would cause it to fire late.
174 *
175 * Called with cpu_base->lock of target cpu held.
176 */
177 static int
178 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
179 {
180 #ifdef CONFIG_HIGH_RES_TIMERS
181 ktime_t expires;
182
183 if (!new_base->cpu_base->hres_active)
184 return 0;
185
186 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
187 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
188 #else
189 return 0;
190 #endif
191 }
192
193 /*
194 * Switch the timer base to the current CPU when possible.
195 */
196 static inline struct hrtimer_clock_base *
197 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
198 int pinned)
199 {
200 struct hrtimer_clock_base *new_base;
201 struct hrtimer_cpu_base *new_cpu_base;
202 int this_cpu = smp_processor_id();
203 int cpu = get_nohz_timer_target(pinned);
204 int basenum = base->index;
205
206 again:
207 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
208 new_base = &new_cpu_base->clock_base[basenum];
209
210 if (base != new_base) {
211 /*
212 * We are trying to move timer to new_base.
213 * However we can't change timer's base while it is running,
214 * so we keep it on the same CPU. No hassle vs. reprogramming
215 * the event source in the high resolution case. The softirq
216 * code will take care of this when the timer function has
217 * completed. There is no conflict as we hold the lock until
218 * the timer is enqueued.
219 */
220 if (unlikely(hrtimer_callback_running(timer)))
221 return base;
222
223 /* See the comment in lock_timer_base() */
224 timer->base = NULL;
225 raw_spin_unlock(&base->cpu_base->lock);
226 raw_spin_lock(&new_base->cpu_base->lock);
227
228 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
229 cpu = this_cpu;
230 raw_spin_unlock(&new_base->cpu_base->lock);
231 raw_spin_lock(&base->cpu_base->lock);
232 timer->base = base;
233 goto again;
234 }
235 timer->base = new_base;
236 } else {
237 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
238 cpu = this_cpu;
239 goto again;
240 }
241 }
242 return new_base;
243 }
244
245 #else /* CONFIG_SMP */
246
247 static inline struct hrtimer_clock_base *
248 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
249 {
250 struct hrtimer_clock_base *base = timer->base;
251
252 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
253
254 return base;
255 }
256
257 # define switch_hrtimer_base(t, b, p) (b)
258
259 #endif /* !CONFIG_SMP */
260
261 /*
262 * Functions for the union type storage format of ktime_t which are
263 * too large for inlining:
264 */
265 #if BITS_PER_LONG < 64
266 /*
267 * Divide a ktime value by a nanosecond value
268 */
269 u64 ktime_divns(const ktime_t kt, s64 div)
270 {
271 u64 dclc;
272 int sft = 0;
273
274 dclc = ktime_to_ns(kt);
275 /* Make sure the divisor is less than 2^32: */
276 while (div >> 32) {
277 sft++;
278 div >>= 1;
279 }
280 dclc >>= sft;
281 do_div(dclc, (unsigned long) div);
282
283 return dclc;
284 }
285 EXPORT_SYMBOL_GPL(ktime_divns);
286 #endif /* BITS_PER_LONG >= 64 */
287
288 /*
289 * Add two ktime values and do a safety check for overflow:
290 */
291 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
292 {
293 ktime_t res = ktime_add(lhs, rhs);
294
295 /*
296 * We use KTIME_SEC_MAX here, the maximum timeout which we can
297 * return to user space in a timespec:
298 */
299 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
300 res = ktime_set(KTIME_SEC_MAX, 0);
301
302 return res;
303 }
304
305 EXPORT_SYMBOL_GPL(ktime_add_safe);
306
307 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
308
309 static struct debug_obj_descr hrtimer_debug_descr;
310
311 static void *hrtimer_debug_hint(void *addr)
312 {
313 return ((struct hrtimer *) addr)->function;
314 }
315
316 /*
317 * fixup_init is called when:
318 * - an active object is initialized
319 */
320 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
321 {
322 struct hrtimer *timer = addr;
323
324 switch (state) {
325 case ODEBUG_STATE_ACTIVE:
326 hrtimer_cancel(timer);
327 debug_object_init(timer, &hrtimer_debug_descr);
328 return 1;
329 default:
330 return 0;
331 }
332 }
333
334 /*
335 * fixup_activate is called when:
336 * - an active object is activated
337 * - an unknown object is activated (might be a statically initialized object)
338 */
339 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
340 {
341 switch (state) {
342
343 case ODEBUG_STATE_NOTAVAILABLE:
344 WARN_ON_ONCE(1);
345 return 0;
346
347 case ODEBUG_STATE_ACTIVE:
348 WARN_ON(1);
349
350 default:
351 return 0;
352 }
353 }
354
355 /*
356 * fixup_free is called when:
357 * - an active object is freed
358 */
359 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
360 {
361 struct hrtimer *timer = addr;
362
363 switch (state) {
364 case ODEBUG_STATE_ACTIVE:
365 hrtimer_cancel(timer);
366 debug_object_free(timer, &hrtimer_debug_descr);
367 return 1;
368 default:
369 return 0;
370 }
371 }
372
373 static struct debug_obj_descr hrtimer_debug_descr = {
374 .name = "hrtimer",
375 .debug_hint = hrtimer_debug_hint,
376 .fixup_init = hrtimer_fixup_init,
377 .fixup_activate = hrtimer_fixup_activate,
378 .fixup_free = hrtimer_fixup_free,
379 };
380
381 static inline void debug_hrtimer_init(struct hrtimer *timer)
382 {
383 debug_object_init(timer, &hrtimer_debug_descr);
384 }
385
386 static inline void debug_hrtimer_activate(struct hrtimer *timer)
387 {
388 debug_object_activate(timer, &hrtimer_debug_descr);
389 }
390
391 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
392 {
393 debug_object_deactivate(timer, &hrtimer_debug_descr);
394 }
395
396 static inline void debug_hrtimer_free(struct hrtimer *timer)
397 {
398 debug_object_free(timer, &hrtimer_debug_descr);
399 }
400
401 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
402 enum hrtimer_mode mode);
403
404 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
405 enum hrtimer_mode mode)
406 {
407 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
408 __hrtimer_init(timer, clock_id, mode);
409 }
410 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
411
412 void destroy_hrtimer_on_stack(struct hrtimer *timer)
413 {
414 debug_object_free(timer, &hrtimer_debug_descr);
415 }
416
417 #else
418 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
419 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
420 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
421 #endif
422
423 static inline void
424 debug_init(struct hrtimer *timer, clockid_t clockid,
425 enum hrtimer_mode mode)
426 {
427 debug_hrtimer_init(timer);
428 trace_hrtimer_init(timer, clockid, mode);
429 }
430
431 static inline void debug_activate(struct hrtimer *timer)
432 {
433 debug_hrtimer_activate(timer);
434 trace_hrtimer_start(timer);
435 }
436
437 static inline void debug_deactivate(struct hrtimer *timer)
438 {
439 debug_hrtimer_deactivate(timer);
440 trace_hrtimer_cancel(timer);
441 }
442
443 /* High resolution timer related functions */
444 #ifdef CONFIG_HIGH_RES_TIMERS
445
446 /*
447 * High resolution timer enabled ?
448 */
449 static int hrtimer_hres_enabled __read_mostly = 1;
450
451 /*
452 * Enable / Disable high resolution mode
453 */
454 static int __init setup_hrtimer_hres(char *str)
455 {
456 if (!strcmp(str, "off"))
457 hrtimer_hres_enabled = 0;
458 else if (!strcmp(str, "on"))
459 hrtimer_hres_enabled = 1;
460 else
461 return 0;
462 return 1;
463 }
464
465 __setup("highres=", setup_hrtimer_hres);
466
467 /*
468 * hrtimer_high_res_enabled - query, if the highres mode is enabled
469 */
470 static inline int hrtimer_is_hres_enabled(void)
471 {
472 return hrtimer_hres_enabled;
473 }
474
475 /*
476 * Is the high resolution mode active ?
477 */
478 static inline int hrtimer_hres_active(void)
479 {
480 return __this_cpu_read(hrtimer_bases.hres_active);
481 }
482
483 /*
484 * Reprogram the event source with checking both queues for the
485 * next event
486 * Called with interrupts disabled and base->lock held
487 */
488 static void
489 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
490 {
491 int i;
492 struct hrtimer_clock_base *base = cpu_base->clock_base;
493 ktime_t expires, expires_next;
494
495 expires_next.tv64 = KTIME_MAX;
496
497 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
498 struct hrtimer *timer;
499 struct timerqueue_node *next;
500
501 next = timerqueue_getnext(&base->active);
502 if (!next)
503 continue;
504 timer = container_of(next, struct hrtimer, node);
505
506 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
507 /*
508 * clock_was_set() has changed base->offset so the
509 * result might be negative. Fix it up to prevent a
510 * false positive in clockevents_program_event()
511 */
512 if (expires.tv64 < 0)
513 expires.tv64 = 0;
514 if (expires.tv64 < expires_next.tv64)
515 expires_next = expires;
516 }
517
518 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
519 return;
520
521 cpu_base->expires_next.tv64 = expires_next.tv64;
522
523 /*
524 * If a hang was detected in the last timer interrupt then we
525 * leave the hang delay active in the hardware. We want the
526 * system to make progress. That also prevents the following
527 * scenario:
528 * T1 expires 50ms from now
529 * T2 expires 5s from now
530 *
531 * T1 is removed, so this code is called and would reprogram
532 * the hardware to 5s from now. Any hrtimer_start after that
533 * will not reprogram the hardware due to hang_detected being
534 * set. So we'd effectivly block all timers until the T2 event
535 * fires.
536 */
537 if (cpu_base->hang_detected)
538 return;
539
540 if (cpu_base->expires_next.tv64 != KTIME_MAX)
541 tick_program_event(cpu_base->expires_next, 1);
542 }
543
544 /*
545 * Shared reprogramming for clock_realtime and clock_monotonic
546 *
547 * When a timer is enqueued and expires earlier than the already enqueued
548 * timers, we have to check, whether it expires earlier than the timer for
549 * which the clock event device was armed.
550 *
551 * Note, that in case the state has HRTIMER_STATE_CALLBACK set, no reprogramming
552 * and no expiry check happens. The timer gets enqueued into the rbtree. The
553 * reprogramming and expiry check is done in the hrtimer_interrupt or in the
554 * softirq.
555 *
556 * Called with interrupts disabled and base->cpu_base.lock held
557 */
558 static int hrtimer_reprogram(struct hrtimer *timer,
559 struct hrtimer_clock_base *base)
560 {
561 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
562 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
563 int res;
564
565 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
566
567 /*
568 * When the callback is running, we do not reprogram the clock event
569 * device. The timer callback is either running on a different CPU or
570 * the callback is executed in the hrtimer_interrupt context. The
571 * reprogramming is handled either by the softirq, which called the
572 * callback or at the end of the hrtimer_interrupt.
573 */
574 if (hrtimer_callback_running(timer))
575 return 0;
576
577 /*
578 * CLOCK_REALTIME timer might be requested with an absolute
579 * expiry time which is less than base->offset. Nothing wrong
580 * about that, just avoid to call into the tick code, which
581 * has now objections against negative expiry values.
582 */
583 if (expires.tv64 < 0)
584 return -ETIME;
585
586 if (expires.tv64 >= cpu_base->expires_next.tv64)
587 return 0;
588
589 /*
590 * If a hang was detected in the last timer interrupt then we
591 * do not schedule a timer which is earlier than the expiry
592 * which we enforced in the hang detection. We want the system
593 * to make progress.
594 */
595 if (cpu_base->hang_detected)
596 return 0;
597
598 /*
599 * Clockevents returns -ETIME, when the event was in the past.
600 */
601 res = tick_program_event(expires, 0);
602 if (!IS_ERR_VALUE(res))
603 cpu_base->expires_next = expires;
604 return res;
605 }
606
607 /*
608 * Initialize the high resolution related parts of cpu_base
609 */
610 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
611 {
612 base->expires_next.tv64 = KTIME_MAX;
613 base->hres_active = 0;
614 }
615
616 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
617 {
618 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
619 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
620 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
621
622 return ktime_get_update_offsets_now(offs_real, offs_boot, offs_tai);
623 }
624
625 /*
626 * Retrigger next event is called after clock was set
627 *
628 * Called with interrupts disabled via on_each_cpu()
629 */
630 static void retrigger_next_event(void *arg)
631 {
632 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
633
634 if (!hrtimer_hres_active())
635 return;
636
637 raw_spin_lock(&base->lock);
638 hrtimer_update_base(base);
639 hrtimer_force_reprogram(base, 0);
640 raw_spin_unlock(&base->lock);
641 }
642
643 /*
644 * Switch to high resolution mode
645 */
646 static int hrtimer_switch_to_hres(void)
647 {
648 int i, cpu = smp_processor_id();
649 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
650 unsigned long flags;
651
652 if (base->hres_active)
653 return 1;
654
655 local_irq_save(flags);
656
657 if (tick_init_highres()) {
658 local_irq_restore(flags);
659 printk(KERN_WARNING "Could not switch to high resolution "
660 "mode on CPU %d\n", cpu);
661 return 0;
662 }
663 base->hres_active = 1;
664 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
665 base->clock_base[i].resolution = KTIME_HIGH_RES;
666
667 tick_setup_sched_timer();
668 /* "Retrigger" the interrupt to get things going */
669 retrigger_next_event(NULL);
670 local_irq_restore(flags);
671 return 1;
672 }
673
674 static void clock_was_set_work(struct work_struct *work)
675 {
676 clock_was_set();
677 }
678
679 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
680
681 /*
682 * Called from timekeeping and resume code to reprogramm the hrtimer
683 * interrupt device on all cpus.
684 */
685 void clock_was_set_delayed(void)
686 {
687 schedule_work(&hrtimer_work);
688 }
689
690 #else
691
692 static inline int hrtimer_hres_active(void) { return 0; }
693 static inline int hrtimer_is_hres_enabled(void) { return 0; }
694 static inline int hrtimer_switch_to_hres(void) { return 0; }
695 static inline void
696 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
697 static inline int hrtimer_reprogram(struct hrtimer *timer,
698 struct hrtimer_clock_base *base)
699 {
700 return 0;
701 }
702 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
703 static inline void retrigger_next_event(void *arg) { }
704
705 #endif /* CONFIG_HIGH_RES_TIMERS */
706
707 /*
708 * Clock realtime was set
709 *
710 * Change the offset of the realtime clock vs. the monotonic
711 * clock.
712 *
713 * We might have to reprogram the high resolution timer interrupt. On
714 * SMP we call the architecture specific code to retrigger _all_ high
715 * resolution timer interrupts. On UP we just disable interrupts and
716 * call the high resolution interrupt code.
717 */
718 void clock_was_set(void)
719 {
720 #ifdef CONFIG_HIGH_RES_TIMERS
721 /* Retrigger the CPU local events everywhere */
722 on_each_cpu(retrigger_next_event, NULL, 1);
723 #endif
724 timerfd_clock_was_set();
725 }
726
727 /*
728 * During resume we might have to reprogram the high resolution timer
729 * interrupt on all online CPUs. However, all other CPUs will be
730 * stopped with IRQs interrupts disabled so the clock_was_set() call
731 * must be deferred.
732 */
733 void hrtimers_resume(void)
734 {
735 WARN_ONCE(!irqs_disabled(),
736 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
737
738 /* Retrigger on the local CPU */
739 retrigger_next_event(NULL);
740 /* And schedule a retrigger for all others */
741 clock_was_set_delayed();
742 }
743
744 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
745 {
746 #ifdef CONFIG_TIMER_STATS
747 if (timer->start_site)
748 return;
749 timer->start_site = __builtin_return_address(0);
750 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
751 timer->start_pid = current->pid;
752 #endif
753 }
754
755 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
756 {
757 #ifdef CONFIG_TIMER_STATS
758 timer->start_site = NULL;
759 #endif
760 }
761
762 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
763 {
764 #ifdef CONFIG_TIMER_STATS
765 if (likely(!timer_stats_active))
766 return;
767 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
768 timer->function, timer->start_comm, 0);
769 #endif
770 }
771
772 /*
773 * Counterpart to lock_hrtimer_base above:
774 */
775 static inline
776 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
777 {
778 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
779 }
780
781 /**
782 * hrtimer_forward - forward the timer expiry
783 * @timer: hrtimer to forward
784 * @now: forward past this time
785 * @interval: the interval to forward
786 *
787 * Forward the timer expiry so it will expire in the future.
788 * Returns the number of overruns.
789 */
790 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
791 {
792 u64 orun = 1;
793 ktime_t delta;
794
795 delta = ktime_sub(now, hrtimer_get_expires(timer));
796
797 if (delta.tv64 < 0)
798 return 0;
799
800 if (interval.tv64 < timer->base->resolution.tv64)
801 interval.tv64 = timer->base->resolution.tv64;
802
803 if (unlikely(delta.tv64 >= interval.tv64)) {
804 s64 incr = ktime_to_ns(interval);
805
806 orun = ktime_divns(delta, incr);
807 hrtimer_add_expires_ns(timer, incr * orun);
808 if (hrtimer_get_expires_tv64(timer) > now.tv64)
809 return orun;
810 /*
811 * This (and the ktime_add() below) is the
812 * correction for exact:
813 */
814 orun++;
815 }
816 hrtimer_add_expires(timer, interval);
817
818 return orun;
819 }
820 EXPORT_SYMBOL_GPL(hrtimer_forward);
821
822 /*
823 * enqueue_hrtimer - internal function to (re)start a timer
824 *
825 * The timer is inserted in expiry order. Insertion into the
826 * red black tree is O(log(n)). Must hold the base lock.
827 *
828 * Returns 1 when the new timer is the leftmost timer in the tree.
829 */
830 static int enqueue_hrtimer(struct hrtimer *timer,
831 struct hrtimer_clock_base *base)
832 {
833 debug_activate(timer);
834
835 timerqueue_add(&base->active, &timer->node);
836 base->cpu_base->active_bases |= 1 << base->index;
837
838 /*
839 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
840 * state of a possibly running callback.
841 */
842 timer->state |= HRTIMER_STATE_ENQUEUED;
843
844 return (&timer->node == base->active.next);
845 }
846
847 /*
848 * __remove_hrtimer - internal function to remove a timer
849 *
850 * Caller must hold the base lock.
851 *
852 * High resolution timer mode reprograms the clock event device when the
853 * timer is the one which expires next. The caller can disable this by setting
854 * reprogram to zero. This is useful, when the context does a reprogramming
855 * anyway (e.g. timer interrupt)
856 */
857 static void __remove_hrtimer(struct hrtimer *timer,
858 struct hrtimer_clock_base *base,
859 unsigned long newstate, int reprogram)
860 {
861 struct timerqueue_node *next_timer;
862 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
863 goto out;
864
865 next_timer = timerqueue_getnext(&base->active);
866 timerqueue_del(&base->active, &timer->node);
867 if (&timer->node == next_timer) {
868 #ifdef CONFIG_HIGH_RES_TIMERS
869 /* Reprogram the clock event device. if enabled */
870 if (reprogram && hrtimer_hres_active()) {
871 ktime_t expires;
872
873 expires = ktime_sub(hrtimer_get_expires(timer),
874 base->offset);
875 if (base->cpu_base->expires_next.tv64 == expires.tv64)
876 hrtimer_force_reprogram(base->cpu_base, 1);
877 }
878 #endif
879 }
880 if (!timerqueue_getnext(&base->active))
881 base->cpu_base->active_bases &= ~(1 << base->index);
882 out:
883 timer->state = newstate;
884 }
885
886 /*
887 * remove hrtimer, called with base lock held
888 */
889 static inline int
890 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
891 {
892 if (hrtimer_is_queued(timer)) {
893 unsigned long state;
894 int reprogram;
895
896 /*
897 * Remove the timer and force reprogramming when high
898 * resolution mode is active and the timer is on the current
899 * CPU. If we remove a timer on another CPU, reprogramming is
900 * skipped. The interrupt event on this CPU is fired and
901 * reprogramming happens in the interrupt handler. This is a
902 * rare case and less expensive than a smp call.
903 */
904 debug_deactivate(timer);
905 timer_stats_hrtimer_clear_start_info(timer);
906 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
907 /*
908 * We must preserve the CALLBACK state flag here,
909 * otherwise we could move the timer base in
910 * switch_hrtimer_base.
911 */
912 state = timer->state & HRTIMER_STATE_CALLBACK;
913 __remove_hrtimer(timer, base, state, reprogram);
914 return 1;
915 }
916 return 0;
917 }
918
919 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
920 unsigned long delta_ns, const enum hrtimer_mode mode,
921 int wakeup)
922 {
923 struct hrtimer_clock_base *base, *new_base;
924 unsigned long flags;
925 int ret, leftmost;
926
927 base = lock_hrtimer_base(timer, &flags);
928
929 /* Remove an active timer from the queue: */
930 ret = remove_hrtimer(timer, base);
931
932 if (mode & HRTIMER_MODE_REL) {
933 tim = ktime_add_safe(tim, base->get_time());
934 /*
935 * CONFIG_TIME_LOW_RES is a temporary way for architectures
936 * to signal that they simply return xtime in
937 * do_gettimeoffset(). In this case we want to round up by
938 * resolution when starting a relative timer, to avoid short
939 * timeouts. This will go away with the GTOD framework.
940 */
941 #ifdef CONFIG_TIME_LOW_RES
942 tim = ktime_add_safe(tim, base->resolution);
943 #endif
944 }
945
946 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
947
948 /* Switch the timer base, if necessary: */
949 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
950
951 timer_stats_hrtimer_set_start_info(timer);
952
953 leftmost = enqueue_hrtimer(timer, new_base);
954
955 if (!leftmost) {
956 unlock_hrtimer_base(timer, &flags);
957 return ret;
958 }
959
960 if (!hrtimer_is_hres_active(timer)) {
961 /*
962 * Kick to reschedule the next tick to handle the new timer
963 * on dynticks target.
964 */
965 wake_up_nohz_cpu(new_base->cpu_base->cpu);
966 } else if (new_base->cpu_base == this_cpu_ptr(&hrtimer_bases) &&
967 hrtimer_reprogram(timer, new_base)) {
968 /*
969 * Only allow reprogramming if the new base is on this CPU.
970 * (it might still be on another CPU if the timer was pending)
971 *
972 * XXX send_remote_softirq() ?
973 */
974 if (wakeup) {
975 /*
976 * We need to drop cpu_base->lock to avoid a
977 * lock ordering issue vs. rq->lock.
978 */
979 raw_spin_unlock(&new_base->cpu_base->lock);
980 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
981 local_irq_restore(flags);
982 return ret;
983 } else {
984 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
985 }
986 }
987
988 unlock_hrtimer_base(timer, &flags);
989
990 return ret;
991 }
992 EXPORT_SYMBOL_GPL(__hrtimer_start_range_ns);
993
994 /**
995 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
996 * @timer: the timer to be added
997 * @tim: expiry time
998 * @delta_ns: "slack" range for the timer
999 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1000 * relative (HRTIMER_MODE_REL)
1001 *
1002 * Returns:
1003 * 0 on success
1004 * 1 when the timer was active
1005 */
1006 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1007 unsigned long delta_ns, const enum hrtimer_mode mode)
1008 {
1009 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1010 }
1011 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1012
1013 /**
1014 * hrtimer_start - (re)start an hrtimer on the current CPU
1015 * @timer: the timer to be added
1016 * @tim: expiry time
1017 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1018 * relative (HRTIMER_MODE_REL)
1019 *
1020 * Returns:
1021 * 0 on success
1022 * 1 when the timer was active
1023 */
1024 int
1025 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1026 {
1027 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1028 }
1029 EXPORT_SYMBOL_GPL(hrtimer_start);
1030
1031
1032 /**
1033 * hrtimer_try_to_cancel - try to deactivate a timer
1034 * @timer: hrtimer to stop
1035 *
1036 * Returns:
1037 * 0 when the timer was not active
1038 * 1 when the timer was active
1039 * -1 when the timer is currently excuting the callback function and
1040 * cannot be stopped
1041 */
1042 int hrtimer_try_to_cancel(struct hrtimer *timer)
1043 {
1044 struct hrtimer_clock_base *base;
1045 unsigned long flags;
1046 int ret = -1;
1047
1048 base = lock_hrtimer_base(timer, &flags);
1049
1050 if (!hrtimer_callback_running(timer))
1051 ret = remove_hrtimer(timer, base);
1052
1053 unlock_hrtimer_base(timer, &flags);
1054
1055 return ret;
1056
1057 }
1058 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1059
1060 /**
1061 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1062 * @timer: the timer to be cancelled
1063 *
1064 * Returns:
1065 * 0 when the timer was not active
1066 * 1 when the timer was active
1067 */
1068 int hrtimer_cancel(struct hrtimer *timer)
1069 {
1070 for (;;) {
1071 int ret = hrtimer_try_to_cancel(timer);
1072
1073 if (ret >= 0)
1074 return ret;
1075 cpu_relax();
1076 }
1077 }
1078 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1079
1080 /**
1081 * hrtimer_get_remaining - get remaining time for the timer
1082 * @timer: the timer to read
1083 */
1084 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1085 {
1086 unsigned long flags;
1087 ktime_t rem;
1088
1089 lock_hrtimer_base(timer, &flags);
1090 rem = hrtimer_expires_remaining(timer);
1091 unlock_hrtimer_base(timer, &flags);
1092
1093 return rem;
1094 }
1095 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1096
1097 #ifdef CONFIG_NO_HZ_COMMON
1098 /**
1099 * hrtimer_get_next_event - get the time until next expiry event
1100 *
1101 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1102 * is pending.
1103 */
1104 ktime_t hrtimer_get_next_event(void)
1105 {
1106 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1107 struct hrtimer_clock_base *base = cpu_base->clock_base;
1108 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1109 unsigned long flags;
1110 int i;
1111
1112 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1113
1114 if (!hrtimer_hres_active()) {
1115 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1116 struct hrtimer *timer;
1117 struct timerqueue_node *next;
1118
1119 next = timerqueue_getnext(&base->active);
1120 if (!next)
1121 continue;
1122
1123 timer = container_of(next, struct hrtimer, node);
1124 delta.tv64 = hrtimer_get_expires_tv64(timer);
1125 delta = ktime_sub(delta, base->get_time());
1126 if (delta.tv64 < mindelta.tv64)
1127 mindelta.tv64 = delta.tv64;
1128 }
1129 }
1130
1131 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1132
1133 if (mindelta.tv64 < 0)
1134 mindelta.tv64 = 0;
1135 return mindelta;
1136 }
1137 #endif
1138
1139 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1140 enum hrtimer_mode mode)
1141 {
1142 struct hrtimer_cpu_base *cpu_base;
1143 int base;
1144
1145 memset(timer, 0, sizeof(struct hrtimer));
1146
1147 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1148
1149 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1150 clock_id = CLOCK_MONOTONIC;
1151
1152 base = hrtimer_clockid_to_base(clock_id);
1153 timer->base = &cpu_base->clock_base[base];
1154 timerqueue_init(&timer->node);
1155
1156 #ifdef CONFIG_TIMER_STATS
1157 timer->start_site = NULL;
1158 timer->start_pid = -1;
1159 memset(timer->start_comm, 0, TASK_COMM_LEN);
1160 #endif
1161 }
1162
1163 /**
1164 * hrtimer_init - initialize a timer to the given clock
1165 * @timer: the timer to be initialized
1166 * @clock_id: the clock to be used
1167 * @mode: timer mode abs/rel
1168 */
1169 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1170 enum hrtimer_mode mode)
1171 {
1172 debug_init(timer, clock_id, mode);
1173 __hrtimer_init(timer, clock_id, mode);
1174 }
1175 EXPORT_SYMBOL_GPL(hrtimer_init);
1176
1177 /**
1178 * hrtimer_get_res - get the timer resolution for a clock
1179 * @which_clock: which clock to query
1180 * @tp: pointer to timespec variable to store the resolution
1181 *
1182 * Store the resolution of the clock selected by @which_clock in the
1183 * variable pointed to by @tp.
1184 */
1185 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1186 {
1187 struct hrtimer_cpu_base *cpu_base;
1188 int base = hrtimer_clockid_to_base(which_clock);
1189
1190 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1191 *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1192
1193 return 0;
1194 }
1195 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1196
1197 static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1198 {
1199 struct hrtimer_clock_base *base = timer->base;
1200 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1201 enum hrtimer_restart (*fn)(struct hrtimer *);
1202 int restart;
1203
1204 WARN_ON(!irqs_disabled());
1205
1206 debug_deactivate(timer);
1207 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1208 timer_stats_account_hrtimer(timer);
1209 fn = timer->function;
1210
1211 /*
1212 * Because we run timers from hardirq context, there is no chance
1213 * they get migrated to another cpu, therefore its safe to unlock
1214 * the timer base.
1215 */
1216 raw_spin_unlock(&cpu_base->lock);
1217 trace_hrtimer_expire_entry(timer, now);
1218 restart = fn(timer);
1219 trace_hrtimer_expire_exit(timer);
1220 raw_spin_lock(&cpu_base->lock);
1221
1222 /*
1223 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1224 * we do not reprogramm the event hardware. Happens either in
1225 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1226 */
1227 if (restart != HRTIMER_NORESTART) {
1228 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1229 enqueue_hrtimer(timer, base);
1230 }
1231
1232 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1233
1234 timer->state &= ~HRTIMER_STATE_CALLBACK;
1235 }
1236
1237 #ifdef CONFIG_HIGH_RES_TIMERS
1238
1239 /*
1240 * High resolution timer interrupt
1241 * Called with interrupts disabled
1242 */
1243 void hrtimer_interrupt(struct clock_event_device *dev)
1244 {
1245 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1246 ktime_t expires_next, now, entry_time, delta;
1247 int i, retries = 0;
1248
1249 BUG_ON(!cpu_base->hres_active);
1250 cpu_base->nr_events++;
1251 dev->next_event.tv64 = KTIME_MAX;
1252
1253 raw_spin_lock(&cpu_base->lock);
1254 entry_time = now = hrtimer_update_base(cpu_base);
1255 retry:
1256 expires_next.tv64 = KTIME_MAX;
1257 /*
1258 * We set expires_next to KTIME_MAX here with cpu_base->lock
1259 * held to prevent that a timer is enqueued in our queue via
1260 * the migration code. This does not affect enqueueing of
1261 * timers which run their callback and need to be requeued on
1262 * this CPU.
1263 */
1264 cpu_base->expires_next.tv64 = KTIME_MAX;
1265
1266 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1267 struct hrtimer_clock_base *base;
1268 struct timerqueue_node *node;
1269 ktime_t basenow;
1270
1271 if (!(cpu_base->active_bases & (1 << i)))
1272 continue;
1273
1274 base = cpu_base->clock_base + i;
1275 basenow = ktime_add(now, base->offset);
1276
1277 while ((node = timerqueue_getnext(&base->active))) {
1278 struct hrtimer *timer;
1279
1280 timer = container_of(node, struct hrtimer, node);
1281
1282 /*
1283 * The immediate goal for using the softexpires is
1284 * minimizing wakeups, not running timers at the
1285 * earliest interrupt after their soft expiration.
1286 * This allows us to avoid using a Priority Search
1287 * Tree, which can answer a stabbing querry for
1288 * overlapping intervals and instead use the simple
1289 * BST we already have.
1290 * We don't add extra wakeups by delaying timers that
1291 * are right-of a not yet expired timer, because that
1292 * timer will have to trigger a wakeup anyway.
1293 */
1294
1295 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1296 ktime_t expires;
1297
1298 expires = ktime_sub(hrtimer_get_expires(timer),
1299 base->offset);
1300 if (expires.tv64 < 0)
1301 expires.tv64 = KTIME_MAX;
1302 if (expires.tv64 < expires_next.tv64)
1303 expires_next = expires;
1304 break;
1305 }
1306
1307 __run_hrtimer(timer, &basenow);
1308 }
1309 }
1310
1311 /*
1312 * Store the new expiry value so the migration code can verify
1313 * against it.
1314 */
1315 cpu_base->expires_next = expires_next;
1316 raw_spin_unlock(&cpu_base->lock);
1317
1318 /* Reprogramming necessary ? */
1319 if (expires_next.tv64 == KTIME_MAX ||
1320 !tick_program_event(expires_next, 0)) {
1321 cpu_base->hang_detected = 0;
1322 return;
1323 }
1324
1325 /*
1326 * The next timer was already expired due to:
1327 * - tracing
1328 * - long lasting callbacks
1329 * - being scheduled away when running in a VM
1330 *
1331 * We need to prevent that we loop forever in the hrtimer
1332 * interrupt routine. We give it 3 attempts to avoid
1333 * overreacting on some spurious event.
1334 *
1335 * Acquire base lock for updating the offsets and retrieving
1336 * the current time.
1337 */
1338 raw_spin_lock(&cpu_base->lock);
1339 now = hrtimer_update_base(cpu_base);
1340 cpu_base->nr_retries++;
1341 if (++retries < 3)
1342 goto retry;
1343 /*
1344 * Give the system a chance to do something else than looping
1345 * here. We stored the entry time, so we know exactly how long
1346 * we spent here. We schedule the next event this amount of
1347 * time away.
1348 */
1349 cpu_base->nr_hangs++;
1350 cpu_base->hang_detected = 1;
1351 raw_spin_unlock(&cpu_base->lock);
1352 delta = ktime_sub(now, entry_time);
1353 if (delta.tv64 > cpu_base->max_hang_time.tv64)
1354 cpu_base->max_hang_time = delta;
1355 /*
1356 * Limit it to a sensible value as we enforce a longer
1357 * delay. Give the CPU at least 100ms to catch up.
1358 */
1359 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1360 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1361 else
1362 expires_next = ktime_add(now, delta);
1363 tick_program_event(expires_next, 1);
1364 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1365 ktime_to_ns(delta));
1366 }
1367
1368 /*
1369 * local version of hrtimer_peek_ahead_timers() called with interrupts
1370 * disabled.
1371 */
1372 static void __hrtimer_peek_ahead_timers(void)
1373 {
1374 struct tick_device *td;
1375
1376 if (!hrtimer_hres_active())
1377 return;
1378
1379 td = this_cpu_ptr(&tick_cpu_device);
1380 if (td && td->evtdev)
1381 hrtimer_interrupt(td->evtdev);
1382 }
1383
1384 /**
1385 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1386 *
1387 * hrtimer_peek_ahead_timers will peek at the timer queue of
1388 * the current cpu and check if there are any timers for which
1389 * the soft expires time has passed. If any such timers exist,
1390 * they are run immediately and then removed from the timer queue.
1391 *
1392 */
1393 void hrtimer_peek_ahead_timers(void)
1394 {
1395 unsigned long flags;
1396
1397 local_irq_save(flags);
1398 __hrtimer_peek_ahead_timers();
1399 local_irq_restore(flags);
1400 }
1401
1402 static void run_hrtimer_softirq(struct softirq_action *h)
1403 {
1404 hrtimer_peek_ahead_timers();
1405 }
1406
1407 #else /* CONFIG_HIGH_RES_TIMERS */
1408
1409 static inline void __hrtimer_peek_ahead_timers(void) { }
1410
1411 #endif /* !CONFIG_HIGH_RES_TIMERS */
1412
1413 /*
1414 * Called from timer softirq every jiffy, expire hrtimers:
1415 *
1416 * For HRT its the fall back code to run the softirq in the timer
1417 * softirq context in case the hrtimer initialization failed or has
1418 * not been done yet.
1419 */
1420 void hrtimer_run_pending(void)
1421 {
1422 if (hrtimer_hres_active())
1423 return;
1424
1425 /*
1426 * This _is_ ugly: We have to check in the softirq context,
1427 * whether we can switch to highres and / or nohz mode. The
1428 * clocksource switch happens in the timer interrupt with
1429 * xtime_lock held. Notification from there only sets the
1430 * check bit in the tick_oneshot code, otherwise we might
1431 * deadlock vs. xtime_lock.
1432 */
1433 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1434 hrtimer_switch_to_hres();
1435 }
1436
1437 /*
1438 * Called from hardirq context every jiffy
1439 */
1440 void hrtimer_run_queues(void)
1441 {
1442 struct timerqueue_node *node;
1443 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1444 struct hrtimer_clock_base *base;
1445 int index, gettime = 1;
1446
1447 if (hrtimer_hres_active())
1448 return;
1449
1450 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1451 base = &cpu_base->clock_base[index];
1452 if (!timerqueue_getnext(&base->active))
1453 continue;
1454
1455 if (gettime) {
1456 hrtimer_get_softirq_time(cpu_base);
1457 gettime = 0;
1458 }
1459
1460 raw_spin_lock(&cpu_base->lock);
1461
1462 while ((node = timerqueue_getnext(&base->active))) {
1463 struct hrtimer *timer;
1464
1465 timer = container_of(node, struct hrtimer, node);
1466 if (base->softirq_time.tv64 <=
1467 hrtimer_get_expires_tv64(timer))
1468 break;
1469
1470 __run_hrtimer(timer, &base->softirq_time);
1471 }
1472 raw_spin_unlock(&cpu_base->lock);
1473 }
1474 }
1475
1476 /*
1477 * Sleep related functions:
1478 */
1479 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1480 {
1481 struct hrtimer_sleeper *t =
1482 container_of(timer, struct hrtimer_sleeper, timer);
1483 struct task_struct *task = t->task;
1484
1485 t->task = NULL;
1486 if (task)
1487 wake_up_process(task);
1488
1489 return HRTIMER_NORESTART;
1490 }
1491
1492 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1493 {
1494 sl->timer.function = hrtimer_wakeup;
1495 sl->task = task;
1496 }
1497 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1498
1499 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1500 {
1501 hrtimer_init_sleeper(t, current);
1502
1503 do {
1504 set_current_state(TASK_INTERRUPTIBLE);
1505 hrtimer_start_expires(&t->timer, mode);
1506 if (!hrtimer_active(&t->timer))
1507 t->task = NULL;
1508
1509 if (likely(t->task))
1510 freezable_schedule();
1511
1512 hrtimer_cancel(&t->timer);
1513 mode = HRTIMER_MODE_ABS;
1514
1515 } while (t->task && !signal_pending(current));
1516
1517 __set_current_state(TASK_RUNNING);
1518
1519 return t->task == NULL;
1520 }
1521
1522 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1523 {
1524 struct timespec rmt;
1525 ktime_t rem;
1526
1527 rem = hrtimer_expires_remaining(timer);
1528 if (rem.tv64 <= 0)
1529 return 0;
1530 rmt = ktime_to_timespec(rem);
1531
1532 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1533 return -EFAULT;
1534
1535 return 1;
1536 }
1537
1538 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1539 {
1540 struct hrtimer_sleeper t;
1541 struct timespec __user *rmtp;
1542 int ret = 0;
1543
1544 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1545 HRTIMER_MODE_ABS);
1546 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1547
1548 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1549 goto out;
1550
1551 rmtp = restart->nanosleep.rmtp;
1552 if (rmtp) {
1553 ret = update_rmtp(&t.timer, rmtp);
1554 if (ret <= 0)
1555 goto out;
1556 }
1557
1558 /* The other values in restart are already filled in */
1559 ret = -ERESTART_RESTARTBLOCK;
1560 out:
1561 destroy_hrtimer_on_stack(&t.timer);
1562 return ret;
1563 }
1564
1565 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1566 const enum hrtimer_mode mode, const clockid_t clockid)
1567 {
1568 struct restart_block *restart;
1569 struct hrtimer_sleeper t;
1570 int ret = 0;
1571 unsigned long slack;
1572
1573 slack = current->timer_slack_ns;
1574 if (dl_task(current) || rt_task(current))
1575 slack = 0;
1576
1577 hrtimer_init_on_stack(&t.timer, clockid, mode);
1578 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1579 if (do_nanosleep(&t, mode))
1580 goto out;
1581
1582 /* Absolute timers do not update the rmtp value and restart: */
1583 if (mode == HRTIMER_MODE_ABS) {
1584 ret = -ERESTARTNOHAND;
1585 goto out;
1586 }
1587
1588 if (rmtp) {
1589 ret = update_rmtp(&t.timer, rmtp);
1590 if (ret <= 0)
1591 goto out;
1592 }
1593
1594 restart = &current_thread_info()->restart_block;
1595 restart->fn = hrtimer_nanosleep_restart;
1596 restart->nanosleep.clockid = t.timer.base->clockid;
1597 restart->nanosleep.rmtp = rmtp;
1598 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1599
1600 ret = -ERESTART_RESTARTBLOCK;
1601 out:
1602 destroy_hrtimer_on_stack(&t.timer);
1603 return ret;
1604 }
1605
1606 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1607 struct timespec __user *, rmtp)
1608 {
1609 struct timespec tu;
1610
1611 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1612 return -EFAULT;
1613
1614 if (!timespec_valid(&tu))
1615 return -EINVAL;
1616
1617 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1618 }
1619
1620 /*
1621 * Functions related to boot-time initialization:
1622 */
1623 static void init_hrtimers_cpu(int cpu)
1624 {
1625 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1626 int i;
1627
1628 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1629 cpu_base->clock_base[i].cpu_base = cpu_base;
1630 timerqueue_init_head(&cpu_base->clock_base[i].active);
1631 }
1632
1633 cpu_base->cpu = cpu;
1634 hrtimer_init_hres(cpu_base);
1635 }
1636
1637 #ifdef CONFIG_HOTPLUG_CPU
1638
1639 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1640 struct hrtimer_clock_base *new_base)
1641 {
1642 struct hrtimer *timer;
1643 struct timerqueue_node *node;
1644
1645 while ((node = timerqueue_getnext(&old_base->active))) {
1646 timer = container_of(node, struct hrtimer, node);
1647 BUG_ON(hrtimer_callback_running(timer));
1648 debug_deactivate(timer);
1649
1650 /*
1651 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1652 * timer could be seen as !active and just vanish away
1653 * under us on another CPU
1654 */
1655 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1656 timer->base = new_base;
1657 /*
1658 * Enqueue the timers on the new cpu. This does not
1659 * reprogram the event device in case the timer
1660 * expires before the earliest on this CPU, but we run
1661 * hrtimer_interrupt after we migrated everything to
1662 * sort out already expired timers and reprogram the
1663 * event device.
1664 */
1665 enqueue_hrtimer(timer, new_base);
1666
1667 /* Clear the migration state bit */
1668 timer->state &= ~HRTIMER_STATE_MIGRATE;
1669 }
1670 }
1671
1672 static void migrate_hrtimers(int scpu)
1673 {
1674 struct hrtimer_cpu_base *old_base, *new_base;
1675 int i;
1676
1677 BUG_ON(cpu_online(scpu));
1678 tick_cancel_sched_timer(scpu);
1679
1680 local_irq_disable();
1681 old_base = &per_cpu(hrtimer_bases, scpu);
1682 new_base = this_cpu_ptr(&hrtimer_bases);
1683 /*
1684 * The caller is globally serialized and nobody else
1685 * takes two locks at once, deadlock is not possible.
1686 */
1687 raw_spin_lock(&new_base->lock);
1688 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1689
1690 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1691 migrate_hrtimer_list(&old_base->clock_base[i],
1692 &new_base->clock_base[i]);
1693 }
1694
1695 raw_spin_unlock(&old_base->lock);
1696 raw_spin_unlock(&new_base->lock);
1697
1698 /* Check, if we got expired work to do */
1699 __hrtimer_peek_ahead_timers();
1700 local_irq_enable();
1701 }
1702
1703 #endif /* CONFIG_HOTPLUG_CPU */
1704
1705 static int hrtimer_cpu_notify(struct notifier_block *self,
1706 unsigned long action, void *hcpu)
1707 {
1708 int scpu = (long)hcpu;
1709
1710 switch (action) {
1711
1712 case CPU_UP_PREPARE:
1713 case CPU_UP_PREPARE_FROZEN:
1714 init_hrtimers_cpu(scpu);
1715 break;
1716
1717 #ifdef CONFIG_HOTPLUG_CPU
1718 case CPU_DYING:
1719 case CPU_DYING_FROZEN:
1720 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1721 break;
1722 case CPU_DEAD:
1723 case CPU_DEAD_FROZEN:
1724 {
1725 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1726 migrate_hrtimers(scpu);
1727 break;
1728 }
1729 #endif
1730
1731 default:
1732 break;
1733 }
1734
1735 return NOTIFY_OK;
1736 }
1737
1738 static struct notifier_block hrtimers_nb = {
1739 .notifier_call = hrtimer_cpu_notify,
1740 };
1741
1742 void __init hrtimers_init(void)
1743 {
1744 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1745 (void *)(long)smp_processor_id());
1746 register_cpu_notifier(&hrtimers_nb);
1747 #ifdef CONFIG_HIGH_RES_TIMERS
1748 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1749 #endif
1750 }
1751
1752 /**
1753 * schedule_hrtimeout_range_clock - sleep until timeout
1754 * @expires: timeout value (ktime_t)
1755 * @delta: slack in expires timeout (ktime_t)
1756 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1757 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1758 */
1759 int __sched
1760 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1761 const enum hrtimer_mode mode, int clock)
1762 {
1763 struct hrtimer_sleeper t;
1764
1765 /*
1766 * Optimize when a zero timeout value is given. It does not
1767 * matter whether this is an absolute or a relative time.
1768 */
1769 if (expires && !expires->tv64) {
1770 __set_current_state(TASK_RUNNING);
1771 return 0;
1772 }
1773
1774 /*
1775 * A NULL parameter means "infinite"
1776 */
1777 if (!expires) {
1778 schedule();
1779 return -EINTR;
1780 }
1781
1782 hrtimer_init_on_stack(&t.timer, clock, mode);
1783 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1784
1785 hrtimer_init_sleeper(&t, current);
1786
1787 hrtimer_start_expires(&t.timer, mode);
1788 if (!hrtimer_active(&t.timer))
1789 t.task = NULL;
1790
1791 if (likely(t.task))
1792 schedule();
1793
1794 hrtimer_cancel(&t.timer);
1795 destroy_hrtimer_on_stack(&t.timer);
1796
1797 __set_current_state(TASK_RUNNING);
1798
1799 return !t.task ? 0 : -EINTR;
1800 }
1801
1802 /**
1803 * schedule_hrtimeout_range - sleep until timeout
1804 * @expires: timeout value (ktime_t)
1805 * @delta: slack in expires timeout (ktime_t)
1806 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1807 *
1808 * Make the current task sleep until the given expiry time has
1809 * elapsed. The routine will return immediately unless
1810 * the current task state has been set (see set_current_state()).
1811 *
1812 * The @delta argument gives the kernel the freedom to schedule the
1813 * actual wakeup to a time that is both power and performance friendly.
1814 * The kernel give the normal best effort behavior for "@expires+@delta",
1815 * but may decide to fire the timer earlier, but no earlier than @expires.
1816 *
1817 * You can set the task state as follows -
1818 *
1819 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1820 * pass before the routine returns.
1821 *
1822 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1823 * delivered to the current task.
1824 *
1825 * The current task state is guaranteed to be TASK_RUNNING when this
1826 * routine returns.
1827 *
1828 * Returns 0 when the timer has expired otherwise -EINTR
1829 */
1830 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1831 const enum hrtimer_mode mode)
1832 {
1833 return schedule_hrtimeout_range_clock(expires, delta, mode,
1834 CLOCK_MONOTONIC);
1835 }
1836 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1837
1838 /**
1839 * schedule_hrtimeout - sleep until timeout
1840 * @expires: timeout value (ktime_t)
1841 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1842 *
1843 * Make the current task sleep until the given expiry time has
1844 * elapsed. The routine will return immediately unless
1845 * the current task state has been set (see set_current_state()).
1846 *
1847 * You can set the task state as follows -
1848 *
1849 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1850 * pass before the routine returns.
1851 *
1852 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1853 * delivered to the current task.
1854 *
1855 * The current task state is guaranteed to be TASK_RUNNING when this
1856 * routine returns.
1857 *
1858 * Returns 0 when the timer has expired otherwise -EINTR
1859 */
1860 int __sched schedule_hrtimeout(ktime_t *expires,
1861 const enum hrtimer_mode mode)
1862 {
1863 return schedule_hrtimeout_range(expires, 0, mode);
1864 }
1865 EXPORT_SYMBOL_GPL(schedule_hrtimeout);