]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/time/hrtimer.c
Merge branch 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / kernel / time / hrtimer.c
1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/timer.h>
51 #include <linux/freezer.h>
52
53 #include <asm/uaccess.h>
54
55 #include <trace/events/timer.h>
56
57 #include "tick-internal.h"
58
59 /*
60 * The timer bases:
61 *
62 * There are more clockids then hrtimer bases. Thus, we index
63 * into the timer bases by the hrtimer_base_type enum. When trying
64 * to reach a base using a clockid, hrtimer_clockid_to_base()
65 * is used to convert from clockid to the proper hrtimer_base_type.
66 */
67 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68 {
69
70 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
71 .clock_base =
72 {
73 {
74 .index = HRTIMER_BASE_MONOTONIC,
75 .clockid = CLOCK_MONOTONIC,
76 .get_time = &ktime_get,
77 .resolution = KTIME_LOW_RES,
78 },
79 {
80 .index = HRTIMER_BASE_REALTIME,
81 .clockid = CLOCK_REALTIME,
82 .get_time = &ktime_get_real,
83 .resolution = KTIME_LOW_RES,
84 },
85 {
86 .index = HRTIMER_BASE_BOOTTIME,
87 .clockid = CLOCK_BOOTTIME,
88 .get_time = &ktime_get_boottime,
89 .resolution = KTIME_LOW_RES,
90 },
91 {
92 .index = HRTIMER_BASE_TAI,
93 .clockid = CLOCK_TAI,
94 .get_time = &ktime_get_clocktai,
95 .resolution = KTIME_LOW_RES,
96 },
97 }
98 };
99
100 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
101 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
102 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
103 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
104 [CLOCK_TAI] = HRTIMER_BASE_TAI,
105 };
106
107 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
108 {
109 return hrtimer_clock_to_base_table[clock_id];
110 }
111
112
113 /*
114 * Get the coarse grained time at the softirq based on xtime and
115 * wall_to_monotonic.
116 */
117 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
118 {
119 ktime_t xtim, mono, boot, tai;
120 ktime_t off_real, off_boot, off_tai;
121
122 mono = ktime_get_update_offsets_tick(&off_real, &off_boot, &off_tai);
123 boot = ktime_add(mono, off_boot);
124 xtim = ktime_add(mono, off_real);
125 tai = ktime_add(mono, off_tai);
126
127 base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
128 base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
129 base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
130 base->clock_base[HRTIMER_BASE_TAI].softirq_time = tai;
131 }
132
133 /*
134 * Functions and macros which are different for UP/SMP systems are kept in a
135 * single place
136 */
137 #ifdef CONFIG_SMP
138
139 /*
140 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
141 * means that all timers which are tied to this base via timer->base are
142 * locked, and the base itself is locked too.
143 *
144 * So __run_timers/migrate_timers can safely modify all timers which could
145 * be found on the lists/queues.
146 *
147 * When the timer's base is locked, and the timer removed from list, it is
148 * possible to set timer->base = NULL and drop the lock: the timer remains
149 * locked.
150 */
151 static
152 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
153 unsigned long *flags)
154 {
155 struct hrtimer_clock_base *base;
156
157 for (;;) {
158 base = timer->base;
159 if (likely(base != NULL)) {
160 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
161 if (likely(base == timer->base))
162 return base;
163 /* The timer has migrated to another CPU: */
164 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
165 }
166 cpu_relax();
167 }
168 }
169
170 /*
171 * With HIGHRES=y we do not migrate the timer when it is expiring
172 * before the next event on the target cpu because we cannot reprogram
173 * the target cpu hardware and we would cause it to fire late.
174 *
175 * Called with cpu_base->lock of target cpu held.
176 */
177 static int
178 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
179 {
180 #ifdef CONFIG_HIGH_RES_TIMERS
181 ktime_t expires;
182
183 if (!new_base->cpu_base->hres_active)
184 return 0;
185
186 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
187 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
188 #else
189 return 0;
190 #endif
191 }
192
193 /*
194 * Switch the timer base to the current CPU when possible.
195 */
196 static inline struct hrtimer_clock_base *
197 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
198 int pinned)
199 {
200 struct hrtimer_clock_base *new_base;
201 struct hrtimer_cpu_base *new_cpu_base;
202 int this_cpu = smp_processor_id();
203 int cpu = get_nohz_timer_target(pinned);
204 int basenum = base->index;
205
206 again:
207 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
208 new_base = &new_cpu_base->clock_base[basenum];
209
210 if (base != new_base) {
211 /*
212 * We are trying to move timer to new_base.
213 * However we can't change timer's base while it is running,
214 * so we keep it on the same CPU. No hassle vs. reprogramming
215 * the event source in the high resolution case. The softirq
216 * code will take care of this when the timer function has
217 * completed. There is no conflict as we hold the lock until
218 * the timer is enqueued.
219 */
220 if (unlikely(hrtimer_callback_running(timer)))
221 return base;
222
223 /* See the comment in lock_timer_base() */
224 timer->base = NULL;
225 raw_spin_unlock(&base->cpu_base->lock);
226 raw_spin_lock(&new_base->cpu_base->lock);
227
228 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
229 cpu = this_cpu;
230 raw_spin_unlock(&new_base->cpu_base->lock);
231 raw_spin_lock(&base->cpu_base->lock);
232 timer->base = base;
233 goto again;
234 }
235 timer->base = new_base;
236 } else {
237 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
238 cpu = this_cpu;
239 goto again;
240 }
241 }
242 return new_base;
243 }
244
245 #else /* CONFIG_SMP */
246
247 static inline struct hrtimer_clock_base *
248 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
249 {
250 struct hrtimer_clock_base *base = timer->base;
251
252 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
253
254 return base;
255 }
256
257 # define switch_hrtimer_base(t, b, p) (b)
258
259 #endif /* !CONFIG_SMP */
260
261 /*
262 * Functions for the union type storage format of ktime_t which are
263 * too large for inlining:
264 */
265 #if BITS_PER_LONG < 64
266 /*
267 * Divide a ktime value by a nanosecond value
268 */
269 u64 __ktime_divns(const ktime_t kt, s64 div)
270 {
271 u64 dclc;
272 int sft = 0;
273
274 dclc = ktime_to_ns(kt);
275 /* Make sure the divisor is less than 2^32: */
276 while (div >> 32) {
277 sft++;
278 div >>= 1;
279 }
280 dclc >>= sft;
281 do_div(dclc, (unsigned long) div);
282
283 return dclc;
284 }
285 EXPORT_SYMBOL_GPL(__ktime_divns);
286 #endif /* BITS_PER_LONG >= 64 */
287
288 /*
289 * Add two ktime values and do a safety check for overflow:
290 */
291 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
292 {
293 ktime_t res = ktime_add(lhs, rhs);
294
295 /*
296 * We use KTIME_SEC_MAX here, the maximum timeout which we can
297 * return to user space in a timespec:
298 */
299 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
300 res = ktime_set(KTIME_SEC_MAX, 0);
301
302 return res;
303 }
304
305 EXPORT_SYMBOL_GPL(ktime_add_safe);
306
307 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
308
309 static struct debug_obj_descr hrtimer_debug_descr;
310
311 static void *hrtimer_debug_hint(void *addr)
312 {
313 return ((struct hrtimer *) addr)->function;
314 }
315
316 /*
317 * fixup_init is called when:
318 * - an active object is initialized
319 */
320 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
321 {
322 struct hrtimer *timer = addr;
323
324 switch (state) {
325 case ODEBUG_STATE_ACTIVE:
326 hrtimer_cancel(timer);
327 debug_object_init(timer, &hrtimer_debug_descr);
328 return 1;
329 default:
330 return 0;
331 }
332 }
333
334 /*
335 * fixup_activate is called when:
336 * - an active object is activated
337 * - an unknown object is activated (might be a statically initialized object)
338 */
339 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
340 {
341 switch (state) {
342
343 case ODEBUG_STATE_NOTAVAILABLE:
344 WARN_ON_ONCE(1);
345 return 0;
346
347 case ODEBUG_STATE_ACTIVE:
348 WARN_ON(1);
349
350 default:
351 return 0;
352 }
353 }
354
355 /*
356 * fixup_free is called when:
357 * - an active object is freed
358 */
359 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
360 {
361 struct hrtimer *timer = addr;
362
363 switch (state) {
364 case ODEBUG_STATE_ACTIVE:
365 hrtimer_cancel(timer);
366 debug_object_free(timer, &hrtimer_debug_descr);
367 return 1;
368 default:
369 return 0;
370 }
371 }
372
373 static struct debug_obj_descr hrtimer_debug_descr = {
374 .name = "hrtimer",
375 .debug_hint = hrtimer_debug_hint,
376 .fixup_init = hrtimer_fixup_init,
377 .fixup_activate = hrtimer_fixup_activate,
378 .fixup_free = hrtimer_fixup_free,
379 };
380
381 static inline void debug_hrtimer_init(struct hrtimer *timer)
382 {
383 debug_object_init(timer, &hrtimer_debug_descr);
384 }
385
386 static inline void debug_hrtimer_activate(struct hrtimer *timer)
387 {
388 debug_object_activate(timer, &hrtimer_debug_descr);
389 }
390
391 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
392 {
393 debug_object_deactivate(timer, &hrtimer_debug_descr);
394 }
395
396 static inline void debug_hrtimer_free(struct hrtimer *timer)
397 {
398 debug_object_free(timer, &hrtimer_debug_descr);
399 }
400
401 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
402 enum hrtimer_mode mode);
403
404 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
405 enum hrtimer_mode mode)
406 {
407 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
408 __hrtimer_init(timer, clock_id, mode);
409 }
410 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
411
412 void destroy_hrtimer_on_stack(struct hrtimer *timer)
413 {
414 debug_object_free(timer, &hrtimer_debug_descr);
415 }
416
417 #else
418 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
419 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
420 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
421 #endif
422
423 static inline void
424 debug_init(struct hrtimer *timer, clockid_t clockid,
425 enum hrtimer_mode mode)
426 {
427 debug_hrtimer_init(timer);
428 trace_hrtimer_init(timer, clockid, mode);
429 }
430
431 static inline void debug_activate(struct hrtimer *timer)
432 {
433 debug_hrtimer_activate(timer);
434 trace_hrtimer_start(timer);
435 }
436
437 static inline void debug_deactivate(struct hrtimer *timer)
438 {
439 debug_hrtimer_deactivate(timer);
440 trace_hrtimer_cancel(timer);
441 }
442
443 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
444 static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
445 {
446 struct hrtimer_clock_base *base = cpu_base->clock_base;
447 ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
448 int i;
449
450 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
451 struct timerqueue_node *next;
452 struct hrtimer *timer;
453
454 next = timerqueue_getnext(&base->active);
455 if (!next)
456 continue;
457
458 timer = container_of(next, struct hrtimer, node);
459 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
460 if (expires.tv64 < expires_next.tv64)
461 expires_next = expires;
462 }
463 /*
464 * clock_was_set() might have changed base->offset of any of
465 * the clock bases so the result might be negative. Fix it up
466 * to prevent a false positive in clockevents_program_event().
467 */
468 if (expires_next.tv64 < 0)
469 expires_next.tv64 = 0;
470 return expires_next;
471 }
472 #endif
473
474 /* High resolution timer related functions */
475 #ifdef CONFIG_HIGH_RES_TIMERS
476
477 /*
478 * High resolution timer enabled ?
479 */
480 static int hrtimer_hres_enabled __read_mostly = 1;
481
482 /*
483 * Enable / Disable high resolution mode
484 */
485 static int __init setup_hrtimer_hres(char *str)
486 {
487 if (!strcmp(str, "off"))
488 hrtimer_hres_enabled = 0;
489 else if (!strcmp(str, "on"))
490 hrtimer_hres_enabled = 1;
491 else
492 return 0;
493 return 1;
494 }
495
496 __setup("highres=", setup_hrtimer_hres);
497
498 /*
499 * hrtimer_high_res_enabled - query, if the highres mode is enabled
500 */
501 static inline int hrtimer_is_hres_enabled(void)
502 {
503 return hrtimer_hres_enabled;
504 }
505
506 /*
507 * Is the high resolution mode active ?
508 */
509 static inline int hrtimer_hres_active(void)
510 {
511 return __this_cpu_read(hrtimer_bases.hres_active);
512 }
513
514 /*
515 * Reprogram the event source with checking both queues for the
516 * next event
517 * Called with interrupts disabled and base->lock held
518 */
519 static void
520 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
521 {
522 ktime_t expires_next = __hrtimer_get_next_event(cpu_base);
523
524 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
525 return;
526
527 cpu_base->expires_next.tv64 = expires_next.tv64;
528
529 /*
530 * If a hang was detected in the last timer interrupt then we
531 * leave the hang delay active in the hardware. We want the
532 * system to make progress. That also prevents the following
533 * scenario:
534 * T1 expires 50ms from now
535 * T2 expires 5s from now
536 *
537 * T1 is removed, so this code is called and would reprogram
538 * the hardware to 5s from now. Any hrtimer_start after that
539 * will not reprogram the hardware due to hang_detected being
540 * set. So we'd effectivly block all timers until the T2 event
541 * fires.
542 */
543 if (cpu_base->hang_detected)
544 return;
545
546 if (cpu_base->expires_next.tv64 != KTIME_MAX)
547 tick_program_event(cpu_base->expires_next, 1);
548 }
549
550 /*
551 * Shared reprogramming for clock_realtime and clock_monotonic
552 *
553 * When a timer is enqueued and expires earlier than the already enqueued
554 * timers, we have to check, whether it expires earlier than the timer for
555 * which the clock event device was armed.
556 *
557 * Note, that in case the state has HRTIMER_STATE_CALLBACK set, no reprogramming
558 * and no expiry check happens. The timer gets enqueued into the rbtree. The
559 * reprogramming and expiry check is done in the hrtimer_interrupt or in the
560 * softirq.
561 *
562 * Called with interrupts disabled and base->cpu_base.lock held
563 */
564 static int hrtimer_reprogram(struct hrtimer *timer,
565 struct hrtimer_clock_base *base)
566 {
567 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
568 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
569 int res;
570
571 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
572
573 /*
574 * When the callback is running, we do not reprogram the clock event
575 * device. The timer callback is either running on a different CPU or
576 * the callback is executed in the hrtimer_interrupt context. The
577 * reprogramming is handled either by the softirq, which called the
578 * callback or at the end of the hrtimer_interrupt.
579 */
580 if (hrtimer_callback_running(timer))
581 return 0;
582
583 /*
584 * CLOCK_REALTIME timer might be requested with an absolute
585 * expiry time which is less than base->offset. Nothing wrong
586 * about that, just avoid to call into the tick code, which
587 * has now objections against negative expiry values.
588 */
589 if (expires.tv64 < 0)
590 return -ETIME;
591
592 if (expires.tv64 >= cpu_base->expires_next.tv64)
593 return 0;
594
595 /*
596 * When the target cpu of the timer is currently executing
597 * hrtimer_interrupt(), then we do not touch the clock event
598 * device. hrtimer_interrupt() will reevaluate all clock bases
599 * before reprogramming the device.
600 */
601 if (cpu_base->in_hrtirq)
602 return 0;
603
604 /*
605 * If a hang was detected in the last timer interrupt then we
606 * do not schedule a timer which is earlier than the expiry
607 * which we enforced in the hang detection. We want the system
608 * to make progress.
609 */
610 if (cpu_base->hang_detected)
611 return 0;
612
613 /*
614 * Clockevents returns -ETIME, when the event was in the past.
615 */
616 res = tick_program_event(expires, 0);
617 if (!IS_ERR_VALUE(res))
618 cpu_base->expires_next = expires;
619 return res;
620 }
621
622 /*
623 * Initialize the high resolution related parts of cpu_base
624 */
625 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
626 {
627 base->expires_next.tv64 = KTIME_MAX;
628 base->hres_active = 0;
629 }
630
631 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
632 {
633 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
634 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
635 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
636
637 return ktime_get_update_offsets_now(offs_real, offs_boot, offs_tai);
638 }
639
640 /*
641 * Retrigger next event is called after clock was set
642 *
643 * Called with interrupts disabled via on_each_cpu()
644 */
645 static void retrigger_next_event(void *arg)
646 {
647 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
648
649 if (!hrtimer_hres_active())
650 return;
651
652 raw_spin_lock(&base->lock);
653 hrtimer_update_base(base);
654 hrtimer_force_reprogram(base, 0);
655 raw_spin_unlock(&base->lock);
656 }
657
658 /*
659 * Switch to high resolution mode
660 */
661 static int hrtimer_switch_to_hres(void)
662 {
663 int i, cpu = smp_processor_id();
664 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
665 unsigned long flags;
666
667 if (base->hres_active)
668 return 1;
669
670 local_irq_save(flags);
671
672 if (tick_init_highres()) {
673 local_irq_restore(flags);
674 printk(KERN_WARNING "Could not switch to high resolution "
675 "mode on CPU %d\n", cpu);
676 return 0;
677 }
678 base->hres_active = 1;
679 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
680 base->clock_base[i].resolution = KTIME_HIGH_RES;
681
682 tick_setup_sched_timer();
683 /* "Retrigger" the interrupt to get things going */
684 retrigger_next_event(NULL);
685 local_irq_restore(flags);
686 return 1;
687 }
688
689 static void clock_was_set_work(struct work_struct *work)
690 {
691 clock_was_set();
692 }
693
694 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
695
696 /*
697 * Called from timekeeping and resume code to reprogramm the hrtimer
698 * interrupt device on all cpus.
699 */
700 void clock_was_set_delayed(void)
701 {
702 schedule_work(&hrtimer_work);
703 }
704
705 #else
706
707 static inline int hrtimer_hres_active(void) { return 0; }
708 static inline int hrtimer_is_hres_enabled(void) { return 0; }
709 static inline int hrtimer_switch_to_hres(void) { return 0; }
710 static inline void
711 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
712 static inline int hrtimer_reprogram(struct hrtimer *timer,
713 struct hrtimer_clock_base *base)
714 {
715 return 0;
716 }
717 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
718 static inline void retrigger_next_event(void *arg) { }
719
720 #endif /* CONFIG_HIGH_RES_TIMERS */
721
722 /*
723 * Clock realtime was set
724 *
725 * Change the offset of the realtime clock vs. the monotonic
726 * clock.
727 *
728 * We might have to reprogram the high resolution timer interrupt. On
729 * SMP we call the architecture specific code to retrigger _all_ high
730 * resolution timer interrupts. On UP we just disable interrupts and
731 * call the high resolution interrupt code.
732 */
733 void clock_was_set(void)
734 {
735 #ifdef CONFIG_HIGH_RES_TIMERS
736 /* Retrigger the CPU local events everywhere */
737 on_each_cpu(retrigger_next_event, NULL, 1);
738 #endif
739 timerfd_clock_was_set();
740 }
741
742 /*
743 * During resume we might have to reprogram the high resolution timer
744 * interrupt on all online CPUs. However, all other CPUs will be
745 * stopped with IRQs interrupts disabled so the clock_was_set() call
746 * must be deferred.
747 */
748 void hrtimers_resume(void)
749 {
750 WARN_ONCE(!irqs_disabled(),
751 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
752
753 /* Retrigger on the local CPU */
754 retrigger_next_event(NULL);
755 /* And schedule a retrigger for all others */
756 clock_was_set_delayed();
757 }
758
759 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
760 {
761 #ifdef CONFIG_TIMER_STATS
762 if (timer->start_site)
763 return;
764 timer->start_site = __builtin_return_address(0);
765 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
766 timer->start_pid = current->pid;
767 #endif
768 }
769
770 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
771 {
772 #ifdef CONFIG_TIMER_STATS
773 timer->start_site = NULL;
774 #endif
775 }
776
777 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
778 {
779 #ifdef CONFIG_TIMER_STATS
780 if (likely(!timer_stats_active))
781 return;
782 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
783 timer->function, timer->start_comm, 0);
784 #endif
785 }
786
787 /*
788 * Counterpart to lock_hrtimer_base above:
789 */
790 static inline
791 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
792 {
793 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
794 }
795
796 /**
797 * hrtimer_forward - forward the timer expiry
798 * @timer: hrtimer to forward
799 * @now: forward past this time
800 * @interval: the interval to forward
801 *
802 * Forward the timer expiry so it will expire in the future.
803 * Returns the number of overruns.
804 */
805 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
806 {
807 u64 orun = 1;
808 ktime_t delta;
809
810 delta = ktime_sub(now, hrtimer_get_expires(timer));
811
812 if (delta.tv64 < 0)
813 return 0;
814
815 if (interval.tv64 < timer->base->resolution.tv64)
816 interval.tv64 = timer->base->resolution.tv64;
817
818 if (unlikely(delta.tv64 >= interval.tv64)) {
819 s64 incr = ktime_to_ns(interval);
820
821 orun = ktime_divns(delta, incr);
822 hrtimer_add_expires_ns(timer, incr * orun);
823 if (hrtimer_get_expires_tv64(timer) > now.tv64)
824 return orun;
825 /*
826 * This (and the ktime_add() below) is the
827 * correction for exact:
828 */
829 orun++;
830 }
831 hrtimer_add_expires(timer, interval);
832
833 return orun;
834 }
835 EXPORT_SYMBOL_GPL(hrtimer_forward);
836
837 /*
838 * enqueue_hrtimer - internal function to (re)start a timer
839 *
840 * The timer is inserted in expiry order. Insertion into the
841 * red black tree is O(log(n)). Must hold the base lock.
842 *
843 * Returns 1 when the new timer is the leftmost timer in the tree.
844 */
845 static int enqueue_hrtimer(struct hrtimer *timer,
846 struct hrtimer_clock_base *base)
847 {
848 debug_activate(timer);
849
850 timerqueue_add(&base->active, &timer->node);
851 base->cpu_base->active_bases |= 1 << base->index;
852
853 /*
854 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
855 * state of a possibly running callback.
856 */
857 timer->state |= HRTIMER_STATE_ENQUEUED;
858
859 return (&timer->node == base->active.next);
860 }
861
862 /*
863 * __remove_hrtimer - internal function to remove a timer
864 *
865 * Caller must hold the base lock.
866 *
867 * High resolution timer mode reprograms the clock event device when the
868 * timer is the one which expires next. The caller can disable this by setting
869 * reprogram to zero. This is useful, when the context does a reprogramming
870 * anyway (e.g. timer interrupt)
871 */
872 static void __remove_hrtimer(struct hrtimer *timer,
873 struct hrtimer_clock_base *base,
874 unsigned long newstate, int reprogram)
875 {
876 struct timerqueue_node *next_timer;
877 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
878 goto out;
879
880 next_timer = timerqueue_getnext(&base->active);
881 timerqueue_del(&base->active, &timer->node);
882 if (&timer->node == next_timer) {
883 #ifdef CONFIG_HIGH_RES_TIMERS
884 /* Reprogram the clock event device. if enabled */
885 if (reprogram && hrtimer_hres_active()) {
886 ktime_t expires;
887
888 expires = ktime_sub(hrtimer_get_expires(timer),
889 base->offset);
890 if (base->cpu_base->expires_next.tv64 == expires.tv64)
891 hrtimer_force_reprogram(base->cpu_base, 1);
892 }
893 #endif
894 }
895 if (!timerqueue_getnext(&base->active))
896 base->cpu_base->active_bases &= ~(1 << base->index);
897 out:
898 timer->state = newstate;
899 }
900
901 /*
902 * remove hrtimer, called with base lock held
903 */
904 static inline int
905 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
906 {
907 if (hrtimer_is_queued(timer)) {
908 unsigned long state;
909 int reprogram;
910
911 /*
912 * Remove the timer and force reprogramming when high
913 * resolution mode is active and the timer is on the current
914 * CPU. If we remove a timer on another CPU, reprogramming is
915 * skipped. The interrupt event on this CPU is fired and
916 * reprogramming happens in the interrupt handler. This is a
917 * rare case and less expensive than a smp call.
918 */
919 debug_deactivate(timer);
920 timer_stats_hrtimer_clear_start_info(timer);
921 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
922 /*
923 * We must preserve the CALLBACK state flag here,
924 * otherwise we could move the timer base in
925 * switch_hrtimer_base.
926 */
927 state = timer->state & HRTIMER_STATE_CALLBACK;
928 __remove_hrtimer(timer, base, state, reprogram);
929 return 1;
930 }
931 return 0;
932 }
933
934 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
935 unsigned long delta_ns, const enum hrtimer_mode mode,
936 int wakeup)
937 {
938 struct hrtimer_clock_base *base, *new_base;
939 unsigned long flags;
940 int ret, leftmost;
941
942 base = lock_hrtimer_base(timer, &flags);
943
944 /* Remove an active timer from the queue: */
945 ret = remove_hrtimer(timer, base);
946
947 if (mode & HRTIMER_MODE_REL) {
948 tim = ktime_add_safe(tim, base->get_time());
949 /*
950 * CONFIG_TIME_LOW_RES is a temporary way for architectures
951 * to signal that they simply return xtime in
952 * do_gettimeoffset(). In this case we want to round up by
953 * resolution when starting a relative timer, to avoid short
954 * timeouts. This will go away with the GTOD framework.
955 */
956 #ifdef CONFIG_TIME_LOW_RES
957 tim = ktime_add_safe(tim, base->resolution);
958 #endif
959 }
960
961 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
962
963 /* Switch the timer base, if necessary: */
964 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
965
966 timer_stats_hrtimer_set_start_info(timer);
967
968 leftmost = enqueue_hrtimer(timer, new_base);
969
970 if (!leftmost) {
971 unlock_hrtimer_base(timer, &flags);
972 return ret;
973 }
974
975 if (!hrtimer_is_hres_active(timer)) {
976 /*
977 * Kick to reschedule the next tick to handle the new timer
978 * on dynticks target.
979 */
980 wake_up_nohz_cpu(new_base->cpu_base->cpu);
981 } else if (new_base->cpu_base == this_cpu_ptr(&hrtimer_bases) &&
982 hrtimer_reprogram(timer, new_base)) {
983 /*
984 * Only allow reprogramming if the new base is on this CPU.
985 * (it might still be on another CPU if the timer was pending)
986 *
987 * XXX send_remote_softirq() ?
988 */
989 if (wakeup) {
990 /*
991 * We need to drop cpu_base->lock to avoid a
992 * lock ordering issue vs. rq->lock.
993 */
994 raw_spin_unlock(&new_base->cpu_base->lock);
995 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
996 local_irq_restore(flags);
997 return ret;
998 } else {
999 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1000 }
1001 }
1002
1003 unlock_hrtimer_base(timer, &flags);
1004
1005 return ret;
1006 }
1007 EXPORT_SYMBOL_GPL(__hrtimer_start_range_ns);
1008
1009 /**
1010 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1011 * @timer: the timer to be added
1012 * @tim: expiry time
1013 * @delta_ns: "slack" range for the timer
1014 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1015 * relative (HRTIMER_MODE_REL)
1016 *
1017 * Returns:
1018 * 0 on success
1019 * 1 when the timer was active
1020 */
1021 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1022 unsigned long delta_ns, const enum hrtimer_mode mode)
1023 {
1024 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1025 }
1026 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1027
1028 /**
1029 * hrtimer_start - (re)start an hrtimer on the current CPU
1030 * @timer: the timer to be added
1031 * @tim: expiry time
1032 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1033 * relative (HRTIMER_MODE_REL)
1034 *
1035 * Returns:
1036 * 0 on success
1037 * 1 when the timer was active
1038 */
1039 int
1040 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1041 {
1042 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1043 }
1044 EXPORT_SYMBOL_GPL(hrtimer_start);
1045
1046
1047 /**
1048 * hrtimer_try_to_cancel - try to deactivate a timer
1049 * @timer: hrtimer to stop
1050 *
1051 * Returns:
1052 * 0 when the timer was not active
1053 * 1 when the timer was active
1054 * -1 when the timer is currently excuting the callback function and
1055 * cannot be stopped
1056 */
1057 int hrtimer_try_to_cancel(struct hrtimer *timer)
1058 {
1059 struct hrtimer_clock_base *base;
1060 unsigned long flags;
1061 int ret = -1;
1062
1063 base = lock_hrtimer_base(timer, &flags);
1064
1065 if (!hrtimer_callback_running(timer))
1066 ret = remove_hrtimer(timer, base);
1067
1068 unlock_hrtimer_base(timer, &flags);
1069
1070 return ret;
1071
1072 }
1073 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1074
1075 /**
1076 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1077 * @timer: the timer to be cancelled
1078 *
1079 * Returns:
1080 * 0 when the timer was not active
1081 * 1 when the timer was active
1082 */
1083 int hrtimer_cancel(struct hrtimer *timer)
1084 {
1085 for (;;) {
1086 int ret = hrtimer_try_to_cancel(timer);
1087
1088 if (ret >= 0)
1089 return ret;
1090 cpu_relax();
1091 }
1092 }
1093 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1094
1095 /**
1096 * hrtimer_get_remaining - get remaining time for the timer
1097 * @timer: the timer to read
1098 */
1099 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1100 {
1101 unsigned long flags;
1102 ktime_t rem;
1103
1104 lock_hrtimer_base(timer, &flags);
1105 rem = hrtimer_expires_remaining(timer);
1106 unlock_hrtimer_base(timer, &flags);
1107
1108 return rem;
1109 }
1110 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1111
1112 #ifdef CONFIG_NO_HZ_COMMON
1113 /**
1114 * hrtimer_get_next_event - get the time until next expiry event
1115 *
1116 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1117 * is pending.
1118 */
1119 ktime_t hrtimer_get_next_event(void)
1120 {
1121 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1122 ktime_t mindelta = { .tv64 = KTIME_MAX };
1123 unsigned long flags;
1124
1125 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1126
1127 if (!hrtimer_hres_active())
1128 mindelta = ktime_sub(__hrtimer_get_next_event(cpu_base),
1129 ktime_get());
1130
1131 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1132
1133 if (mindelta.tv64 < 0)
1134 mindelta.tv64 = 0;
1135 return mindelta;
1136 }
1137 #endif
1138
1139 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1140 enum hrtimer_mode mode)
1141 {
1142 struct hrtimer_cpu_base *cpu_base;
1143 int base;
1144
1145 memset(timer, 0, sizeof(struct hrtimer));
1146
1147 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1148
1149 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1150 clock_id = CLOCK_MONOTONIC;
1151
1152 base = hrtimer_clockid_to_base(clock_id);
1153 timer->base = &cpu_base->clock_base[base];
1154 timerqueue_init(&timer->node);
1155
1156 #ifdef CONFIG_TIMER_STATS
1157 timer->start_site = NULL;
1158 timer->start_pid = -1;
1159 memset(timer->start_comm, 0, TASK_COMM_LEN);
1160 #endif
1161 }
1162
1163 /**
1164 * hrtimer_init - initialize a timer to the given clock
1165 * @timer: the timer to be initialized
1166 * @clock_id: the clock to be used
1167 * @mode: timer mode abs/rel
1168 */
1169 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1170 enum hrtimer_mode mode)
1171 {
1172 debug_init(timer, clock_id, mode);
1173 __hrtimer_init(timer, clock_id, mode);
1174 }
1175 EXPORT_SYMBOL_GPL(hrtimer_init);
1176
1177 /**
1178 * hrtimer_get_res - get the timer resolution for a clock
1179 * @which_clock: which clock to query
1180 * @tp: pointer to timespec variable to store the resolution
1181 *
1182 * Store the resolution of the clock selected by @which_clock in the
1183 * variable pointed to by @tp.
1184 */
1185 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1186 {
1187 struct hrtimer_cpu_base *cpu_base;
1188 int base = hrtimer_clockid_to_base(which_clock);
1189
1190 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1191 *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1192
1193 return 0;
1194 }
1195 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1196
1197 static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1198 {
1199 struct hrtimer_clock_base *base = timer->base;
1200 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1201 enum hrtimer_restart (*fn)(struct hrtimer *);
1202 int restart;
1203
1204 WARN_ON(!irqs_disabled());
1205
1206 debug_deactivate(timer);
1207 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1208 timer_stats_account_hrtimer(timer);
1209 fn = timer->function;
1210
1211 /*
1212 * Because we run timers from hardirq context, there is no chance
1213 * they get migrated to another cpu, therefore its safe to unlock
1214 * the timer base.
1215 */
1216 raw_spin_unlock(&cpu_base->lock);
1217 trace_hrtimer_expire_entry(timer, now);
1218 restart = fn(timer);
1219 trace_hrtimer_expire_exit(timer);
1220 raw_spin_lock(&cpu_base->lock);
1221
1222 /*
1223 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1224 * we do not reprogramm the event hardware. Happens either in
1225 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1226 */
1227 if (restart != HRTIMER_NORESTART) {
1228 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1229 enqueue_hrtimer(timer, base);
1230 }
1231
1232 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1233
1234 timer->state &= ~HRTIMER_STATE_CALLBACK;
1235 }
1236
1237 #ifdef CONFIG_HIGH_RES_TIMERS
1238
1239 /*
1240 * High resolution timer interrupt
1241 * Called with interrupts disabled
1242 */
1243 void hrtimer_interrupt(struct clock_event_device *dev)
1244 {
1245 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1246 ktime_t expires_next, now, entry_time, delta;
1247 int i, retries = 0;
1248
1249 BUG_ON(!cpu_base->hres_active);
1250 cpu_base->nr_events++;
1251 dev->next_event.tv64 = KTIME_MAX;
1252
1253 raw_spin_lock(&cpu_base->lock);
1254 entry_time = now = hrtimer_update_base(cpu_base);
1255 retry:
1256 cpu_base->in_hrtirq = 1;
1257 /*
1258 * We set expires_next to KTIME_MAX here with cpu_base->lock
1259 * held to prevent that a timer is enqueued in our queue via
1260 * the migration code. This does not affect enqueueing of
1261 * timers which run their callback and need to be requeued on
1262 * this CPU.
1263 */
1264 cpu_base->expires_next.tv64 = KTIME_MAX;
1265
1266 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1267 struct hrtimer_clock_base *base;
1268 struct timerqueue_node *node;
1269 ktime_t basenow;
1270
1271 if (!(cpu_base->active_bases & (1 << i)))
1272 continue;
1273
1274 base = cpu_base->clock_base + i;
1275 basenow = ktime_add(now, base->offset);
1276
1277 while ((node = timerqueue_getnext(&base->active))) {
1278 struct hrtimer *timer;
1279
1280 timer = container_of(node, struct hrtimer, node);
1281
1282 /*
1283 * The immediate goal for using the softexpires is
1284 * minimizing wakeups, not running timers at the
1285 * earliest interrupt after their soft expiration.
1286 * This allows us to avoid using a Priority Search
1287 * Tree, which can answer a stabbing querry for
1288 * overlapping intervals and instead use the simple
1289 * BST we already have.
1290 * We don't add extra wakeups by delaying timers that
1291 * are right-of a not yet expired timer, because that
1292 * timer will have to trigger a wakeup anyway.
1293 */
1294 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
1295 break;
1296
1297 __run_hrtimer(timer, &basenow);
1298 }
1299 }
1300 /* Reevaluate the clock bases for the next expiry */
1301 expires_next = __hrtimer_get_next_event(cpu_base);
1302 /*
1303 * Store the new expiry value so the migration code can verify
1304 * against it.
1305 */
1306 cpu_base->expires_next = expires_next;
1307 cpu_base->in_hrtirq = 0;
1308 raw_spin_unlock(&cpu_base->lock);
1309
1310 /* Reprogramming necessary ? */
1311 if (expires_next.tv64 == KTIME_MAX ||
1312 !tick_program_event(expires_next, 0)) {
1313 cpu_base->hang_detected = 0;
1314 return;
1315 }
1316
1317 /*
1318 * The next timer was already expired due to:
1319 * - tracing
1320 * - long lasting callbacks
1321 * - being scheduled away when running in a VM
1322 *
1323 * We need to prevent that we loop forever in the hrtimer
1324 * interrupt routine. We give it 3 attempts to avoid
1325 * overreacting on some spurious event.
1326 *
1327 * Acquire base lock for updating the offsets and retrieving
1328 * the current time.
1329 */
1330 raw_spin_lock(&cpu_base->lock);
1331 now = hrtimer_update_base(cpu_base);
1332 cpu_base->nr_retries++;
1333 if (++retries < 3)
1334 goto retry;
1335 /*
1336 * Give the system a chance to do something else than looping
1337 * here. We stored the entry time, so we know exactly how long
1338 * we spent here. We schedule the next event this amount of
1339 * time away.
1340 */
1341 cpu_base->nr_hangs++;
1342 cpu_base->hang_detected = 1;
1343 raw_spin_unlock(&cpu_base->lock);
1344 delta = ktime_sub(now, entry_time);
1345 if (delta.tv64 > cpu_base->max_hang_time.tv64)
1346 cpu_base->max_hang_time = delta;
1347 /*
1348 * Limit it to a sensible value as we enforce a longer
1349 * delay. Give the CPU at least 100ms to catch up.
1350 */
1351 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1352 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1353 else
1354 expires_next = ktime_add(now, delta);
1355 tick_program_event(expires_next, 1);
1356 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1357 ktime_to_ns(delta));
1358 }
1359
1360 /*
1361 * local version of hrtimer_peek_ahead_timers() called with interrupts
1362 * disabled.
1363 */
1364 static void __hrtimer_peek_ahead_timers(void)
1365 {
1366 struct tick_device *td;
1367
1368 if (!hrtimer_hres_active())
1369 return;
1370
1371 td = this_cpu_ptr(&tick_cpu_device);
1372 if (td && td->evtdev)
1373 hrtimer_interrupt(td->evtdev);
1374 }
1375
1376 /**
1377 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1378 *
1379 * hrtimer_peek_ahead_timers will peek at the timer queue of
1380 * the current cpu and check if there are any timers for which
1381 * the soft expires time has passed. If any such timers exist,
1382 * they are run immediately and then removed from the timer queue.
1383 *
1384 */
1385 void hrtimer_peek_ahead_timers(void)
1386 {
1387 unsigned long flags;
1388
1389 local_irq_save(flags);
1390 __hrtimer_peek_ahead_timers();
1391 local_irq_restore(flags);
1392 }
1393
1394 static void run_hrtimer_softirq(struct softirq_action *h)
1395 {
1396 hrtimer_peek_ahead_timers();
1397 }
1398
1399 #else /* CONFIG_HIGH_RES_TIMERS */
1400
1401 static inline void __hrtimer_peek_ahead_timers(void) { }
1402
1403 #endif /* !CONFIG_HIGH_RES_TIMERS */
1404
1405 /*
1406 * Called from timer softirq every jiffy, expire hrtimers:
1407 *
1408 * For HRT its the fall back code to run the softirq in the timer
1409 * softirq context in case the hrtimer initialization failed or has
1410 * not been done yet.
1411 */
1412 void hrtimer_run_pending(void)
1413 {
1414 if (hrtimer_hres_active())
1415 return;
1416
1417 /*
1418 * This _is_ ugly: We have to check in the softirq context,
1419 * whether we can switch to highres and / or nohz mode. The
1420 * clocksource switch happens in the timer interrupt with
1421 * xtime_lock held. Notification from there only sets the
1422 * check bit in the tick_oneshot code, otherwise we might
1423 * deadlock vs. xtime_lock.
1424 */
1425 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1426 hrtimer_switch_to_hres();
1427 }
1428
1429 /*
1430 * Called from hardirq context every jiffy
1431 */
1432 void hrtimer_run_queues(void)
1433 {
1434 struct timerqueue_node *node;
1435 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1436 struct hrtimer_clock_base *base;
1437 int index, gettime = 1;
1438
1439 if (hrtimer_hres_active())
1440 return;
1441
1442 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1443 base = &cpu_base->clock_base[index];
1444 if (!timerqueue_getnext(&base->active))
1445 continue;
1446
1447 if (gettime) {
1448 hrtimer_get_softirq_time(cpu_base);
1449 gettime = 0;
1450 }
1451
1452 raw_spin_lock(&cpu_base->lock);
1453
1454 while ((node = timerqueue_getnext(&base->active))) {
1455 struct hrtimer *timer;
1456
1457 timer = container_of(node, struct hrtimer, node);
1458 if (base->softirq_time.tv64 <=
1459 hrtimer_get_expires_tv64(timer))
1460 break;
1461
1462 __run_hrtimer(timer, &base->softirq_time);
1463 }
1464 raw_spin_unlock(&cpu_base->lock);
1465 }
1466 }
1467
1468 /*
1469 * Sleep related functions:
1470 */
1471 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1472 {
1473 struct hrtimer_sleeper *t =
1474 container_of(timer, struct hrtimer_sleeper, timer);
1475 struct task_struct *task = t->task;
1476
1477 t->task = NULL;
1478 if (task)
1479 wake_up_process(task);
1480
1481 return HRTIMER_NORESTART;
1482 }
1483
1484 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1485 {
1486 sl->timer.function = hrtimer_wakeup;
1487 sl->task = task;
1488 }
1489 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1490
1491 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1492 {
1493 hrtimer_init_sleeper(t, current);
1494
1495 do {
1496 set_current_state(TASK_INTERRUPTIBLE);
1497 hrtimer_start_expires(&t->timer, mode);
1498 if (!hrtimer_active(&t->timer))
1499 t->task = NULL;
1500
1501 if (likely(t->task))
1502 freezable_schedule();
1503
1504 hrtimer_cancel(&t->timer);
1505 mode = HRTIMER_MODE_ABS;
1506
1507 } while (t->task && !signal_pending(current));
1508
1509 __set_current_state(TASK_RUNNING);
1510
1511 return t->task == NULL;
1512 }
1513
1514 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1515 {
1516 struct timespec rmt;
1517 ktime_t rem;
1518
1519 rem = hrtimer_expires_remaining(timer);
1520 if (rem.tv64 <= 0)
1521 return 0;
1522 rmt = ktime_to_timespec(rem);
1523
1524 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1525 return -EFAULT;
1526
1527 return 1;
1528 }
1529
1530 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1531 {
1532 struct hrtimer_sleeper t;
1533 struct timespec __user *rmtp;
1534 int ret = 0;
1535
1536 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1537 HRTIMER_MODE_ABS);
1538 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1539
1540 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1541 goto out;
1542
1543 rmtp = restart->nanosleep.rmtp;
1544 if (rmtp) {
1545 ret = update_rmtp(&t.timer, rmtp);
1546 if (ret <= 0)
1547 goto out;
1548 }
1549
1550 /* The other values in restart are already filled in */
1551 ret = -ERESTART_RESTARTBLOCK;
1552 out:
1553 destroy_hrtimer_on_stack(&t.timer);
1554 return ret;
1555 }
1556
1557 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1558 const enum hrtimer_mode mode, const clockid_t clockid)
1559 {
1560 struct restart_block *restart;
1561 struct hrtimer_sleeper t;
1562 int ret = 0;
1563 unsigned long slack;
1564
1565 slack = current->timer_slack_ns;
1566 if (dl_task(current) || rt_task(current))
1567 slack = 0;
1568
1569 hrtimer_init_on_stack(&t.timer, clockid, mode);
1570 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1571 if (do_nanosleep(&t, mode))
1572 goto out;
1573
1574 /* Absolute timers do not update the rmtp value and restart: */
1575 if (mode == HRTIMER_MODE_ABS) {
1576 ret = -ERESTARTNOHAND;
1577 goto out;
1578 }
1579
1580 if (rmtp) {
1581 ret = update_rmtp(&t.timer, rmtp);
1582 if (ret <= 0)
1583 goto out;
1584 }
1585
1586 restart = &current->restart_block;
1587 restart->fn = hrtimer_nanosleep_restart;
1588 restart->nanosleep.clockid = t.timer.base->clockid;
1589 restart->nanosleep.rmtp = rmtp;
1590 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1591
1592 ret = -ERESTART_RESTARTBLOCK;
1593 out:
1594 destroy_hrtimer_on_stack(&t.timer);
1595 return ret;
1596 }
1597
1598 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1599 struct timespec __user *, rmtp)
1600 {
1601 struct timespec tu;
1602
1603 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1604 return -EFAULT;
1605
1606 if (!timespec_valid(&tu))
1607 return -EINVAL;
1608
1609 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1610 }
1611
1612 /*
1613 * Functions related to boot-time initialization:
1614 */
1615 static void init_hrtimers_cpu(int cpu)
1616 {
1617 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1618 int i;
1619
1620 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1621 cpu_base->clock_base[i].cpu_base = cpu_base;
1622 timerqueue_init_head(&cpu_base->clock_base[i].active);
1623 }
1624
1625 cpu_base->cpu = cpu;
1626 hrtimer_init_hres(cpu_base);
1627 }
1628
1629 #ifdef CONFIG_HOTPLUG_CPU
1630
1631 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1632 struct hrtimer_clock_base *new_base)
1633 {
1634 struct hrtimer *timer;
1635 struct timerqueue_node *node;
1636
1637 while ((node = timerqueue_getnext(&old_base->active))) {
1638 timer = container_of(node, struct hrtimer, node);
1639 BUG_ON(hrtimer_callback_running(timer));
1640 debug_deactivate(timer);
1641
1642 /*
1643 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1644 * timer could be seen as !active and just vanish away
1645 * under us on another CPU
1646 */
1647 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1648 timer->base = new_base;
1649 /*
1650 * Enqueue the timers on the new cpu. This does not
1651 * reprogram the event device in case the timer
1652 * expires before the earliest on this CPU, but we run
1653 * hrtimer_interrupt after we migrated everything to
1654 * sort out already expired timers and reprogram the
1655 * event device.
1656 */
1657 enqueue_hrtimer(timer, new_base);
1658
1659 /* Clear the migration state bit */
1660 timer->state &= ~HRTIMER_STATE_MIGRATE;
1661 }
1662 }
1663
1664 static void migrate_hrtimers(int scpu)
1665 {
1666 struct hrtimer_cpu_base *old_base, *new_base;
1667 int i;
1668
1669 BUG_ON(cpu_online(scpu));
1670 tick_cancel_sched_timer(scpu);
1671
1672 local_irq_disable();
1673 old_base = &per_cpu(hrtimer_bases, scpu);
1674 new_base = this_cpu_ptr(&hrtimer_bases);
1675 /*
1676 * The caller is globally serialized and nobody else
1677 * takes two locks at once, deadlock is not possible.
1678 */
1679 raw_spin_lock(&new_base->lock);
1680 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1681
1682 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1683 migrate_hrtimer_list(&old_base->clock_base[i],
1684 &new_base->clock_base[i]);
1685 }
1686
1687 raw_spin_unlock(&old_base->lock);
1688 raw_spin_unlock(&new_base->lock);
1689
1690 /* Check, if we got expired work to do */
1691 __hrtimer_peek_ahead_timers();
1692 local_irq_enable();
1693 }
1694
1695 #endif /* CONFIG_HOTPLUG_CPU */
1696
1697 static int hrtimer_cpu_notify(struct notifier_block *self,
1698 unsigned long action, void *hcpu)
1699 {
1700 int scpu = (long)hcpu;
1701
1702 switch (action) {
1703
1704 case CPU_UP_PREPARE:
1705 case CPU_UP_PREPARE_FROZEN:
1706 init_hrtimers_cpu(scpu);
1707 break;
1708
1709 #ifdef CONFIG_HOTPLUG_CPU
1710 case CPU_DEAD:
1711 case CPU_DEAD_FROZEN:
1712 migrate_hrtimers(scpu);
1713 break;
1714 #endif
1715
1716 default:
1717 break;
1718 }
1719
1720 return NOTIFY_OK;
1721 }
1722
1723 static struct notifier_block hrtimers_nb = {
1724 .notifier_call = hrtimer_cpu_notify,
1725 };
1726
1727 void __init hrtimers_init(void)
1728 {
1729 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1730 (void *)(long)smp_processor_id());
1731 register_cpu_notifier(&hrtimers_nb);
1732 #ifdef CONFIG_HIGH_RES_TIMERS
1733 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1734 #endif
1735 }
1736
1737 /**
1738 * schedule_hrtimeout_range_clock - sleep until timeout
1739 * @expires: timeout value (ktime_t)
1740 * @delta: slack in expires timeout (ktime_t)
1741 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1742 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1743 */
1744 int __sched
1745 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1746 const enum hrtimer_mode mode, int clock)
1747 {
1748 struct hrtimer_sleeper t;
1749
1750 /*
1751 * Optimize when a zero timeout value is given. It does not
1752 * matter whether this is an absolute or a relative time.
1753 */
1754 if (expires && !expires->tv64) {
1755 __set_current_state(TASK_RUNNING);
1756 return 0;
1757 }
1758
1759 /*
1760 * A NULL parameter means "infinite"
1761 */
1762 if (!expires) {
1763 schedule();
1764 return -EINTR;
1765 }
1766
1767 hrtimer_init_on_stack(&t.timer, clock, mode);
1768 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1769
1770 hrtimer_init_sleeper(&t, current);
1771
1772 hrtimer_start_expires(&t.timer, mode);
1773 if (!hrtimer_active(&t.timer))
1774 t.task = NULL;
1775
1776 if (likely(t.task))
1777 schedule();
1778
1779 hrtimer_cancel(&t.timer);
1780 destroy_hrtimer_on_stack(&t.timer);
1781
1782 __set_current_state(TASK_RUNNING);
1783
1784 return !t.task ? 0 : -EINTR;
1785 }
1786
1787 /**
1788 * schedule_hrtimeout_range - sleep until timeout
1789 * @expires: timeout value (ktime_t)
1790 * @delta: slack in expires timeout (ktime_t)
1791 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1792 *
1793 * Make the current task sleep until the given expiry time has
1794 * elapsed. The routine will return immediately unless
1795 * the current task state has been set (see set_current_state()).
1796 *
1797 * The @delta argument gives the kernel the freedom to schedule the
1798 * actual wakeup to a time that is both power and performance friendly.
1799 * The kernel give the normal best effort behavior for "@expires+@delta",
1800 * but may decide to fire the timer earlier, but no earlier than @expires.
1801 *
1802 * You can set the task state as follows -
1803 *
1804 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1805 * pass before the routine returns.
1806 *
1807 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1808 * delivered to the current task.
1809 *
1810 * The current task state is guaranteed to be TASK_RUNNING when this
1811 * routine returns.
1812 *
1813 * Returns 0 when the timer has expired otherwise -EINTR
1814 */
1815 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1816 const enum hrtimer_mode mode)
1817 {
1818 return schedule_hrtimeout_range_clock(expires, delta, mode,
1819 CLOCK_MONOTONIC);
1820 }
1821 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1822
1823 /**
1824 * schedule_hrtimeout - sleep until timeout
1825 * @expires: timeout value (ktime_t)
1826 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1827 *
1828 * Make the current task sleep until the given expiry time has
1829 * elapsed. The routine will return immediately unless
1830 * the current task state has been set (see set_current_state()).
1831 *
1832 * You can set the task state as follows -
1833 *
1834 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1835 * pass before the routine returns.
1836 *
1837 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1838 * delivered to the current task.
1839 *
1840 * The current task state is guaranteed to be TASK_RUNNING when this
1841 * routine returns.
1842 *
1843 * Returns 0 when the timer has expired otherwise -EINTR
1844 */
1845 int __sched schedule_hrtimeout(ktime_t *expires,
1846 const enum hrtimer_mode mode)
1847 {
1848 return schedule_hrtimeout_range(expires, 0, mode);
1849 }
1850 EXPORT_SYMBOL_GPL(schedule_hrtimeout);