]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/time/ntp.c
NTP: Add a CONFIG_RTC_SYSTOHC configuration
[mirror_ubuntu-jammy-kernel.git] / kernel / time / ntp.c
1 /*
2 * NTP state machine interfaces and logic.
3 *
4 * This code was mainly moved from kernel/timer.c and kernel/time.c
5 * Please see those files for relevant copyright info and historical
6 * changelogs.
7 */
8 #include <linux/capability.h>
9 #include <linux/clocksource.h>
10 #include <linux/workqueue.h>
11 #include <linux/hrtimer.h>
12 #include <linux/jiffies.h>
13 #include <linux/math64.h>
14 #include <linux/timex.h>
15 #include <linux/time.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/rtc.h>
19
20 #include "tick-internal.h"
21
22 /*
23 * NTP timekeeping variables:
24 */
25
26 DEFINE_SPINLOCK(ntp_lock);
27
28
29 /* USER_HZ period (usecs): */
30 unsigned long tick_usec = TICK_USEC;
31
32 /* SHIFTED_HZ period (nsecs): */
33 unsigned long tick_nsec;
34
35 static u64 tick_length;
36 static u64 tick_length_base;
37
38 #define MAX_TICKADJ 500LL /* usecs */
39 #define MAX_TICKADJ_SCALED \
40 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
41
42 /*
43 * phase-lock loop variables
44 */
45
46 /*
47 * clock synchronization status
48 *
49 * (TIME_ERROR prevents overwriting the CMOS clock)
50 */
51 static int time_state = TIME_OK;
52
53 /* clock status bits: */
54 static int time_status = STA_UNSYNC;
55
56 /* TAI offset (secs): */
57 static long time_tai;
58
59 /* time adjustment (nsecs): */
60 static s64 time_offset;
61
62 /* pll time constant: */
63 static long time_constant = 2;
64
65 /* maximum error (usecs): */
66 static long time_maxerror = NTP_PHASE_LIMIT;
67
68 /* estimated error (usecs): */
69 static long time_esterror = NTP_PHASE_LIMIT;
70
71 /* frequency offset (scaled nsecs/secs): */
72 static s64 time_freq;
73
74 /* time at last adjustment (secs): */
75 static long time_reftime;
76
77 static long time_adjust;
78
79 /* constant (boot-param configurable) NTP tick adjustment (upscaled) */
80 static s64 ntp_tick_adj;
81
82 #ifdef CONFIG_NTP_PPS
83
84 /*
85 * The following variables are used when a pulse-per-second (PPS) signal
86 * is available. They establish the engineering parameters of the clock
87 * discipline loop when controlled by the PPS signal.
88 */
89 #define PPS_VALID 10 /* PPS signal watchdog max (s) */
90 #define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
91 #define PPS_INTMIN 2 /* min freq interval (s) (shift) */
92 #define PPS_INTMAX 8 /* max freq interval (s) (shift) */
93 #define PPS_INTCOUNT 4 /* number of consecutive good intervals to
94 increase pps_shift or consecutive bad
95 intervals to decrease it */
96 #define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
97
98 static int pps_valid; /* signal watchdog counter */
99 static long pps_tf[3]; /* phase median filter */
100 static long pps_jitter; /* current jitter (ns) */
101 static struct timespec pps_fbase; /* beginning of the last freq interval */
102 static int pps_shift; /* current interval duration (s) (shift) */
103 static int pps_intcnt; /* interval counter */
104 static s64 pps_freq; /* frequency offset (scaled ns/s) */
105 static long pps_stabil; /* current stability (scaled ns/s) */
106
107 /*
108 * PPS signal quality monitors
109 */
110 static long pps_calcnt; /* calibration intervals */
111 static long pps_jitcnt; /* jitter limit exceeded */
112 static long pps_stbcnt; /* stability limit exceeded */
113 static long pps_errcnt; /* calibration errors */
114
115
116 /* PPS kernel consumer compensates the whole phase error immediately.
117 * Otherwise, reduce the offset by a fixed factor times the time constant.
118 */
119 static inline s64 ntp_offset_chunk(s64 offset)
120 {
121 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
122 return offset;
123 else
124 return shift_right(offset, SHIFT_PLL + time_constant);
125 }
126
127 static inline void pps_reset_freq_interval(void)
128 {
129 /* the PPS calibration interval may end
130 surprisingly early */
131 pps_shift = PPS_INTMIN;
132 pps_intcnt = 0;
133 }
134
135 /**
136 * pps_clear - Clears the PPS state variables
137 *
138 * Must be called while holding a write on the ntp_lock
139 */
140 static inline void pps_clear(void)
141 {
142 pps_reset_freq_interval();
143 pps_tf[0] = 0;
144 pps_tf[1] = 0;
145 pps_tf[2] = 0;
146 pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
147 pps_freq = 0;
148 }
149
150 /* Decrease pps_valid to indicate that another second has passed since
151 * the last PPS signal. When it reaches 0, indicate that PPS signal is
152 * missing.
153 *
154 * Must be called while holding a write on the ntp_lock
155 */
156 static inline void pps_dec_valid(void)
157 {
158 if (pps_valid > 0)
159 pps_valid--;
160 else {
161 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
162 STA_PPSWANDER | STA_PPSERROR);
163 pps_clear();
164 }
165 }
166
167 static inline void pps_set_freq(s64 freq)
168 {
169 pps_freq = freq;
170 }
171
172 static inline int is_error_status(int status)
173 {
174 return (time_status & (STA_UNSYNC|STA_CLOCKERR))
175 /* PPS signal lost when either PPS time or
176 * PPS frequency synchronization requested
177 */
178 || ((time_status & (STA_PPSFREQ|STA_PPSTIME))
179 && !(time_status & STA_PPSSIGNAL))
180 /* PPS jitter exceeded when
181 * PPS time synchronization requested */
182 || ((time_status & (STA_PPSTIME|STA_PPSJITTER))
183 == (STA_PPSTIME|STA_PPSJITTER))
184 /* PPS wander exceeded or calibration error when
185 * PPS frequency synchronization requested
186 */
187 || ((time_status & STA_PPSFREQ)
188 && (time_status & (STA_PPSWANDER|STA_PPSERROR)));
189 }
190
191 static inline void pps_fill_timex(struct timex *txc)
192 {
193 txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
194 PPM_SCALE_INV, NTP_SCALE_SHIFT);
195 txc->jitter = pps_jitter;
196 if (!(time_status & STA_NANO))
197 txc->jitter /= NSEC_PER_USEC;
198 txc->shift = pps_shift;
199 txc->stabil = pps_stabil;
200 txc->jitcnt = pps_jitcnt;
201 txc->calcnt = pps_calcnt;
202 txc->errcnt = pps_errcnt;
203 txc->stbcnt = pps_stbcnt;
204 }
205
206 #else /* !CONFIG_NTP_PPS */
207
208 static inline s64 ntp_offset_chunk(s64 offset)
209 {
210 return shift_right(offset, SHIFT_PLL + time_constant);
211 }
212
213 static inline void pps_reset_freq_interval(void) {}
214 static inline void pps_clear(void) {}
215 static inline void pps_dec_valid(void) {}
216 static inline void pps_set_freq(s64 freq) {}
217
218 static inline int is_error_status(int status)
219 {
220 return status & (STA_UNSYNC|STA_CLOCKERR);
221 }
222
223 static inline void pps_fill_timex(struct timex *txc)
224 {
225 /* PPS is not implemented, so these are zero */
226 txc->ppsfreq = 0;
227 txc->jitter = 0;
228 txc->shift = 0;
229 txc->stabil = 0;
230 txc->jitcnt = 0;
231 txc->calcnt = 0;
232 txc->errcnt = 0;
233 txc->stbcnt = 0;
234 }
235
236 #endif /* CONFIG_NTP_PPS */
237
238
239 /**
240 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
241 *
242 */
243 static inline int ntp_synced(void)
244 {
245 return !(time_status & STA_UNSYNC);
246 }
247
248
249 /*
250 * NTP methods:
251 */
252
253 /*
254 * Update (tick_length, tick_length_base, tick_nsec), based
255 * on (tick_usec, ntp_tick_adj, time_freq):
256 */
257 static void ntp_update_frequency(void)
258 {
259 u64 second_length;
260 u64 new_base;
261
262 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
263 << NTP_SCALE_SHIFT;
264
265 second_length += ntp_tick_adj;
266 second_length += time_freq;
267
268 tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
269 new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
270
271 /*
272 * Don't wait for the next second_overflow, apply
273 * the change to the tick length immediately:
274 */
275 tick_length += new_base - tick_length_base;
276 tick_length_base = new_base;
277 }
278
279 static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
280 {
281 time_status &= ~STA_MODE;
282
283 if (secs < MINSEC)
284 return 0;
285
286 if (!(time_status & STA_FLL) && (secs <= MAXSEC))
287 return 0;
288
289 time_status |= STA_MODE;
290
291 return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
292 }
293
294 static void ntp_update_offset(long offset)
295 {
296 s64 freq_adj;
297 s64 offset64;
298 long secs;
299
300 if (!(time_status & STA_PLL))
301 return;
302
303 if (!(time_status & STA_NANO))
304 offset *= NSEC_PER_USEC;
305
306 /*
307 * Scale the phase adjustment and
308 * clamp to the operating range.
309 */
310 offset = min(offset, MAXPHASE);
311 offset = max(offset, -MAXPHASE);
312
313 /*
314 * Select how the frequency is to be controlled
315 * and in which mode (PLL or FLL).
316 */
317 secs = get_seconds() - time_reftime;
318 if (unlikely(time_status & STA_FREQHOLD))
319 secs = 0;
320
321 time_reftime = get_seconds();
322
323 offset64 = offset;
324 freq_adj = ntp_update_offset_fll(offset64, secs);
325
326 /*
327 * Clamp update interval to reduce PLL gain with low
328 * sampling rate (e.g. intermittent network connection)
329 * to avoid instability.
330 */
331 if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
332 secs = 1 << (SHIFT_PLL + 1 + time_constant);
333
334 freq_adj += (offset64 * secs) <<
335 (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
336
337 freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
338
339 time_freq = max(freq_adj, -MAXFREQ_SCALED);
340
341 time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
342 }
343
344 /**
345 * ntp_clear - Clears the NTP state variables
346 */
347 void ntp_clear(void)
348 {
349 unsigned long flags;
350
351 spin_lock_irqsave(&ntp_lock, flags);
352
353 time_adjust = 0; /* stop active adjtime() */
354 time_status |= STA_UNSYNC;
355 time_maxerror = NTP_PHASE_LIMIT;
356 time_esterror = NTP_PHASE_LIMIT;
357
358 ntp_update_frequency();
359
360 tick_length = tick_length_base;
361 time_offset = 0;
362
363 /* Clear PPS state variables */
364 pps_clear();
365 spin_unlock_irqrestore(&ntp_lock, flags);
366
367 }
368
369
370 u64 ntp_tick_length(void)
371 {
372 unsigned long flags;
373 s64 ret;
374
375 spin_lock_irqsave(&ntp_lock, flags);
376 ret = tick_length;
377 spin_unlock_irqrestore(&ntp_lock, flags);
378 return ret;
379 }
380
381
382 /*
383 * this routine handles the overflow of the microsecond field
384 *
385 * The tricky bits of code to handle the accurate clock support
386 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
387 * They were originally developed for SUN and DEC kernels.
388 * All the kudos should go to Dave for this stuff.
389 *
390 * Also handles leap second processing, and returns leap offset
391 */
392 int second_overflow(unsigned long secs)
393 {
394 s64 delta;
395 int leap = 0;
396 unsigned long flags;
397
398 spin_lock_irqsave(&ntp_lock, flags);
399
400 /*
401 * Leap second processing. If in leap-insert state at the end of the
402 * day, the system clock is set back one second; if in leap-delete
403 * state, the system clock is set ahead one second.
404 */
405 switch (time_state) {
406 case TIME_OK:
407 if (time_status & STA_INS)
408 time_state = TIME_INS;
409 else if (time_status & STA_DEL)
410 time_state = TIME_DEL;
411 break;
412 case TIME_INS:
413 if (!(time_status & STA_INS))
414 time_state = TIME_OK;
415 else if (secs % 86400 == 0) {
416 leap = -1;
417 time_state = TIME_OOP;
418 time_tai++;
419 printk(KERN_NOTICE
420 "Clock: inserting leap second 23:59:60 UTC\n");
421 }
422 break;
423 case TIME_DEL:
424 if (!(time_status & STA_DEL))
425 time_state = TIME_OK;
426 else if ((secs + 1) % 86400 == 0) {
427 leap = 1;
428 time_tai--;
429 time_state = TIME_WAIT;
430 printk(KERN_NOTICE
431 "Clock: deleting leap second 23:59:59 UTC\n");
432 }
433 break;
434 case TIME_OOP:
435 time_state = TIME_WAIT;
436 break;
437
438 case TIME_WAIT:
439 if (!(time_status & (STA_INS | STA_DEL)))
440 time_state = TIME_OK;
441 break;
442 }
443
444
445 /* Bump the maxerror field */
446 time_maxerror += MAXFREQ / NSEC_PER_USEC;
447 if (time_maxerror > NTP_PHASE_LIMIT) {
448 time_maxerror = NTP_PHASE_LIMIT;
449 time_status |= STA_UNSYNC;
450 }
451
452 /* Compute the phase adjustment for the next second */
453 tick_length = tick_length_base;
454
455 delta = ntp_offset_chunk(time_offset);
456 time_offset -= delta;
457 tick_length += delta;
458
459 /* Check PPS signal */
460 pps_dec_valid();
461
462 if (!time_adjust)
463 goto out;
464
465 if (time_adjust > MAX_TICKADJ) {
466 time_adjust -= MAX_TICKADJ;
467 tick_length += MAX_TICKADJ_SCALED;
468 goto out;
469 }
470
471 if (time_adjust < -MAX_TICKADJ) {
472 time_adjust += MAX_TICKADJ;
473 tick_length -= MAX_TICKADJ_SCALED;
474 goto out;
475 }
476
477 tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
478 << NTP_SCALE_SHIFT;
479 time_adjust = 0;
480
481 out:
482 spin_unlock_irqrestore(&ntp_lock, flags);
483
484 return leap;
485 }
486
487 #if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
488 static void sync_cmos_clock(struct work_struct *work);
489
490 static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
491
492 static void sync_cmos_clock(struct work_struct *work)
493 {
494 struct timespec now, next;
495 int fail = 1;
496
497 /*
498 * If we have an externally synchronized Linux clock, then update
499 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
500 * called as close as possible to 500 ms before the new second starts.
501 * This code is run on a timer. If the clock is set, that timer
502 * may not expire at the correct time. Thus, we adjust...
503 */
504 if (!ntp_synced()) {
505 /*
506 * Not synced, exit, do not restart a timer (if one is
507 * running, let it run out).
508 */
509 return;
510 }
511
512 getnstimeofday(&now);
513 if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2) {
514 fail = -ENODEV;
515 #ifdef CONFIG_GENERIC_CMOS_UPDATE
516 fail = update_persistent_clock(now);
517 #endif
518 #ifdef CONFIG_RTC_SYSTOHC
519 if (fail == -ENODEV)
520 fail = rtc_set_ntp_time(now);
521 #endif
522 }
523
524 next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
525 if (next.tv_nsec <= 0)
526 next.tv_nsec += NSEC_PER_SEC;
527
528 if (!fail || fail == -ENODEV)
529 next.tv_sec = 659;
530 else
531 next.tv_sec = 0;
532
533 if (next.tv_nsec >= NSEC_PER_SEC) {
534 next.tv_sec++;
535 next.tv_nsec -= NSEC_PER_SEC;
536 }
537 schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
538 }
539
540 static void notify_cmos_timer(void)
541 {
542 schedule_delayed_work(&sync_cmos_work, 0);
543 }
544
545 #else
546 static inline void notify_cmos_timer(void) { }
547 #endif
548
549
550 /*
551 * Propagate a new txc->status value into the NTP state:
552 */
553 static inline void process_adj_status(struct timex *txc, struct timespec *ts)
554 {
555 if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
556 time_state = TIME_OK;
557 time_status = STA_UNSYNC;
558 /* restart PPS frequency calibration */
559 pps_reset_freq_interval();
560 }
561
562 /*
563 * If we turn on PLL adjustments then reset the
564 * reference time to current time.
565 */
566 if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
567 time_reftime = get_seconds();
568
569 /* only set allowed bits */
570 time_status &= STA_RONLY;
571 time_status |= txc->status & ~STA_RONLY;
572 }
573
574 /*
575 * Called with ntp_lock held, so we can access and modify
576 * all the global NTP state:
577 */
578 static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts)
579 {
580 if (txc->modes & ADJ_STATUS)
581 process_adj_status(txc, ts);
582
583 if (txc->modes & ADJ_NANO)
584 time_status |= STA_NANO;
585
586 if (txc->modes & ADJ_MICRO)
587 time_status &= ~STA_NANO;
588
589 if (txc->modes & ADJ_FREQUENCY) {
590 time_freq = txc->freq * PPM_SCALE;
591 time_freq = min(time_freq, MAXFREQ_SCALED);
592 time_freq = max(time_freq, -MAXFREQ_SCALED);
593 /* update pps_freq */
594 pps_set_freq(time_freq);
595 }
596
597 if (txc->modes & ADJ_MAXERROR)
598 time_maxerror = txc->maxerror;
599
600 if (txc->modes & ADJ_ESTERROR)
601 time_esterror = txc->esterror;
602
603 if (txc->modes & ADJ_TIMECONST) {
604 time_constant = txc->constant;
605 if (!(time_status & STA_NANO))
606 time_constant += 4;
607 time_constant = min(time_constant, (long)MAXTC);
608 time_constant = max(time_constant, 0l);
609 }
610
611 if (txc->modes & ADJ_TAI && txc->constant > 0)
612 time_tai = txc->constant;
613
614 if (txc->modes & ADJ_OFFSET)
615 ntp_update_offset(txc->offset);
616
617 if (txc->modes & ADJ_TICK)
618 tick_usec = txc->tick;
619
620 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
621 ntp_update_frequency();
622 }
623
624 /*
625 * adjtimex mainly allows reading (and writing, if superuser) of
626 * kernel time-keeping variables. used by xntpd.
627 */
628 int do_adjtimex(struct timex *txc)
629 {
630 struct timespec ts;
631 int result;
632
633 /* Validate the data before disabling interrupts */
634 if (txc->modes & ADJ_ADJTIME) {
635 /* singleshot must not be used with any other mode bits */
636 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
637 return -EINVAL;
638 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
639 !capable(CAP_SYS_TIME))
640 return -EPERM;
641 } else {
642 /* In order to modify anything, you gotta be super-user! */
643 if (txc->modes && !capable(CAP_SYS_TIME))
644 return -EPERM;
645
646 /*
647 * if the quartz is off by more than 10% then
648 * something is VERY wrong!
649 */
650 if (txc->modes & ADJ_TICK &&
651 (txc->tick < 900000/USER_HZ ||
652 txc->tick > 1100000/USER_HZ))
653 return -EINVAL;
654 }
655
656 if (txc->modes & ADJ_SETOFFSET) {
657 struct timespec delta;
658 delta.tv_sec = txc->time.tv_sec;
659 delta.tv_nsec = txc->time.tv_usec;
660 if (!capable(CAP_SYS_TIME))
661 return -EPERM;
662 if (!(txc->modes & ADJ_NANO))
663 delta.tv_nsec *= 1000;
664 result = timekeeping_inject_offset(&delta);
665 if (result)
666 return result;
667 }
668
669 getnstimeofday(&ts);
670
671 spin_lock_irq(&ntp_lock);
672
673 if (txc->modes & ADJ_ADJTIME) {
674 long save_adjust = time_adjust;
675
676 if (!(txc->modes & ADJ_OFFSET_READONLY)) {
677 /* adjtime() is independent from ntp_adjtime() */
678 time_adjust = txc->offset;
679 ntp_update_frequency();
680 }
681 txc->offset = save_adjust;
682 } else {
683
684 /* If there are input parameters, then process them: */
685 if (txc->modes)
686 process_adjtimex_modes(txc, &ts);
687
688 txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
689 NTP_SCALE_SHIFT);
690 if (!(time_status & STA_NANO))
691 txc->offset /= NSEC_PER_USEC;
692 }
693
694 result = time_state; /* mostly `TIME_OK' */
695 /* check for errors */
696 if (is_error_status(time_status))
697 result = TIME_ERROR;
698
699 txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
700 PPM_SCALE_INV, NTP_SCALE_SHIFT);
701 txc->maxerror = time_maxerror;
702 txc->esterror = time_esterror;
703 txc->status = time_status;
704 txc->constant = time_constant;
705 txc->precision = 1;
706 txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
707 txc->tick = tick_usec;
708 txc->tai = time_tai;
709
710 /* fill PPS status fields */
711 pps_fill_timex(txc);
712
713 spin_unlock_irq(&ntp_lock);
714
715 txc->time.tv_sec = ts.tv_sec;
716 txc->time.tv_usec = ts.tv_nsec;
717 if (!(time_status & STA_NANO))
718 txc->time.tv_usec /= NSEC_PER_USEC;
719
720 notify_cmos_timer();
721
722 return result;
723 }
724
725 #ifdef CONFIG_NTP_PPS
726
727 /* actually struct pps_normtime is good old struct timespec, but it is
728 * semantically different (and it is the reason why it was invented):
729 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
730 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
731 struct pps_normtime {
732 __kernel_time_t sec; /* seconds */
733 long nsec; /* nanoseconds */
734 };
735
736 /* normalize the timestamp so that nsec is in the
737 ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
738 static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
739 {
740 struct pps_normtime norm = {
741 .sec = ts.tv_sec,
742 .nsec = ts.tv_nsec
743 };
744
745 if (norm.nsec > (NSEC_PER_SEC >> 1)) {
746 norm.nsec -= NSEC_PER_SEC;
747 norm.sec++;
748 }
749
750 return norm;
751 }
752
753 /* get current phase correction and jitter */
754 static inline long pps_phase_filter_get(long *jitter)
755 {
756 *jitter = pps_tf[0] - pps_tf[1];
757 if (*jitter < 0)
758 *jitter = -*jitter;
759
760 /* TODO: test various filters */
761 return pps_tf[0];
762 }
763
764 /* add the sample to the phase filter */
765 static inline void pps_phase_filter_add(long err)
766 {
767 pps_tf[2] = pps_tf[1];
768 pps_tf[1] = pps_tf[0];
769 pps_tf[0] = err;
770 }
771
772 /* decrease frequency calibration interval length.
773 * It is halved after four consecutive unstable intervals.
774 */
775 static inline void pps_dec_freq_interval(void)
776 {
777 if (--pps_intcnt <= -PPS_INTCOUNT) {
778 pps_intcnt = -PPS_INTCOUNT;
779 if (pps_shift > PPS_INTMIN) {
780 pps_shift--;
781 pps_intcnt = 0;
782 }
783 }
784 }
785
786 /* increase frequency calibration interval length.
787 * It is doubled after four consecutive stable intervals.
788 */
789 static inline void pps_inc_freq_interval(void)
790 {
791 if (++pps_intcnt >= PPS_INTCOUNT) {
792 pps_intcnt = PPS_INTCOUNT;
793 if (pps_shift < PPS_INTMAX) {
794 pps_shift++;
795 pps_intcnt = 0;
796 }
797 }
798 }
799
800 /* update clock frequency based on MONOTONIC_RAW clock PPS signal
801 * timestamps
802 *
803 * At the end of the calibration interval the difference between the
804 * first and last MONOTONIC_RAW clock timestamps divided by the length
805 * of the interval becomes the frequency update. If the interval was
806 * too long, the data are discarded.
807 * Returns the difference between old and new frequency values.
808 */
809 static long hardpps_update_freq(struct pps_normtime freq_norm)
810 {
811 long delta, delta_mod;
812 s64 ftemp;
813
814 /* check if the frequency interval was too long */
815 if (freq_norm.sec > (2 << pps_shift)) {
816 time_status |= STA_PPSERROR;
817 pps_errcnt++;
818 pps_dec_freq_interval();
819 pr_err("hardpps: PPSERROR: interval too long - %ld s\n",
820 freq_norm.sec);
821 return 0;
822 }
823
824 /* here the raw frequency offset and wander (stability) is
825 * calculated. If the wander is less than the wander threshold
826 * the interval is increased; otherwise it is decreased.
827 */
828 ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
829 freq_norm.sec);
830 delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
831 pps_freq = ftemp;
832 if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
833 pr_warning("hardpps: PPSWANDER: change=%ld\n", delta);
834 time_status |= STA_PPSWANDER;
835 pps_stbcnt++;
836 pps_dec_freq_interval();
837 } else { /* good sample */
838 pps_inc_freq_interval();
839 }
840
841 /* the stability metric is calculated as the average of recent
842 * frequency changes, but is used only for performance
843 * monitoring
844 */
845 delta_mod = delta;
846 if (delta_mod < 0)
847 delta_mod = -delta_mod;
848 pps_stabil += (div_s64(((s64)delta_mod) <<
849 (NTP_SCALE_SHIFT - SHIFT_USEC),
850 NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
851
852 /* if enabled, the system clock frequency is updated */
853 if ((time_status & STA_PPSFREQ) != 0 &&
854 (time_status & STA_FREQHOLD) == 0) {
855 time_freq = pps_freq;
856 ntp_update_frequency();
857 }
858
859 return delta;
860 }
861
862 /* correct REALTIME clock phase error against PPS signal */
863 static void hardpps_update_phase(long error)
864 {
865 long correction = -error;
866 long jitter;
867
868 /* add the sample to the median filter */
869 pps_phase_filter_add(correction);
870 correction = pps_phase_filter_get(&jitter);
871
872 /* Nominal jitter is due to PPS signal noise. If it exceeds the
873 * threshold, the sample is discarded; otherwise, if so enabled,
874 * the time offset is updated.
875 */
876 if (jitter > (pps_jitter << PPS_POPCORN)) {
877 pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
878 jitter, (pps_jitter << PPS_POPCORN));
879 time_status |= STA_PPSJITTER;
880 pps_jitcnt++;
881 } else if (time_status & STA_PPSTIME) {
882 /* correct the time using the phase offset */
883 time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
884 NTP_INTERVAL_FREQ);
885 /* cancel running adjtime() */
886 time_adjust = 0;
887 }
888 /* update jitter */
889 pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
890 }
891
892 /*
893 * hardpps() - discipline CPU clock oscillator to external PPS signal
894 *
895 * This routine is called at each PPS signal arrival in order to
896 * discipline the CPU clock oscillator to the PPS signal. It takes two
897 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
898 * is used to correct clock phase error and the latter is used to
899 * correct the frequency.
900 *
901 * This code is based on David Mills's reference nanokernel
902 * implementation. It was mostly rewritten but keeps the same idea.
903 */
904 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
905 {
906 struct pps_normtime pts_norm, freq_norm;
907 unsigned long flags;
908
909 pts_norm = pps_normalize_ts(*phase_ts);
910
911 spin_lock_irqsave(&ntp_lock, flags);
912
913 /* clear the error bits, they will be set again if needed */
914 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
915
916 /* indicate signal presence */
917 time_status |= STA_PPSSIGNAL;
918 pps_valid = PPS_VALID;
919
920 /* when called for the first time,
921 * just start the frequency interval */
922 if (unlikely(pps_fbase.tv_sec == 0)) {
923 pps_fbase = *raw_ts;
924 spin_unlock_irqrestore(&ntp_lock, flags);
925 return;
926 }
927
928 /* ok, now we have a base for frequency calculation */
929 freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
930
931 /* check that the signal is in the range
932 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
933 if ((freq_norm.sec == 0) ||
934 (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
935 (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
936 time_status |= STA_PPSJITTER;
937 /* restart the frequency calibration interval */
938 pps_fbase = *raw_ts;
939 spin_unlock_irqrestore(&ntp_lock, flags);
940 pr_err("hardpps: PPSJITTER: bad pulse\n");
941 return;
942 }
943
944 /* signal is ok */
945
946 /* check if the current frequency interval is finished */
947 if (freq_norm.sec >= (1 << pps_shift)) {
948 pps_calcnt++;
949 /* restart the frequency calibration interval */
950 pps_fbase = *raw_ts;
951 hardpps_update_freq(freq_norm);
952 }
953
954 hardpps_update_phase(pts_norm.nsec);
955
956 spin_unlock_irqrestore(&ntp_lock, flags);
957 }
958 EXPORT_SYMBOL(hardpps);
959
960 #endif /* CONFIG_NTP_PPS */
961
962 static int __init ntp_tick_adj_setup(char *str)
963 {
964 ntp_tick_adj = simple_strtol(str, NULL, 0);
965 ntp_tick_adj <<= NTP_SCALE_SHIFT;
966
967 return 1;
968 }
969
970 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
971
972 void __init ntp_init(void)
973 {
974 ntp_clear();
975 }